JP4032211B2 - 半導体装置、メモリシステムおよび電子機器 - Google Patents

半導体装置、メモリシステムおよび電子機器 Download PDF

Info

Publication number
JP4032211B2
JP4032211B2 JP2001034204A JP2001034204A JP4032211B2 JP 4032211 B2 JP4032211 B2 JP 4032211B2 JP 2001034204 A JP2001034204 A JP 2001034204A JP 2001034204 A JP2001034204 A JP 2001034204A JP 4032211 B2 JP4032211 B2 JP 4032211B2
Authority
JP
Japan
Prior art keywords
layer
drain
conductive layer
conductive
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001034204A
Other languages
English (en)
Other versions
JP2002237537A (ja
Inventor
純一 唐澤
敬 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2001034204A priority Critical patent/JP4032211B2/ja
Publication of JP2002237537A publication Critical patent/JP2002237537A/ja
Application granted granted Critical
Publication of JP4032211B2 publication Critical patent/JP4032211B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、SRAM(static random access memory)のような半導体装置、および、これを備えるメモリシステム、電子機器に関する。
【0002】
【背景技術および発明が解決しようとする課題】
半導体記憶装置の一種であるSRAMは、リフレッシュ動作が不要なのでシステムを簡単にできることや低消費電力であるという特徴を有する。このため、SRAMは、例えば、携帯電話のような電子機器のメモリに好適に使用される。
【0003】
携帯機器には、小型化の要請があり、これに伴いSRAMのメモリセルサイズも小さくしなければならない。
【0004】
本発明の目的は、メモリセルサイズを小型化することが可能な半導体装置、および、これを備えるメモリシステム、電子機器を提供することである。
【0005】
【課題を解決するための手段】
(1)本発明にかかる半導体装置は、
第1負荷トランジスタ、第2負荷トランジスタ、第1駆動トランジスタ、および、第2駆動トランジスタを含むフリップフロップを備える半導体装置であって、
第1層導電層に位置し、かつ、前記第1負荷トランジスタおよび前記第1駆動トランジスタのゲート電極を含む、第1ゲート-ゲート電極層と、
前記第1導電層に位置し、かつ、前記第2負荷トランジスタおよび前記第2駆動トランジスタのゲート電極を含む、第2ゲート-ゲート電極層と、
前記第1層導電層の上層である第2層導電層に位置し、かつ、前記第1負荷トランジスタのドレインと前記第1駆動トランジスタのドレインとの接続に用いられ、かつ、タングステンを含有する、第1ドレイン-ドレイン接続層と、
前記第2層導電層に位置し、かつ、前記第2負荷トランジスタのドレインと前記第2駆動トランジスタのドレインとの接続に用いられ、かつ、タングステンを含有する、第2ドレイン-ドレイン接続層と、
前記第2層導電層の上層である第3導電層に位置し、かつ、前記第1ドレイン-ドレイン接続層と前記第2ゲート-ゲート電極層との接続に用いられる、第1ドレイン-ゲート接続層と、
前記第3導電層に位置し、かつ、前記第2ドレイン-ドレイン接続層と前記第1ゲート-ゲート電極層との接続に用いられる、第2ドレイン-ゲート接続層と、
を備える。
【0006】
ここで、「活性領域」とは、素子分離領域によって画定された素子形成領域をいい、具体的には、不純物拡散層が形成される領域と、ゲート電極の下のチャネルが形成される領域とを含む。
【0007】
第1負荷トランジスタ、第2負荷トランジスタ、第1駆動トランジスタ、第2駆動トランジスタに所定の接続をすることにより、フリップフロップが構成される。本発明によれば、三層の導電層(ゲート-ゲート電極層、ドレイン-ドレイン接続層、ドレイン-ゲート接続層)を用いて、フリップフロップが構成される。このため、二層の導電層を用いてフリップフロップを構成する場合に比べて、各層のパターンを単純化(例えば、ほぼ直線状のパターン)することができる。このように、本発明によれば、各層のパターンを単純化できるので、例えば、メモリセルサイズが、2.5μm2以下の微細な半導体装置にすることができる。
【0008】
また、本発明の第1および第2ドレイン-ドレイン接続層はタングステンを含有するので、第1および第2ドレイン-ドレイン接続層をダマシンにより形成することができる。よって、本発明によれば、半導体装置の多層配線化が容易となる。
【0009】
(2)本発明にかかる半導体装置は、以下のようにすることができる。
【0010】
第1転送トランジスタおよび第2転送トランジスタと、
第1方向に延びるパターンを有し、かつ、前記第1層導電層の下層に位置し、かつ、前記第1および第2負荷トランジスタが形成される、第1活性領域と、
第1方向に延びるパターンを有し、かつ、前記第1活性領域と同じ層に位置し、かつ、前記第1および第2駆動トランジスタ、前記第1および第2転送トランジスタが形成される、第2活性領域と、
第2方向に延びるパターンを有し、かつ、前記第1層導電層に位置し、かつ、前記第2活性領域と平面的に見て交差して位置し、かつ、前記第1転送トランジスタのゲート電極を含む、第1ワード線と、
第2方向に延びるパターンを有し、かつ、前記第1層導電層に位置し、かつ、前記第2活性領域と平面的に見て交差して位置し、かつ、前記第2転送トランジスタのゲート電極を含む、第2ワード線と、
を備え、
前記第1および第2ゲート-ゲート電極層は、第2方向に延びるパターンを有し、かつ、前記第1ワード線と前記第2ワード線との間に位置し、前記第1および第2活性領域と平面的に見て交差して位置し、
前記第1および第2ドレイン-ドレイン接続層は、第2方向に延びるパターンを有する。
【0011】
本発明によれば、メモリセルサイズの小型化を図ることができる。
【0012】
(3)本発明にかかる半導体装置は、以下のようにすることができる。
【0013】
第1方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2負荷トランジスタのソースと接続し、かつ、タングステンを含有する、電源線と、
第2方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2駆動トランジスタのソースと接続し、かつ、タングステンを含有する、接地線用局所配線層と、
前記第2層導電層に位置し、かつ、前記第1転送トランジスタと接続し、かつ、タングステンを含有する、ビット線用コンタクトパッド層と、
前記第2層導電層に位置し、かつ、前記第2転送トランジスタと接続し、かつ、タングステンを含有する、/ビット線用コンタクトパッド層と、
第2方向に延びるパターンを有し、かつ、前記3層導電層の上層である第4層導電層に位置し、かつ、前記接地線用局所配線層と接続する、接地線と、
第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置する、主ワード線と、
第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記ビット線用コンタクトパッド層と接続する、ビット線用局所配線層と、
第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記/ビット線用コンタクトパッド層と接続する、/ビット線用局所配線層と、
第1方向に延びるパターンを有し、かつ、前記第4層導電層の上層である第5層導電層に位置し、前記ビット線用局所配線層と接続する、ビット線と、
第1方向に延びるパターンを有し、かつ、前記第5層導電層に位置し、前記/ビット線用局所配線層と接続する、/ビット線と、
を備える。
【0014】
本発明によれば、電源線、接地線、主ワード線、ビット線、および、/ビット線をバランスよく配置することができる。接地線用局所配線層は、第1および第2駆動トランジスタのソースと接地線との接続に用いられる。ビット線用コンタクトパッド層およびビット線用局所配線層は、ビット線と第1転送トランジスタとの接続に用いられる。/ビット線用コンタクトパッド層および/ビット線用局所配線層は、/ビット線と第2転送トランジスタとの接続に用いられる。なお、電源線とは、例えば、VDD配線である。接地線とは、例えば、VSS配線である。また、主ワード線を設ける場合、上記のワード線は副ワード線となる。
【0015】
(4)本発明にかかる半導体装置は、以下のようにすることができる。
【0016】
第1転送トランジスタおよび第2転送トランジスタと、
第2方向に延びるパターンを有し、かつ、前記第1層導電層の下層に位置し、かつ、前記第1および第2負荷トランジスタが形成される、第1活性領域と、
第1および第2方向に延びるパターンを有し、かつ、前記第1活性領域と同じ層に位置し、かつ、前記第1および第2駆動トランジスタ、前記第1および第2転送トランジスタが形成される、第2活性領域と、
第2方向に延びるパターンを有し、かつ、前記第1層導電層に位置し、かつ、前記第2活性領域の第1方向に延びるパターンと平面的に見て交差して位置し、かつ、前記第1および第2転送トランジスタのゲート電極を含む、ワード線と、
を備え、
前記第1および第2ゲート-ゲート電極層は、第1方向に延びるパターンを有し、かつ、前記第1および第2活性領域と平面的に見て交差して位置し、
前記第1および第2ドレイン-ドレイン接続層は、第1方向に延びるパターンを有する。
【0017】
本発明によれば、メモリセルサイズの小型化を図ることができる。
【0018】
(5)本発明にかかる半導体装置は、以下のようにすることができる。
【0019】
第2方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2負荷トランジスタのソースと接続し、かつ、タングステンを含有する、電源線と、
第1方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2駆動トランジスタのソースと接続し、かつ、タングステンを含有する、接地線用第1局所配線層と、
前記第2層導電層に位置し、かつ、前記第1転送トランジスタと接続し、かつ、タングステンを含有する、ビット線用第1コンタクトパッド層と、
前記第2層導電層に位置し、かつ、前記第2転送トランジスタと接続し、かつ、タングステンを含有する、/ビット線用第1コンタクトパッド層と、
第2方向に延びるパターンを有し、かつ、前記第3層導電層に位置する、主ワード線と、
第1方向に延びるパターンを有し、かつ、前記第3層導電層に位置し、かつ、前記接地線用第1局所配線層と接続する、接地線用第2局所配線層と、
前記第3層導電層に位置し、かつ、前記ビット線用第1コンタクトパッド層と接続する、ビット線用第2コンタクトパッド層と、
前記第3層導電層に位置し、かつ、前記/ビット線用第1コンタクトパッド層と接続する、/ビット線用第2コンタクトパッド層と、
第1方向に延びるパターンを有し、かつ、前記第3層導電層の上層である第4層導電層に位置し、かつ、前記ビット線用第2コンタクトパッド層と接続する、ビット線と、
第1方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記/ビット線用第2コンタクトパッド層と接続する、/ビット線と、
第1方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記接地線用第2局所配線層と接続する、接地線と、
を備える。
【0020】
本発明によれば、電源線、接地線、主ワード線、ビット線、および、/ビット線をバランスよく配置することができる。なお、接地線用第1、第2局所配線層は、第1および第2駆動トランジスタのソースと接地線との接続に用いられる。ビット線用第1、第2コンタクトパッド層は、ビット線と第1転送トランジスタとの接続に用いられる。/ビット線用第1、第2コンタクトパッド層は、/ビット線と第2転送トランジスタとの接続に用いられる。
【0021】
(6)本発明にかかる半導体装置は、以下のようにすることができる。
【0022】
前記第1および第2負荷トランジスタ、前記第1および第2駆動トランジスタ、前記第1および第2転送トランジスタを含むメモリセルのサイズが、2.5μm2以下である。
【0023】
(7)本発明にかかるメモリシステムは、上記(1)〜(6)のいずれかに記載の前記半導体装置を備える。
【0024】
(8)本発明にかかる電子機器は、上記(1)〜(6)のいずれかに記載の前記半導体装置を備える。
【0025】
【発明の実施の形態】
本発明の実施形態について図面を用いて説明する。本実施形態は本発明にかかる半導体装置を、SRAMに適用したものである。本実施形態には第1および第2実施形態がある。まず、第1実施形態、第2実施形態の順に説明し、それから第1および第2実施形態の効果を説明する。
【0026】
[第1実施形態]
まず、第1実施形態にかかるSRAMの構造の概略を説明し、次に構造の詳細を説明し、最後に製造方法を説明する。
【0027】
{SRAMの構造の概略}
図1は、第1実施形態にかかるSRAMの等価回路図である。第1実施形態にかかるSRAMは、6個のMOS電界効果トランジスタにより、一つのメモリセルが構成されるタイプである。つまり、nチャネル型の駆動トランジスタQ3とpチャネル型の負荷トランジスタQ5とで、一つのCMOSインバータが構成されている。また、nチャネル型の駆動トランジスタQ4とpチャネル型の負荷トランジスタQ6とで、一つのCMOSインバータが構成されている。この二つのCMOSインバータをクロスカップルすることにより、フリップフロップが構成される。そして、このフリップフロップと、nチャネル型の転送トランジスタQ1、Q2とにより、一つのメモリセルが構成される。
【0028】
本実施形態にかかるSRAMのメモリセルは、図2〜図7に示すように、フィールドの上方に5層の導電層を有する構造をしている。以下、図1を参照しながら、図2〜図7について簡単に説明する。なお、これらの図中の記号Rは、一つのメモリセルの形成領域を示している。
【0029】
図2は、フィールドを示す平面図であり、Y方向にほぼ直線状に延びるパターンを有する活性領域101、103を含む。図3は、第1層導電層を示す平面図であり、X方向にほぼ直線状に延びるパターンを有するゲート-ゲート電極層111a、111b、副ワード線113a、113bを含む。ゲート-ゲート電極層111aは、駆動トランジスタQ3および負荷トランジスタQ5のゲート電極を含み、ゲート-ゲート電極層111bは、駆動トランジスタQ4および負荷トランジスタQ6のゲート電極を含み、副ワード線113aは、転送トランジスタQ1のゲート電極を含み、副ワード線113bは、転送トランジスタQ2のゲート電極を含む。図4は、第2層導電層を示す平面図であり、X方向にほぼ直線状に延びるパターンを有するドレイン-ドレイン接続層121a、L字型のパターンを有するドレイン-ドレイン接続層121b、Y方向にほぼ直線状に延びるパターンを有するVDD配線123等を含む。図5は、第3層導電層を示す平面図であり、L字型のパターンを有するドレイン-ゲート接続層131a、コの字型のパターンを有するドレイン-ゲート接続層131bを含む。図6は、第4層導電層を示す平面図であり、X方向にほぼ直線状に延びるパターンを有するビット線用局所配線層141a、/ビット線用局所配線層141b、主ワード線143、VSS配線145を含む。図7は、第5層導電層を示す平面図であり、Y方向にほぼ直線状に延びるパターンを有するビット線151a、/ビット線151bを含む。
【0030】
{SRAMの構造の詳細}
第1実施形態にかかるSRAMの構造の詳細を、下層から順に、図2〜図15を用いて説明する。図8はフィールドおよび第1層導電層を示す平面図であり、図9はフィールド、第1層導電層および第2層導電層を示す平面図であり、図10は第2層導電層および第3層導電層を示す平面図であり、図11は第1層導電層および第3層導電層を示す平面図であり、図12は第2層導電層および第4層導電層を示す平面図であり、図13は第4層導電層および第5層導電層を示す平面図であり、図14は図2〜図13のA1−A2線に沿った断面図であり、図15は図2〜図13のB1−B2線に沿った断面図である。
【0031】
(フィールド、第1層導電層)
まず、フィールドについて説明する。図2に示すように、フィールドは、活性領域101、103および素子分離領域109を有する。活性領域101、103は、シリコン基板の表面に形成されている。
【0032】
活性領域101は、Y方向にほぼ直線状に延びるパターンを有する。活性領域101は、メモリセルの形成領域Rに対して図2中の上下に位置する他のメモリセルの形成領域に延びている。活性領域101は、駆動トランジスタQ3、Q4が形成される領域101aと転送トランジスタQ1、Q2が形成される領域101bとを含む。領域101aの幅は、例えば、0.22〜0.33μmであり、領域101bの幅は、例えば、0.16〜0.20μmである。
【0033】
活性領域103は、Y方向にほぼ直線状に延びるパターンを有し、活性領域101と間隔を設けて形成されている。活性領域103の両端は、メモリセルの形成領域R内で延びが止まっている。活性領域103には、負荷トランジスタQ5、Q6が形成される。活性領域103の幅は、例えば、0.16〜0.20μmである。
【0034】
活性領域101と活性領域103とは、素子分離領域109(深さ、例えば、0.35〜0.45μm)により、互いに分離されている。素子分離領域109としては、例えば、STI(shallow trench isolation)がある。なお、メモリセルの形成領域RのX方向の長さは、例えば、1.0〜1.4μmであり、Y方向の長さは、例えば、1.6〜2.0μmである。
【0035】
図2に示すフィールドのA1−A2断面、B1−B2断面は、それぞれ、図14、図15に示すとおりである。これらの断面には、シリコン基板中に形成されたpウェル102、nウェル104等が表れている。
【0036】
次に、フィールドの上層に位置する第1層導電層について、図3、図8を用いて説明する。一組のゲート-ゲート電極層111a、111bが、互いに平行に、一つのメモリセルの形成領域Rに配置されている。ゲート-ゲート電極層111a、111bは、活性領域101、103と平面的に見て交差している。ゲート-ゲート電極層111aは、駆動トランジスタQ3および負荷トランジスタQ5のゲート電極を構成し、さらに、これらのゲート電極同士を接続している。ゲート-ゲート電極層111bは、駆動トランジスタQ4および負荷トランジスタQ6のゲート電極を構成し、さらに、これらのゲート電極同士を接続している。駆動トランジスタQ3、Q4のゲート長は、例えば、0.12〜0.15μmである。負荷トランジスタQ5、Q6のゲート長は、例えば、0.14〜0.17μmである。
【0037】
副ワード線113a、113bは、活性領域103と平面的に見て離れて位置し、かつ、活性領域101と平面的に見て交差して位置する。副ワード線113aと副ワード線113bとの間にゲート-ゲート電極層111a、111bが位置している。副ワード線113aは、転送トランジスタQ1のゲート電極となり、副ワード線113bは、転送トランジスタQ2のゲート電極となる。転送トランジスタQ1、Q2のゲート長は、例えば、0.14〜0.17μmである。
【0038】
ゲート-ゲート電極層111a、111bおよび副ワード線113a、113bは、例えば、ポリシリコン層上にシリサイド層を形成した構造を有する。
【0039】
図3、図8に示す第1層導電層のA1−A2断面、B1−B2断面は、それぞれ、図14、図15に示すとおりである。これらの断面には、副ワード線113aやゲート-ゲート電極層111aが表れている。
【0040】
次に、活性領域101に形成される、n+型不純物領域105a、105b、105c、105d、105eについて、図8を用いて説明する。平面的に見て副ワード線113aを挟むように、n+型不純物領域105aとn+型不純物領域105bとが位置し、ゲート-ゲート電極層111aを挟むように、n+型不純物領域105bとn+型不純物領域105cとが位置し、ゲート-ゲート電極層111bを挟むように、n+型不純物領域105cとn+型不純物領域105dとが位置し、副ワード線113bを挟むように、n+型不純物領域105dとn+型不純物領域105eとが位置している。
【0041】
+型不純物領域105aは、転送トランジスタQ1のソースまたはドレインとなる。n+型不純物領域105bは、転送トランジスタQ1のソースまたはドレイン、駆動トランジスタQ3のドレインとなる。n+型不純物領域105cは、駆動トランジスタQ3、Q4の共通のソースとなる。n+型不純物領域105dは、駆動トランジスタQ4のドレイン、転送トランジスタQ2のソースまたはドレインとなる。n+型不純物領域105eは、転送トランジスタQ2のソースまたはドレインとなる。
【0042】
次に、活性領域103に形成される、p+型不純物領域107a、107b、107cについて、図8を用いて説明する。平面的に見てゲート-ゲート電極層111aを挟むように、p+型不純物領域107aとp+型不純物領域107bとが位置し、ゲート-ゲート電極層111bを挟むように、p+型不純物領域107bとp+型不純物領域107cとが位置している。p+型不純物領域107aは、負荷トランジスタQ5のドレインとなり、p+型不純物領域107cは、負荷トランジスタQ6のドレインとなり、p+型不純物領域107bは、負荷トランジスタQ5、Q6の共通のソースとなる。図14に示すように、この断面には、n+型不純物領域105a、105b、p+型不純物領域107aが表れている。
【0043】
図14および図15に示すように、フィールドおよび第1層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層201が形成されている。層間絶縁層201は、化学的機械研磨(Chemical Mechanical Polishing、以下、CMPという)により平坦化の処理がなされている。
【0044】
(第2層導電層)
第2層導電層について、図4、図9を用いて説明する。第2層導電層は、第1層導電層の上層に位置する。第2層導電層は、ドレイン-ドレイン接続層121a、121b、VDD配線123、ビット線コンタクトパッド層125a、/ビット線コンタクトパッド層125b、接地線用局所配線層127を含む。第2層導電層は、第2層導電層とフィールドとを接続する導電部であるコンタクト導電部203(以下、フィールド・第2層-コンタクト導電部203という)を介して、フィールドのn+型不純物領域やp+型不純物領域と接続される。
【0045】
ドレイン-ドレイン接続層121aとドレイン-ドレイン接続層121bと間に、平面的に見て、ゲート-ゲート電極層111a、111bが位置するように、ドレイン-ドレイン接続層121a、121bが位置している。ドレイン-ドレイン接続層121aは、n+型不純物領域105b(ドレイン)およびp+型不純物領域107a(ドレイン)の上方に位置している。ドレイン-ドレイン接続層121aの端部121a1は、フィールド・第2層-コンタクト導電部203を介して、n+型不純物領域105b(ドレイン)と接続され、ドレイン-ドレイン接続層121aの端部121a2は、フィールド・第2層-コンタクト導電部203を介して、p+型不純物領域107a(ドレイン)と接続されている。ドレイン-ドレイン接続層121bは、n+型不純物領域105d(ドレイン)およびp+型不純物領域107c(ドレイン)の上方に位置している。ドレイン-ドレイン接続層121bの端部121b1は、フィールド・第2層-コンタクト導電部203を介して、n+型不純物領域105d(ドレイン)と接続され、ドレイン-ドレイン接続層121bのL字型の角部121b3は、フィールド・第2層-コンタクト導電部203を介して、p+型不純物領域107c(ドレイン)と接続されている。ドレイン-ドレイン接続層121a、121bの幅は、例えば、0.16〜0.20μmである。
【0046】
DD配線123の幅は、例えば、0.16〜0.20μmである。VDD配線123の凸部123aは、X方向に延び、かつ、p+型不純物領域107b(ソース)の上方に位置している。凸部123aは、フィールド・第2層-コンタクト導電部203を介して、p+型不純物領域107bと接続されている。
【0047】
接地線用局所配線層127は、n+型不純物領域105c(ソース)の上方に位置している。接地線用局所配線層127は、フィールド・第2層-コンタクト導電部203を介して、n+型不純物領域105cと接続されている。接地線用局所配線層127は、VSS配線145(図6)と、駆動トランジスタQ3、Q4のソースとなるn+型不純物領域105cとを接続するための配線層として機能する。接地線用局所配線層127は、形成領域Rのメモリセル、および、形成領域Rに対して、図9中の右隣に位置するメモリセルにおいて共用される。
【0048】
ビット線用コンタクトパッド層125aは、n+型不純物領域105aの上方に位置している。ビット線用コンタクトパッド層125aは、フィールド・第2層-コンタクト導電部203を介して、n+型不純物領域105aと接続されている。ビット線用コンタクトパッド層125aは、ビット線151a(図7)と、転送トランジスタQ1のソースおよびドレインとなるn+型不純物領域105aとを接続するためのパッド層として機能する。ビット線用コンタクトパッド層125aは、形成領域Rのメモリセル、および、形成領域Rに対して、図9中の上に位置するメモリセルにおいて共用される。
【0049】
/ビット線用コンタクトパッド層125bは、n+型不純物領域105eの上方に位置している。/ビット線用コンタクトパッド層125bは、フィールド・第2層-コンタクト導電部203を介して、n+型不純物領域105eと接続されている。/ビット線用コンタクトパッド層125bは、/ビット線151b(図7)と、転送トランジスタQ2のソースおよびドレインとなるn+型不純物領域105eとを接続するためのパッド層として機能する。/ビット線用コンタクトパッド層125bは、形成領域Rのメモリセル、および、形成領域Rに対して、図9中の下に位置するメモリセルにおいて共用される。
【0050】
次に、第2層導電層の断面構造について、図14を用いて説明する。第2層導電層は、例えば、シリコン酸化層のような絶縁層129に埋め込まれた構造をしている。第2層導電層はダマシンにより形成されている。第2層導電層は、例えば、高融点金属の窒化物層122上に、タングステンを含有するタングステン含有層124(厚さ例えば、100〜200nm)を形成した構造を有する。高融点金属の窒化物層122は、下敷きとなり、例えば、チタンナイトライド層がある。タングステン含有層124は、タングステンを主とする層であってもよいし、さらに他の金属を含む層でもよい。なお、第2層導電層の構成は、タングステン含有層124のみでもよい。
【0051】
次に、フィールド・第2層-コンタクト導電部203の断面構造について、図14を用いて説明する。層間絶縁層201には、フィールドにあるn+型不純物領域やp+型不純物領域を露出する複数のスルーホール205が形成されている。これらのスルーホール205に、フィールド・第2層-コンタクト導電部203が埋め込まれている。フィールド・第2層-コンタクト導電部203は、スルーホール205に埋め込まれたプラグ207と、スルーホール205の底面上および側面上に位置するバリア層209とを含む。バリア層209は、高融点金属からなる金属層と、その金属層の上に形成された高融点金属の窒化物層とからなることが好ましい。高融点金属からなる金属層の材料としては、たとえばチタンが挙げられる。高融点金属の窒化物層の材料としては、例えば、チタンナイトライドが挙げられる。スルーホール205の上端部の径は、例えば、0.18〜0.22μmであり、下端部の径は、例えば、0.14〜0.18μmである。
【0052】
次に、ゲート-ゲート電極層111a、111bとドレイン-ゲート接続層131a、131bとの接続に用いられるコンタクト導電部223(以下、第1層・第3層-スタックドコンタクト導電部223という)について、図15を用いて説明する。図15には、ゲート-ゲート電極層111aとドレイン-ゲート接続層131bとを接続する第1層・第3層-スタックドコンタクト導電部223が表れている。第1層・第3層-スタックドコンタクト導電部223は、下層導電部204に上層導電部214が積まれた構造をしている。下層導電部204は、層間絶縁層201に埋め込まれている。下層導電部204は、フィールド・第2層-コンタクト導電部203と同一工程で形成されたものであり、スルーホール206に埋め込まれたプラグ207、バリア層209を含む。なお、上層導電部214については、(第3層導電層)の欄で説明する。
【0053】
図14、図15に示すように、第2層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層211が形成されている。層間絶縁層211は、CMPにより平坦化の処理がなされている。
【0054】
(第3層導電層)
第3層導電層について、図5、図10、図11を用いて説明する。第3層導電層は、第2層導電層の上層に位置する。第3層導電層は、ドレイン-ゲート接続層131a、131bを含む。ドレイン-ゲート接続層131a、131bの幅は、例えば、0.16〜0.20μmである。
【0055】
ドレイン-ゲート接続層131aは、L字型のパターンを有し、その端部131a1がドレイン-ドレイン接続層121aの端部121a1の上方に位置している(図10)。ドレイン-ゲート接続層131aの端部131a1は、第3層導電層と第2層導電層とを接続する導電部であるコンタクト導電部213(以下、第2層・第3層-コンタクト導電部213という)を介して、ドレイン-ドレイン接続層121aの端部121a1と接続されている(図10)。ドレイン-ゲート接続層131aの端部131a2がゲート-ゲート電極層111bの中央部の上方に位置している(図11)。ドレイン-ゲート接続層131aの端部131a2は、第1層・第3層-スタックドコンタクト導電部223を介して、ゲート-ゲート電極層111bの中央部と接続されている(図11)。
【0056】
ドレイン-ゲート接続層131bは、コの字型をし、その端部131b1がドレイン-ドレイン接続層121bの端部121b2の上方に位置している(図10)。ドレイン-ゲート接続層131bの端部131b1は、第2層・第3層-コンタクト導電部213を介して、ドレイン-ドレイン接続層121bの端部121b2と接続されている(図10)。ドレイン-ゲート接続層131bの端部131b2がゲート-ゲート電極層111aの中央部の上方に位置している(図11)。ドレイン-ゲート接続層131bの端部131b2は、第1層・第3層-スタックドコンタクト導電部223を介して、ゲート-ゲート電極層111aの中央部と接続されている(図11)。
【0057】
次に、第3層導電層の断面構造について、図14、図15を用いて説明する。第3層導電層は、例えば、シリコン酸化層のような絶縁層229に埋め込まれた構造をしている。第3層導電層はダマシンにより形成されている。第3層導電層は、例えば、高融点金属の窒化物層132上に、タングステンを含有するタングステン含有層134(厚さ例えば、100〜200nm)を形成した構造を有する。高融点金属の窒化物層132は、下敷きとなり、例えば、チタンナイトライド層がある。タングステン含有層134は、タングステンを主とする層であってもよいし、さらに他の金属を含む層でもよい。なお、第3層導電層の構成は、タングステン含有層134のみでもよい。
【0058】
次に、第2層・第3層-コンタクト導電部213の断面構造について、図14を用いて説明する。層間絶縁層211を貫通するスルーホール215には、第2層・第3層-コンタクト導電部213が埋め込まれている。第2層・第3層-コンタクト導電部213は、フィールド・第2層-コンタクト導電部203で述べた構造と同様の構造をとることができる。
【0059】
次に、第1層・第3層-スタックドコンタクト導電部223の上層導電部214について、図15を用いて説明する。図15には、ゲート-ゲート電極層111aとドレイン-ゲート接続層131bとを接続する第1層・第3層-スタックドコンタクト導電部223が表れている。上層導電部214は、層間絶縁層211および絶縁層129に埋め込まれており、下層導電部204およびドレイン-ゲート接続層131bと接続されている。上層導電部214は、第2層・第3層-コンタクト導電部213と同一工程で形成されたものであり、スルーホール216に埋め込まれたプラグ217、バリア層219を含む。
【0060】
図14、図15に示すように、第3層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層221が形成されている。層間絶縁層221は、CMPにより平坦化の処理がなされている。
【0061】
(第4層導電層)
第4層導電層について、図6、図12を用いて説明する。第4層導電層は、第3層導電層の上層に位置する。第4層導電層は、X方向にほぼ直線状に延びるパターンを有するビット線用局所配線層141a、/ビット線用局所配線層141b、主ワード線143、VSS配線145を含む。ビット線用局所配線層141aと、/ビット線用局所配線層141bとの間に、主ワード線143、VSS配線145が位置している。
【0062】
SS配線145は、接地線用局所配線層127の上方に位置し、第4層導電層と第2層導電層とを接続するコンタクト導電部233(以下、第2層・第4層-コンタクト導電部233という)を介して、接地線用局所配線層127と接続されている。VSS配線145の幅は、例えば、0.4〜1.0μmである。
【0063】
主ワード線143は、ドレイン-ドレイン接続層121aの上方に位置する。主ワード線143によって、副ワード線113a、113b(図8)が活性化および非活性化される。主ワード線143の幅は、例えば、0.18〜0.24μmである。なお、本実施形態では、ワード線を副ワード線と主ワード線からなる構造としているが、主ワード線を設けない構造でもよい。
【0064】
ビット線用局所配線層141aは、ビット線151a(図7)と、転送トランジスタQ1のソースおよびドレインとなるn+型不純物領域105a(図8)とを接続するための配線層として機能する。ビット線用局所配線層141aの端部141a1は、第2層・第4層-コンタクト導電部233を介して、ビット線用コンタクトパッド層125aと接続されている。ビット線用局所配線層141aは、形成領域Rのメモリセル、および、形成領域Rに対して、図12中の上に位置するメモリセルにおいて共用される。ビット線用局所配線層141aの幅は、例えば、0.2〜0.4μmである。
【0065】
/ビット線用局所配線層141bは、/ビット線151b(図7)と、転送トランジスタQ2のソースおよびドレインとなるn+型不純物領域105e(図8)とを接続するための配線層として機能する。/ビット線用局所配線層141bの端部141b1は、第2層・第4層-コンタクト導電部233を介して、/ビット線用コンタクトパッド層125bと接続されている。/ビット線用局所配線層141bは、形成領域Rのメモリセル、および、形成領域Rに対して、図12中の下に位置するメモリセルにおいて共用される。/ビット線用局所配線層141bの幅は、例えば、0.2〜0.4μmである。
【0066】
次に、第4層導電層の断面構造について、図14を用いて説明する。第4層導電層は、例えば、下から順に、高融点金属の窒化物層142、金属層144、高融点金属の窒化物層146が積層された構造を有する。各層の具体例は、次のとおりである。高融点金属の窒化物層142としては、例えば、チタンナイトライド層がある。金属層144としては、例えば、アルミニウム層、銅層または、これらの合金層がある。高融点金属の窒化物層146としては、例えば、チタンナイトライド層がある。また、第4層導電層は、次のいずれかの態様であってもよい。1)高融点金属の窒化物層のみから構成される態様。2)金属層のみから構成される態様。
【0067】
第4層導電層上には、シリコン酸化層からなるハードマスク層149が形成されている。ハードマスク層149をマスクとして、第4層導電層のパターンニングがなされる。これは、メモリセルの小型化により、レジストのみをマスクとして、第4層導電層のパターンニングをするのが困難だからである。
【0068】
次に、第2層・第4層-コンタクト導電部233の断面構造について、図14を用いて説明する。第2層・第4層-コンタクト導電部233は、層間絶縁層211、221を貫通するスルーホール235に埋め込まれている。この断面において、第2層・第4層-コンタクト導電部233は、ビット線用コンタクトパッド層125aとビット線用局所配線層141aとを接続している。第2層・第4層-コンタクト導電部233は、フィールド・第2層-コンタクト導電部203で述べた構造と同様の構造をとることができる。
【0069】
図14、図15に示すように、第4層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層231が形成されている。層間絶縁層231は、CMPにより平坦化の処理がなされている。
【0070】
(第5層導電層)
第5層導電層について、図7、図13を用いて説明する。第5層導電層は、第4層導電層の上層に位置する。第5層導電層は、Y方向にほぼ直線状に延びるパターンを有するビット線151a、/ビット線151bを含む。/ビット線151bには、ビット線151aに流れる信号と相補の信号が流れる。ビット線151a、/ビット線151bの幅は、例えば、0.20〜0.26μmである。
【0071】
ビット線151aは、第5層導電層と第4層導電層とを接続する導電部であるコンタクト導電部243(以下、第4層・第5層-コンタクト導電部243という)を介して、ビット線用局所配線層141aの端部141a1と接続される。/ビット線151bは、第4層・第5層-コンタクト導電部243を介して、/ビット線用局所配線層141bの端部141b2と接続されている。
【0072】
次に、第5層導電層の断面構造について、図14、図15を用いて説明する。第5層導電層は、例えば、下から順に、高融点金属の窒化物層152、金属層154、高融点金属の窒化物層156が積層された構造を有する。各層の具体例は、次のとおりである。高融点金属の窒化物層152としては、例えば、チタンナイトライド層がある。金属層154としては、例えば、アルミニウム層、銅層または、これらの合金層がある。高融点金属の窒化物層156としては、例えば、チタンナイトライド層がある。また、第5層導電層は、次のいずれかの態様であってもよい。1)高融点金属の窒化物層のみから構成される態様。2)金属層のみから構成される態様。
【0073】
第5層導電層上には、シリコン酸化層からなるハードマスク層159が形成されている。ハードマスク層159の形成理由は、ハードマスク層149と同じである。
【0074】
次に、第4層・第5層-コンタクト導電部243の断面構造について、図14を用いて説明する。第4層・第5層-コンタクト導電部243は、層間絶縁層231を貫通するスルーホール245に埋め込まれている。この断面において、第4層・第5層-コンタクト導電部243は、ビット線151aとビット線用局所配線層141aとを接続している。第4層・第5層-コンタクト導電部243は、フィールド・第2層-コンタクト導電部203で述べた構造と同様の構造をとることができる。
【0075】
以上が第1実施形態にかかるSRAMの構造の詳細である。
【0076】
{SRAMの製造方法}
第1実施形態にかかるSRAMの製造方法について、図16〜図22を用いて説明する。各図の(A)は、図14に示す断面と対応し、(B)は、図15に示す断面と対応している。
【0077】
(第1層導電層形成まで)
図16に示すように、シリコン基板に例えば、STIを用いて、素子分離領域109を形成する。シリコン基板に例えば、イオン注入により、イオンを選択的に注入することにより、pウェル102、nウェル104を形成する。次に、図3に示すゲート-ゲート電極層111a、111b、副ワード線113a、113bを含む第1層導電層を公知の方法を用いて形成する。
【0078】
(第2層導電層形成まで)
図16に示すように、第1層導電層を覆うように、層間絶縁層201を形成し、公知の方法を用いて、層間絶縁層201に埋め込まれた、図9に示すフィールド・第2層-コンタクト導電部203、第1層・第3層-スタックドコンタクト導電部223の下層導電部204を形成する。
【0079】
図17に示すように、層間絶縁層201の上に、例えば、CVDを用いてシリコン酸化膜を含む絶縁層129を形成する。絶縁層129の厚みは、第2層導電層の厚みを等しい。絶縁層129上にレジスト120を形成し、フォトリソグラフィとエッチングにより、第2層導電層の形成領域にある絶縁層129を除去する。
【0080】
図18に示すように、例えば、チタンナイトライドからなる高融点金属の窒化物層122、タングステンからなるタングステン含有層124を、スパッタリングを用いて絶縁層129を覆うように形成する。これにより、絶縁層129が除去された領域に、高融点金属の窒化物層122、タングステン含有層124が埋め込まれる。
【0081】
図19に示すように、タングステン含有層124、高融点金属の窒化物層122を例えば、CMPすることにより、図4に示すドレイン-ドレイン接続層121a、121b、VDD配線123等を含む第2層導電層を形成する。以上のように、第2層導電層は、ダマシンにより形成される。
【0082】
(第3層導電層形成まで)
図20に示すように、第2層導電層を覆うように、層間絶縁層211を形成する。公知の方法を用いて、層間絶縁層211に埋め込まれた、図10に示す第2層・第3層-コンタクト導電部213、および、層間絶縁層211、絶縁層129に埋め込まれた第1層・第3層-スタックドコンタクト導電部223の上層導電部214を形成する。以上により、第1層・第3層-スタックドコンタクト導電部223が形成される。
【0083】
図21に示すように、層間絶縁層211の上に、例えば、CVDを用いてシリコン酸化膜を含む絶縁層229を形成する。絶縁層229の厚みは、第3層導電層の厚みを等しい。絶縁層229上にレジストを形成し、フォトリソグラフィとエッチングにより、第3層導電層の形成領域にある絶縁層229を除去する。
【0084】
次に、例えば、チタンナイトライドからなる高融点金属の窒化物層132と、タングステンからなるタングステン含有層134とを、スパッタリングを用いて絶縁層229を覆うように形成する。これにより、絶縁層229が除去された領域に、高融点金属の窒化物層132、タングステン含有層134が埋め込まれる。
【0085】
次に、タングステン含有層134、高融点金属の窒化物層132を例えば、CMPすることにより、図5に示すドレイン-ゲート131a、131bである第3層導電層を形成する。
【0086】
(第5層導電層形成まで)
図22に示すように、第3層導電層を覆う層間絶縁層221を形成する。そして、公知の方法を用いて、層間絶縁層211、229、221に埋め込まれた、図12に示す第2層・第4層-コンタクト導電部233を形成する。そして、公知の方法を用いて、第4層、第5層導電層を形成することにより、図14、図15に示す構造が完成する。
【0087】
{第1実施形態の変形例}
第2層導電層と第4層導電層を接続するのに、図14に示す第2層・第4層-コンタクト導電部233のかわりに、第2層・第4層-スタックドコンタクト導電部を用いることもできる。
【0088】
図23は、変形例にかかる第2層導電層および第4層導電層を示す平面図である。第2層・第4層-スタックドコンタクト導電部253により、VSS配線145と接地線用局所配線層127が接続され、ビット線用局所配線層141aとビット線用コンタクトパッド層125aが接続され、/ビット線用局所配線層141bと/ビット線用コンタクトパッド層125bが接続されている。
【0089】
図24は、第2層・第4層-スタックドコンタクト導電部253を示す断面図であり、図14と対応している。第2層・第4層-スタックドコンタクト導電部253は、下層導電部255に上層導電部257が積まれた構造をしている。下層導電部255は、層間絶縁層211に埋め込まれている。下層導電部255は、第2層・第3層-コンタクト導電部213と同じ層構造をし、同一工程で形成される。上層導電部257は、層間絶縁層221に埋め込まれている。上層導電部257は、第2層・第3層-コンタクト導電部213と同じ層構造をしている。
【0090】
[第2実施形態]
まず、第2実施形態にかかるSRAMの構造の概略を説明し、次に構造の詳細を説明する。
【0091】
{SRAMの構造の概略}
図25は、第2実施形態にかかるSRAMの等価回路図である。第2実施形態のSRAMは、第1実施形態と同様に、6個のMOS電界効果トランジスタにより、一つのメモリセルが構成されるタイプである。
【0092】
第2実施形態にかかるSRAMのメモリセルは、図26〜図30に示すように、フィールドの上方に4層の導電層を有する構造をしている。第1実施形態にかかるSRAMのメモリセルは、フィールドの上方に5層の導電層を有する構造をしている。以下、図25を参照しながら、図26〜図30について簡単に説明する。なお、これらの図中の記号Rは、一つのメモリセルの形成領域を示している。
【0093】
図26は、フィールドを示す平面図であり、活性領域301、303、306を含む。図27は、第1層導電層を示す平面図であり、Y方向にほぼ直線状に延びるパターンを有するゲート-ゲート電極層311a、311b、X方向にほぼ直線状に延びるパターンを有する副ワード線313を含む。ゲート-ゲート電極層311aは、駆動トランジスタQ3および負荷トランジスタQ5のゲート電極を含み、ゲート-ゲート電極層311bは、駆動トランジスタQ4および負荷トランジスタQ6のゲート電極を含み、副ワード線313は、転送トランジスタQ1、Q2のゲート電極を含む。図28は、第2層導電層を示す平面図であり、L字型のパターンを有するドレイン-ドレイン接続層321a、321b、X方向にほぼ直線状に延びるパターンを有するVDD配線323等を含む。図29は、第3層導電層を示す平面図であり、ドレイン-ゲート接続層331a、331b、主ワード線333を含む。図30は、第4層導電層を示す平面図であり、Y方向にほぼ直線状に延びるパターンを有するビット線347a、/ビット線347b、VSS配線345を含む。
【0094】
{SRAMの構造の詳細}
第2実施形態にかかるSRAMの構造の詳細を、下層から順に、図26〜図37を用いて説明する。図31はフィールドおよび第1層導電層を示す平面図であり、図32はフィールド、第1層導電層および第2層導電層を示す平面図であり、図33は第2層導電層および第3層導電層を示す平面図であり、図34は第1層導電層および第3層導電層を示す平面図であり、図35は第3層導電層および第4層導電層を示す平面図であり、図36は図26〜図35のA1−A2線に沿った断面図であり、図37は図26〜図35のB1−B2線に沿った断面図である。
【0095】
(フィールド、第1層導電層)
まず、フィールドについて説明する。図26に示すように、フィールドは、活性領域301、303、306および素子分離領域309を有する。活性領域301、303、306は、シリコン基板の表面に形成されている。
【0096】
活性領域301は、X方向にほぼ直線状に延びるパターンを有する領域301a、および、Y方向にほぼ直線状に延びるパターンを有する領域301bを含む。転送トランジスタQ1、Q2は、領域301bに形成される。駆動トランジスタQ3、Q4は、領域301bの一部から領域301aにわたって形成される。
【0097】
活性領域303は、X方向にほぼ直線状に延びるパターンを有する領域303a、および、Y方向にほぼ直線状に延びるパターンを有する領域303bを含む。領域303aには、負荷トランジスタQ5、Q6が形成される。
【0098】
活性領域306には、pウェルコンタクト領域が形成される。活性領域306は、形成領域Rのメモリセル、および、形成領域Rに対して、図26中の下に位置するメモリセルにおいて共用される。
【0099】
活性領域301、303、306は、素子分離領域309により、互いに分離されている。素子分離領域309は、第1実施形態の素子分離領109と同様である。
【0100】
図26に示すフィールドのA1−A2断面、B1−B2断面は、それぞれ、図36、図37に示すとおりである。これらの断面には、シリコン基板中に形成されたpウェル302、nウェル304等が表れている。
【0101】
次に、フィールドの上層に位置する第1層導電層について、図27、図31を用いて説明する。一組のゲート-ゲート電極層311a、311bが、互いに平行に、一つのメモリセルの形成領域Rに配置されている。ゲート-ゲート電極層311a、311bは、活性領域301、303と平面的に見て交差している。ゲート-ゲート電極層311aは、駆動トランジスタQ3および負荷トランジスタQ5のゲート電極を構成し、さらに、これらのゲート電極同士を接続している。ゲート-ゲート電極層311bは、駆動トランジスタQ4および負荷トランジスタQ6のゲート電極を構成し、さらに、これらのゲート電極同士を接続している。駆動トランジスタQ3、Q4、負荷トランジスタQ5、Q6のゲート長は、それぞれ、第1実施形態の駆動トランジスタQ3、Q4、負荷トランジスタQ5、Q6のゲート長と同じである。
【0102】
副ワード線313は、活性領域301と平面的に見て交差して位置する。副ワード線313は、転送トランジスタQ1、Q2のゲート電極となる。転送トランジスタQ1、Q2のゲート長は、第1実施形態の転送トランジスタQ1、Q2のゲート長と同じである。
【0103】
ゲート-ゲート電極層311a、311bおよび副ワード線313は、例えば、ポリシリコン層上にシリサイド層を形成した構造を有する。
【0104】
図27、図31に示す第1層導電層のA1−A2断面、B1−B2断面は、それぞれ、図36、図37に示すとおりである。これらの断面には、副ワード線313やゲート-ゲート電極層311bが表れている。
【0105】
次に、活性領域301に形成される、n+型不純物領域305a、305b、305c、305d、305eについて、図31を用いて説明する。平面的に見て、副ワード線313を挟むようにn+型不純物領域305aとn+型不純物領域305bとが位置し、ゲート-ゲート電極層311aを挟むように、n+型不純物領域305bとn+型不純物領域305cとが位置し、ゲート-ゲート電極層311bを挟むように、n+型不純物領域305cとn+型不純物領域305dとが位置し、副ワード線313を挟むように、n+型不純物領域305dとn+型不純物領域305eとが位置している。
【0106】
+型不純物領域305aは、転送トランジスタQ1のソースまたはドレインとなる。n+型不純物領域305bは、転送トランジスタQ1のソースまたはドレイン、駆動トランジスタQ3のドレインとなる。n+型不純物領域305cは、駆動トランジスタQ3、Q4の共通のソースとなる。n+型不純物領域305dは、駆動トランジスタQ4のドレイン、転送トランジスタQ2のソースまたはドレインとなる。n+型不純物領域305eは、転送トランジスタQ2のソースまたはドレインとなる。
【0107】
次に、活性領域303に形成される、p+型不純物領域307a、307b、307c、307dについて、図31を用いて説明する。平面的に見てゲート-ゲート電極層311aを挟むように、p+型不純物領域307aとp+型不純物領域307bとが位置し、ゲート-ゲート電極層311bを挟むように、p+型不純物領域307bとp+型不純物領域307cとが位置している。p+型不純物領域307aは、負荷トランジスタQ5のドレインとなり、p+型不純物領域307cは、負荷トランジスタQ6のドレインとなり、p+型不純物領域307bは、負荷トランジスタQ5、Q6の共通のソースとなる。p+型不純物領域307dはY方向に延びたパターンを有し、p+型不純物領域307bと接続されている。
【0108】
図31に示すように、活性領域306には、pウェルコンタクト領域となるp+型不純物領域308が形成されている。
【0109】
図36に示すように、この断面には、n+型不純物領域305d、305e、p+型不純物領域307cが表れている。
【0110】
図36および図37に示すように、フィールドおよび第1層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層401が形成されている。層間絶縁層401は、CMPにより平坦化の処理がなされている。
【0111】
(第2層導電層)
第2層導電層について、図28、図32を用いて説明する。第2層導電層は、第1層導電層の上層に位置する。第2層導電層は、ドレイン-ドレイン接続層321a、321b、VDD配線323、ビット線コンタクトパッド層325a、/ビット線コンタクトパッド層325b、接地線用局所配線層327を含む。第2層導電層は、第2層導電層とフィールドとを接続する導電部であるコンタクト導電部403(以下、フィールド・第2層-コンタクト導電部403という)を介して、フィールドのn+型不純物領域やp+型不純物領域と接続される。
【0112】
ドレイン-ドレイン接続層321aとドレイン-ドレイン接続層321bと間に、平面的に見て、ゲート-ゲート電極層311a、311bが位置するように、ドレイン-ドレイン接続層321a、321bが位置している。ドレイン-ドレイン接続層321aは、n+型不純物領域305b(ドレイン)およびp+型不純物領域307a(ドレイン)の上方に位置している。ドレイン-ドレイン接続層321aの端部321a1は、フィールド・第2層-コンタクト導電部403を介して、n+型不純物領域305b(ドレイン)と接続され、ドレイン-ドレイン接続層321aのL字型の角部321a2は、フィールド・第2層-コンタクト導電部403を介して、p+型不純物領域307a(ドレイン)と接続されている。ドレイン-ドレイン接続層321bは、n+型不純物領域305d(ドレイン)およびp+型不純物領域307c(ドレイン)の上方に位置している。ドレイン-ドレイン接続層321bの端部321b1は、フィールド・第2層-コンタクト導電部403を介して、n+型不純物領域305d(ドレイン)と接続され、ドレイン-ドレイン接続層321bのL字型の角部321b2は、フィールド・第2層-コンタクト導電部403を介して、p+型不純物領域307c(ドレイン)と接続されている。
【0113】
DD配線323は、フィールド・第2層-コンタクト導電部403を介して、p+型不純物領域307dと接続されている。これにより、負荷トランジスタQ5、Q6のソースであるp+型不純物領域307bは、VDD配線323に接続される。
【0114】
接地線用局所配線層327は、Y方向に延びるパターンを有し、n+型不純物領域305c(ソース)およびp+型不純物領域308(pウェルコンタクト領域)の上方に位置している。接地線用局所配線層327は、フィールド・第2層-コンタクト導電部403を介して、n+型不純物領域305c、p+型不純物領域308と接続されている。接地線用局所配線層327は、VSS配線345(図30)と駆動トランジスタQ3、Q4のソースとなるn+型不純物領域305cとを接続するための配線層、および、VSS配線345とpウェルコンタクト領域となるp+型不純物領域308とを接続するための配線層として機能する。
【0115】
ビット線用コンタクトパッド層325aは、n+型不純物領域305aの上方に位置している。ビット線用コンタクトパッド層325aは、フィールド・第2層-コンタクト導電部403を介して、n+型不純物領域305aと接続されている。ビット線用コンタクトパッド層325aは、ビット線347a(図30)と、転送トランジスタQ1のソースおよびドレインとなるn+型不純物領域305aとを接続するためのパッド層として機能する。
【0116】
/ビット線用コンタクトパッド層325bは、n+型不純物領域305eの上方に位置している。/ビット線用コンタクトパッド層325bは、フィールド・第2層-コンタクト導電部403を介して、n+型不純物領域305eと接続されている。/ビット線用コンタクトパッド層325bは、/ビット線347b(図30)と、転送トランジスタQ2のソースおよびドレインとなるn+型不純物領域305eとを接続するためのパッド層として機能する。接地線用局所配線層327、ビット線用コンタクトパッド層325a、/ビット線用コンタクトパッド層325bは、形成領域Rのメモリセル、および、形成領域Rに対して、図32中の下に位置するメモリセルにおいて共用される。
【0117】
次に、第2層導電層の断面構造について、図36を用いて説明する。第2層導電層は、例えば、シリコン酸化層のような絶縁層329に埋め込まれた構造をしている。第2層導電層はダマシンにより形成されている。第2層導電層は、第1実施形態の第2層導電層と同じ構造、つまり、高融点金属の窒化物層322上に、タングステンを含有するタングステン含有層324を形成した構造を有する。
【0118】
次に、フィールド・第2層-コンタクト導電部403の断面構造について、図36を用いて説明する。層間絶縁層401には、フィールドにあるn+型不純物領域やp+型不純物領域を露出する複数のスルーホール405が形成されている。これらのスルーホール405に、フィールド・第2層-コンタクト導電部403が埋め込まれている。フィールド・第2層-コンタクト導電部403は、第1実施形態のフィールド・第2層-コンタクト導電部203(図14)と同じ構造、つまり、プラグ407、バリア層409を含む。
【0119】
次に、ゲート-ゲート電極層311a、311bとドレイン-ゲート接続層331a、331bとの接続に用いられるコンタクト導電部423(以下、第1層・第3層-スタックドコンタクト導電部423という)について、図37を用いて説明する。図37には、ゲート-ゲート電極層311bとドレイン-ゲート接続層331aとを接続する第1層・第3層-スタックドコンタクト導電部423が表れている。第1層・第3層-スタックドコンタクト導電部423は、下層導電部404に上層導電部414が積まれた構造をしている。下層導電部404は、層間絶縁層401に埋め込まれている。下層導電部404は、フィールド・第2層-コンタクト導電部403と同一工程で形成されたものであり、プラグ407、バリア層409を含む。なお、上層導電部414については、(第3層導電層)の欄で説明する。
【0120】
図36、図37に示すように、第2層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層411が形成されている。層間絶縁層411は、CMPにより平坦化の処理がなされている。
【0121】
(第3層導電層)
第3層導電層について、図29、図33、図34を用いて説明する。第3層導電層は、第2層導電層の上層に位置する。第3層導電層は、ドレイン-ゲート接続層331a、331b、主ワード線333、接地線用局所配線層337、ビット線用コンタクトパッド層335a、/ビット線用コンタクトパッド層335bを含む。
【0122】
ドレイン-ゲート接続層331aは、L字型のパターンを有し、その端部331a1がドレイン-ドレイン接続層321aのL字型の角部321a2の上方に位置している(図33)。ドレイン-ゲート接続層331aの端部331a1は、第3層導電層と第2層導電層とを接続する導電部であるコンタクト導電部413(以下、第2層・第3層-コンタクト導電部413という)を介して、ドレイン-ドレイン接続層321aのL字型の角部321a2と接続されている(図33)。ドレイン-ゲート接続層331aの端部331a2がゲート-ゲート電極層311bの中央部の上方に位置している(図34)。ドレイン-ゲート接続層331aの端部331a2は、第1層・第3層-スタックドコンタクト導電部423を介して、ゲート-ゲート電極層311bの中央部と接続されている(図34)。
【0123】
ドレイン-ゲート接続層331bは、ほぼL字型をし、その端部331b1がドレイン-ドレイン接続層321bの端部321b1の上方に位置している(図33)。ドレイン-ゲート接続層331bの端部331b1は、第2層・第3層-コンタクト導電部413を介して、ドレイン-ドレイン接続層321bの端部321b1と接続されている(図33)。ドレイン-ゲート接続層331bの端部331b2がゲート-ゲート電極層311aの中央部の上方に位置している(図34)。ドレイン-ゲート接続層331bの端部331b2は、第1層・第3層-スタックドコンタクト導電部423を介して、ゲート-ゲート電極層311aの中央部と接続されている(図34)。
【0124】
主ワード線333は、VDD配線323の上方に位置する。主ワード線333によって、副ワード線313(図27)が活性化および非活性化される。なお、第2実施形態では、ワード線を副ワード線と主ワード線からなる構造としているが、主ワード線を設けない構造でもよい。
【0125】
接地線用局所配線層337は、Y方向に延びるパターンを有し、接地線用局所配線層327の上方に位置している(図33)。接地線用局所配線層337は、第2層・第3層-コンタクト導電部413を介して、接地線用局所配線層327と接続されている。接地線用局所配線層337は、VSS配線345(図30)と駆動トランジスタQ3、Q4のソースとなるn+型不純物領域305c(図31)とを接続するための配線層、および、VSS配線345とpウェルコンタクト領域となるp+型不純物領域308(図31)とを接続するための配線層として機能する。
【0126】
ビット線用コンタクトパッド層335aは、ビット線用コンタクトパッド層325aの上方に位置している(図33)。ビット線用コンタクトパッド層335aは、第2・第3層-コンタクト導電部413を介して、ビット線用コンタクトパッド層325aと接続されている。ビット線用コンタクトパッド層335aは、ビット線347a(図30)と、転送トランジスタQ1のソースおよびドレインとなるn+型不純物領域305a(図31)とを接続するためのパッド層として機能する。
【0127】
/ビット線用コンタクトパッド層335bは、/ビット線用コンタクトパッド層325bの上方に位置している。/ビット線用コンタクトパッド層335bは、第2層・第3層-コンタクト導電部413を介して、/ビット線用コンタクトパッド層325bと接続されている。/ビット線用コンタクトパッド層335bは、/ビット線347b(図30)と、転送トランジスタQ2のソースおよびドレインとなるn+型不純物領域305e(図31)とを接続するためのパッド層として機能する。接地線用局所配線層337、ビット線用コンタクトパッド層335a、/ビット線用コンタクトパッド層335bは、形成領域Rのメモリセル、および、形成領域Rに対して、図33中の下に位置するメモリセルにおいて共用される。
【0128】
次に、第3層導電層の断面構造について、図36、図37を用いて説明する。第3層導電層は、例えば、下から順に、高融点金属の窒化物層332、金属層334、高融点金属からなる金属層336、高融点金属の窒化物層338が積層された構造を有する。各層の具体例は、次のとおりである。高融点金属の窒化物層332としては、例えば、チタンナイトライド層がある。金属層334としては、例えば、アルミニウム層、銅層または、これらの合金層がある。高融点金属からなる金属層336としては、例えば、チタン層がある。高融点金属の窒化物層338としては、例えば、チタンナイトライド層がある。第3層導電層上には、シリコン酸化層からなるハードマスク層339が形成されている。ハードマスク層339の形成理由は、第1実施形態のハードマスク層149(図14)と同じである。
【0129】
次に、第2層・第3層-コンタクト導電部413の断面構造について、図36を用いて説明する。層間絶縁層411を貫通するスルーホール415には、第2層・第3層-コンタクト導電部413が埋め込まれている。第2層・第3層-コンタクト導電部413は、第1実施形態の第2層・第3層-コンタクト導電部213と同様の構造、つまり、プラグ417、バリア層419を含む。
【0130】
次に、第1層・第3層-スタックドコンタクト導電部423の上層導電部414について、図37を用いて説明する。上層導電部414は、層間絶縁層411および絶縁層329に埋め込まれており、下層導電部404およびドレイン-ゲート接続層331aと接続されている。上層導電部414は、第2層・第3層-コンタクト導電部413と同一工程で形成されたものであり、プラグ417、バリア層419を含む。
【0131】
図36、図37に示すように、第3層導電層を覆うように、例えば、シリコン酸化層のような層間絶縁層421が形成されている。層間絶縁層421は、CMPにより平坦化の処理がなされている。
【0132】
(第4層導電層)
第4層導電層について、図30、図35を用いて説明する。第4層導電層は、第3層導電層の上層に位置する。第4層導電層は、Y方向にほぼ直線状に延びるパターンを有するビット線347a、/ビット線347b、VSS配線345を含む。VSS配線345は、ビット線347aと/ビット線347bとの間に位置している。/ビット線347bには、ビット線347aに流れる信号と相補の信号が流れる。
【0133】
ビット線347aは、第3層導電層と第4層導電層とを接続する導電部であるコンタクト導電部453(以下、第3層・第4層-コンタクト導電部453という)を介して、ビット線用コンタクトパッド層335aと接続される。/ビット線347bは、第3層・第4層-コンタクト導電部453を介して、/ビット線用コンタクトパッド層335bと接続される。VSS配線345は、第3層・第4層-コンタクト導電部453を介して、接地線用局所配線層337と接続される。
【0134】
第4層導電層は、図36に示すように、例えば、下から順に、チタンナイトライド層、アルミニウム−銅合金層、チタンナイトライド層が積層された構造を有する。
【0135】
次に、第3層・第4層-コンタクト導電部453の断面構造について、図36を用いて説明する。第3層・第4層-コンタクト導電部453は、第1実施形態の第4層・第5層-コンタクト導電部243(図14)と同様の構造、つまり、プラグ457、バリア層459を含む。
【0136】
以上が第2実施形態にかかるSRAMの構造の詳細である。
【0137】
{SRAMの製造方法}
第2実施形態にかかるSRAMの製造方法は、第1実施形態にかかるSRAMの製造方法を適用できる。但し、第2実施形態は4層の導電層からなるので、第1実施形態の第3層導電層の形成工程は不要である。
【0138】
[第1および第2実施形態にかかるSRAMの主な効果]
第1および第2実施形態にかかるSRAMの主な効果は、次の四つである。以下、第1実施形態を用いて効果を説明するが、第2実施形態でも同じことが言える。
【0139】
{効果1}
ダマシンにより導電層を形成する場合、その材料としてタングステンが好ましいことが一般的に知られている。図14に示すように、第1実施形態では第2層導電層にタングステン含有層124を用いている。このため、{SRAMの製造方法}の(第2層導電層形成まで)の欄で説明しているように、第2層導電層をダマシンにより形成することができる。よって、第1実施形態は5層の導電層からなる多層配線構造であるが、容易に作製することができる。
【0140】
{効果2}
上記{SRAMの製造方法}の(第2層導電層形成まで)の欄で説明しているように、ドレイン-ドレイン接続層121a、121bをダマシンにより形成しているので、メモリセルサイズの小型化が可能となる。理由は以下のとおりである。ドレイン-ドレイン接続層121a、121bの形成方法の一例として、高融点金属層および高融点金属の窒化物層からなる積層膜をフォトリソグラフィとエッチングによりパターンニングして形成する方法がある。ドレイン-ドレイン接続層121a、121b、フィールド・第2層-コンタクト導電部203は、ともに、材料が高融点金属層および高融点金属の窒化物層である。このため、上記方法により、ドレイン-ドレイン接続層121a、121bを形成する場合、ドレイン-ドレイン接続層121a、121bがフィールド・第2層-コンタクト導電部203を完全に覆うようにしないと、フィールド・第2層-コンタクト導電部203のうち露出している部分が、パターンニングの際に削られる。この結果、フィールド・第2層-コンタクト導電部203の抵抗上昇等の問題が生じる。よって、上記方法によれば、フィールド・第2層-コンタクト導電部203に対するドレイン-ドレイン接続層121a、121bのカバー余裕を考慮しなければならない。これにより、ドレイン-ドレイン接続層121a、121bの面積が増大するので、メモリセルサイズの小型化の妨げとなる。
【0141】
第1実施形態によれば、ドレイン-ドレイン接続層121a、121bをダマシン、つまり、ドレイン-ドレイン接続層121a、121bを形成する部分が除去されるように絶縁層129をパターンニングし、この除去部分を埋めるようにタングステン含有層124および高融点金属の窒化物層122の積層膜を形成し、この積層膜をCMPにより研磨することにより、この除去部分に埋め込まれたドレイン-ドレイン接続層121a、121bを形成している。このため、フィールド・第2層-コンタクト導電部203に対するドレイン-ドレイン接続層121a、121bのカバー余裕を考慮しなくてもよい。従って、ドレイン-ドレイン接続層121a、121bを微細化できるので、メモリセルサイズの小型化が可能となる。
【0142】
{効果3}
図15に示すように、第1層・第3層-スタックドコンタクト導電部223を備えているので、この点からもメモリセルサイズの小型化を図ることができる。理由は以下のとおりである。ゲート-ゲート電極層111a、111bは第1導電層に位置し、ドレイン-ゲート接続層131a、131bは第3層導電層に位置している。このため、ゲート-ゲート電極層111a、111bとドレイン-ゲート接続層131a、131bとの間には、第1層導電層と第2層導電層との絶縁に用いられる層間絶縁層201および第2層導電層と第3層導電層との絶縁に用いられる層間絶縁層211が位置する。この結果、第1層導電層と第3層導電層との距離は比較的大きくなる。
【0143】
第1実施形態によれば、第1層・第3層-スタックドコンタクト導電部223を備えているので、第1層導電層と第2層導電層との絶縁に用いられる層間絶縁層および第2層導電層と第3層導電層との絶縁に用いられる層間絶縁層を貫通するスルーホール、つまり、2層分の層間絶縁層を貫通するスルーホールを形成する必要がない。このため、メモリセルサイズの小型化が進んでもドレイン-ゲート接続層131a、131bとゲート-ゲート電極層111a、111bを接続するのに用いられるスルーホールのアスペクト比が大きくなり過ぎることはない。よって、第1実施形態によれば、この点からもメモリセルサイズの小型化を図ることができる。
【0144】
なお、{第1実施形態の変形例}の欄で説明しているように、第1実施形態の変形例は第2層・第4層-スタックドコンタクト導電部253(図24)を備えるので、第2層導電層と第4層導電層との間にある層間絶縁層211、221を貫通するスルーホール、つまり、2層分の層間絶縁層を貫通するスルーホールを形成する必要がない。このため、メモリセルサイズの小型化が進んでも第2層導電層と第4層導電層を接続するのに用いられるスルーホールのアスペクト比が大きくなり過ぎることはない。よって、変形例によれば、この点からもメモリセルサイズの小型化を図ることができる。
【0145】
{効果4}
第1実施形態によれば、次の点からもモリセルサイズの小型化を図ることができる。理由は以下のとおりである。第1実施形態では、メモリセルのフリップフロップで情報の記憶を行う。フリップフロップは、一方のインバータの入力端子(ゲート電極)を他方のインバータの出力端子(ドレイン)に接続し、かつ他方のインバータの入力端子(ゲート電極)を一方のインバータの出力端子(ドレイン)に接続することにより、構成される。つまり、フリップフロップは、第1のインバータと第2のインバータをクロスカップル接続したものである。二層の導電層を用いてフリップフロップを構成する場合、例えば、インバータのドレイン同士を接続するドレイン-ドレイン接続層と、インバータのゲートとインバータのドレインを接続するドレイン-ゲート接続層と、を一つの導電層にすることにより、クロスカップル接続ができる。
【0146】
しかし、この構造によれば、この導電層は、一方のインバータのドレインが位置する領域と、他方のインバータのゲートが位置する領域と、これらを連結する領域と、にわたって形成される。よって、この導電層は、三つ端部を有するパターン(例えば、T字状やh字状のような分岐部を有するパターン)や、互いに腕部分が入り込み合った渦巻き状のパターンとなる。なお、T字状のパターンとしては、例えば、特開平10−41409号公報の図1に開示されている。h字状のパターンとしては、例えば、M.Ishida,et.al.,IEDM Tech.Digest(1998)、第203頁の図4(b)に開示されている。渦巻き状のパターンとしては、例えば、M.Ishida,et.al.,IEDM Tech.Digest(1998)、第203頁の図3(b)に開示されている。このような複雑なパターンは、パターンが微細化すると、フォトエッチング工程での正確な形状再現が困難となるので、所望のパターンが得られず、メモリセルサイズの小型化の妨げとなる。
【0147】
第1実施形態によれば、図3、図4、図5に示すように、CMOSインバータのゲートとなるゲート-ゲート電極層(111a、111b)、CMOSインバータのドレイン同士を接続するドレイン-ドレイン接続層(121a、121b)、一方のCMOSインバータのゲートと他方のCMOSインバータのドレインとを接続するドレイン-ゲート接続層(131a、131b)を、それぞれ、異なる層に形成している。このように、第1実施形態では、三層の導電層を用いてフリップフロップを構成するので、二層の導電層を用いてフリップフロップを構成する場合に比べて、各層のパターンを単純化(例えば、ほぼ直線状に)することができる。よって、第1実施形態によれば、各層のパターンを単純化できるので、例えば、0.12μm世代において、メモリセルサイズが、2.5μm2以下の微細なSRAMにすることができる。
【0148】
[SRAMの電子機器への応用例]
第1および第2実施形態にかかるSRAMは、例えば、携帯機器のような電子機器に応用することができる。図38は、携帯電話機のシステムの一部のブロック図である。CPU、SRAM、DRAMはバスラインにより、相互に接続されている。さらに、CPUは、バスラインにより、キーボードおよびLCDドライバと接続されている。LCDドライバは、バスラインにより、液晶表示部と接続されている。CPU、SRAMおよびDRAMでメモリシステムを構成している。
【0149】
図39は、図38に示す携帯電話機のシステムを備える携帯電話機600の斜視図である。携帯電話機600は、キーボード612、液晶表示部614、受話部616およびアンテナ部618を含む本体部610と、送話部622を含む蓋部620と、を備える。
【図面の簡単な説明】
【図1】第1実施形態にかかるSRAMの等価回路図である。
【図2】第1実施形態にかかるSRAMのメモリセルアレイのフィールドを示す平面図である。
【図3】第1実施形態にかかるSRAMのメモリセルアレイの第1層導電層を示す平面図である。
【図4】第1実施形態にかかるSRAMのメモリセルアレイの第2層導電層を示す平面図である。
【図5】第1実施形態にかかるSRAMのメモリセルアレイの第3層導電層を示す平面図である。
【図6】第1実施形態にかかるSRAMのメモリセルアレイの第4層導電層を示す平面図である。
【図7】第1実施形態にかかるSRAMのメモリセルアレイの第5層導電層を示す平面図である。
【図8】第1実施形態にかかるSRAMのメモリセルアレイのフィールドおよび第1層導電層を示す平面図である。
【図9】第1実施形態にかかるSRAMのメモリセルアレイのフィールド、第1層導電層および第2層導電層を示す平面図である。
【図10】第1実施形態にかかるSRAMのメモリセルアレイの第2層導電層および第3層導電層を示す平面図である。
【図11】第1実施形態にかかるSRAMのメモリセルアレイの第1層導電層および第3層導電層を示す平面図である。
【図12】第1実施形態にかかるSRAMのメモリセルアレイの第2層導電層および第4層導電層を示す平面図である。
【図13】第1実施形態にかかるSRAMのメモリセルアレイの第4層導電層および第5層導電層を示す平面図である。
【図14】図2〜図13のA1−A2線に沿った断面図である。
【図15】図2〜図13のB1−B2線に沿った断面図である。
【図16】第1実施形態にかかるSRAMの製造方法を説明するための第1工程図である。
【図17】第1実施形態にかかるSRAMの製造方法を説明するための第2工程図である。
【図18】第1実施形態にかかるSRAMの製造方法を説明するための第3工程図である。
【図19】第1実施形態にかかるSRAMの製造方法を説明するための第4工程図である。
【図20】第1実施形態にかかるSRAMの製造方法を説明するための第5工程図である。
【図21】第1実施形態にかかるSRAMの製造方法を説明するための第6工程図である。
【図22】第1実施形態にかかるSRAMの製造方法を説明するための第7工程図である。
【図23】第1実施形態の変形例にかかるSRAMのメモリセルアレイの第2層導電層および第4層導電層を示す平面図である。
【図24】第1実施形態の変形例にかかるSRAMのメモリセルアレイの断面図である。
【図25】第2実施形態にかかるSRAMの等価回路図である。
【図26】第2実施形態にかかるSRAMのメモリセルアレイのフィールドを示す平面図である。
【図27】第2実施形態にかかるSRAMのメモリセルアレイの第1層導電層を示す平面図である。
【図28】第2実施形態にかかるSRAMのメモリセルアレイの第2層導電層を示す平面図である。
【図29】第2実施形態にかかるSRAMのメモリセルアレイの第3層導電層を示す平面図である。
【図30】第2実施形態にかかるSRAMのメモリセルアレイの第4層導電層を示す平面図である。
【図31】第2実施形態にかかるSRAMのメモリセルアレイのフィールドおよび第1層導電層を示す平面図である。
【図32】第2実施形態にかかるSRAMのメモリセルアレイのフィールド、第1層導電層および第2層導電層を示す平面図である。
【図33】第2実施形態にかかるSRAMのメモリセルアレイの第2層導電層および第3層導電層を示す平面図である。
【図34】第2実施形態にかかるSRAMのメモリセルアレイの第1層導電層および第3層導電層を示す平面図である。
【図35】第2実施形態にかかるSRAMのメモリセルアレイの第3層導電層および第4層導電層を示す平面図である。
【図36】図26〜図35のA1−A2線に沿った断面図である。
【図37】図26〜図35のB1−B2線に沿った断面図である。
【図38】第1および第2実施形態にかかるSRAMを備えた、携帯電話機のシステムの一部のブロック図である。
【図39】図38に示す携帯電話機のシステムを備える携帯電話機の斜視図である。
【符号の説明】
101 活性領域
101a、101b 領域
102 pウェル
103 活性領域
104 nウェル
105a、105b、105c、105d、105e n+型不純物領域
107a、107b、107c p+型不純物領域
109 素子分離領域
111a、111b ゲート-ゲート電極層
113a、113b 副ワード線
120 レジスト
121a、121b ドレイン-ドレイン接続層
121a1、121a2、121b1、121b2 端部
121b3 L字型の角部
122 高融点金属の窒化物層
124 タングステン含有層
123 VDD配線
123a 凸部
125a ビット線用コンタクトパッド層
125b /ビット線用コンタクトパッド層
127 接地線用局所配線層
129 絶縁層
130 レジスト
131a、131b ドレイン-ゲート接続層
131a1、131a2、131b1、131b2 端部
132 高融点金属からなる金属層
134 高融点金属の窒化物層
141a ビット線用局所配線層
141a1 端部
141b /ビット線用局所配線層
141b1 141b2 端部
142 高融点金属の窒化物層
143 主ワード線
144 金属層
145 VSS配線
146 高融点金属の窒化物層
149 ハードマスク
151a ビット線
151b /ビット線
152 高融点金属の窒化物層
154 金属層
156 高融点金属の窒化物層
159 ハードマスク
201 層間絶縁層
203 フィールド・第2層-コンタクト導電部
204 下層導電部
205 スルーホール
206 スルーホール
207 プラグ
209 バリア層
211 層間絶縁層
213 第2層・第3層-コンタクト導電部
214 上層導電部
215 スルーホール
216 スルーホール
217 プラグ
219 バリア層
221 層間絶縁層
223 第1層・第3層-スタックドコンタクト導電部
231 層間絶縁層
233 第2層・第4層-コンタクト導電部
235 スルーホール
237 プラグ
239 高融点金属の窒化物層
243 第4層・第5層-コンタクト導電部
245 スルーホール
247 プラグ
249 高融点金属の窒化物層
253 第2層・第4層-スタックドコンタクト導電部
255 下層導電部
257 上層導電部
301 活性領域
301a、301b 領域
302 pウェル
303 活性領域
303a、303b 領域
304 nウェル
305a、305b、305c、305d、305e n+型不純物領域
306 活性領域
307a、307b、307c、307d p+型不純物領域
308 p+型不純物領域
309 素子分離領域
311a、311b ゲート-ゲート電極層
313 副ワード線
321a、321b ドレイン-ドレイン接続層
321a1、321b1 端部
321a2、321b2 L字型の角部
322 高融点金属の窒化物層
323 VDD配線
324 タングステン含有層
325a ビット線用コンタクトパッド層
325b /ビット線用コンタクトパッド層
327 接地線用局所配線層
329 絶縁層
331a、331b ドレイン-ゲート接続層
331a1、331a2、331b1、331b2 端部
332 高融点金属の窒化物層
333 主ワード線
334 金属層
335a ビット線用コンタクトパッド層
335b /ビット線用コンタクトパッド層
336 高融点金属からなる金属層
337 接地線用局所配線層
338 高融点金属の窒化物層
339 ハードマスク
345 VSS配線
347a ビット線
347b /ビット線
401 層間絶縁層
403 フィールド・第2層-コンタクト導電部
404 下層導電層部
405 スルーホール
407 プラグ
409 バリア層
411 層間絶縁層
413 第2層・第3層-コンタクト導電部
414 上層導電層部
415 スルーホール
417 プラグ
419 バリア層
423 第1層・第3層-スタックドコンタクト導電部
421 層間絶縁層
453 第3層・第4層-コンタクト導電部
457 プラグ
459 バリア層
R 一つのメモリセルの形成領域

Claims (4)

  1. 第1負荷トランジスタ、第2負荷トランジスタ、第1駆動トランジスタ、および、第2駆動トランジスタを含むフリップフロップを備える半導体装置であって、
    第1層導電層に位置し、かつ、前記第1負荷トランジスタおよび前記第1駆動トランジスタのゲート電極を含む、第1ゲート-ゲート電極層と、
    前記第1導電層に位置し、かつ、前記第2負荷トランジスタおよび前記第2駆動トランジスタのゲート電極を含む、第2ゲート-ゲート電極層と、
    前記第1層導電層の上層である第2層導電層に位置し、かつ、前記第1負荷トランジスタのドレインと前記第1駆動トランジスタのドレインとの接続に用いられ、かつ、タングステンを含有する、第1ドレイン-ドレイン接続層と、
    前記第2層導電層に位置し、かつ、前記第2負荷トランジスタのドレインと前記第2駆動トランジスタのドレインとの接続に用いられ、かつ、タングステンを含有する、第2ドレイン-ドレイン接続層と、
    前記第2層導電層の上層である第3層導電層に位置し、かつ、前記第1ドレイン-ドレイン接続層と前記第2ゲート-ゲート電極層との接続に用いられる、第1ドレイン-ゲート接続層と、
    前記第3層導電層に位置し、かつ、前記第2ドレイン-ドレイン接続層と前記第1ゲート-ゲート電極層との接続に用いられる、第2ドレイン-ゲート接続層と、
    第1転送トランジスタおよび第2転送トランジスタと、
    第1方向に延びるパターンを有し、かつ、前記第1層導電層の下層に位置し、かつ、前記第1および第2負荷トランジスタが形成される、第1活性領域と、
    第1方向に延びるパターンを有し、かつ、前記第1活性領域と同じ層に位置し、かつ、前記第1および第2駆動トランジスタ、前記第1および第2転送トランジスタが形成される、第2活性領域と、
    第2方向に延びるパターンを有し、かつ、前記第1層導電層に位置し、かつ、前記第2活性領域と平面的に見て交差して位置し、かつ、前記第1転送トランジスタのゲート電極を含む、第1ワード線と、
    第2方向に延びるパターンを有し、かつ、前記第1層導電層に位置し、かつ、前記第2活性領域と平面的に見て交差して位置し、かつ、前記第2転送トランジスタのゲート電極を含む、第2ワード線と、
    第1方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2負荷トランジスタのソースと接続し、かつ、タングステンを含有する、電源線と、
    第2方向に延びるパターンを有し、かつ、前記第2層導電層に位置し、かつ、前記第1および第2駆動トランジスタのソースと接続し、かつ、タングステンを含有する、接地線用局所配線層と、
    前記第2層導電層に位置し、かつ、前記第1転送トランジスタと接続し、かつ、タングステンを含有する、ビット線用コンタクトパッド層と、
    前記第2層導電層に位置し、かつ、前記第2転送トランジスタと接続し、かつ、タングステンを含有する、/ビット線用コンタクトパッド層と、
    第2方向に延びるパターンを有し、かつ、前記第3層導電層の上層である第4層導電層に位置し、かつ、前記接地線用局所配線層と接続する、接地線と、
    第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置する、主ワード線と、
    第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記ビット線用コンタクトパッド層と接続する、ビット線用局所配線層と、
    第2方向に延びるパターンを有し、かつ、前記第4層導電層に位置し、かつ、前記/ビット線用コンタクトパッド層と接続する、/ビット線用局所配線層と、
    第1方向に延びるパターンを有し、かつ、前記第4層導電層の上層である第5層導電層に位置し、前記ビット線用局所配線層と接続する、ビット線と、
    第1方向に延びるパターンを有し、かつ、前記第5層導電層に位置し、前記/ビット線用局所配線層と接続する、/ビット線と、を備え、
    前記第1および第2ゲート-ゲート電極層は、第2方向に延びるパターンを有し、かつ
    、前記第1ワード線と前記第2ワード線との間に位置し、前記第1および第2活性領域と平面的に見て交差して位置し、
    前記第1および第2ドレイン-ドレイン接続層は、第2方向に延びるパターンを有する、半導体装置。
  2. 請求項1において、
    前記第1および第2負荷トランジスタ、前記第1および第2駆動トランジスタ、前記第1および第2転送トランジスタを含むメモリセルのサイズが、2.5μm以下である、半導体装置。
  3. 請求項1または2に記載の前記半導体装置を備える、メモリシステム。
  4. 請求項1または2に記載の前記半導体装置を備える、電子機器。
JP2001034204A 2001-02-09 2001-02-09 半導体装置、メモリシステムおよび電子機器 Expired - Fee Related JP4032211B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001034204A JP4032211B2 (ja) 2001-02-09 2001-02-09 半導体装置、メモリシステムおよび電子機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001034204A JP4032211B2 (ja) 2001-02-09 2001-02-09 半導体装置、メモリシステムおよび電子機器

Publications (2)

Publication Number Publication Date
JP2002237537A JP2002237537A (ja) 2002-08-23
JP4032211B2 true JP4032211B2 (ja) 2008-01-16

Family

ID=18897852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001034204A Expired - Fee Related JP4032211B2 (ja) 2001-02-09 2001-02-09 半導体装置、メモリシステムおよび電子機器

Country Status (1)

Country Link
JP (1) JP4032211B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386819B2 (ja) * 2007-12-14 2014-01-15 富士通セミコンダクター株式会社 半導体記憶装置

Also Published As

Publication number Publication date
JP2002237537A (ja) 2002-08-23

Similar Documents

Publication Publication Date Title
US6118158A (en) Static random access memory device having a memory cell array region in which a unit cell is arranged in a matrix
KR100253032B1 (ko) 스테이틱 랜덤 액세스 메모리를 갖는 반도체 메모리 장치 및 그의 제조방법
EP0593247B1 (en) Semiconductor memory device and manufacturing method therefor
US6507124B2 (en) Semiconductor memory device
JP3412619B2 (ja) 半導体装置、メモリシステムおよび電子機器
KR100377082B1 (ko) 반도체 장치
JP4006566B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP4000436B2 (ja) 半導体記憶装置
JP4032211B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP3237346B2 (ja) 半導体記憶装置
US6455899B2 (en) Semiconductor memory device having improved pattern of layers and compact dimensions
US6407463B2 (en) Semiconductor memory device having gate electrode, drain-drain contact, and drain-gate contact layers
US6713886B2 (en) Semiconductor device
US6538338B2 (en) Static RAM semiconductor memory device having reduced memory
JP4009810B2 (ja) 半導体記憶装置
JP4078510B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP4029260B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP4029257B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP2689940B2 (ja) スタティック型メモリセル
JP4029259B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP4006565B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP4029258B2 (ja) 半導体装置、メモリシステムおよび電子機器
JP2002237538A (ja) 半導体装置の製造方法
KR20000046818A (ko) 반도체 메모리의 래치부 구조

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041013

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees