JP2012173146A - Gas sensor element and gas sensor - Google Patents

Gas sensor element and gas sensor Download PDF

Info

Publication number
JP2012173146A
JP2012173146A JP2011035586A JP2011035586A JP2012173146A JP 2012173146 A JP2012173146 A JP 2012173146A JP 2011035586 A JP2011035586 A JP 2011035586A JP 2011035586 A JP2011035586 A JP 2011035586A JP 2012173146 A JP2012173146 A JP 2012173146A
Authority
JP
Japan
Prior art keywords
porous layer
gas sensor
sensor element
porosity
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011035586A
Other languages
Japanese (ja)
Other versions
JP5373835B2 (en
Inventor
Masaki Onkawa
正樹 温川
Shigehiro Otsuka
茂弘 大塚
Seiji Oya
誠二 大矢
Satoshi Teramoto
諭司 寺本
Kuniharu Tanaka
邦治 田中
Takeshi Mitsuoka
健 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011035586A priority Critical patent/JP5373835B2/en
Publication of JP2012173146A publication Critical patent/JP2012173146A/en
Application granted granted Critical
Publication of JP5373835B2 publication Critical patent/JP5373835B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas sensor element capable of preventing a crack caused by freezing of water permeated into a porosity protective layer when forming the porous protective layer into a plurality of layers, and to provide a gas sensor using the gas sensor element.SOLUTION: A gas sensor element 100 comprises: a laminate formed by laminating a detection element part 300 having solid electrolytes 105 and 109 and a pair of electrodes 104, 106 and a pair of electrodes 108, 110 disposed at the solid electrolytes respectively, and a heater part 200, and having an approximately rectangular cross section in a direction intersecting perpendicularly with a longitudinal direction; and a porous protective layer 20 formed by covering the entire circumference of a tip part exposed to a measuring object gas in the laminate. The porous protective layer includes an inner side porous layer 21 provided on the side of the detection element, and an outer side porous layer 23 formed on the inner side porous layer. The porosity of the inner side porous layer is higher than that of the outer porous layer, and also a difference of porosities of four portions in the inner side porous layer positioned on two short sides and two long sides of the laminate in a cross section is 10% or less.

Description

本発明は、例えば燃焼器や内燃機関等の燃焼ガスや排気ガス中に含まれる特定ガスのガス濃度を検出するのに好適に用いられるガスセンサ素子及びガスセンサに関する。   The present invention relates to a gas sensor element and a gas sensor that are suitably used for detecting the gas concentration of a specific gas contained in combustion gas or exhaust gas of, for example, a combustor or an internal combustion engine.

従来から、内燃機関の排気ガス中の特定成分(酸素等)の濃度を検出するためのガスセンサが用いられている。このガスセンサは自身の内部にガスセンサ素子を有し、ガスセンサ素子は、固体電解質体と該固体電解質体に配置された一対の電極とからなる検出素子部、及び絶縁セラミック体に通電により発熱するヒータを設けてなるヒータ部を積層してなる積層体を有している。ここで、ガスセンサ素子は排気ガス中に含まれるシリコンやリンなどの被毒物質に晒されたり、排気ガス中の水滴が付着することがあるため、ガスセンサ素子の外表面には、被毒物質を捕捉したり、水滴がガスセンサ素子に直接接触しないよう多孔質保護層が被覆されている。つまり、上記の積層体のうち測定対象ガス(排気ガス)に晒される先端部の全周を、多孔質保護層にて被覆している。
又、この多孔質保護層を2層とし、下層の気孔率を上層の気孔率よりも大きくすることで、気孔によって粗面化された下層上にアンカー効果で上層を密着させる技術が開発されている(特許文献1、2参照)。
Conventionally, a gas sensor for detecting the concentration of a specific component (oxygen or the like) in exhaust gas of an internal combustion engine has been used. This gas sensor has a gas sensor element inside itself, and the gas sensor element includes a detection element portion composed of a solid electrolyte body and a pair of electrodes arranged on the solid electrolyte body, and a heater that generates heat by energizing the insulating ceramic body. It has a laminated body formed by laminating heater sections. Here, the gas sensor element may be exposed to poisonous substances such as silicon and phosphorus contained in the exhaust gas, or water droplets in the exhaust gas may adhere to the gas sensor element. A porous protective layer is coated to prevent trapping or direct contact of water droplets with the gas sensor element. That is, the entire periphery of the tip exposed to the measurement target gas (exhaust gas) in the above laminate is covered with the porous protective layer.
In addition, a technology has been developed in which the porous protective layer is made into two layers, and the porosity of the lower layer is made larger than the porosity of the upper layer, whereby the upper layer is adhered to the lower layer roughened by the pores by the anchor effect. (See Patent Documents 1 and 2).

特開2003−322632号公報(請求項15)JP 2003-322632 A (Claim 15) 特開2007−206082号公報(請求項15)JP 2007-206082 A (Claim 15)

このように、多孔質保護層を2層とし、下層の気孔率を上層の気孔率よりも大きくすると、下層に含まれる空隙(空間)の合計体積が大きくなって断熱性が付与されるため、上層側が被水して冷却されても内側のガスセンサ素子が急冷され難くなり、ヒータ部によって検出素子部を加熱した状態でもガスセンサ素子が被水によって損傷するのを効果的に抑制できるという効果がある。
しかしながら、ガスセンサ素子の被水という現象としては、上記したように水滴(例えば、排気管内で結露した凝縮水)が飛散してガスセンサ素子へ付着するだけでなく、多孔質保護層内に水が浸みて凍結する場合がある。例えば、寒冷地等で内燃機関が放置されると、排気管に装着されるガスセンサ素子で結露が生じ、多孔質保護層内に水が浸みて凍結する場合がある。かかる場合に多孔質保護層の下層の気孔率が上層よりも大きいと、下層(内側多孔質層)に水は浸み込み易い傾向にある。このとき、積層体の周方向を被覆する内側多孔質層において、局所的に気孔率が過大な部分が存在すると、その過大な部分に水が多量に浸入した状態で凍結し、その後にガスセンサ素子をヒータ加熱した際にその部分の水分が局所的に膨張して多孔質保護層や素子の割れを引き起こすおそれがあることが本発明者らの検討により判明した。つまり、内側多孔質層の各部位において気孔率が大きくばらつくと、ガスセンサ素子の凍結に起因した耐被水性の低下につながることがある。
そこで、本発明は、多孔質保護層を複数層にした際に生ずる、多孔質保護層に浸み込んだ水の凍結に起因した多孔質保護層やガスセンサ素子の割れを防止したガスセンサ素子及びガスセンサの提供を目的とする。
Thus, when the porous protective layer is made into two layers and the porosity of the lower layer is made larger than the porosity of the upper layer, the total volume of voids (spaces) contained in the lower layer is increased and heat insulation is imparted. Even if the upper layer side is submerged and cooled, the inner gas sensor element is hardly cooled rapidly, and the gas sensor element can be effectively prevented from being damaged by the submersion even when the detection element unit is heated by the heater unit. .
However, as described above, the phenomenon of water exposure of the gas sensor element includes not only water droplets (for example, condensed water condensed in the exhaust pipe) scattered and adhering to the gas sensor element, but also water is immersed in the porous protective layer. May freeze. For example, when an internal combustion engine is left in a cold district or the like, condensation may occur in the gas sensor element mounted on the exhaust pipe, and water may soak and freeze in the porous protective layer. In this case, if the porosity of the lower layer of the porous protective layer is larger than that of the upper layer, water tends to easily penetrate into the lower layer (inner porous layer). At this time, in the inner porous layer covering the circumferential direction of the laminate, if there is a portion where the porosity is locally excessive, the excessive portion is frozen in a state where a large amount of water has entered, and then the gas sensor element It has been found by the present inventors that when the heater is heated, the moisture in that portion may locally expand and cause cracking of the porous protective layer or the element. That is, if the porosity varies greatly in each part of the inner porous layer, water resistance may be reduced due to freezing of the gas sensor element.
Accordingly, the present invention provides a gas sensor element and a gas sensor that prevent cracking of the porous protective layer and the gas sensor element caused by freezing of water immersed in the porous protective layer, which occurs when the porous protective layer is formed in a plurality of layers. The purpose is to provide.

上記課題を解決するため、本発明のガスセンサ素子は、固体電解質体と該固体電解質体に配置された一対の電極とを有する検出素子部、及び、絶縁セラミック体に通電により発熱するヒータを設けてなるヒータ部を積層してなると共に、長手方向に延びて当該長手方向に直交する向きの横断面が略矩形状をなす積層体と、前記積層体のうち測定対象ガスに晒される先端部の全周を被覆してなる多孔質保護層と、を備えるガスセンサ素子であって、前記多孔質保護層は、検出素子側に設けられる内側多孔質層と、該内側多孔質層上に形成される外側多孔質層とを備え、前記内側多孔質層の気孔率が前記外側多孔質層の気孔率より高く、さらに、前記横断面において、前記積層体の2つの短辺及び2つの長辺上に位置する前記内側多孔質層における4部位の気孔率の差が10%以下である。
このように、内側多孔質層の気孔率を外側多孔質層の気孔率より高くすると、積層体側の内側多孔質層の空隙の合計体積が外側多孔質層に対して大きくなって断熱性が高まり、外側多孔質層側が被水して冷却されてもガスセンサ素子が急冷され難くなる。一方、外側多孔質層の気孔率を内側保護層に対して相対的に小さくすることで、被毒物質や水滴は気孔率を小さくした外側多孔質層で効果的に捕捉されるので、検出素子まで到達し難い。
又、本発明のガスセンサ素子では、外側多孔質層に対して気孔率が大きい内側多孔質層の気孔率の関係が、横断面が略矩形状をなす積層体の2つの短辺及び2つの長辺上における4部位の気孔率を比較したときに、4つの気孔率の差が10%以内を満たすようにしている。このように内側多孔質層の主要な4部位といえる、2つの短辺及び2つの長辺上に位置する内側多孔質層の4部位の気孔率の差(4部位の気孔率の最大値と最小値との差)を10%以下とすることで、内側多孔質層が水を吸収しても、局所的に水が浸み込む部位が生じてその部位にて凍結が生じることが防止ないしは抑制され、ヒータ加熱時に水分が膨張する際に発生する熱応力が内側保護層の全体に対して均一に近付くので、多孔質保護層やガスセンサ素子が割れ難くなる。
In order to solve the above problems, a gas sensor element of the present invention includes a detection element unit having a solid electrolyte body and a pair of electrodes disposed on the solid electrolyte body, and a heater that generates heat by energizing the insulating ceramic body. A laminated body in which the heater section is laminated and the transverse section extending in the longitudinal direction and orthogonal to the longitudinal direction forms a substantially rectangular shape, and all of the tip parts of the laminated body that are exposed to the measurement target gas. A porous protective layer covering a circumference, wherein the porous protective layer includes an inner porous layer provided on the detection element side, and an outer formed on the inner porous layer. A porosity of the inner porous layer is higher than a porosity of the outer porous layer, and further, on the cross section, located on two short sides and two long sides of the laminate. In the inner porous layer The difference in porosity of 4 sites is 10% or less.
Thus, when the porosity of the inner porous layer is higher than the porosity of the outer porous layer, the total volume of voids in the inner porous layer on the laminate side becomes larger than that of the outer porous layer, thereby increasing the heat insulation. Even if the outer porous layer side is covered with water and cooled, the gas sensor element is hardly cooled rapidly. On the other hand, by reducing the porosity of the outer porous layer relative to the inner protective layer, poisonous substances and water droplets are effectively captured by the outer porous layer with a reduced porosity. Hard to reach.
Further, in the gas sensor element of the present invention, the relationship between the porosity of the inner porous layer having a large porosity with respect to the outer porous layer is such that the two short sides and two long sides of the laminate having a substantially rectangular cross section. When the porosities of the four regions on the side are compared, the difference between the four porosities is set to satisfy within 10%. Thus, the difference between the porosity of the four parts of the inner porous layer located on the two short sides and the two long sides, which can be said to be the four main parts of the inner porous layer (the maximum value of the porosity of the four parts) By setting the difference from the minimum value to 10% or less, even if the inner porous layer absorbs water, it prevents or prevents the local infiltration of water and freezing at that site. Since the thermal stress generated when the moisture expands when the heater is heated is uniformly approached to the entire inner protective layer, the porous protective layer and the gas sensor element are hardly broken.

ここで、横断面が略矩形状をなす積層体は、その横断面において4隅にエッジが形成された矩形である他、その4隅に僅かなC面取りやR面取りが施された構成までをも包括するものである。また、2つの短辺及び2つの長辺上に位置する内側多孔質層の4部位の気孔率を求めるにあたっては、例えば、多孔質保護層が形成された任意の位置(ガスセンサ素子を長手方向でみたときの多孔質保護層の中央位置など)にてガスセンサ素子の横断面を採り、その横断面において、内側多孔質層のうち積層体の各辺の中央部位上に位置する部位を代表にしてSEM像を撮った後、画像解析を通じて4部位の気孔率を求めるようにすればよい。また、本発明では、多孔質保護層を構成する内側多孔質層は積層体の表面上に設けられる層を指し、外側多孔質層は内側多孔質層の上に設けられる層を指すものである。そのため、多孔質保護層は、内側多孔質層と外側多孔質層の2層で形成される形態のほか、3層以上で形成されていても良い。   Here, the laminated body having a substantially rectangular cross section is a rectangle in which edges are formed at four corners in the cross section, and a configuration in which slight C chamfering or R chamfering is performed at the four corners. Is also included. Further, when determining the porosity of the four portions of the inner porous layer located on the two short sides and the two long sides, for example, at any position where the porous protective layer is formed (gas sensor element in the longitudinal direction) Take the cross section of the gas sensor element at the center of the porous protective layer when viewed, and in the cross section, representatively the part of the inner porous layer located on the central part of each side of the laminate After taking the SEM image, the porosity of the four regions may be obtained through image analysis. In the present invention, the inner porous layer constituting the porous protective layer refers to a layer provided on the surface of the laminate, and the outer porous layer refers to a layer provided on the inner porous layer. . Therefore, the porous protective layer may be formed of three or more layers in addition to the form formed of two layers of the inner porous layer and the outer porous layer.

本発明のガスセンサは、被測定ガス中の特定ガス成分の濃度を検出するセンサ素子と、該センサ素子を保持するハウジングとを備えるガスセンサにおいて、前記センサ素子は、前記ガスセンサ素子を用いることを特徴とする。   The gas sensor of the present invention is a gas sensor comprising a sensor element that detects the concentration of a specific gas component in a gas to be measured and a housing that holds the sensor element, wherein the sensor element uses the gas sensor element. To do.

この発明によれば、多孔質保護層を複数層にした際に生ずる、多孔質保護層に浸み込んだ水の凍結に起因した多孔質保護層やガスセンサ素子の割れを防止し、ガスセンサ素子の耐被水性を向上させつつ、被毒物質からの保護を共に両立させたガスセンサ素子及びガスセンサが得られる。   According to the present invention, it is possible to prevent cracking of the porous protective layer and the gas sensor element caused by freezing of water immersed in the porous protective layer, which is generated when the porous protective layer is formed into a plurality of layers. It is possible to obtain a gas sensor element and a gas sensor which improve both water resistance and achieve both protection from poisonous substances.

本発明の実施形態に係るガスセンサ(酸素センサ)の長手方向に沿う断面図である。It is sectional drawing which follows the longitudinal direction of the gas sensor (oxygen sensor) which concerns on embodiment of this invention. 検出素子及びヒータの模式分解斜視図である。It is a model exploded perspective view of a detection element and a heater. 図1の検出素子の先端側の部分拡大断面図である。FIG. 2 is a partial enlarged cross-sectional view of a front end side of the detection element in FIG. 1. ガスセンサ素子の軸線方向に直交する模式断面図である。It is a schematic cross section orthogonal to the axial direction of a gas sensor element. 実施例の多孔質保護層の実際の断面写真を示す図である。It is a figure which shows the actual cross-section photograph of the porous protective layer of an Example. 図4の領域a〜dに対応する実際の断面写真を示す図である。It is a figure which shows the actual cross-section photograph corresponding to the area | regions ad of FIG. 多孔質保護層の製造方法の一例を模式的に示す工程図である。It is process drawing which shows typically an example of the manufacturing method of a porous protective layer. 実施例及び比較例において、内側多孔質層となるスラリー中の粒子(アルミナ粉末)の累積粒度分布を示す図である。In an Example and a comparative example, it is a figure which shows the cumulative particle size distribution of the particle | grains (alumina powder) in the slurry used as an inner porous layer.

以下、本発明の実施形態について説明する。
図1は本発明の実施形態に係るガスセンサ(酸素センサ)1の長手方向(軸線L方向)に沿う断面図、図2は検出素子300及びヒータ200の模式分解斜視図、図3は検出素子300の軸線L方向に直交する断面図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a cross-sectional view taken along the longitudinal direction (axis L direction) of a gas sensor (oxygen sensor) 1 according to an embodiment of the present invention, FIG. 2 is a schematic exploded perspective view of a detection element 300 and a heater 200, and FIG. It is sectional drawing orthogonal to the axis line L direction.

図1に示すように、ガスセンサ1は、検出素子部300及び検出素子部300に積層されるヒータ部200から構成されるガスセンサ素子100、ガスセンサ素子100等を内部に保持する主体金具(特許請求の範囲の「ハウジング」に相当)30、主体金具30の先端部に装着されるプロテクタ24等を有している。ガスセンサ素子100は軸線L方向に延びるように配置されている。   As shown in FIG. 1, the gas sensor 1 includes a gas sensor element 100 including a detection element unit 300 and a heater unit 200 stacked on the detection element unit 300, a metal shell that holds the gas sensor element 100, etc. (Corresponding to a “housing” in the range) 30, a protector 24 attached to the tip of the metal shell 30, and the like. The gas sensor element 100 is arranged so as to extend in the direction of the axis L.

ヒータ部200は、図2に示すように、アルミナを主体とする第1基体101及び第2基体103と、第1基体101と第2基体103とに挟まれ、白金を主体とする発熱体102を有している。発熱体102は、先端側に位置する発熱部102aと、発熱部102aから第1基体101の長手方向に沿って延びる一対のヒータリード部102bとを有している。そして、ヒータリード部102bの端末は、第1基体101に設けられるヒータ側スルーホール101aに形成された導体を介してヒータ側パッド120と電気的に接続している。第1基体101及び第2基体102を積層したものが絶縁セラミック体にあたる。   As shown in FIG. 2, the heater unit 200 includes a first base 101 and a second base 103 mainly composed of alumina, and a heating element 102 mainly composed of platinum sandwiched between the first base 101 and the second base 103. have. The heating element 102 has a heating part 102a located on the tip side and a pair of heater lead parts 102b extending from the heating part 102a along the longitudinal direction of the first base 101. The terminal of the heater lead portion 102b is electrically connected to the heater side pad 120 via a conductor formed in the heater side through hole 101a provided in the first base 101. A laminated body of the first base 101 and the second base 102 corresponds to the insulating ceramic body.

検出素子部300は、酸素濃度検出セル130と酸素ポンプセル140とを備える。酸素濃度検出セル130は、第1固体電解質体105と、その第1固体電解質105の両面に形成された第1電極104及び第2電極106とから形成されている。第1電極104は、第1電極部104aと、第1電極部104aから第1固体電解質体105の長手方向に沿って延びる第1リード部104bとから形成されている。第2電極106は、第2電極部106aと、第2電極部106aから第1固体電解質体105の長手方向に沿って延びる第2リード部106bとから形成されている。   The detection element unit 300 includes an oxygen concentration detection cell 130 and an oxygen pump cell 140. The oxygen concentration detection cell 130 is formed of a first solid electrolyte body 105 and a first electrode 104 and a second electrode 106 formed on both surfaces of the first solid electrolyte 105. The first electrode 104 is formed of a first electrode portion 104 a and a first lead portion 104 b extending from the first electrode portion 104 a along the longitudinal direction of the first solid electrolyte body 105. The second electrode 106 is formed of a second electrode portion 106 a and a second lead portion 106 b extending from the second electrode portion 106 a along the longitudinal direction of the first solid electrolyte body 105.

そして、第1リード部104bの端末は、第1固体電解質体105に設けられる第1スルーホール105a、後述する絶縁層107に設けられる第2スルーホール107a、第2固体電解質体109に設けられる第4スルーホール109a及び保護層111に設けられる第6スルーホール111aのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。一方、第2リード部106bの端末は、後述する絶縁層107に設けられる第3スルーホール107b、第2固体電解質体109に設けられる第5スルーホール109b及び保護層111に設けられる第7スルーホール111bのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。   The terminals of the first lead portion 104b are first through holes 105a provided in the first solid electrolyte body 105, second through holes 107a provided in an insulating layer 107 described later, and second terminals provided in the second solid electrolyte body 109. The detection element side pad 121 is electrically connected through a conductor formed in each of the fourth through hole 109a and the sixth through hole 111a provided in the protective layer 111. On the other hand, the terminal of the second lead portion 106b is a third through hole 107b provided in the insulating layer 107 described later, a fifth through hole 109b provided in the second solid electrolyte body 109, and a seventh through hole provided in the protective layer 111. It electrically connects with the detection element side pad 121 through the conductor formed in each of 111b.

一方、酸素ポンプセル140は、第2固体電解質体109と、その第2固体電解質体109の両面に形成された第3電極108、第4電極110とから形成されている。第3電極108は、第3電極部108aと、この第3電極部108aから第2固体電解質体109の長手方向に沿って延びる第3リード部108bとから形成されている。第4電極110は、第4電極部110aと、この第4電極部110aから第2固体電解質体109の長手方向に沿って延びる第4リード部110bとから形成されている。   On the other hand, the oxygen pump cell 140 is formed of the second solid electrolyte body 109 and the third electrode 108 and the fourth electrode 110 formed on both surfaces of the second solid electrolyte body 109. The third electrode 108 is formed of a third electrode portion 108 a and a third lead portion 108 b extending from the third electrode portion 108 a along the longitudinal direction of the second solid electrolyte body 109. The fourth electrode 110 is formed of a fourth electrode portion 110 a and a fourth lead portion 110 b extending from the fourth electrode portion 110 a along the longitudinal direction of the second solid electrolyte body 109.

そして、第3リード部108bの端末は、第2固体電解質体109に設けられる第5スルーホール109b及び保護層111に設けられる第7スルーホール111bのそれぞれに形成される導体を介して検出素子側パッド121と電気的に接続する。一方、第4リード部110bの端末は、後述する保護層111に設けられる第8スルーホール111cに形成される導体を介して検出素子側パッド121と電気的に接続する。なお、第2リード部106bと第3リード部108bは同電位となっている。   And the terminal of the 3rd lead part 108b is the detection element side via the conductor formed in each of the 5th through hole 109b provided in the 2nd solid electrolyte body 109, and the 7th through hole 111b provided in protective layer 111. It is electrically connected to the pad 121. On the other hand, the terminal of the fourth lead portion 110b is electrically connected to the detection element side pad 121 via a conductor formed in an eighth through hole 111c provided in the protective layer 111 described later. The second lead portion 106b and the third lead portion 108b are at the same potential.

これら第1固体電解質体105、第2固体電解質体109は、ジルコニア(ZrO)に安定化剤としてイットリア(Y)又はカルシア(CaO)を添加してなる部分安定化ジルコニア焼結体から構成されている。 The first solid electrolyte body 105 and the second solid electrolyte body 109 are partially stabilized zirconia sintered bodies obtained by adding yttria (Y 2 O 3 ) or calcia (CaO) as a stabilizer to zirconia (ZrO 2 ). It is composed of

発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、白金族元素で形成することができる。これらを形成する好適な白金族元素としては、Pt、Rh、Pd等を挙げることができ、これらはその一種を単独で使用することもできるし、又二種以上を併用することもできる。   The heating element 102, the first electrode 104, the second electrode 106, the third electrode 108, the fourth electrode 110, the heater side pad 120, and the detection element side pad 121 can be formed of a platinum group element. Pt, Rh, Pd etc. can be mentioned as a suitable platinum group element which forms these, These can also be used individually by 1 type, and can also use 2 or more types together.

もっとも、発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、耐熱性及び耐酸化性を考慮するとPtを主体にして形成することがより一層好ましい。さらに、発熱体102、第1電極104、第2電極106、第3電極108、第4電極110、ヒータ側パッド120及び検出素子側パッド121は、主体となる白金族元素の他にセラミック成分を含有することが好ましい。このセラミック成分は、固着という観点から、積層される側の主体となる材料(例えば、第1固体電解質体105、第2固体電解質体109の主体となる成分)と同様の成分であることが好ましい。   However, the heating element 102, the first electrode 104, the second electrode 106, the third electrode 108, the fourth electrode 110, the heater side pad 120, and the detection element side pad 121 are mainly composed of Pt in consideration of heat resistance and oxidation resistance. It is even more preferable to form it. Furthermore, the heating element 102, the first electrode 104, the second electrode 106, the third electrode 108, the fourth electrode 110, the heater side pad 120, and the detection element side pad 121 include ceramic components in addition to the main platinum group element. It is preferable to contain. This ceramic component is preferably the same component as the main material on the side to be laminated (for example, the main component of the first solid electrolyte body 105 and the second solid electrolyte body 109) from the viewpoint of fixation. .

そして、上記酸素ポンプセル140と酸素濃度検出セル130との間に、絶縁層107が形成されている。絶縁層107は、絶縁部114と拡散律速部115とからなる。この絶縁層107の絶縁部114には、第2電極部106a及び第3電極部108aに対応する位置に中空のガス検出室107cが形成されている。このガス検出室107cは、絶縁層107の幅方向で外部と連通しており、該連通部分には、外部とガス検出室107cとの間のガス拡散を所定の律速条件下で実現する拡散律速部115が配置されている。   An insulating layer 107 is formed between the oxygen pump cell 140 and the oxygen concentration detection cell 130. The insulating layer 107 includes an insulating portion 114 and a diffusion rate controlling portion 115. In the insulating portion 114 of the insulating layer 107, a hollow gas detection chamber 107c is formed at a position corresponding to the second electrode portion 106a and the third electrode portion 108a. The gas detection chamber 107c communicates with the outside in the width direction of the insulating layer 107, and the communication portion has a diffusion rate-determining method that realizes gas diffusion between the outside and the gas detection chamber 107c under a predetermined rate-limiting condition. Part 115 is arranged.

絶縁部114は、絶縁性を有するセラミック焼結体であれば特に限定されなく、例えば、アルミナやムライト等の酸化物系セラミックを挙げることができる。   The insulating part 114 is not particularly limited as long as it is an insulating ceramic sintered body, and examples thereof include oxide ceramics such as alumina and mullite.

拡散律速部115は、アルミナからなる多孔質体である。この拡散律速部115によって検出ガスがガス検出室107cへ流入する際の律速が行われる。   The diffusion control part 115 is a porous body made of alumina. The diffusion rate-determining unit 115 performs rate-limiting when the detection gas flows into the gas detection chamber 107c.

また、第2固体電解質体109の表面には、第4電極110を挟み込むようにして、保護層111が形成されている。この保護層111は、第4電極部110aを挟み込むようにして、第4電極部110aを被毒から防御するための多孔質の電極保護部113aと、第4リード部110bを挟み込むようにして、第2固体電解質体109を保護するための補強部112とからなる。なお、本実施の形態のガスセンサ素子100は、酸素濃度検出セル130の電極間に生じる電圧(起電力)が所定の値(例えば、450mV)となるように、酸素ポンプセル140の電極間に流れる電流の方向及び大きさが調整され、酸素ポンプセル140に流れる電流に応じた被測定ガス中の酸素濃度をリニアに検出する酸素センサ素子に相当する。   A protective layer 111 is formed on the surface of the second solid electrolyte body 109 so as to sandwich the fourth electrode 110. The protective layer 111 sandwiches the fourth electrode portion 110a, sandwiches the porous electrode protection portion 113a for protecting the fourth electrode portion 110a from poisoning, and the fourth lead portion 110b. It comprises a reinforcing part 112 for protecting the second solid electrolyte body 109. In the gas sensor element 100 of the present embodiment, the current flowing between the electrodes of the oxygen pump cell 140 so that the voltage (electromotive force) generated between the electrodes of the oxygen concentration detection cell 130 becomes a predetermined value (for example, 450 mV). This corresponds to an oxygen sensor element that linearly detects the oxygen concentration in the gas to be measured corresponding to the current flowing through the oxygen pump cell 140.

図1に戻り、主体金具30は、SUS430製のものであり、ガスセンサを排気管に取り付けるための雄ねじ部31と、取り付け時に取り付け工具をあてがう六角部32とを有している。また、主体金具30には、径方向内側に向かって突出する金具側段部33が設けられており、この金具側段部33はガスセンサ素子100を保持するための金属ホルダ34を支持している。そしてこの金属ホルダ34の内側にはセラミックホルダ35、滑石36が先端側から順に配置されている。この滑石36は金属ホルダ34内に配置される第1滑石37と金属ホルダ34の後端に渡って配置される第2滑石38とからなる。金属ホルダ34内で第1滑石37が圧縮充填されることによって、ガスセンサ素子100は金属ホルダ34に対して固定される。また、主体金具30内で第2滑石38が圧縮充填されることによって、ガスセンサ素子100の外面と主体金具30の内面との間のシール性が確保される。そして第2滑石38の後端側には、アルミナ製のスリーブ39が配置されている。このスリーブ39は多段の円筒状に形成されており、軸線に沿うように軸孔39aが設けられ、内部にガスセンサ素子100を挿通している。そして、主体金具30の後端側の加締め部30aが内側に折り曲げられており、ステンレス製のリング部材40を介してスリーブ39が主体金具30の先端側に押圧されている。   Returning to FIG. 1, the metal shell 30 is made of SUS430, and has a male screw portion 31 for attaching the gas sensor to the exhaust pipe, and a hexagonal portion 32 to which an attachment tool is applied at the time of attachment. Further, the metal shell 30 is provided with a metal side step portion 33 protruding radially inward, and this metal side step portion 33 supports a metal holder 34 for holding the gas sensor element 100. . Inside the metal holder 34, a ceramic holder 35 and a talc 36 are arranged in this order from the tip side. The talc 36 includes a first talc 37 disposed in the metal holder 34 and a second talc 38 disposed over the rear end of the metal holder 34. The gas sensor element 100 is fixed to the metal holder 34 by compressing and filling the first talc 37 in the metal holder 34. Further, the second talc 38 is compressed and filled in the metal shell 30, so that a sealing property between the outer surface of the gas sensor element 100 and the inner surface of the metal shell 30 is ensured. An alumina sleeve 39 is disposed on the rear end side of the second talc 38. The sleeve 39 is formed in a multi-stage cylindrical shape, is provided with a shaft hole 39a along the axis, and the gas sensor element 100 is inserted through the shaft hole 39a. The caulking portion 30 a on the rear end side of the metal shell 30 is bent inward, and the sleeve 39 is pressed to the front end side of the metal shell 30 through the stainless steel ring member 40.

また、主体金具30の先端側外周には、主体金具30の先端から突出するガスセンサ素子100の先端部を覆うと共に、複数のガス取り入れ孔24aを有する金属製のプロテクタ24が溶接によって取り付けられている。このプロテクタ24は、二重構造をなしており、外側には一様な外径を有する有底円筒状の外側プロテクタ41、内側には後端部42aの外径が先端部42bの外径よりも大きく形成された有底円筒状の内側プロテクタ42が配置されている。   Further, a metal protector 24 having a plurality of gas intake holes 24a is attached to the outer periphery on the front end side of the metallic shell 30 by covering the distal end portion of the gas sensor element 100 protruding from the distal end of the metallic shell 30 by welding. . This protector 24 has a double structure, a cylindrical outer protector 41 having a uniform outer diameter on the outer side, and an outer diameter of the rear end part 42a on the inner side from the outer diameter of the front end part 42b. An inner protector 42 having a bottomed cylindrical shape that is formed to be larger is also arranged.

一方、主体金具30の後端側には、SUS430製の外筒25の先端側が挿入されている。この外筒25は先端側の拡径した先端部25aを主体金具30にレーザ溶接等により固定している。外筒25の後端側内部には、セパレータ50が配置され、セパレータ50と外筒25の隙間に保持部材51が介在している。この保持部材51は、後述するセパレータ50の突出部50aに係合し、外筒25を加締めることにより外筒25とセパレータ50とにより固定されている。   On the other hand, on the rear end side of the metal shell 30, the front end side of the outer tube 25 made of SUS430 is inserted. The outer cylinder 25 has a distal end portion 25a whose diameter is enlarged on the distal end side fixed to the metal shell 30 by laser welding or the like. A separator 50 is disposed inside the rear end side of the outer cylinder 25, and a holding member 51 is interposed in a gap between the separator 50 and the outer cylinder 25. The holding member 51 is fixed by the outer cylinder 25 and the separator 50 by engaging a protrusion 50 a of the separator 50 described later and caulking the outer cylinder 25.

また、セパレータ50には、検出素子部300やヒータ部200用のリード線11〜15を挿入するための通孔50bが先端側から後端側にかけて貫設されている(なお、リード線14、15については図示せず)。通孔50b内には、リード線11〜15と、検出素子部300の検出素子側パッド121及びヒータ部200のヒータ側パッド120とを接続する接続端子16が収容されている。各リード線11〜15は、外部において、図示しないコネクタに接続されるようになっている。このコネクタを介してECU等の外部機器と各リード線11〜15とは電気信号の入出力が行われることになる。また、各リード線11〜15は詳細に図示しないが、導線を樹脂からなる絶縁皮膜にて披覆した構造を有している。   The separator 50 is provided with through holes 50b for inserting the lead wires 11 to 15 for the detection element unit 300 and the heater unit 200 from the front end side to the rear end side (note that the lead wires 14, 15 is not shown). The connection holes 16 that connect the lead wires 11 to 15 to the detection element side pads 121 of the detection element unit 300 and the heater side pads 120 of the heater unit 200 are accommodated in the through holes 50b. Each lead wire 11-15 is connected to a connector (not shown) outside. Electric signals are input and output between the external devices such as the ECU and the lead wires 11 to 15 through this connector. Moreover, although not shown in detail in each lead wire 11-15, it has the structure which showed the conducting wire with the insulating film which consists of resin.

さらに、セパレータ50の後端側には、外筒25の後端側の開口部25bを閉塞するための略円柱状のゴムキャップ52が配置されている。このゴムキャップ52は、外筒25の後端内に装着された状態で、外筒25の外周を径方向内側に向かって加締めることにより、外筒25に固着されている。ゴムキャップ52にも、リード線11〜15をそれぞれ挿入するための通孔52aが先端側から後端側にかけて貫設されている。   Further, a substantially cylindrical rubber cap 52 for closing the opening 25 b on the rear end side of the outer cylinder 25 is disposed on the rear end side of the separator 50. The rubber cap 52 is fixed to the outer cylinder 25 by caulking the outer periphery of the outer cylinder 25 toward the radially inner side in a state where the rubber cap 52 is mounted in the rear end of the outer cylinder 25. The rubber cap 52 is also provided with through holes 52a for inserting the lead wires 11 to 15 from the front end side to the rear end side.

次に、本発明の特徴部分である多孔質保護層20について説明する。図1に示すように、多孔質保護層20は、ガスセンサ素子100の先端側の全周を覆って設けられている。
図3は、図1のガスセンサ素子100の先端側の部分拡大断面図であり、多孔質保護層20は、検出素子部300とヒータ部200との積層体の表面直上に設けられる内側多孔質層21と、内側多孔質層21の外表面を覆って形成される外側多孔質層23とを備えている。
Next, the porous protective layer 20 that is a characteristic part of the present invention will be described. As shown in FIG. 1, the porous protective layer 20 is provided so as to cover the entire circumference on the distal end side of the gas sensor element 100.
FIG. 3 is a partial enlarged cross-sectional view of the gas sensor element 100 of FIG. 1 on the front end side, and the porous protective layer 20 is an inner porous layer provided immediately above the surface of the laminate of the detection element unit 300 and the heater unit 200. 21 and an outer porous layer 23 formed so as to cover the outer surface of the inner porous layer 21.

なお、多孔質保護層20は、ガスセンサ素子100の先端面を含み、軸線L方向に沿って後端側に延びるように形成され、かつガスセンサ素子100(積層体)の表裏面及び両側面の4面を完全に囲んで形成されている。又、軸線L方向に見て、多孔質保護層20が検出素子300の少なくとも第1電極部104a、第2電極部106a、第3電極部108a及び第4電極部110aと重なる領域より後端まで形成されているとよい。   The porous protective layer 20 includes the front end surface of the gas sensor element 100, is formed to extend to the rear end side along the direction of the axis L, and 4 on the front and back surfaces and both side surfaces of the gas sensor element 100 (laminated body). The surface is completely enclosed. Further, as viewed in the direction of the axis L, the porous protective layer 20 extends from the region where at least the first electrode portion 104a, the second electrode portion 106a, the third electrode portion 108a, and the fourth electrode portion 110a of the detection element 300 overlap to the rear end. It is good to be formed.

図4は、多孔質保護層20を含むガスセンサ素子100の軸線L方向に直交する模式断面図である。
多孔質保護層20は、上述したように、内側多孔質層21と、内側多孔質層21を覆って形成される外側多孔質層23とを備えており、内側多孔質層21の気孔率が外側多孔質層23の気孔率より高くなっている。なお、多孔質保護層20に形成される気孔は、ガス透過が可能なように三次元網目構造をなしている。さらに、本実施の形態では、外側多孔質層23に対して気孔率が大きい内側多孔質層21の気孔率の関係が、横断面が略矩形状をなす積層体の2つの短辺及び2つの長辺上における4部位の気孔率を比較したときに、4つの気孔率の最大値と最小値との差が10%以内を満たすようにしている。この点については後述する。
このように、内側多孔質層21の気孔率を外側多孔質層23の気孔率より高くすると、積層体側の内側多孔質層21の空隙の合計体積が大きくなって断熱性が高まり、外側多孔質層23側が被水して冷却されてもガスセンサ素子100が急冷され難くなる。一方、外側多孔質層23の気孔率を内側多孔質層よりも小さくすることがで、被毒物質や水分は気孔率を小さくした外側多孔質層23で捕捉されるので、ガスセンサ素子100まで到達し難い。
FIG. 4 is a schematic cross-sectional view orthogonal to the axis L direction of the gas sensor element 100 including the porous protective layer 20.
As described above, the porous protective layer 20 includes the inner porous layer 21 and the outer porous layer 23 formed so as to cover the inner porous layer 21, and the porosity of the inner porous layer 21 is high. It is higher than the porosity of the outer porous layer 23. The pores formed in the porous protective layer 20 have a three-dimensional network structure so as to allow gas permeation. Furthermore, in the present embodiment, the relationship between the porosity of the inner porous layer 21 having a large porosity with respect to the outer porous layer 23 is such that the two short sides and two of the laminated body having a substantially rectangular cross section are formed. When the porosity of the four regions on the long side is compared, the difference between the maximum value and the minimum value of the four porosity is set to satisfy within 10%. This point will be described later.
As described above, when the porosity of the inner porous layer 21 is higher than the porosity of the outer porous layer 23, the total volume of voids in the inner porous layer 21 on the laminate side is increased, and the heat insulating property is increased, thereby increasing the outer porous property. Even if the layer 23 side is covered with water and cooled, the gas sensor element 100 is hardly cooled rapidly. On the other hand, since the porosity of the outer porous layer 23 can be made smaller than that of the inner porous layer, poisonous substances and moisture are captured by the outer porous layer 23 having a reduced porosity, and thus reach the gas sensor element 100. It is hard to do.

又、ガスセンサ素子100の被水としては、水滴が飛散してガスセンサ素子100へ付着するだけでなく、車両等に搭載されたガスセンサ素子100が寒冷地で放置された際に多孔質保護層20内に水が浸みて凍結する場合がある。かかる場合に内側多孔質層21の方が外側多孔質層23よりも気孔率が大きいために水が浸み込み易い傾向がある。このとき、内側多孔質層21において、局所的に気孔率が過大な部分が存在すると、その部分に水が多量に侵入した状態で凍結し、その後にガスセンサ素子100の駆動が開始されてガスセンサ素子100をヒータ加熱した際にその部分の水分が局所的に膨張して多孔質保護層20やガスセンサ素子100の割れを引き起こすおそれがある。
そこで、内側多孔質層21の気孔率の関係を、横断面が略矩形状をなす積層体の2つの短辺及び2つの長辺上における4部位の気孔率を比較したときに、4つの気孔率の差が10%以内(より好ましくは5%以内)となるようにすることで、内側多孔質層21が水を吸収しても、局所的に水が浸み込む部分が生じるのを抑制でき、ヒータ加熱時に水分が膨張する際に発生する熱応力が内側多孔質層23全体で略均一になるので、多孔質保護層20やガスセンサ素子100が割れ難くなる。
In addition, as the moisture of the gas sensor element 100, not only water droplets scatter and adhere to the gas sensor element 100 but also the inside of the porous protective layer 20 when the gas sensor element 100 mounted on a vehicle or the like is left in a cold region. Water may soak and freeze. In such a case, the inner porous layer 21 has a higher porosity than the outer porous layer 23, so that water tends to easily penetrate. At this time, in the inner porous layer 21, if a portion having a locally excessive porosity is present, the portion is frozen in a state where a large amount of water has entered the portion, and then the driving of the gas sensor element 100 is started to start the gas sensor element. When the heater 100 is heated with heater, the moisture in the portion may locally expand and cause the porous protective layer 20 or the gas sensor element 100 to crack.
Accordingly, when the porosity of the inner porous layer 21 is compared with the porosity of four portions on the two short sides and two long sides of the laminate having a substantially rectangular cross section, the four pores are compared. By making the difference in rate within 10% (more preferably within 5%), even if the inner porous layer 21 absorbs water, it is possible to suppress the occurrence of a portion where water is locally infiltrated. In addition, since the thermal stress generated when the moisture expands when the heater is heated becomes substantially uniform throughout the inner porous layer 23, the porous protective layer 20 and the gas sensor element 100 are difficult to break.

内側多孔質層21は、例えばアルミナ、スピネル、ジルコニア、ムライト、ジルコン及びコージェライトの群から選ばれる1種以上のセラミック粒子を焼成等により結合して形成することができる。これらの粒子を含むスラリーを焼結することで皮膜の骨格中に気孔を形成することができるが、上記粒子を含むスラリーに焼失性の造孔材を添加したものを焼結すると、造孔材が焼失した部分が気孔となるので、以下に述べるように内側多孔質層21を高い気孔率にすることができ、好ましい。造孔材としては、例えばカーボン、樹脂製ビーズ、有機又は無機バインダの粒子を用いることができる。
又、後述する画像解析で求めた内側多孔質層21の気孔率を35〜70%とすると、内側多孔質層21に断熱性を良好に確保できるので好ましい。内側多孔質層21の気孔率が35%未満であると、空隙の合計体積が小さくなって断熱層としての効果が低下し、70%を超える皮膜を製造することが難しくなることがある。
又、内側多孔質層21の厚みは、100〜800μmとすると好ましい。
The inner porous layer 21 can be formed by, for example, bonding one or more ceramic particles selected from the group of alumina, spinel, zirconia, mullite, zircon, and cordierite by firing or the like. By sintering the slurry containing these particles, pores can be formed in the skeleton of the coating. However, when the slurry containing the above particles is added with a burnable pore former, the pore former is sintered. Since the burned-out portion becomes pores, the inner porous layer 21 can have a high porosity as described below, which is preferable. As the pore former, for example, carbon, resin beads, organic or inorganic binder particles can be used.
Moreover, it is preferable that the porosity of the inner porous layer 21 determined by image analysis described later is 35 to 70%, because the inner porous layer 21 can have good heat insulation. When the porosity of the inner porous layer 21 is less than 35%, the total volume of the voids is reduced, the effect as a heat insulating layer is lowered, and it may be difficult to produce a film exceeding 70%.
The inner porous layer 21 preferably has a thickness of 100 to 800 μm.

外側多孔質層23は、例えばアルミナ、スピネル、ジルコニア、ムライト、ジルコン及びコージェライトの群から選ばれる1種以上のセラミック粒子を焼成等により結合して形成することができる。これらの粒子を含むスラリーを焼結することで、セラミック粒子間の隙間や、スラリー中の有機又は無機バインダが焼失する際に、皮膜の骨格中に気孔が形成される。
特に、粗粒子と該粗粒子より粒径が小さい微粒子から外側多孔質層23を形成すると、後述するようにこの微粒子が内側多孔質層21側に移行し、内側多孔質層21との密着性をさらに向上させることができる。
又、後述する画像解析で求めた外側多孔質層23の気孔率を10〜50%とすると、被毒物質や水滴のバリア性を確保しつつガス透過性を低下させないので好ましい。外側多孔質層23の気孔率が10%未満であると被毒物質によって目詰まりし易く、50%を超えると水が外側多孔質層23内部に浸入して耐被水性が低下することがある。
又、外側多孔質層23の厚みは、100〜800μmとすると好ましい。
The outer porous layer 23 can be formed by bonding, for example, one or more ceramic particles selected from the group of alumina, spinel, zirconia, mullite, zircon, and cordierite by firing or the like. By sintering the slurry containing these particles, pores are formed in the skeleton of the coating when the gaps between the ceramic particles and the organic or inorganic binder in the slurry are burned away.
In particular, when the outer porous layer 23 is formed from coarse particles and fine particles having a smaller particle diameter than the coarse particles, the fine particles move to the inner porous layer 21 side, as will be described later, and adherence to the inner porous layer 21. Can be further improved.
Further, it is preferable that the porosity of the outer porous layer 23 obtained by image analysis described later is 10 to 50% because gas permeability is not lowered while ensuring barrier properties of poisonous substances and water droplets. If the porosity of the outer porous layer 23 is less than 10%, it is likely to be clogged with poisonous substances, and if it exceeds 50%, water may enter the outer porous layer 23 and the water resistance may decrease. .
The thickness of the outer porous layer 23 is preferably 100 to 800 μm.

ここで、内側多孔質層21を上記したスラリーから形成する場合に、スラリーに含まれる上記セラミック粒子の粒度分布のバラツキが大きくなると、内側多孔質層21の気孔率の各部位間でのばらつきも大きくなる。又、スラリーを調製する際の攪拌時間を所定時間以上に管理しないと、スラリー中の上記粒子の分散度合が変わるため、内側多孔質層21の各部位間での気孔率のばらつきも大きくなる。
このようなことから、スラリーに含まれる上記セラミック粒子の粒度分布のバラツキとして、D90/D10(90%累積度数分布粒子径/10%累積度数分布粒子径)を6以下すると好ましい。
又、スラリーを調製する際の攪拌時間は、スラリーの組成や粘度によっても変化するが、3時間以上(好ましくは5時間以上)に設定すると好ましい。
Here, when the inner porous layer 21 is formed from the above-described slurry, if the variation in the particle size distribution of the ceramic particles contained in the slurry increases, the porosity of the inner porous layer 21 also varies among the parts. growing. Further, if the stirring time for preparing the slurry is not managed for a predetermined time or more, the degree of dispersion of the particles in the slurry changes, so that the variation in porosity between the respective portions of the inner porous layer 21 also increases.
For this reason, it is preferable that D90 / D10 (90% cumulative frequency distribution particle size / 10% cumulative frequency distribution particle size) is 6 or less as variation in the particle size distribution of the ceramic particles contained in the slurry.
The stirring time for preparing the slurry varies depending on the composition and viscosity of the slurry, but is preferably set to 3 hours or more (preferably 5 hours or more).

内側多孔質層21及び外側多孔質層23の気孔率は、次のようにして決定される。
まず、後述する実施例1の多孔質保護層20の断面写真(SEM像、図5参照)に基づき、多孔質保護層20の厚み方向の2値化を市販の画像解析ソフトを用いて行い、断面写真の黒色部の割合を求めてゆく。なお、多孔質保護層20の断面写真は、まず、ガスセンサ素子100を長手方向に直交する向きの断面(横断面)を採り、その横断面において、外側多孔質層23及び内側多孔質層21のうち積層体の各辺の中央部位上に位置する部位を代表にして断面写真(SEM像)を撮った後、画像解析を通じて4部位の気孔率を求めた。断面写真の黒色部(図5の矢視C、Cに相当)は気孔に対応し、白色部は皮膜の骨格に対応するので、黒色部が多いほど気孔率が大きいことを示す。
The porosity of the inner porous layer 21 and the outer porous layer 23 is determined as follows.
First, based on a cross-sectional photograph (SEM image, see FIG. 5) of the porous protective layer 20 of Example 1 described later, binarization in the thickness direction of the porous protective layer 20 is performed using commercially available image analysis software, The ratio of the black part of the cross-sectional photograph is obtained. In the cross-sectional photograph of the porous protective layer 20, first, the gas sensor element 100 is taken in a cross-section (transverse cross-section) in a direction orthogonal to the longitudinal direction, and in the cross-section, Among them, a cross-sectional photograph (SEM image) was taken representatively of the part located on the central part of each side of the laminate, and the porosity of the four parts was determined through image analysis. The black portions (corresponding to arrows C A and C B in FIG. 5) of the cross-sectional photograph correspond to the pores, and the white portions correspond to the skeleton of the film. Therefore, the more black portions, the larger the porosity.

そして、外側多孔質層23の上記複数位置(4部位)で画像解析を行って得た気孔率を平均化して外側多孔質層23の気孔率を求めた。同様に、内側多孔質層21の上記複数位置(4部位)で画像解析を行って得た気孔率を平均化して内側多孔質層21の気孔率を求めた。
なお、図5の例では、詳しくは後述する図7のようにして多孔質保護層20の製造を行ったため、外側多孔質層23の内側多孔質層21側に中間領域22が形成されているが特に差支えない。
Then, the porosity of the outer porous layer 23 was obtained by averaging the porosity obtained by performing image analysis at the plurality of positions (four sites) of the outer porous layer 23. Similarly, the porosity of the inner porous layer 21 was obtained by averaging the porosity obtained by image analysis at the plurality of positions (four sites) of the inner porous layer 21.
In the example of FIG. 5, since the porous protective layer 20 is manufactured in detail as shown in FIG. 7 described later, an intermediate region 22 is formed on the inner porous layer 21 side of the outer porous layer 23. There is no problem.

又、内側多孔質層21の気孔率の各部位のばらつき(差)を測定するには、本実施の形態では、図4に示すように、内側多孔質層21の全周のうち、4つの位置a〜dで断面SEM像を撮影して画像解析を行い、各位置a〜dでの気孔率のばらつきを求めた。
なお、図4の例では、断面(横断面)が矩形状のガスセンサ素子100において、内側多孔質層21のうち積層体の各辺(4面)の中央部位上に位置する部位を含む領域a〜dの4箇所の断面SEM像を撮影して画像解析を行い、領域a〜dの気孔率の差(即ち、各領域間の差)を求めている。これは、上記したスラリー中の粒子の粒度分布やスラリーの攪拌時間を管理した状態であれば、スラリーを塗布した後に焼成して得られる被膜の気孔率が各部位でほぼ一定であるため、内側多孔質層21の代表的な位置(例えば、検出素子10の4面のそれぞれ中央部)の断面SEM像を撮影すれば、内側多孔質層21の全体の気孔率の差が10%以下であるとみなしてよいからである。従って、内側多孔質層21における断面SEM像の撮影位置は限定されず、例えば、内側多孔質層21の周方向に一定間隔の複数の位置で断面SEM像を撮影してもよく、検出素子10の4面につき、それぞれ中央部と両端部で断面SEM像を撮影してもよい。
Further, in order to measure the variation (difference) of the porosity of the inner porous layer 21, in the present embodiment, as shown in FIG. Cross-sectional SEM images were taken at positions a to d and image analysis was performed to determine the variation in porosity at each position a to d.
In the example of FIG. 4, in the gas sensor element 100 having a rectangular cross section (transverse cross section), a region a including a portion of the inner porous layer 21 positioned on the central portion of each side (four surfaces) of the laminate. The four cross-sectional SEM images of .about.d are taken and image analysis is performed, and the difference in the porosity of the areas a to d (that is, the difference between the areas) is obtained. If the particle size distribution of the slurry in the slurry and the stirring time of the slurry are controlled, the porosity of the coating obtained by baking after applying the slurry is almost constant at each part, If a cross-sectional SEM image of a representative position of the porous layer 21 (for example, the central part of each of the four surfaces of the detection element 10) is taken, the difference in the entire porosity of the inner porous layer 21 is 10% or less. This is because it may be considered. Therefore, the photographing position of the cross-sectional SEM image in the inner porous layer 21 is not limited. For example, the cross-sectional SEM images may be photographed at a plurality of positions at regular intervals in the circumferential direction of the inner porous layer 21. A cross-sectional SEM image may be taken at each of the four surfaces at the center and both ends.

図6は、後述する実施例1において、図4の領域a〜d(100μm四方)に対応する断面SEM像を示す。各領域a〜dの断面SEM像から気孔率を求めた結果、後述するように各領域a〜dの気孔率のばらつき(差)が10%以下(本実施の形態では3%)であることが判明した。   6 shows cross-sectional SEM images corresponding to regions a to d (100 μm square) in FIG. 4 in Example 1 to be described later. As a result of obtaining the porosity from the cross-sectional SEM images of the regions a to d, the variation (difference) in the porosity of the regions a to d is 10% or less (3% in the present embodiment) as described later. There was found.

次に、図7の模式図を参照して多孔質保護層20の製造方法の一例について説明する。
まず、ガスセンサ素子100の先端部の表面全周にわたって内側多孔質層21を形成する(図7(a))。この際、内側多孔質層21が外側多孔質層23に対して高い気孔率となるよう、上記した内側多孔質層23を形成するためのスラリーに焼失性の造孔材を添加したものを焼結するとよく、造孔材が焼失した部分が三次元網目構造の比較的大きな気孔Cを形成する。なお、内側多孔質層23を形成するためのスラリーは、ディップ法によりガスセンサ素子100に塗布することができる。
次に、内側多孔質層21の表面に外側多孔質層23となるスラリー23xをディップ法により塗布する(図7(b))。スラリー23xは、粗粒子231と、粗粒子231より粒径が小さい微粒子232とを含む。このとき、スラリー23x中の微粒子232が、内側多孔質層21との界面近傍の気孔C内の一部に入り込む。この状態で外側多孔質層23を焼結して形成する(図7(c))。
Next, an example of a method for manufacturing the porous protective layer 20 will be described with reference to the schematic diagram of FIG.
First, the inner porous layer 21 is formed over the entire surface of the tip of the gas sensor element 100 (FIG. 7A). At this time, a slurry obtained by adding a burnable pore former to the slurry for forming the inner porous layer 23 so that the inner porous layer 21 has a higher porosity than the outer porous layer 23 is baked. well when sintered, parts pore former is burned to form a relatively large pore C a three-dimensional network structure. The slurry for forming the inner porous layer 23 can be applied to the gas sensor element 100 by a dipping method.
Next, slurry 23x to be the outer porous layer 23 is applied to the surface of the inner porous layer 21 by a dipping method (FIG. 7B). The slurry 23 x includes coarse particles 231 and fine particles 232 having a smaller particle diameter than the coarse particles 231. At this time, fine particles 232 in the slurry 23x is enters the portion of the pores C A in the vicinity of the interface between the inner porous layer 21. In this state, the outer porous layer 23 is formed by sintering (FIG. 7C).

このようにして、内側多孔質層21の表面上の気孔Cの一部に微粒子232が入り込んだ領域が、緻密な中間領域22となる。この中間領域22が微粒子232を含むので、微粒子232を介して中間領域22と外側多孔質層23との密着性が向上する。
なお、外側多孔質層23のうち、中間領域22側の部分では微粒子232が減少するが、粗粒子231が残存して皮膜の骨格を形成するので、外側多孔質層23が安定して形成される。粗粒子231や微粒子232の隙間が外側多孔質層23の三次元網目構造をなす気孔Cを形成する。
In this way, a region that has entered the fine particles 232 in a part of the pores C A on the surface of the inner porous layer 21, a dense intermediate region 22. Since the intermediate region 22 includes the fine particles 232, adhesion between the intermediate region 22 and the outer porous layer 23 is improved through the fine particles 232.
In the outer porous layer 23, the fine particles 232 decrease in the portion on the intermediate region 22 side, but the coarse particles 231 remain to form a skeleton of the film, so that the outer porous layer 23 is stably formed. The Clearance coarse particles 231 and particles 232 to form pores C B which forms a three-dimensional network structure of the outer porous layer 23.

多孔質保護層20の製造方法としては、上記の方法に限定されず、それぞれ内側多孔質層21及び外側多孔質層23となるスラリーを順に塗布して焼結してもよい。この場合、内側多孔質層21となるスラリーを塗布して焼結後に、外側多孔質層23となるスラリーを塗布して焼結してもよい。又、それぞれ内側多孔質層21及び外側多孔質層23となるスラリーを順に塗布して一度に焼結してもよい。
なお、外側多孔質層23となるスラリー2が粗粒子と微粒子とを共に含むことが必須でないのはいうまでもない。
The method for producing the porous protective layer 20 is not limited to the above-described method, and the slurry to be the inner porous layer 21 and the outer porous layer 23 may be applied and sintered in order. In this case, the slurry to be the inner porous layer 21 may be applied and sintered, and then the slurry to be the outer porous layer 23 may be applied and sintered. Alternatively, the slurry for forming the inner porous layer 21 and the outer porous layer 23 may be sequentially applied and sintered at a time.
Needless to say, it is not essential that the slurry 2 to be the outer porous layer 23 contains both coarse particles and fine particles.

本発明は上記実施形態に限定されず、固体電解質体と一対の電極とを有する検出素子部及びヒータ部を有するあらゆるガスセンサ(ガスセンサ素子)に適用可能であり、本実施の形態の酸素センサ(酸素センサ素子)に適用することができるが、これらの用途に限られず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。例えば、被測定ガス中のNOx濃度を検出するNOxセンサ(NOxセンサ素子)や、HC濃度を検出するHCセンサ(HCセンサ素子)等に本発明を適用してもよい。また、上記実施形態では、多孔質保護層20をセラミック粒子にて形成したが、セラミック粒子にセラミックファイバーを含有させて多孔質保護層20を形成するようにしてもよい。   The present invention is not limited to the above embodiment, and can be applied to any gas sensor (gas sensor element) having a detection element portion and a heater portion having a solid electrolyte body and a pair of electrodes. However, the present invention is not limited to these uses, and it goes without saying that the present invention covers various modifications and equivalents included in the spirit and scope of the present invention. For example, the present invention may be applied to a NOx sensor (NOx sensor element) that detects the NOx concentration in the gas to be measured, an HC sensor (HC sensor element) that detects the HC concentration, and the like. In the above embodiment, the porous protective layer 20 is formed of ceramic particles. However, the porous protective layer 20 may be formed by containing ceramic fibers in the ceramic particles.

図1、図2に示す板状のガスセンサ素子(酸素センサ素子)100の先端側の表面(表裏面及び両側面に、内側多孔質層21となる下記のスラリーAを適当な粘度になるように調整し、ディップ(浸漬)法で300μmの厚みになるよう塗布した。その後、スラリーA中の余分な有機溶剤を揮発させるため、200℃に設定した乾燥機で数時間乾燥し、大気中、1100℃で3時間の条件で内側多孔質層21を焼成した。なお、スラリーAの攪拌時間を10時間としたものを実施例1とし、3時間としたものを実施例2とした。
スラリーA:アルミナ粉末(D10:0.24μm、D50:0.40μm、D90:0.60μmの粒度分布)40vol%、カーボン粉末(D10:10.5μm、D50:20.6μm、D90:42.2μmの粒度分布)60vol%、アルミナゾル(外配合)10wt%を秤量し、さらにエタノールを添加して攪拌して調製した。
The following slurry A, which will be the inner porous layer 21, on the front surface (front and back surfaces and both side surfaces) of the plate-like gas sensor element (oxygen sensor element) 100 shown in FIGS. Then, the film was applied by a dip (immersion) method so as to have a thickness of 300 μm, and then dried in a dryer set at 200 ° C. for several hours in order to volatilize excess organic solvent in the slurry A. The inner porous layer 21 was baked under the conditions of 3 hours at 0 ° C. The slurry A was stirred for 10 hours in Example 1, and the slurry in Example 3 was used in Example 2.
Slurry A: Alumina powder (D10: 0.24 μm, D50: 0.40 μm, D90: 0.60 μm particle size distribution) 40 vol%, carbon powder (D10: 10.5 μm, D50: 20.6 μm, D90: 42.2 μm) Particle size distribution) of 60 vol% and alumina sol (external blend) of 10 wt% were weighed and further ethanol was added and stirred.

次に、内側多孔質層21の表面に、外側多孔質層23となる下記のスラリーBを適当な粘度になるように調整し、ディップ(浸漬)法で250μmの厚みになるよう塗布した。その後、スラリーB中の余分な有機溶剤を揮発させるため、200℃に設定した乾燥機で数時間乾燥し、大気中、1100℃で3時間の条件で外側多孔質層23を焼成した。
スラリーB:スピネル粉末(D10:24.6μm、D50:44μm、D90:88μm)60vol%、アルミナ粉末(D10:0.24μm、D50:0.40μm、D90:0.60μm)40vol%、アルミナゾル(外配合)10wt%を秤量し、さらにエタノールを添加して10時間攪拌して調製した。
なお、スラリーA及びスラリーBを構成する各粉末の粒度分布は、各セラミック粒子(粉末)、カーボン粉末をレーザ回折散乱法により測定した累積粒度分布の微粒側から10%累積度数分布粒子径をD10、50%累積度数分布粒子径をD50、90%累積度数分布粒子径をD90として表した。
Next, the following slurry B to be the outer porous layer 23 was adjusted to have an appropriate viscosity on the surface of the inner porous layer 21 and applied to a thickness of 250 μm by a dip (immersion) method. Then, in order to volatilize the excess organic solvent in the slurry B, it dried for several hours with the dryer set to 200 degreeC, and the outer porous layer 23 was baked on the conditions for 3 hours at 1100 degreeC in air | atmosphere.
Slurry B: Spinel powder (D10: 24.6 μm, D50: 44 μm, D90: 88 μm) 60 vol%, alumina powder (D10: 0.24 μm, D50: 0.40 μm, D90: 0.60 μm) 40 vol%, alumina sol (outside) Formulation) 10 wt% was weighed and further ethanol was added and stirred for 10 hours.
The particle size distribution of each powder constituting the slurry A and the slurry B is 10% cumulative frequency distribution particle diameter from the fine particle side of the cumulative particle size distribution measured by laser diffraction scattering method for each ceramic particle (powder) and carbon powder is D10. The 50% cumulative frequency distribution particle diameter was expressed as D50, and the 90% cumulative frequency distribution particle diameter was expressed as D90.

得られた多孔質保護層20を含むガスセンサ素子100を長手方向に直交する向きに切断し、その断面(横断面)のもと多孔質保護層20の断面を走査型電子顕微鏡(SEM)で撮影し、断面写真を得た。
得られた断面写真に基づき、外側多孔質層23側及び内側多孔質層21の画像解析を行い、断面写真のに占める黒色部の割合を求めた。個々の画像解析は100×100μmの領域について行った。なお、断面写真の取得位置及び気孔率の求め方は、上述した通りである。
このようにして、外側多孔質層23及び内側多孔質層21の気孔率(平均気孔率)を決定した。次いで、内側多孔質層21については、図6に示す各領域a〜dの断面SEM像に基づき、各領域a〜dの気孔率のばらつき(即ち、気孔率の最大値と最小値との差)を算出した。
The obtained gas sensor element 100 including the porous protective layer 20 is cut in a direction perpendicular to the longitudinal direction, and the cross section of the porous protective layer 20 is photographed with a scanning electron microscope (SEM) under the cross section (transverse cross section). A cross-sectional photograph was obtained.
Based on the obtained cross-sectional photograph, image analysis of the outer porous layer 23 side and the inner porous layer 21 was performed, and the ratio of the black portion in the cross-sectional photograph was obtained. Individual image analysis was performed on a 100 × 100 μm area. In addition, the acquisition position of a cross-sectional photograph and how to obtain the porosity are as described above.
In this way, the porosity (average porosity) of the outer porous layer 23 and the inner porous layer 21 was determined. Next, with respect to the inner porous layer 21, based on the cross-sectional SEM images of the respective regions a to d shown in FIG. 6, the variation in the porosity of the regions a to d (that is, the difference between the maximum value and the minimum value of the porosity). ) Was calculated.

又、比較として、スラリーAの代わりに下記のスラリーCを用いて内側多孔質層21を焼成したこと以外は、上記実施例と同様にして多孔質保護層を形成したガスセンサ素子を製造した。
スラリーC:アルミナ粉末(D10:0.48μm、D50:1.26μm、D90:3.78μmの粒度分布)40vol%、カーボン粉末(D10:10.5μm、D50:20.6μm、D90:42.2μmの粒度分布)60vol%、アルミナゾル(外配合)で10wt%を秤量し、さらにエタノールを添加して10時間攪拌して調製した。
実施例と同様にして、比較例の多孔質保護層の断面SEMを撮影し、外側多孔質層23及び内側多孔質層21の気孔率を決定した。又、内側多孔質層21の各領域a〜dの気孔率のばらつきを算出した。
For comparison, a gas sensor element having a porous protective layer was produced in the same manner as in the above example except that the inner porous layer 21 was fired using the following slurry C instead of the slurry A.
Slurry C: Alumina powder (D10: 0.48 μm, D50: 1.26 μm, D90: 3.78 μm particle size distribution) 40 vol%, carbon powder (D10: 10.5 μm, D50: 20.6 μm, D90: 42.2 μm) Particle size distribution) 60 vol%, 10 wt% of alumina sol (external blend) was weighed, ethanol was added, and the mixture was stirred for 10 hours.
In the same manner as in the example, a cross-sectional SEM of the porous protective layer of the comparative example was photographed, and the porosity of the outer porous layer 23 and the inner porous layer 21 was determined. Moreover, the variation in the porosity of each region a to d of the inner porous layer 21 was calculated.

以上のようにして得られた多孔質保護層を含むガスセンサ素子を用い、被水試験を行った。
まず、常温のガスセンサ素子の多孔質保護層を水に浸し、30分間減圧下で放置した。その後、−20℃の環境試験機内にガスセンサ素子を投入し、水が完全に凍結するまで放置した。水が凍結したことを確認した後、ガスセンサ素子のヒータ部に12Vの電圧を印加し、センサ素子温が800℃になってからヒータ部の通電制御を継続して5分間保持した。なお、センサ素子温が800℃になったことは酸素濃度検出セルのインピーダンスの値をもとに判断した。
試験終了後、拡大鏡にて多孔質保護層の外観を観察し、多孔質保護層の損傷(ハガレやカケ)の有無を目視で判定した。
得られた結果を表1に示す。なお、表1において、被水試験の結果は、5本のガスセンサ素子の試験で多孔質保護層の損傷が生じた本数を示す。
Using the gas sensor element including the porous protective layer obtained as described above, a moisture test was performed.
First, the porous protective layer of the gas sensor element at room temperature was immersed in water and left under reduced pressure for 30 minutes. Thereafter, the gas sensor element was put in an environmental test machine at −20 ° C. and left until the water was completely frozen. After confirming that the water was frozen, a voltage of 12 V was applied to the heater portion of the gas sensor element, and when the sensor element temperature reached 800 ° C., energization control of the heater portion was continued and held for 5 minutes. The sensor element temperature reached 800 ° C. was determined based on the impedance value of the oxygen concentration detection cell.
After completion of the test, the appearance of the porous protective layer was observed with a magnifier, and the presence or absence of damage (peeling or chipping) of the porous protective layer was visually determined.
The obtained results are shown in Table 1. In Table 1, the result of the water test indicates the number of porous protective layers damaged in the test of five gas sensor elements.

表1から明らかなように、内側多孔質層の気孔率のばらつきが10%以下である各実施例の場合、多孔質保護層の損傷が見られず、耐被水性が優れていた。なお、実施例2に比べ、内側多孔質層となるスラリーの攪拌時間を長くした実施例1の場合、内側多孔質層の気孔率のばらつきがさらに小さくなった。
一方、内側多孔質層の気孔率のばらつきが10%を超えた比較例の場合、半数以上に多孔質保護層の損傷が見られ、耐被水性に劣った。これは、図8に示すように、比較例の場合、内側多孔質層となるスラリー中の粒子(アルミナ粉末)の累積粒度分布が実施例1,2に比べてブロードであったためと考えられる。
As is clear from Table 1, in each of the examples in which the porosity variation of the inner porous layer was 10% or less, the porous protective layer was not damaged and the water resistance was excellent. In addition, compared with Example 2, in Example 1 in which the stirring time of the slurry to be the inner porous layer was increased, the variation in the porosity of the inner porous layer was further reduced.
On the other hand, in the comparative example in which the porosity variation of the inner porous layer exceeded 10%, more than half of the porous protective layers were damaged and the water resistance was poor. As shown in FIG. 8, in the case of the comparative example, this is probably because the cumulative particle size distribution of the particles (alumina powder) in the slurry serving as the inner porous layer was broader than in Examples 1 and 2.

1 ガスセンサ
20 多孔質保護層
21 内側多孔質層
23 外側多孔質層
30 ハウジング
104、105、108、110 一対の電極
105、109 固体電解質体
100 ガスセンサ素子
200 ヒータ部
300 検出素子部
L 軸線方向
a〜d 内側多孔質層における4部位
DESCRIPTION OF SYMBOLS 1 Gas sensor 20 Porous protective layer 21 Inner porous layer 23 Outer porous layer 30 Housing 104,105,108,110 A pair of electrode 105,109 Solid electrolyte body 100 Gas sensor element 200 Heater part 300 Detection element part L Axial direction a ~ d Four sites in the inner porous layer

Claims (2)

固体電解質体と該固体電解質体に配置された一対の電極とを有する検出素子部、及び、絶縁セラミック体に通電により発熱するヒータを設けてなるヒータ部を積層してなると共に、長手方向に延びて当該長手方向に直交する向きの横断面が略矩形状をなす積層体と、前記積層体のうち測定対象ガスに晒される先端部の全周を被覆してなる多孔質保護層と、を備えるガスセンサ素子であって、
前記多孔質保護層は、検出素子側に設けられる内側多孔質層と、該内側多孔質層上に形成される外側多孔質層とを備え、
前記内側多孔質層の気孔率が前記外側多孔質層の気孔率より高く、
さらに、前記横断面において、前記積層体の2つの短辺及び2つの長辺上に位置する前記内側多孔質層における4部位の気孔率の差が10%以下であるガスセンサ素子。
A detection element portion having a solid electrolyte body and a pair of electrodes arranged on the solid electrolyte body, and a heater portion provided with a heater that generates heat when energized to the insulating ceramic body are laminated and extend in the longitudinal direction. A laminate having a substantially rectangular cross section in a direction perpendicular to the longitudinal direction, and a porous protective layer covering the entire circumference of the tip of the laminate exposed to the gas to be measured. A gas sensor element,
The porous protective layer includes an inner porous layer provided on the detection element side, and an outer porous layer formed on the inner porous layer,
The porosity of the inner porous layer is higher than the porosity of the outer porous layer;
Furthermore, in the said cross section, the gas sensor element whose difference of the porosity of 4 site | parts in the said inner porous layer located on two short sides and two long sides of the said laminated body is 10% or less.
被測定ガス中の特定ガス成分の濃度を検出するセンサ素子と、該センサ素子を保持するハウジングとを備えるガスセンサにおいて、
前記センサ素子は、請求項1に記載のガスセンサ素子を用いることを特徴とするガスセンサ。
In a gas sensor comprising a sensor element that detects the concentration of a specific gas component in a gas to be measured, and a housing that holds the sensor element,
The gas sensor according to claim 1, wherein the sensor element is the gas sensor.
JP2011035586A 2011-02-22 2011-02-22 Gas sensor element and gas sensor Active JP5373835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035586A JP5373835B2 (en) 2011-02-22 2011-02-22 Gas sensor element and gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035586A JP5373835B2 (en) 2011-02-22 2011-02-22 Gas sensor element and gas sensor

Publications (2)

Publication Number Publication Date
JP2012173146A true JP2012173146A (en) 2012-09-10
JP5373835B2 JP5373835B2 (en) 2013-12-18

Family

ID=46976182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035586A Active JP5373835B2 (en) 2011-02-22 2011-02-22 Gas sensor element and gas sensor

Country Status (1)

Country Link
JP (1) JP5373835B2 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901074A (en) * 2012-12-29 2014-07-02 赣州虔东稀土集团股份有限公司 Preparation method of porous ceramic material protective layer coated on oxygen sensor chip
JP2015087162A (en) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 Gas sensor element, gas sensor, and manufacturing method of gas sensor element
DE102015114091A1 (en) 2014-08-25 2016-02-25 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102015219559A1 (en) 2014-10-21 2016-04-21 Ngk Spark Plug Co., Ltd. gas sensor
JP2016075487A (en) * 2014-10-02 2016-05-12 株式会社デンソー Gas sensor manufacturing method and assembly device
DE102015224655A1 (en) 2014-12-10 2016-06-16 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102015224419A1 (en) 2014-12-10 2016-06-16 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
JP2016109685A (en) * 2014-12-04 2016-06-20 日本碍子株式会社 Gas sensor element and gas sensor
JP2017187482A (en) * 2016-03-30 2017-10-12 日本碍子株式会社 Sensor element and gas sensor
JP2019144225A (en) * 2018-02-22 2019-08-29 日本特殊陶業株式会社 Gas sensor element, gas sensor and method for manufacturing gas sensor element
JP2020020742A (en) * 2018-08-03 2020-02-06 日本碍子株式会社 Sensor element
WO2020065952A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Ceramic structure and sensor element for gas sensor
WO2020067318A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Ceramic structure and sensor element for gas sensor
JP2020165816A (en) * 2019-03-29 2020-10-08 日本碍子株式会社 Sensor element of gas sensor
WO2020262106A1 (en) * 2019-06-27 2020-12-30 株式会社デンソー Gas sensor and method for manufacturing gas sensor
CN112752970A (en) * 2018-10-03 2021-05-04 日本碍子株式会社 Sensor element
WO2021124987A1 (en) * 2019-12-17 2021-06-24 日本碍子株式会社 Sensor element for gas sensor and method for forming protective layer on sensor element
US11204336B2 (en) 2016-03-30 2021-12-21 Ngk Insulators, Ltd. Sensor element and gas sensor
US11391691B2 (en) 2018-02-06 2022-07-19 Ngk Insulators, Ltd. Gas sensor
WO2022196233A1 (en) * 2021-03-16 2022-09-22 日本碍子株式会社 Gas sensor element and gas sensor
DE102023103017A1 (en) 2022-02-25 2023-08-31 Ngk Insulators, Ltd. NOx sensor and NOx sensor operating procedure
DE102023103268A1 (en) 2022-03-07 2023-09-07 Ngk Insulators, Ltd. Gas sensor and gas sensor operating method
DE102023103283A1 (en) 2022-03-11 2023-09-14 Ngk Insulators, Ltd. Gas sensor
US11867659B2 (en) 2019-04-23 2024-01-09 Niterra Co., Ltd. Sensor element and gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019219552A1 (en) * 2019-12-13 2021-06-17 Robert Bosch Gmbh Method for testing a ceramic sensor element for an exhaust gas sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145962A (en) * 1984-08-09 1986-03-06 Toyota Central Res & Dev Lab Inc Threshold current type oxygen sensor
JP2003322632A (en) * 2002-02-28 2003-11-14 Ngk Spark Plug Co Ltd Ceramic heater, lamination type gas sensor element and manufacturing method therefor, and gas sensor having the lamination type gas sensor element
JP2007206082A (en) * 2002-02-28 2007-08-16 Ngk Spark Plug Co Ltd Ceramic heater, laminated type gas sensor element and manufacturing method therefor, and gas sensor having the laminated type gas sensor element
JP2009257817A (en) * 2008-04-14 2009-11-05 Ngk Spark Plug Co Ltd Laminated gas sensor element and gas sensor
JP2010169655A (en) * 2008-12-22 2010-08-05 Nippon Soken Inc Gas sensor element and gas sensor equipped with it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145962A (en) * 1984-08-09 1986-03-06 Toyota Central Res & Dev Lab Inc Threshold current type oxygen sensor
JP2003322632A (en) * 2002-02-28 2003-11-14 Ngk Spark Plug Co Ltd Ceramic heater, lamination type gas sensor element and manufacturing method therefor, and gas sensor having the lamination type gas sensor element
JP2007206082A (en) * 2002-02-28 2007-08-16 Ngk Spark Plug Co Ltd Ceramic heater, laminated type gas sensor element and manufacturing method therefor, and gas sensor having the laminated type gas sensor element
JP2009257817A (en) * 2008-04-14 2009-11-05 Ngk Spark Plug Co Ltd Laminated gas sensor element and gas sensor
JP2010169655A (en) * 2008-12-22 2010-08-05 Nippon Soken Inc Gas sensor element and gas sensor equipped with it

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901074A (en) * 2012-12-29 2014-07-02 赣州虔东稀土集团股份有限公司 Preparation method of porous ceramic material protective layer coated on oxygen sensor chip
JP2015087162A (en) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 Gas sensor element, gas sensor, and manufacturing method of gas sensor element
US9829462B2 (en) 2014-08-25 2017-11-28 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102015114091A1 (en) 2014-08-25 2016-02-25 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
JP2016075487A (en) * 2014-10-02 2016-05-12 株式会社デンソー Gas sensor manufacturing method and assembly device
DE102015219559A1 (en) 2014-10-21 2016-04-21 Ngk Spark Plug Co., Ltd. gas sensor
JP7002610B2 (en) 2014-12-04 2022-01-20 日本碍子株式会社 Gas sensor element
JP2016109685A (en) * 2014-12-04 2016-06-20 日本碍子株式会社 Gas sensor element and gas sensor
JP2020180985A (en) * 2014-12-04 2020-11-05 日本碍子株式会社 Gas sensor element
JP2016109642A (en) * 2014-12-10 2016-06-20 日本特殊陶業株式会社 Gas sensor element and gas sensor
DE102015224419A1 (en) 2014-12-10 2016-06-16 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102015224655A1 (en) 2014-12-10 2016-06-16 Ngk Spark Plug Co., Ltd. Gas sensor element and gas sensor
DE102017003006B4 (en) 2016-03-30 2024-02-22 Ngk Insulators, Ltd. Sensor element and gas sensor
JP2017187482A (en) * 2016-03-30 2017-10-12 日本碍子株式会社 Sensor element and gas sensor
US11204336B2 (en) 2016-03-30 2021-12-21 Ngk Insulators, Ltd. Sensor element and gas sensor
US11391691B2 (en) 2018-02-06 2022-07-19 Ngk Insulators, Ltd. Gas sensor
US12007352B2 (en) 2018-02-06 2024-06-11 Ngk Insulators, Ltd. Gas sensor
JP2019144225A (en) * 2018-02-22 2019-08-29 日本特殊陶業株式会社 Gas sensor element, gas sensor and method for manufacturing gas sensor element
JP7078491B2 (en) 2018-02-22 2022-05-31 日本特殊陶業株式会社 Manufacturing method of gas sensor element, gas sensor and gas sensor element
JP2020020742A (en) * 2018-08-03 2020-02-06 日本碍子株式会社 Sensor element
JP7082922B2 (en) 2018-08-03 2022-06-09 日本碍子株式会社 Sensor element
JP7178420B2 (en) 2018-09-28 2022-11-25 日本碍子株式会社 Ceramic structure and sensor element of gas sensor
CN112752738A (en) * 2018-09-28 2021-05-04 日本碍子株式会社 Ceramic structure and sensor element of gas sensor
JPWO2020065952A1 (en) * 2018-09-28 2021-09-02 日本碍子株式会社 Sensor elements of ceramic structures and gas sensors
JPWO2020067318A1 (en) * 2018-09-28 2021-09-24 日本碍子株式会社 Sensor elements of ceramic structures and gas sensors
CN112739665A (en) * 2018-09-28 2021-04-30 日本碍子株式会社 Ceramic structure and sensor element of gas sensor
CN112752738B (en) * 2018-09-28 2023-09-15 日本碍子株式会社 Ceramic structure and sensor element for gas sensor
WO2020067318A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Ceramic structure and sensor element for gas sensor
WO2020065952A1 (en) * 2018-09-28 2020-04-02 日本碍子株式会社 Ceramic structure and sensor element for gas sensor
CN112752970A (en) * 2018-10-03 2021-05-04 日本碍子株式会社 Sensor element
CN112752970B (en) * 2018-10-03 2023-02-28 日本碍子株式会社 Sensor element
JP7261640B2 (en) 2019-03-29 2023-04-20 日本碍子株式会社 Sensor element of gas sensor
JP2020165816A (en) * 2019-03-29 2020-10-08 日本碍子株式会社 Sensor element of gas sensor
US11867659B2 (en) 2019-04-23 2024-01-09 Niterra Co., Ltd. Sensor element and gas sensor
JP2021004826A (en) * 2019-06-27 2021-01-14 株式会社デンソー Gas sensor and production method thereof
JP7070514B2 (en) 2019-06-27 2022-05-18 株式会社デンソー Gas sensor and its manufacturing method
CN114026413A (en) * 2019-06-27 2022-02-08 株式会社电装 Gas sensor and method for manufacturing the same
WO2020262106A1 (en) * 2019-06-27 2020-12-30 株式会社デンソー Gas sensor and method for manufacturing gas sensor
WO2021124987A1 (en) * 2019-12-17 2021-06-24 日本碍子株式会社 Sensor element for gas sensor and method for forming protective layer on sensor element
CN114761792A (en) * 2019-12-17 2022-07-15 日本碍子株式会社 Sensor element of gas sensor and method for forming protective layer facing sensor element
JP7500613B2 (en) 2019-12-17 2024-06-17 日本碍子株式会社 Sensor element of gas sensor and method for forming protective layer on sensor element
WO2022196233A1 (en) * 2021-03-16 2022-09-22 日本碍子株式会社 Gas sensor element and gas sensor
DE102023103017A1 (en) 2022-02-25 2023-08-31 Ngk Insulators, Ltd. NOx sensor and NOx sensor operating procedure
DE102023103268A1 (en) 2022-03-07 2023-09-07 Ngk Insulators, Ltd. Gas sensor and gas sensor operating method
DE102023103283A1 (en) 2022-03-11 2023-09-14 Ngk Insulators, Ltd. Gas sensor

Also Published As

Publication number Publication date
JP5373835B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5373835B2 (en) Gas sensor element and gas sensor
JP5416757B2 (en) Gas sensor element and gas sensor
JP5390682B1 (en) Gas sensor element and gas sensor
JP5496983B2 (en) Gas sensor element and gas sensor
WO2013084097A2 (en) Gas sensor element, and gas sensor
JP2016048230A (en) Gas sensor element and gas sensor
JP5373837B2 (en) Gas sensor element and gas sensor
JP6885760B2 (en) Sensor element and gas sensor
JP4014513B2 (en) CERAMIC HEATER, LAMINATED GAS SENSOR ELEMENT AND ITS MANUFACTURING METHOD, AND GAS SENSOR HAVING LAMINATED GAS SENSOR ELEMENT
JP6359373B2 (en) Gas sensor element and gas sensor
US8721857B2 (en) Gas sensor element and its manufacturing method, and gas sensor employing the gas sensor element
JP6169946B2 (en) Gas sensor element, gas sensor, and method of manufacturing gas sensor element
JP5747801B2 (en) Multilayer ceramic exhaust gas sensor element, exhaust gas sensor using the same, and method of manufacturing multilayer ceramic exhaust gas sensor element
JP2006171013A (en) Ceramic heater, layered type gas sensor element, and gas sensor provided with layered type gas sensor element
JP2007206082A (en) Ceramic heater, laminated type gas sensor element and manufacturing method therefor, and gas sensor having the laminated type gas sensor element
JP4567547B2 (en) GAS SENSOR ELEMENT, MANUFACTURING METHOD THEREOF, AND GAS SENSOR
JP4093784B2 (en) Multilayer gas sensor element, manufacturing method thereof, and gas sensor
JP2013234896A (en) Gas sensor element and gas sensor
JP2007132954A (en) Ceramic heater, multilayered-type gas sensor element, and gas sensor provided with the multilayered-type gas sensor element
JP4325386B2 (en) Multilayer gas sensor element
JP2017203716A (en) Manufacturing method of gas sensor element and manufacturing method of gas sensor
JP7152964B2 (en) Method for manufacturing gas sensor element
JP2013007642A (en) Gas sensor
JP2023157827A (en) Sensor element, gas sensor and manufacturing method of sensor element
JP2010164591A (en) Gas sensor element and gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130919

R150 Certificate of patent or registration of utility model

Ref document number: 5373835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250