JP4025576B2 - Bottomed cylindrical body, manufacturing method thereof, and sensor - Google Patents

Bottomed cylindrical body, manufacturing method thereof, and sensor Download PDF

Info

Publication number
JP4025576B2
JP4025576B2 JP2002123051A JP2002123051A JP4025576B2 JP 4025576 B2 JP4025576 B2 JP 4025576B2 JP 2002123051 A JP2002123051 A JP 2002123051A JP 2002123051 A JP2002123051 A JP 2002123051A JP 4025576 B2 JP4025576 B2 JP 4025576B2
Authority
JP
Japan
Prior art keywords
sealing
cylindrical
ceramic molded
molded body
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123051A
Other languages
Japanese (ja)
Other versions
JP2003313073A (en
Inventor
規光 日浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002123051A priority Critical patent/JP4025576B2/en
Publication of JP2003313073A publication Critical patent/JP2003313073A/en
Application granted granted Critical
Publication of JP4025576B2 publication Critical patent/JP4025576B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有底筒状体及びその製法並びにセンサに関し、特に酸素イオン伝導性を有する固体電解質セラミックスからなる筒状体と封止体とを同時焼成して一体化された有底筒状体及びその製法並びにセンサに関するものである。
【0002】
【従来技術】
従来、筒状体の一端を封止する方法として、例えば特開平5−84732号公報に開示されているように、筒状体内に濾紙等の有機物多孔体を固定し、筒状体内にセラミックスラリーを流し込むことにより有機物多孔体上に堆積させ、焼成時に有機物多孔体を消失させる方法が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記のような封止方法では、筒状体と封止体を構成するセラミックスラリーは同一か、もしくは異なっている場合でも、焼成収縮率は殆ど同一であったため、筒状体と、その内部に充填されて形成された封止体との接合強度が低いという問題があった。これにより、筒状体と封止体の界面が経時的に劣化し、隙間やクラックが発生し易いという問題があった。
【0004】
このような有底筒状体を、例えば自動車等の内燃機関における排出ガス中の酸素濃度を検出するセンサ(空燃比センサ)として使用すると、急速昇温などによる熱衝撃により、筒状体と封止体の界面が経時的に劣化し、接合界面に隙間やクラックが生じ、センサの破壊、あるいはそのセンサ特性に悪影響を及ぼすという問題があった。
【0005】
本発明は、筒状体と封止体との接合強度を容易に向上できる有底筒状体及びその製法並びにセンサを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の有底筒状体は、セラミック製筒状体の一端部の内部にセラミック製封止体を設けて、前記筒状体の一端部を封止してなり、前記筒状体と前記封止体とがZrO2を主結晶粒子として含有するとともに、前記筒状体と前記封止体が同時焼成された有底筒状体であって、前記筒状体及び前記封止体がいずれもAl23を含有し、かつ前記封止体中のAl23含有量が、前記筒状体中のAl23含有量よりも多いことを特徴とする。
【0007】
このような有底筒状体は、筒状セラミック成形体の一端部の内部に封止用セラミック成形体を設けて、前記筒状セラミック成形体の一端部を封止した後、前記筒状セラミック成形体と前記封止用セラミック成形体を同時焼成する有底筒状体の製法であって、前記筒状セラミック成形体及び前記封止用セラミック成形体とがZrO2を主結晶粉末とするとともに、Al23を含有し、かつ前記封止用セラミック成形体中のAl23含有量を前記筒状セラミック成形体中のAl23含有量よりも多くした製法を用いることにより得ることができる。
【0008】
このような製法によれば、筒状セラミック成形体と封止用セラミック成形体とが、ZrO2を主結晶粉末として含有するとともに、封止用セラミック成形体のAl23含有量よりも筒状セラミック成形体のAl23含有量を多くしたので、焼成時の粒成長を促進する焼結助剤であるAl23を多く含有する封止用セラミック成形体の焼結温度T1が、筒状セラミック成形体の焼結温度T2よりも低くなり、筒状セラミック成形体と封止用セラミック成形体を同時焼成すると、封止体の収縮が筒状体の収縮より早く終了し、筒状体が封止体を強く締め付けた状態で焼結し、筒状体の内部に封止体が強固に接合し、経時的な劣化を防止でき、強固な接合を長期間維持できる。
【0009】
また、本発明の有底筒状体の製法では、筒状セラミック成形体中の主結晶粉末100モル部に対するAl23含有量をm(モル部)、前記封止用セラミック成形体中の主結晶粉末100モル部に対するAl23含有量をn(モル部)とした時、0.3≦(n−m)を満足することを特徴とする。このような有底筒状体の製法では、封止用セラミック成形体の焼結温度T1が、筒状セラミック成形体の焼結温度T2よりも確実に低くなり、筒状体が封止体をより強く締め付けた状態で焼結することができ、強固な接合を長期間維持できる。
【0010】
さらに、本発明の有底筒状体の製法では、封止用セラミック成形体の焼結温度T1は、筒状セラミック成形体の焼結温度T2よりも低く、かつ、焼結温度T1以上で焼結温度T2よりも低い温度で一旦キープし、前記封止用セラミック成形体を焼結させた後、焼結温度T2よりも高い温度でキープし、前記筒状セラミック成形体を焼結させることを特徴とする。
【0011】
このような製法によれば、焼結温度T1以上で焼結温度T2よりも低い温度で封止体の焼結を完全に終了させた後、封止体の焼結温度T1よりも高く、かつ焼結温度T2よりも高い温度で焼成することにより、封止体に対して筒状体による締め付けがより効率的に起こり、接合面の隙間のない焼結体を得ることができる。
【0012】
また、本発明の有底筒状体の製法では、筒状セラミック成形体と封止用セラミック成形体中に希土類元素酸化物を含み、前記筒状セラミック成形体中の希土類元素酸化物の含有量xが4〜7モル%、前記封止用セラミック成形体中の希土類元素酸化物の含有量yが4.4〜8モル%であるとともに、0.4≦(y−x)を満足することが望ましい。
【0013】
これにより、例えば固体電解質として良く用いられるZrO2を主成分とする筒状体と封止体内の希土類元素酸化物(RE23:REは希土類元素)の含有量に差を設けた結果、筒状体と封止体の界面を挟んだZrとREの相互拡散が促進され、筒状体と封止体のZrO2同士の接合力が高められ、封止体が強固に筒状体の内面に接合され、筒状体と封止体の接合強度を向上できる。
【0014】
本発明の有底筒状体の製法では、封止用セラミック成形体による筒状セラミック成形体の一端部の封止が、前記封止用セラミック成形体を形成するスラリー中に前記筒状セラミック成形体の一端部を浸漬した後、吊り上げ乾燥してなされるか、もしくは前記筒状セラミック成形体の一端部を封止用部材で封止した後、前記封止用セラミック成形体を形成するスラリーを前記筒状セラミック成形体の内部に滴下し、乾燥してなされることが望ましい。
【0015】
このような製法によれば、封止用セラミック成形体を構成するセラミックスラリーを筒状セラミック成形体内に容易に供給でき、しかも筒状セラミック成形体の一端部の内部に封止用セラミック成形体を容易に形成でき、量産性も期待できる。
【0016】
本発明のセンサは、固体電解質セラミックスからなる請求項1記載の有底筒状体に、該有底筒状体における筒状体の対向する内外面にそれぞれ電極を形成してなる感知部を設けたことを特徴とするもので、このようなセンサでは、例えば、固体電解質セラミックスの酸素イオン伝導性を利用して、自動車等の内燃機関における排出ガス中の酸素濃度を検出するセンサ(空燃比センサ)として使用することができるとともに、筒状体と封止体を強固に接合でき、長期間高い接合強度を維持できるため、例えば空燃比センサとして使用することにより、急速昇温などによる熱衝撃にも十分耐えることができ、センサ寿命を大幅に向上できる。
【0017】
【発明の実施の形態】
本発明の有底筒状体は、図1に示すように、セラミック製筒状体1の一端部の内部にセラミック製封止体3が設けられ、これにより筒状体1の一端部が封止されている。筒状体1と封止体3の主結晶粒子はZrO2とされており、筒状体1と封止体3は同時焼成され一体化されている。
【0018】
そして、本発明の有底筒状体では、筒状体1、封止体3にAl23を含有しており、筒状体1中のAl23含有量をm(モル部)、封止体3中のAl23含有量をn(モル部)とした時、n>mを満足することが特徴である。n≦mの時には筒状体1による締め付け力が低いからである。特には、筒状体1の収縮による締め付け力を向上し、接合界面における隙間発生を抑制するという点から、0.3≦(n−m)を満足することが望ましく、さらには0.5≦(n−m)であることが望ましい。
【0019】
有底筒状体は、酸素イオン伝導性を有する固体電解質からなり、希土類元素酸化物が固溶したZrO2から構成されている。
【0020】
従って、筒状体1、封止体3の主結晶粒子は、希土類元素酸化物が固溶したZrO2粒子とされている。これにより、その酸素イオン伝導性を利用して、自動車等の内燃機関における排出ガス中の酸素濃度を検出するセンサとして使用することが可能となる。希土類元素としては、Y、Yb、Ce等がある。
【0021】
以上のように構成された有底筒状体は、図2に示すように、筒状セラミック成形体11の一端部の内部に封止用セラミック成形体を形成して、筒状セラミック成形体11の一端部を封止した後、筒状セラミック成形体11と封止用セラミック成形体を同時焼成して形成される。
【0022】
具体的には、先ず、筒状セラミック成形体11と封止用セラミック成形体を形成するため、希土類元素酸化物が固溶したZrO2粉末と、Al23粉末を準備する。
【0023】
即ち、希土類元素酸化物が固溶したZrO2粉末とAl23粉末の混合粉末に、有機溶媒を添加し、混合して形成されたスラリーを用いて、筒状セラミック成形体11と封止用セラミック成形体が作製される。
【0024】
筒状セラミック成形体11は押出成形により形成され、封止用セラミック成形体は、スラリーディップ法やスラリー滴下法により形成される。
【0025】
封止用セラミック成形体のスラリーディップ法による形成は、先ず、容器9内に収容された上記スラリー内に筒状セラミック成形体11の一端部を一定時間浸漬し、これを引き上げ乾燥して、筒状セラミック成形体11の一端部の内部に封止用セラミック成形体を充填形成する。
【0026】
また、スラリー滴下法では、筒状セラミック成形体11の下端を、例えばカーボン製の封止用部材10で封止した後、筒状セラミック成形体11の上端の開口部から、上記したスラリーを滴下し、乾燥した後、封止用部材10を除去して、筒状セラミック成形体11の下端部に封止用セラミック成形体を形成する。
【0027】
これらのスラリーディップ法やスラリー滴下法を用いることにより、封止体を構成するセラミックスラリーを、筒状セラミック成形体11内に容易に封入することができ、量産性も期待できる。さらに同時焼成することにより、高温雰囲気下に何度もさらす必要がなくなり、焼結体の特性劣化を引き起こす原因を低減することができ、さらに工程短縮によるコスト削減も可能となる。
【0028】
このようにして筒状セラミック成形体11の一端部に封止用セラミック成形体を充填して形成し、これを所定温度で焼成し、本発明の有底筒状体を作製できる。
【0029】
本発明の有底筒状体の製法では、特に、筒状セラミック成形体11と封止用セラミック成形体の主結晶粉末としてZrO2を用いるとともに、筒状セラミック成形体11と封止用セラミック成形体がいずれもAl23を含有し、かつ封止用セラミック成形体中のAl23含有量が、筒状セラミック成形体11のAl23含有量よりも多いことが必要である。
【0030】
このように、封止用セラミック成形体中のAl23含有量を、筒状セラミック成形体11のAl23含有量よりも多くすることにより、焼成時の粒成長を促進する焼結助剤であるAl23を多く含有する封止用セラミック成形体の焼結温度T1を、筒状セラミック成形体11の焼結温度T2よりも低くでき、これにより、筒状体1で封止体3を締め付けた状態で接合でき、強固な接合強度を得ることができる。
【0031】
特に、筒状セラミック成形体11中の主結晶粉末100モル部に対するAl23含有量をm(モル%)、封止用セラミック成形体中の主結晶粉末100モル部に対するAl23含有量をn(モル%)とした時、0.3≦(n−m)を満足することにより、筒状体1で封止体3をより強く締め付けた状態で接合でき、より強固な接合強度を得ることができる。
【0032】
また、本発明では、筒状セラミック成形体11と封止用セラミック成形体中に希土類元素を含み、筒状セラミック成形体11中の希土類元素酸化物の含有量xが4〜7モル%、封止用セラミック成形体中の希土類元素酸化物の含有量yが4.4〜8モル%であるとともに、0.4≦(y−x)を満足することが望ましい。
【0033】
このような組成を有することにより、筒状体と封止体の界面を挟んだZrとREの相互拡散が促進され、筒状体と封止体のZrO2同士の接合力が高められ、封止体が強固に筒状体の内面に接合され、筒状体と封止体の接合強度を向上できる。筒状体と封止体の界面を挟んだZrとREの相互拡散をより促進するという点から、特に、5≦x≦6、6≦y≦7、1≦(y−x)≦2であることが望ましい。
【0034】
さらに、本発明の有底筒状体の製法では、封止用セラミック成形体の焼結温度T1は、筒状セラミック成形体11の焼結温度T2よりも低く、かつ、焼結温度T1以上で焼結温度T2よりも低い温度で一旦キープし、封止用セラミック成形体を焼結させた後、焼結温度T2よりも高い温度でキープし、筒状セラミック成形体11を焼結させることが望ましい。
【0035】
焼結温度T1以上で焼結温度T2よりも低い温度で一旦キープすることにより、封止体の焼結を完全に終了させ、焼結温度T2よりも高い温度でキープすることにより筒状体の焼結を進行させることにより、封止体に対する筒状体による締め付けがより効率的に起こり、接合面の隙間のない焼結体を得ることができる。
【0036】
本発明のセンサは、上記した固体電解質セラミックスからなる有底筒状体において、筒状体の対向する内外面にそれぞれ電極を形成してなる感知部を有するもので、一例として、図3に空燃比センサを示す。この空燃比センサは、例えば、図3(a)の斜視図、(b)のX1−X1断面図に示したように、先端が封止体により封止された筒状体15の内面と外面に、ZrO2粒子を分散した白金電極からなる基準電極16と測定電極17がそれぞれ被着形成されて構成されている。
【0037】
先端が封止された筒状体15の外面に形成された測定電極17の周囲にはAl23、Al23とMgOとの複合酸化物、あるいはAl23とY23等の複合酸化物からなる厚みが2〜50μmのセラミック絶縁層18が被着形成されている。そして、このセラミック絶縁層18には、測定電極17の一部または全部が露出するように所定の開口部19が形成されており、その開口部19の周囲のセラミック絶縁層18中には白金等からなる発熱体20が埋設されている。
【0038】
また、この発熱体20は、リード電極21を経由して端子電極22と接続されており、これらを通じて発熱体20に電流を印加することにより、発熱体20が加熱され、測定電極17、筒状体15および基準電極16からなる感知部を所定の温度に急速昇温できるように構成されている。また、セラミック絶縁層18表面には、発熱体20からの熱の放散を防止するためセラミック保温層23が形成されている。
【0039】
測定電極17表面には、電極が被毒するのを防止するため、ZrO2(Y23等の希土類元素酸化物含有)、Al23、MgAl24等からなる多孔質のセラミック保護層24が形成されている。あるいは、測定電極17の表面に微細な細孔を有するZrO2(Y23等の希土類元素酸化物含有)、Al23、MgAl24、MgOまたはγ−Al23等を用いたガス拡散律速層を形成してもよい。
【0040】
以上のようなセンサでは、本発明の有底筒状体を、自動車等の内燃機関における排出ガス中の酸素濃度を検出するセンサ(空燃比センサ)に用いることにより、急速昇温などによる熱衝撃にも十分耐えることができ、長時間運転による信頼性を高めることができる。
【0041】
【実施例】
市販の平均粒子径が0.3μmのAl23粉末と、主結晶粉末として、共沈法により作製した、4.1〜6.2モル%Y23含有のZrO2粉末と、共沈法により作製した、主結晶粉末として、5〜7.2モル%Y23含有のZrO2粉末をそれぞれ準備した。
【0042】
次に、4.1〜6.2モル%Y23含有のZrO2粉末に、該ZrO2粉末100モル部に対して、表1に示す割合のAl23粉末を添加して混合した後、有機バインダーとしてポリビニルアルコール溶液、溶媒として純水を添加して坏土を作製し、押出成形により外径が5mm、内径が3mmの筒状セラミック成形体を作製した。
【0043】
一方、5〜7.2モル%Y23含有のZrO2粉末に、該ZrO2粉末100モル部に対して、表1に示す割合のAl23粉末を添加して混合した後、ミネロールを所定量溶媒として添加し、封止用セラミック成形体用のスラリーを作製した。
【0044】
その後、筒状セラミック成形体を上記スラリーに浸漬し、吊り上げて乾燥することにより、筒状セラミック成形体の一端部の内部を封止用セラミック成形体で封止した成形体を作製した。
【0045】
その後、この成形体を大気中にて1400℃で1時間、1550℃で1時間のキープを行い2段パターンで一体的に焼成し、有底筒状体を作製した。尚、上記封止用セラミック成形体の焼結温度T1は1350〜1400℃であり、上記筒状セラミック成形体の焼結温度T2は1500〜1550℃であった。
【0046】
得られた20個の有底筒状体につき、室温から30秒間で700℃まで昇温した後、室温まで空冷するという温度サイクルを1サイクルとして、これを10万回行った(熱サイクル試験)後、筒状体と封止体の接合部にクラックが発生した試料の割合をクラック割合として表1に示した。なお、同条件で接合を行った試料について、熱サイクル試験後に断面を切断することにより、筒状体と封止体との間の隙間の有無状態を金属顕微鏡(150倍)にて確認を行った。これらの結果を表1に記載した。
【0047】
【表1】

Figure 0004025576
【0048】
表1の結果から、筒状セラミック成形体と封止用セラミック成形体のAl23含有量差が本発明の範囲を逸脱する試料No.1〜3、No.7は、熱サイクル試験後に剥離、あるいはクラックが発生した試料が多かった。
【0049】
これらの比較例に対して、本発明の試料では、熱サイクル試験後に隙間が見られる試料の発生割合は10%以下に抑えられ、且つ熱サイクル試験後のクラック発生割合も5%以下となり、空燃比センサとして用いても高い信頼性を有することが判る。
【0050】
【発明の効果】
以上詳述したとおり、本発明の有底筒状体は、封止体中のAl23含有量を筒状体中のAl23含有量よりも多くしたので、筒状体と封止体の焼成時の収縮を制御し、封止体の焼結完了後に筒状体を焼結させ、筒状体と封止体との高い接合強度を長期間維持することができる。これにより、かかる有底筒状体を、例えば自動車等の内燃機関における排出ガス中の酸素濃度を検出する空燃比センサとして使用すると、急速昇温などによる耐熱衝撃性を向上できる。
【図面の簡単な説明】
【図1】本発明の有底筒状体を示すもので、(a)は斜視図、(b)は断面図である。
【図2】本発明の有底筒状体の製法を説明するための工程図である。
【図3】本発明の空燃比センサを示すもので、(a)は斜視図、(b)は(a)のX1−X1断面図である。
【符号の説明】
1・・・筒状体
3・・・封止体
11・・・筒状セラミック成形体
16・・・基準電極
17・・・測定電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bottomed cylindrical body, a method of manufacturing the same, and a sensor, and more particularly, a bottomed cylindrical body integrated by simultaneously firing a cylindrical body made of a solid electrolyte ceramic having oxygen ion conductivity and a sealing body. And its manufacturing method and sensor.
[0002]
[Prior art]
Conventionally, as a method for sealing one end of a cylindrical body, for example, as disclosed in JP-A-5-84732, an organic porous body such as a filter paper is fixed in the cylindrical body, and a ceramic slurry is stored in the cylindrical body. There is known a method of depositing on a porous organic material by pouring and discharging the porous organic material during firing.
[0003]
[Problems to be solved by the invention]
However, in the sealing method as described above, even when the ceramic slurry constituting the cylindrical body and the sealing body are the same or different, the firing shrinkage rate was almost the same. There has been a problem in that the bonding strength with the sealing body filled inside is low. Thereby, the interface of a cylindrical body and a sealing body deteriorated with time, and there existed a problem that a clearance gap and a crack were easy to generate | occur | produce.
[0004]
When such a bottomed cylindrical body is used as a sensor (air-fuel ratio sensor) for detecting the oxygen concentration in exhaust gas in an internal combustion engine such as an automobile, the cylindrical body and the sealed body are sealed by a thermal shock due to rapid temperature rise or the like. There has been a problem that the interface of the stationary body deteriorates with time, gaps and cracks are generated at the joint interface, the sensor is destroyed, or the sensor characteristics are adversely affected.
[0005]
An object of the present invention is to provide a bottomed cylindrical body, a method for manufacturing the same, and a sensor that can easily improve the bonding strength between the cylindrical body and the sealing body.
[0006]
[Means for Solving the Problems]
The bottomed cylindrical body of the present invention is provided with a ceramic sealing body inside one end of a ceramic cylindrical body, and seals one end of the cylindrical body. The sealing body contains ZrO 2 as main crystal particles, and is a bottomed cylindrical body in which the cylindrical body and the sealing body are fired simultaneously, and the cylindrical body and the sealing body are either also contain Al 2 O 3, and Al 2 O 3 content in the sealing member, characterized in that more than Al 2 O 3 content of the tubular body in.
[0007]
Such a bottomed cylindrical body is provided with a sealing ceramic molded body inside one end portion of the cylindrical ceramic molded body, and after sealing one end portion of the cylindrical ceramic molded body, the cylindrical ceramic molded body A method of manufacturing a bottomed cylindrical body in which a molded body and the sealing ceramic molded body are simultaneously fired, wherein the cylindrical ceramic molded body and the sealing ceramic molded body have ZrO 2 as a main crystal powder. , obtained by using the containing Al 2 O 3, and has a content of Al 2 O 3 of the sealing ceramic molded body for locking and more than the content of Al 2 O 3 in the tubular ceramic molded body production method be able to.
[0008]
According to such a manufacturing method, the cylindrical ceramic molded body and the sealing ceramic molded body contain ZrO 2 as the main crystal powder, and the cylinder is more than the Al 2 O 3 content of the sealing ceramic molded body. Since the Al 2 O 3 content of the shaped ceramic molded body is increased, the sintering temperature T1 of the sealing ceramic molded body containing a large amount of Al 2 O 3 as a sintering aid for promoting grain growth during firing is increased. When the cylindrical ceramic molded body and the sealing ceramic molded body are fired at the same time, the shrinkage of the sealed body ends earlier than the shrinkage of the tubular body. The cylindrical body is sintered in a state where the sealing body is strongly clamped, and the sealing body is firmly bonded to the inside of the cylindrical body, so that deterioration with time can be prevented and strong bonding can be maintained for a long time.
[0009]
Moreover, in the manufacturing method of the bottomed cylindrical body of the present invention, the Al 2 O 3 content relative to 100 mol parts of the main crystal powder in the cylindrical ceramic molded body is m (mol parts), and the sealing ceramic molded body contains When the Al 2 O 3 content with respect to 100 mol parts of the main crystal powder is n (mol parts), 0.3 ≦ (nm) is satisfied. In such a manufacturing method of the bottomed cylindrical body, the sintering temperature T1 of the sealing ceramic molded body is surely lower than the sintering temperature T2 of the cylindrical ceramic molded body, and the cylindrical body is sealed with the sealing body. Sintering can be performed in a tighter state, and strong bonding can be maintained for a long time.
[0010]
Furthermore, in the manufacturing method of the bottomed cylindrical body of the present invention, the sintering temperature T1 of the sealing ceramic molded body is lower than the sintering temperature T2 of the cylindrical ceramic molded body and is sintered at the sintering temperature T1 or higher. Temporarily holding at a temperature lower than the sintering temperature T2 to sinter the ceramic molded body for sealing, and then keeping at a temperature higher than the sintering temperature T2 to sinter the cylindrical ceramic molded body. Features.
[0011]
According to such a manufacturing method, after the sintering of the sealing body is completed at a temperature higher than the sintering temperature T1 and lower than the sintering temperature T2, it is higher than the sintering temperature T1 of the sealing body, and By firing at a temperature higher than the sintering temperature T2, the cylindrical body is more efficiently tightened with respect to the sealing body, and a sintered body with no gap between the joining surfaces can be obtained.
[0012]
Further, in the method for producing a bottomed cylindrical body of the present invention, the cylindrical ceramic molded body and the sealing ceramic molded body contain a rare earth element oxide, and the rare earth element oxide content in the cylindrical ceramic molded body x is 4-7 mol%, the rare earth element oxide content y in the sealing ceramic molded body is 4.4-8 mol%, and satisfies 0.4 ≦ (y−x). Is desirable.
[0013]
Thereby, for example, as a result of providing a difference in the content of rare earth element oxide (RE 2 O 3 : RE is a rare earth element) in the sealed body and the cylindrical body mainly composed of ZrO 2 often used as a solid electrolyte, Mutual diffusion of Zr and RE across the interface between the cylindrical body and the sealing body is promoted, the bonding force between ZrO 2 of the cylindrical body and the sealing body is enhanced, and the sealing body is firmly Bonded to the inner surface, the bonding strength between the cylindrical body and the sealing body can be improved.
[0014]
In the method for producing a bottomed cylindrical body of the present invention, sealing of one end portion of the cylindrical ceramic molded body by the sealing ceramic molded body is performed in the cylindrical ceramic molded body in the slurry forming the sealing ceramic molded body. After dipping one end of the body, it is lifted and dried, or after sealing one end of the cylindrical ceramic molded body with a sealing member, a slurry forming the sealing ceramic molded body is formed. It is desirable to drop it into the cylindrical ceramic molded body and dry it.
[0015]
According to such a manufacturing method, the ceramic slurry constituting the sealing ceramic molded body can be easily supplied into the cylindrical ceramic molded body, and the sealing ceramic molded body is placed inside one end of the cylindrical ceramic molded body. It can be easily formed, and mass production can be expected.
[0016]
The sensor according to the present invention is provided with a sensing part formed by forming electrodes on the inner and outer surfaces of the bottomed cylindrical body opposite to each other in the bottomed cylindrical body according to claim 1 made of solid electrolyte ceramics. In such a sensor, for example, a sensor (air-fuel ratio sensor) that detects the oxygen concentration in exhaust gas in an internal combustion engine such as an automobile by utilizing the oxygen ion conductivity of solid electrolyte ceramics. ), The cylindrical body and the sealing body can be firmly bonded, and high bonding strength can be maintained for a long time. For example, by using it as an air-fuel ratio sensor, Can sufficiently withstand, and the sensor life can be greatly improved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the bottomed cylindrical body of the present invention is provided with a ceramic sealing body 3 inside one end portion of the ceramic cylindrical body 1, whereby the one end portion of the cylindrical body 1 is sealed. It has been stopped. The main crystal particles of the cylindrical body 1 and the sealing body 3 are ZrO 2 , and the cylindrical body 1 and the sealing body 3 are simultaneously fired and integrated.
[0018]
Then, the bottomed cylindrical body of the present invention, the tubular body 1, the sealing body 3 is contained Al 2 O 3, the Al 2 O 3 content of the tube in 1 m (mol parts) When the Al 2 O 3 content in the sealing body 3 is n (mole part), n> m is satisfied. This is because the tightening force by the cylindrical body 1 is low when n ≦ m. In particular, it is desirable to satisfy 0.3 ≦ (nm) from the viewpoint of improving the tightening force due to the contraction of the cylindrical body 1 and suppressing the generation of gaps at the joint interface, and more preferably 0.5 ≦ It is desirable that (nm).
[0019]
The bottomed cylindrical body is made of a solid electrolyte having oxygen ion conductivity, and is made of ZrO 2 in which a rare earth element oxide is dissolved.
[0020]
Therefore, the main crystal particles of the cylindrical body 1 and the sealing body 3 are ZrO 2 particles in which the rare earth element oxide is dissolved. This makes it possible to use the oxygen ion conductivity as a sensor for detecting the oxygen concentration in exhaust gas in an internal combustion engine such as an automobile. Examples of rare earth elements include Y, Yb, and Ce.
[0021]
As shown in FIG. 2, the bottomed cylindrical body configured as described above forms a sealing ceramic molded body inside one end portion of the cylindrical ceramic molded body 11, thereby forming the cylindrical ceramic molded body 11. After sealing one end of the cylindrical ceramic molded body 11, the cylindrical ceramic molded body 11 and the sealing ceramic molded body are simultaneously fired.
[0022]
Specifically, first, in order to form the cylindrical ceramic molded body 11 and the sealing ceramic molded body, a ZrO 2 powder in which a rare earth element oxide is dissolved and an Al 2 O 3 powder are prepared.
[0023]
That is, the cylindrical ceramic molded body 11 is sealed with a slurry formed by adding an organic solvent to a mixed powder of ZrO 2 powder and Al 2 O 3 powder in which a rare earth element oxide is dissolved, and mixing them. A ceramic molded body is produced.
[0024]
The cylindrical ceramic molded body 11 is formed by extrusion molding, and the sealing ceramic molded body is formed by a slurry dipping method or a slurry dropping method.
[0025]
The formation of the sealing ceramic molded body by the slurry dip method is performed by first immersing one end portion of the cylindrical ceramic molded body 11 in the slurry accommodated in the container 9 for a certain period of time, lifting it and drying it. A ceramic molded body for sealing is filled and formed inside one end of the shaped ceramic molded body 11.
[0026]
Moreover, in the slurry dropping method, after sealing the lower end of the cylindrical ceramic molded body 11 with, for example, a carbon sealing member 10, the above-described slurry is dropped from the opening at the upper end of the cylindrical ceramic molded body 11. Then, after drying, the sealing member 10 is removed, and a sealing ceramic molded body is formed at the lower end of the cylindrical ceramic molded body 11.
[0027]
By using these slurry dipping methods and slurry dropping methods, the ceramic slurry constituting the sealing body can be easily enclosed in the cylindrical ceramic molded body 11, and mass productivity can also be expected. Furthermore, simultaneous firing eliminates the need for repeated exposure to a high-temperature atmosphere, can reduce the cause of deterioration of the properties of the sintered body, and can further reduce costs by shortening the process.
[0028]
In this way, the cylindrical ceramic body 11 is filled with the sealing ceramic body and fired at a predetermined temperature to produce the bottomed tubular body of the present invention.
[0029]
In the manufacturing method of the bottomed cylindrical body of the present invention, in particular, ZrO 2 is used as the main crystal powder of the cylindrical ceramic molded body 11 and the sealing ceramic molded body, and the cylindrical ceramic molded body 11 and the sealing ceramic molded body are used. All the bodies contain Al 2 O 3 , and the Al 2 O 3 content in the ceramic molded body for sealing needs to be larger than the Al 2 O 3 content in the cylindrical ceramic molded body 11. .
[0030]
Thus, the content of Al 2 O 3 ceramic molded body for sealing, by more than the content of Al 2 O 3 cylindrical ceramic molded body 11, sintering to promote the grain growth during firing The sintering temperature T1 of the sealing ceramic molded body containing a large amount of the auxiliary agent Al 2 O 3 can be made lower than the sintering temperature T2 of the cylindrical ceramic molded body 11, whereby the cylindrical body 1 is sealed. It can join in the state which fastened the stop body 3, and can obtain strong joint strength.
[0031]
In particular, the content of Al 2 O 3 with respect to 100 mole parts of the main crystal powder in the cylindrical ceramic molded body 11 is m (mol%), and the content of Al 2 O 3 is with respect to 100 mole parts of the main crystal powder in the ceramic molded body for sealing. By satisfying 0.3 ≦ (nm) when the amount is n (mol%), the cylindrical body 1 can be joined with the sealing body 3 tightened more strongly, and the joint strength is stronger. Can be obtained.
[0032]
Further, in the present invention, the cylindrical ceramic molded body 11 and the sealing ceramic molded body contain a rare earth element, and the content x of the rare earth element oxide in the cylindrical ceramic molded body 11 is 4 to 7 mol%. It is desirable that the content y of the rare earth element oxide in the ceramic molded body for stopping is 4.4 to 8 mol% and that 0.4 ≦ (y−x) is satisfied.
[0033]
By having such a composition, the mutual diffusion of Zr and RE across the interface between the cylindrical body and the sealing body is promoted, the bonding force between ZrO 2 of the cylindrical body and the sealing body is enhanced, and the sealing is performed. The stationary body is firmly bonded to the inner surface of the cylindrical body, and the bonding strength between the cylindrical body and the sealing body can be improved. In particular, 5 ≦ x ≦ 6, 6 ≦ y ≦ 7, and 1 ≦ (y−x) ≦ 2 from the viewpoint of further promoting the mutual diffusion of Zr and RE across the interface between the cylindrical body and the sealing body. It is desirable to be.
[0034]
Furthermore, in the manufacturing method of the bottomed cylindrical body of the present invention, the sintering temperature T1 of the sealing ceramic molded body is lower than the sintering temperature T2 of the cylindrical ceramic molded body 11 and is equal to or higher than the sintering temperature T1. Temporarily keeping at a temperature lower than the sintering temperature T2 to sinter the ceramic molded body for sealing, and then keeping at a temperature higher than the sintering temperature T2 to sinter the cylindrical ceramic molded body 11. desirable.
[0035]
By temporarily keeping the sintering body at a temperature higher than the sintering temperature T1 and lower than the sintering temperature T2, the sealing body is completely sintered, and by keeping at a temperature higher than the sintering temperature T2, the cylindrical body By proceeding with the sintering, the cylindrical body is more efficiently tightened with respect to the sealing body, and a sintered body having no gap between the joining surfaces can be obtained.
[0036]
The sensor of the present invention has a sensing part formed by forming electrodes on the inner and outer surfaces facing each other of the bottomed cylindrical body made of the solid electrolyte ceramic as described above. As an example, FIG. 1 shows a fuel ratio sensor. For example, as shown in the perspective view of FIG. 3A and the X 1 -X 1 cross-sectional view of FIG. 3B, the air-fuel ratio sensor has an inner surface of a cylindrical body 15 whose tip is sealed with a sealing body. A reference electrode 16 and a measurement electrode 17 made of a platinum electrode in which ZrO 2 particles are dispersed are respectively deposited on the outer surface.
[0037]
Around the measurement electrode 17 formed on the outer surface of the cylindrical body 15 whose tip is sealed, there is Al 2 O 3 , a composite oxide of Al 2 O 3 and MgO, or Al 2 O 3 and Y 2 O 3. A ceramic insulating layer 18 made of a complex oxide such as 2 to 50 μm in thickness is deposited. A predetermined opening 19 is formed in the ceramic insulating layer 18 so that part or all of the measurement electrode 17 is exposed. Platinum or the like is formed in the ceramic insulating layer 18 around the opening 19. A heating element 20 made of is embedded.
[0038]
In addition, the heating element 20 is connected to the terminal electrode 22 via the lead electrode 21, and by applying a current to the heating element 20 through the lead electrode 21, the heating element 20 is heated, and the measurement electrode 17, cylindrical shape is applied. The sensing unit composed of the body 15 and the reference electrode 16 is configured to be rapidly heated to a predetermined temperature. Further, a ceramic heat insulating layer 23 is formed on the surface of the ceramic insulating layer 18 in order to prevent heat from being emitted from the heating element 20.
[0039]
In order to prevent the electrode from being poisoned on the surface of the measurement electrode 17, a porous ceramic made of ZrO 2 (containing a rare earth element oxide such as Y 2 O 3 ), Al 2 O 3 , MgAl 2 O 4 or the like. A protective layer 24 is formed. Alternatively, ZrO 2 (containing a rare earth element oxide such as Y 2 O 3 ), Al 2 O 3 , MgAl 2 O 4 , MgO, or γ-Al 2 O 3 having fine pores on the surface of the measurement electrode 17 is used. The used gas diffusion control layer may be formed.
[0040]
In the sensor as described above, the bottomed cylindrical body of the present invention is used as a sensor (air-fuel ratio sensor) for detecting the oxygen concentration in exhaust gas in an internal combustion engine such as an automobile, so that thermal shock due to rapid temperature rise or the like. Can be sufficiently tolerated, and the reliability of long-time operation can be improved.
[0041]
【Example】
A commercially available Al 2 O 3 powder having an average particle diameter of 0.3 μm, a ZrO 2 powder containing 4.1 to 6.2 mol% Y 2 O 3 prepared as a main crystal powder by a coprecipitation method, ZrO 2 powders containing 5 to 7.2 mol% Y 2 O 3 were prepared as main crystal powders prepared by the precipitation method.
[0042]
Next, to the ZrO 2 powder containing 4.1 to 6.2 mol% Y 2 O 3 , the Al 2 O 3 powder in the ratio shown in Table 1 is added to and mixed with 100 mol parts of the ZrO 2 powder. After that, a polyvinyl alcohol solution as an organic binder and pure water as a solvent were added to prepare clay, and a cylindrical ceramic molded body having an outer diameter of 5 mm and an inner diameter of 3 mm was prepared by extrusion molding.
[0043]
On the other hand, 5 to 7.2 mol% Y 2 O 3 ZrO 2 powder containing, with respect to the ZrO 2 powder to 100 parts by mol, was added and mixed with Al 2 O 3 powder in the proportions shown in Table 1, Mineralol was added as a predetermined amount of solvent to prepare a slurry for a ceramic molded body for sealing.
[0044]
Then, the cylindrical ceramic molded object was immersed in the said slurry, and it lifted and dried, and produced the molded object which sealed the inside of the one end part of the cylindrical ceramic molded object with the ceramic molded object for sealing.
[0045]
Thereafter, this molded body was kept in the atmosphere at 1400 ° C. for 1 hour and at 1550 ° C. for 1 hour, and integrally fired in a two-step pattern to produce a bottomed cylindrical body. In addition, sintering temperature T1 of the said ceramic molded object for sealing was 1350-1400 degreeC, and sintering temperature T2 of the said cylindrical ceramic molded object was 1500-1550 degreeC.
[0046]
The obtained 20 bottomed cylindrical bodies were heated up to 700 ° C. in 30 seconds from room temperature and then air-cooled to room temperature as one cycle, and this was performed 100,000 times (thermal cycle test). Thereafter, the ratio of the sample in which a crack occurred at the joint between the cylindrical body and the sealing body is shown in Table 1 as the crack ratio. In addition, about the sample joined on the same conditions, the presence or absence state of the clearance gap between a cylindrical body and a sealing body is confirmed with a metal microscope (150 times) by cut | disconnecting a cross section after a thermal cycle test. It was. These results are shown in Table 1.
[0047]
[Table 1]
Figure 0004025576
[0048]
From the results in Table 1, the sample No. 2 in which the difference in Al 2 O 3 content between the cylindrical ceramic molded body and the sealing ceramic molded body deviates from the scope of the present invention. 1-3, no. No. 7 had many samples where peeling or cracking occurred after the thermal cycle test.
[0049]
In contrast to these comparative examples, in the sample of the present invention, the generation rate of the sample in which gaps are observed after the thermal cycle test is suppressed to 10% or less, and the crack generation rate after the thermal cycle test is also 5% or less. It can be seen that it has high reliability even when used as a fuel ratio sensor.
[0050]
【The invention's effect】
As described in detail above, since the bottomed cylindrical body of the present invention was more than the content of Al 2 O 3 the tubular body in the content of Al 2 O 3 in the sealing body, the tubular body and sealing The shrinkage at the time of firing the stationary body can be controlled, and the cylindrical body can be sintered after the sealing body has been sintered, and the high bonding strength between the cylindrical body and the sealed body can be maintained for a long time. Thus, when such a bottomed cylindrical body is used as an air-fuel ratio sensor for detecting the oxygen concentration in exhaust gas in an internal combustion engine such as an automobile, the thermal shock resistance due to rapid temperature rise or the like can be improved.
[Brief description of the drawings]
FIG. 1 shows a bottomed cylindrical body of the present invention, in which (a) is a perspective view and (b) is a cross-sectional view.
FIG. 2 is a process diagram for explaining a method for producing a bottomed cylindrical body according to the present invention.
3A and 3B show an air-fuel ratio sensor of the present invention, in which FIG. 3A is a perspective view, and FIG. 3B is a cross-sectional view taken along line X 1 -X 1 in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cylindrical body 3 ... Sealing body 11 ... Cylindrical ceramic molded body 16 ... Reference electrode 17 ... Measurement electrode

Claims (5)

セラミック製筒状体の一端部の内部にセラミック製封止体を設けて、前記筒状体の一端部を封止してなり、前記筒状体と前記封止体とがZrO2を主結晶粒子として含有するとともに、前記筒状体と前記封止体が同時焼成された有底筒状体であって、前記筒状体及び前記封止体がいずれもAl23を含有し、かつ前記封止体中のAl23含有量が、前記筒状体中のAl23含有量よりも多いことを特徴とする有底筒状体。A ceramic sealing body is provided inside one end portion of the ceramic cylindrical body, and one end portion of the cylindrical body is sealed, and the cylindrical body and the sealing body are formed of ZrO 2 as a main crystal. A bottomed cylindrical body in which the cylindrical body and the sealing body are fired at the same time, the cylindrical body and the sealing body both contain Al 2 O 3 , and A bottomed cylindrical body characterized in that the Al 2 O 3 content in the sealing body is larger than the Al 2 O 3 content in the cylindrical body. 筒状セラミック成形体の一端部の内部に封止用セラミック成形体を設けて、前記筒状セラミック成形体の一端部を封止した後、前記筒状セラミック成形体と前記封止用セラミック成形体を同時焼成する有底筒状体の製法であって、前記筒状セラミック成形体及び前記封止用セラミック成形体とがZrO2を主結晶粉末とするとともに、Al23を含有し、かつ前記封止用セラミック成形体中のAl23含有量が前記筒状セラミック成形体中のAl23含有量よりも多いことを特徴とする有底筒状体の製法。After providing a sealing ceramic molded body inside one end of the cylindrical ceramic molded body and sealing one end of the cylindrical ceramic molded body, the cylindrical ceramic molded body and the sealing ceramic molded body The cylindrical ceramic body and the sealing ceramic body contain ZrO 2 as the main crystal powder, and contain Al 2 O 3 , and A process for producing a bottomed cylindrical body, wherein the content of Al 2 O 3 in the ceramic molded body for sealing is greater than the content of Al 2 O 3 in the cylindrical ceramic molded body. 筒状セラミック成形体中の主結晶粉末100モル部に対するAl23含有量をm(モル部)、前記封止用セラミック成形体中の主結晶粉末100モル部に対するAl23含有量をn(モル部)とした時、0.3≦(n−m)を満足することを特徴とする請求項2記載の有底筒状体の製法。The Al 2 O 3 content relative to 100 mol parts of the main crystal powder in the cylindrical ceramic molded body is m (mol parts), and the Al 2 O 3 content relative to 100 mol parts of the main crystal powder in the sealing ceramic molded body is 3. The method for producing a bottomed cylindrical body according to claim 2, wherein when n (mole part) is satisfied, 0.3 ≦ (nm) is satisfied. 封止用セラミック成形体の焼結温度T1は、筒状セラミック成形体の焼結温度T2よりも低く、かつ、焼結温度T1以上で焼結温度T2よりも低い温度で一旦キープし、前記封止用セラミック成形体を焼結させた後、焼結温度T2よりも高い温度でキープし、前記筒状セラミック成形体を焼結させることを特徴とする請求項2又は3記載の有底筒状体の製法。Sintering temperature T1 of the ceramic molded body for sealing is temporarily kept at a temperature lower than sintering temperature T2 that is lower than sintering temperature T2 of cylindrical ceramic molded body, and is lower than sintering temperature T2. The bottomed cylindrical shape according to claim 2 or 3, wherein the ceramic molded body for fixing is sintered and then kept at a temperature higher than a sintering temperature T2 to sinter the cylindrical ceramic molded body. Body making method. 固体電解質セラミックスからなる請求項1記載の有底筒状体に、該有底筒状体における筒状体の対向する内外面にそれぞれ電極を形成してなる感知部を設けたことを特徴とするセンサ。The bottomed cylindrical body made of solid electrolyte ceramics is provided with a sensing portion formed by forming electrodes on the inner and outer surfaces of the bottomed cylindrical body facing each other. Sensor.
JP2002123051A 2002-04-24 2002-04-24 Bottomed cylindrical body, manufacturing method thereof, and sensor Expired - Fee Related JP4025576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123051A JP4025576B2 (en) 2002-04-24 2002-04-24 Bottomed cylindrical body, manufacturing method thereof, and sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123051A JP4025576B2 (en) 2002-04-24 2002-04-24 Bottomed cylindrical body, manufacturing method thereof, and sensor

Publications (2)

Publication Number Publication Date
JP2003313073A JP2003313073A (en) 2003-11-06
JP4025576B2 true JP4025576B2 (en) 2007-12-19

Family

ID=29538489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123051A Expired - Fee Related JP4025576B2 (en) 2002-04-24 2002-04-24 Bottomed cylindrical body, manufacturing method thereof, and sensor

Country Status (1)

Country Link
JP (1) JP4025576B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217469A (en) * 2013-01-21 2013-07-24 武汉天榜氧传感器有限公司 Tubular automotive oxygen sensor structure and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003313073A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
EP2977363B1 (en) Joined body, and production method therefor
JP2012173146A (en) Gas sensor element and gas sensor
JP4409581B2 (en) Oxygen sensor element
CN111163864A (en) Electrically heated catalyst
EP3002268A1 (en) Joined body
EP3002269A1 (en) Joined body and method for manufacturing the same
WO2012132837A1 (en) Method for producing honeycomb structured body, method for producing si-sic-based composite material, and honeycomb structured body
JP4025576B2 (en) Bottomed cylindrical body, manufacturing method thereof, and sensor
JP3572241B2 (en) Air-fuel ratio sensor element
JP3668050B2 (en) Heater integrated oxygen sensor and manufacturing method thereof
JP2003279528A (en) Oxygen sensor electrode
KR100253859B1 (en) High-activity electrodes for exhaust gas sensors
JP4883858B2 (en) Bottomed cylindrical body and sensor
JP5140450B2 (en) Thermistor element and temperature sensor
JP2004325196A (en) Oxygen sensor element
JP4084505B2 (en) Heater integrated oxygen sensor element
JP3814560B2 (en) Bottomed cylindrical body and sensor
JP2003344350A (en) Oxygen sensor element
JP4744043B2 (en) Air-fuel ratio sensor element
JP4698041B2 (en) Air-fuel ratio sensor element
JP4700214B2 (en) Oxygen sensor element and manufacturing method thereof
JP4689860B2 (en) Heater integrated oxygen sensor element
JP3694625B2 (en) Heater integrated oxygen sensor element
JP4540222B2 (en) Oxygen sensor and manufacturing method thereof
JP3694626B2 (en) Heater integrated wide area air-fuel ratio sensor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees