JP4023174B2 - 触媒劣化判定装置 - Google Patents

触媒劣化判定装置 Download PDF

Info

Publication number
JP4023174B2
JP4023174B2 JP2002032784A JP2002032784A JP4023174B2 JP 4023174 B2 JP4023174 B2 JP 4023174B2 JP 2002032784 A JP2002032784 A JP 2002032784A JP 2002032784 A JP2002032784 A JP 2002032784A JP 4023174 B2 JP4023174 B2 JP 4023174B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
catalyst
output
ratio sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002032784A
Other languages
English (en)
Other versions
JP2003232247A (ja
Inventor
直人 加藤
俊成 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002032784A priority Critical patent/JP4023174B2/ja
Publication of JP2003232247A publication Critical patent/JP2003232247A/ja
Application granted granted Critical
Publication of JP4023174B2 publication Critical patent/JP4023174B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路に配設された三元触媒が劣化したか否かを判定する触媒劣化判定装置に関する。
【0002】
【従来の技術】
従来より、内燃機関の排気ガスを浄化するための三元触媒(本明細書においては、単に「触媒」とも云うこともある。)が、同機関の排気通路に配設されている。この三元触媒は、酸素を貯蔵するO2ストレージ機能(酸素貯蔵機能)を有していて、流入するガスの空燃比がリッチである場合には貯蔵している酸素によりHC,CO等の未燃成分を酸化するとともに、流入するガスの空燃比がリーンである場合には窒素酸化物(NOx)を還元して同NOxから奪った酸素を内部に貯蔵する。これにより、三元触媒は、機関の空燃比が理論空燃比から偏移した場合でも、未燃成分や窒素酸化物を浄化することができる。従って、三元触媒が貯蔵し得る酸素量(以下、「酸素吸蔵量」と称呼する。)の最大値(以下、「最大酸素吸蔵量」と称呼する。)が大きいほど、三元触媒の浄化能力は高い。
【0003】
ところで、三元触媒は燃料中に含まれる鉛や硫黄等による被毒、或いは触媒に加わる熱により劣化する。その結果、三元触媒の酸素吸蔵機能は次第に低下する。即ち、三元触媒の劣化が進行するほど、同触媒の最大酸素吸蔵量は低下する。このことから、三元触媒の最大酸素吸蔵量が推定できれば、同推定した最大酸素吸蔵量に基いて三元触媒が劣化したか否かを判定することができる。
【0004】
特開平5−133264号公報に開示された触媒劣化度判定装置は、このような知見に基いてなされたものであって、機関の空燃比を所定のリッチ空燃比からリーン空燃比(又は、その逆)に強制的に変化させ、その際における三元触媒下流に配置した空燃比センサ(以下、「下流側空燃比センサ」と称呼する。)の出力に基いて同触媒の最大酸素吸蔵量を推定し、同推定した最大酸素吸蔵量に基いて同触媒が劣化したか否かを判定するように構成されている。
【0005】
より具体的に述べると、上記開示された装置は、触媒上流の空燃比を所定のリッチな空燃比に制御して酸素吸蔵量を「0」にしておき、その後、同触媒の空燃比を所定のリーンな空燃比に制御し、触媒の酸素吸蔵量が最大酸素吸蔵量以上となって触媒下流の空燃比センサの出力がリーンへと変化するまでの時間と同触媒に単位時間当りに流入した酸素量とを乗じることで、同最大酸素吸蔵量を推定する。或いは、触媒上流の空燃比を所定のリーンな空燃比に制御して酸素吸蔵量を最大酸素吸蔵量としておき、その後、同触媒の空燃比を所定のリッチな空燃比に制御し、触媒の酸素吸蔵量が「0」となって触媒下流の空燃比センサの出力がリッチへと変化するまでの時間と同触媒内で単位時間当りに放出(消費)された酸素量とを乗じることで、同最大酸素吸蔵量を推定する。
【0006】
このように、上記開示された装置によれば、最大酸素吸蔵量を推定するために触媒に流入する酸素量、或いは触媒で消費される酸素量を計測する必要がある。この酸素量は機関の吸入空気量に基づいて計測される。従って、最大酸素吸蔵量を精度良く求めるためには、機関の吸入空気量が精度良く計測されなければならない。このため、上記触媒劣化度の判定は、吸入空気量が精度良く計測可能な運転状態、即ち、機関が定常運転されているときに行われる必要がある。
【0007】
【発明が解決しようとする課題】
しかしながら、機関の定常状態が長時間継続する保証はないので、最大酸素吸蔵量の測定を短期間に終了させる必要があり、このため、前述した所定のリッチ空燃比と所定のリーン空燃比の差は比較的大きく設定されなければならない。この結果、かかる大きな空燃比変化に伴って機関の出力が変動し、ドライバビリティが悪化するという問題がある。また、機関の出力が安定している定常運転にあるときに空燃比の強制的変化が開始されるため、機関の出力変動が運転者に感知され易く、ドライバビリティの悪化が感知され易いという問題がある。従って、本発明の目的は、ドライバビリティを犠牲にすることなく、触媒が劣化しているか否かを精度良く判定し得る触媒劣化判定装置を提供することにある。
【0008】
【本発明の概要】
本発明の特徴は、内燃機関の排気通路に配設された三元触媒と、前記三元触媒下流の前記排気通路に配設された空燃比センサと、前記空燃比センサの出力が前記三元触媒の浄化効率が良好となる所定の目標値となるように同空燃比センサの出力と同目標値との偏差である出力偏差量に基くPI制御又はPID制御により前記機関の空燃比をフィードバック制御する空燃比フィードバック制御手段と、前記空燃比センサの出力に基いて前記三元触媒が劣化したか否かを判定する触媒劣化判定手段とを備えた触媒劣化判定装置において、前記空燃比フィードバック制御手段による前記空燃比のフィードバック制御におけるフィードバックゲインは、前記触媒劣化判定手段が劣化した触媒であると判定すべき程度に前記三元触媒が劣化した際に前記空燃比センサの出力が前記目標値を含む所定範囲内の値となっている時間的頻度が最大となり、劣化していない三元触媒に対する同空燃比センサの出力が同目標値を含む同所定範囲内の値となっている時間的頻度よりも大きくなるように、予め定められており、前記触媒劣化判定手段は、前記空燃比フィードバック制御下で、前記空燃比センサの出力が前記目標値を含む前記所定範囲内の値となる時間的頻度に基いて算出される同空燃比センサの出力の同目標値に対する収束度合いが所定値以上となったときに前記三元触媒が劣化した判定するように構成されたことにある。
【0009】
これによれば、前記空燃比フィードバック制御手段により、三元触媒下流の排気通路に配設された空燃比センサの出力が所定の目標値と一致するように、機関の空燃比がフィードバック制御される。この目標値は、三元触媒の浄化効率が良好となるように選ばれ、一般には、理論空燃比近傍の空燃比を表す値とされる。
【0010】
一方、三元触媒が劣化するとその最大酸素吸蔵量が低下してくるから、同三元触媒上流の空燃比変化が比較的単時間内に同触媒下流に現われる。換言すると、触媒の劣化程度に応じて、見かけ上の制御の無駄時間が変化する。従って、前記空燃比センサの出力に基づく前記空燃比フィードバック制御におけるフィードバックゲインが同一であっても、触媒の劣化程度により同空燃比センサの前記目標値への収束性は変化し、前記空燃比センサの出力が前記目標値を含む所定範囲内の値となっている時間的頻度が変化する。
【0011】
これに対し、本発明におけるフィードバックゲインは、前記触媒劣化判定手段が劣化した触媒であると判定すべき程度に劣化した三元触媒に対して前記空燃比センサの出力の前記目標値に対する収束性が最適となるように定められる。即ち、そのフィードバックゲインは前記触媒劣化判定手段が劣化した触媒であると判定すべき程度に前記三元触媒が劣化した際に前記空燃比センサの出力が前記目標値を含む所定範囲内の値となっている時間的頻度が最大となるように予め定められている。これにより、触媒が劣化した触媒であると判定される程度にまで劣化したとき、空燃比センサの出力の前記目標値に対する収束性は最適となる。上記触媒劣化判定手段は、かかる現象を利用して触媒が劣化したか否かを判定する。即ち、上記触媒劣化判定手段は、通常行われる空燃比の変化が比較的小さい空燃比フィードバック制御下において、前記空燃比センサ出力前記目標値を含む前記所定範囲内の値となる時間的頻度に基いて算出される同空燃比センサの出力の同目標値に対する収束度合いが所定値以上となったときに、三元触媒が劣化した判定する。
【0012】
このように、本発明によれば、機関が定常運転されているときに空燃比が強制的に変更されることはなく、実質的な空燃比変化幅が小さい空燃比フィードバック制御中に三元触媒が劣化したか否かが判定される。この結果、ドライバビリティを犠牲とすることなく三元触媒が劣化したか否かを判定することができる。しかも、本発明によれば、三元触媒が劣化した触媒であると判定すべき程度にまで劣化した場合に、空燃比フィードバック制御の収束性が最適になるから、同触媒の浄化能力を有効に利用できるので、触媒劣化時においても排気ガスを良好に浄化することができる。
【0013】
この場合において、前記触媒劣化判定手段は、前記空燃比センサの出力の前記目標値に対する収束度合いを、同空燃比センサの出力が同目標値を含む所定範囲内の値となる時間的頻度と、同空燃比センサの出力が同所定範囲外の値となる時間的頻度とに基いて決定することが好適である。
【0014】
これによれば、空燃比センサの出力の目標値に対する収束性を表す値を、簡単な構成により取得することができる。
【0015】
更に、機関の吸入空気量や機関の回転速度が異なると、同一の三元触媒を使用した場合であっても、空燃比フィードバック制御下での空燃比センサの出力の目標値に対する収束度は異なるから、これらの運転状態に応じて前記時間的頻度に重み付けして前記収束度合いを求めることにより、前記収束度合いが三元触媒の劣化度をより一層精度良く表す値となる。この結果、三元触媒が劣化しているか否かの判定をより精度良く行うことができる。
【0016】
【発明の実施の形態】
以下、本発明による触媒劣化判定装置を含む空燃比制御装置の一実施形態について図面を参照しつつ説明する。図1は、そのような触媒劣化判定装置を火花点火式多気筒(4気筒)内燃機関10に適用したシステムの概略構成を示している。
【0017】
この内燃機関10は、シリンダブロック、シリンダブロックロワーケース、及びオイルパン等を含むシリンダブロック部20と、シリンダブロック部20の上に固定されるシリンダヘッド部30と、シリンダブロック部20にガソリン混合気を供給するための吸気系統40と、シリンダブロック部20からの排気ガスを外部に放出するための排気系統50とを含んでいる。
【0018】
シリンダブロック部20は、シリンダ21、ピストン22、コンロッド23、及びクランク軸24を含んでいる。ピストン22はシリンダ21内を往復動し、ピストン22の往復動がコンロッド23を介してクランク軸24に伝達され、これにより同クランク軸24が回転するようになっている。シリンダ21とピストン22のヘッドは、シリンダヘッド部30とともに燃焼室25を形成している。
【0019】
シリンダヘッド部30は、燃焼室25に連通した吸気ポート31、吸気ポート31を開閉する吸気弁32、吸気弁32を駆動するインテークカムシャフトを含むとともに同インテークカムシャフトの位相角を連続的に変更する可変吸気タイミング装置33、可変吸気タイミング装置33のアクチュエータ33a、燃焼室25に連通した排気ポート34、排気ポート34を開閉する排気弁35、排気弁35を駆動するエキゾーストカムシャフト36、点火プラグ37、点火プラグ37に与える高電圧を発生するイグニッションコイルを含むイグナイタ38、及び燃料を吸気ポート31内に噴射するインジェクタ(燃料噴射手段)39を備えている。
【0020】
吸気系統40は、吸気ポート31に連通し同吸気ポート31とともに吸気通路を形成するインテークマニホールドを含む吸気管41、吸気管41の端部に設けられたエアフィルタ42、吸気管41内にあって吸気通路の開口断面積を可変とするスロットル弁43、スロットル弁駆動手段を構成するDCモータからなるスロットル弁アクチュエータ43a、スワールコントロールバルブ(以下、「SCV」と称呼する。)44、及びDCモータからなるSCVアクチュエータ44aを備えている。
【0021】
排気系統50は、排気ポート34に連通したエキゾーストマニホールド51、エキゾーストマニホールド51に接続されたエキゾーストパイプ(排気管)52、エキゾーストパイプ52に配設(介装)された上流側の三元触媒(上流側触媒コンバータ、又はスタート・キャタリティック・コンバータとも云う。)53、及び上流側の三元触媒53の下流のエキゾーストパイプ52に配設(介装)された下流側三元触媒(車両のフロア下方に配設されるため、アンダ・フロア・キャタリティック・コンバータとも云う。)54を備えている。排気ポート34、エキゾーストマニホールド51、及びエキゾーストパイプ52は、排気通路を構成している。なお、本触媒劣化判定装置は、上流側の三元触媒53が劣化したか否かを判定するものである。
【0022】
一方、このシステムは、熱線式エアフローメータ61、スロットルポジションセンサ62、カムポジションセンサ63、クランクポジションセンサ64、水温センサ65、三元触媒53の上流の排気通路に配設された空燃比センサ66(以下、「上流側空燃比センサ66」と称呼する。)、三元触媒53の下流であって三元触媒54の上流の排気通路に配設された空燃比センサ67(以下、「下流側空燃比センサ67」と称呼する。)、及びアクセル開度センサ68を備えている。
【0023】
熱線式エアフローメータ61は、吸気管41内を流れる吸入空気の質量流量に応じた電圧Vgを出力するようになっている。かかるエアフローメータ61の出力Vgと、計測された吸入空気量(流量)AFMとの関係は、図2に示したとおりである。スロットルポジションセンサ62は、スロットル弁43の開度を検出し、スロットル弁開度TAを表す信号を出力するようになっている。カムポジションセンサ63は、インテークカムシャフトが90°回転する毎に(即ち、クランク軸24が180°回転する毎に)一つのパルスを有する信号(G2信号)を発生するようになっている。クランクポジションセンサ64は、クランク軸24が10°回転する毎に幅狭のパルスを有するとともに同クランク軸24が360°回転する毎に幅広のパルスを有する信号を出力するようになっている。この信号は、エンジン回転速度NEを表す。水温センサ65は、内燃機関10の冷却水の温度を検出し、冷却水温THWを表す信号を出力するようになっている。
【0024】
上流側空燃比センサ66は、図3に示したように、空燃比A/Fに応じた電流を出力し、この電流に応じた電圧vabyfsを出力するようになっている。図3から明らかなように、上流側空燃比センサ66によれば、広範囲にわたる空燃比A/Fを精度良く検出することができる。下流側空燃比センサ67は、図4に示したように、理論空燃比において急変する電圧Voxsを出力するようになっている。より具体的に述べると、下流側センサ67は、空燃比が理論空燃比よりもリーンのときは略0.1(V)、空燃比が理論空燃比よりもリッチのときは略0.9(V)、及び空燃比が理論空燃比のときは略0.5(V)の電圧を出力するようになっている。アクセル開度センサ68は、運転者によって操作されるアクセルペダル81の操作量を検出し、同アクセルペダル81の操作量Accpを表す信号を出力するようになっている。
【0025】
電気制御装置70は、互いにバスで接続されたCPU71、CPU71が実行するルーチン(プログラム)、テーブル(ルックアップテーブル、マップ)、定数等を予め記憶したROM72、CPU71が必要に応じてデータを一時的に格納するRAM73、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM74、及びADコンバータを含むインターフェース75等からなるマイクロコンピュータである。インターフェース75は、前記センサ61〜68と接続され、CPU71にセンサ61〜68からの信号を供給するとともに、同CPU71の指示に応じて可変吸気タイミング装置33のアクチュエータ33a、イグナイタ38、インジェクタ39、スロットル弁アクチュエータ43a、及びSCVアクチュエータ44aに駆動信号を送出するようになっている。
【0026】
(触媒劣化判定の原理)
ところで、三元触媒53(三元触媒54も同様である。)は、空燃比がほぼ理論空燃比のときに未燃成分(HC,CO)を酸化し、同時に窒素酸化物(NOx)を還元する機能を有する。更に、三元触媒53は、酸素を貯蔵する機能(酸素貯蔵機能、O2ストレージ機能)を有し、この酸素貯蔵機能により、空燃比が理論空燃比からある程度まで偏移したとしても、HC,CO、及びNOxを浄化することができる。即ち、機関の空燃比がリーンとなって三元触媒に流入するガスにNOxが多量に含まれると、三元触媒53はNOxから酸素分子を奪ってNOxを還元し、これによりNOxを浄化する。また、機関の空燃比がリッチになって三元触媒に流入するガスにHC,COが多量に含まれると、三元触媒はこれらに酸素分子を与えて酸化し、これによりHC,COを浄化する。
【0027】
従って、三元触媒53が連続的に流入する多量のHC,COを効率的に浄化するためには、同三元触媒53が酸素を多量に貯蔵していなければならず、逆に連続的に流入する多量のNOxを効率的に浄化するためには、同三元触媒53が酸素を十分に貯蔵し得なければならないことになる。以上のことから明らかなように、三元触媒53の浄化能力は、同三元触媒が貯蔵し得る最大の酸素量(最大酸素吸蔵量)に依存する。
【0028】
一方、三元触媒は燃料中に含まれる鉛や硫黄等による被毒、或いは触媒に加わる熱により劣化するから、次第に最大酸素吸蔵量が低下してくる。このように最大酸素吸蔵量が低下した場合であっても、エミッションを良好に維持するには、三元触媒から排出されるガスの空燃比が理論空燃比に極めて近い状態となるように制御する必要がある。
【0029】
そこで、本実施形態の触媒劣化判定装置は、下流側空燃比センサ67の出力が理論空燃比に略相当する目標値(つまり、三元触媒53の浄化効率が良好となるための目標値)Voxsrefとなるように、下流側空燃比センサ67の出力Voxsに応じて機関の空燃比をフィードバック制御する(本実施形態では、上流側空燃比センサ出力vabyfsにも応じて空燃比をフィードバック制御する。)。即ち、下流側空燃比センサ67の出力が理論空燃比よりリーンの空燃比を表す値となると機関の空燃比をリッチ側に制御し、下流側空燃比センサ67の出力が理論空燃比よりリッチの空燃比を表す値となると機関の空燃比をリーン側に制御する。
【0030】
ところで、三元触媒53が劣化していない場合、最大酸素吸蔵量は大きい。これにより、図5(A)に示したように、例えば、時刻t1において下流側空燃比センサ67の出力Voxsがリッチを表す値からリーンを表す値へ変化したことに伴って機関の空燃比をリッチに変更しても、その後、多量のHC,COが三元触媒53内に貯蔵されている酸素により酸化され続ける。この結果、三元触媒53の下流にリッチの空燃比を有するガスが流出するまでの時間(例えば、時刻t1〜t2)は長くなる。換言すると、それまでの間は、下流側空燃比センサ67の出力Voxsはリーンを表す値を示し続ける。
【0031】
同様に、例えば、時刻t2において下流側空燃比センサ67の出力Voxsがリーンを表す値からリッチを表す値へ変化したことに伴って機関の空燃比をリーンに変更しても、その後、三元触媒53内において多量のNOxが還元されるとともに、三元触媒に流入するガス中の酸素が同三元触媒53に吸着され続けるから、同三元触媒53の下流にリーンの空燃比を有するガスが流出するまでの時間(例えば、時刻t2〜t3)は長くなる。換言すると、それまでの間は、下流側空燃比センサ67の出力Voxsはリッチを表す値を示し続ける。このように、三元触媒53が劣化していない場合、下流側空燃比センサ67の出力Voxsに基く空燃比フィードバック制御の見かけ上の無駄時間が増加する。
【0032】
これに対し、三元触媒が劣化している場合、最大酸素吸蔵量は小さくなる。これにより、下流側空燃比センサ67の出力Voxsがリッチを表す値からリーンを表す値へ変化したことに伴って機関の空燃比をリッチに変更すると、三元触媒53内の酸素が短時間で消費され尽くす。このため、三元触媒下流にリッチの空燃比を有するガスが流出するまでの時間は短くなり、下流側空燃比センサ67の出力Voxsは短時間内にリーンを表す値からリッチを表す値に変化する。
【0033】
同様に、下流側空燃比センサ67の出力Voxsがリーンを表す値からリッチを表す値へ変化したことに伴って機関の空燃比をリーンに変更すると、その後、NOxから奪った(吸蔵した)酸素の量、及び三元触媒に流入するガスから奪った(吸蔵した)酸素の量が直ちに最大酸素吸蔵量に達する。このため、三元触媒下流にリーンの空燃比を有するガスが流出するまでの時間は短くなり、下流側空燃比センサ67の出力Voxsは短時間内にリッチを表す値からリーンを表す値に変化する。即ち、三元触媒が劣化している場合には、図5(B)に示したように、下流側空燃比センサ67の出力Voxsがリーンを示す値からリッチを示す値(又はその逆)に反転するまでの時間は短くなり、下流側空燃比センサ67の出力Voxsに基く空燃比フィードバック制御の見かけ上の無駄時間は減少する。
【0034】
一方、このような見かけ上の無駄時間は、下流側空燃比センサ67の出力に基く空燃比フィードバック制御の応答性を左右する空燃比フィードバック制御定数により変化する。例えば、フィードバック制御を比例積分制御で行うとすると、その比例ゲイン、及び積分ゲイン(即ち、フィードバックゲイン)を大きくすれば、触媒が劣化していない場合であっても、触媒下流側の空燃比がリーンからリッチへ移行するまでの時間、及びリッチからリーンへ移行するまでの時間を短くすることができる。しかしながら、そのように空燃比フィードバック制御定数を適合した場合に触媒が劣化してくると、制御される空燃比の荒れが大きくなりすぎてエミッションが悪化する。
【0035】
このようなことから、本実施形態においては、三元触媒53が劣化した触媒であると判定すべき程度に劣化したときに、下流側空燃比センサ67の出力Voxsの前記目標値Voxsrefに対する収束性が最適となるように、前記空燃比フィードバック制御定数を適合しておく。つまり、三元触媒53が劣化触媒となっているときに、同三元触媒53の下流の空燃比が理論空燃比近傍の値となる頻度が最大となるように、フィードバック制御定数を適合するのである。この結果、三元触媒53が劣化触媒となると、下流側空燃比センサ67の出力Voxsが理論空燃比近傍の値に相当する目標値Voxsrefの近傍(目標値Voxsrefを含む所定範囲内の値)となっている頻度が最大となる。
【0036】
上記のように空燃比フィードバック制御定数を適合すると、三元触媒53が劣化していない場合、上記見かけ上の無駄時間により、触媒下流側空燃比が理論空燃比から大きく変位している時間(頻度)は大きくなる。即ち、横軸に下流側空燃比センサ67の出力Voxs、縦軸に頻度をとった図6の破線にて示したように、下流側空燃比センサ67の出力Voxsが理論空燃比に相当する目標値Voxsrefを含む所定範囲内の値となる頻度は、同所定範囲外となる頻度よりも小さくなる。つまり、下流側空燃比センサ67の出力Voxsの分布曲線は、目標値Voxsref近傍を底部とする下に凸の曲線となる。
【0037】
これに対し、三元触媒53が劣化した場合、上記見かけ上の無駄時間は小さくなるから、触媒下流側空燃比が理論空燃比から大きく変位している時間(頻度)は小さくなる。即ち、図6の実線にて示したように、下流側空燃比センサ67の出力Voxsが理論空燃比に相当する目標値Voxsrefを含む所定範囲内の値となる頻度は、同所定範囲外となる頻度よりも大きくなる。つまり、下流側空燃比センサ67の出力Voxsの分布曲線は、目標値Voxsref近傍を頂部とする上に凸の曲線となる。
【0038】
本実施形態の触媒劣化判定装置は、かかる空燃比フィードバック制御下での下流側空燃比センサ67の出力分布の相違、即ち、下流側空燃比センサ67の出力の目標値への収束性の良否を示す収束度(収束の程度)に基いて触媒が劣化したか否かを判定する。ここで、収束度が高いとは、図6の実線に示したように、下流側空燃比センサ67の出力Voxsが目標値Voxsref近傍の値をとる頻度が大きいことである。
【0039】
(実際の作動)
次に、上記のように構成された空燃比制御装置の実際の作動について、電気制御装置70のCPU71が実行するルーチンをフローチャートにより示した図7〜図11を参照しながら説明する。
【0040】
CPU71は、図7に示した最終燃料噴射量Fiの計算、及び燃料噴射の指示を行うルーチンを、各気筒のクランク角が各吸気上死点前の所定クランク角度(例えば、BTDC90°CA)となる毎に、繰り返し実行するようになっている。従って、任意の気筒のクランク角度が前記所定クランク角度になると、CPU71はステップ700から処理を開始してステップ705に進み、エアフローメータ61により計測された吸入空気量AFMと、エンジン回転速度NEとに基いて、機関の空燃比を理論空燃比とするための基本燃料噴射量Fbaseをマップfから求める。
【0041】
次いで、CPU71はステップ710に進み、基本燃料噴射量Fbaseに後述する空燃比フィードバック補正量DFiを加えた値を最終燃料噴射量Fiに設定し、続くステップ715にて同最終燃料噴射量Fiの燃料を噴射するための指示を吸気行程直前にある気筒のインジェクタ39に対して行う。その後、CPU71はステップ795に進み、本ルーチンを一旦終了する。以上により、フィードバック補正された最終燃料噴射量Fiの燃料が吸気行程を迎える気筒に対して噴射される。
【0042】
次に、上記空燃比フィードバック補正量DFiの算出について説明すると、CPU71は図8に示したルーチンを所定時間の経過毎に繰り返し実行している。従って、所定のタイミングになると、CPU71はステップ800から処理を開始し、ステップ805に進んで空燃比フィードバック制御条件が成立しているか否かを判定する。空燃比フィードバック制御条件は、例えば、機関の冷却水温THWが第1所定温度以上であり、機関の一回転当りの吸入空気量(負荷)が所定値以下であり、且つ、空燃比センサ66,67が正常であるときに成立する。
【0043】
いま、空燃比フィードバック制御条件が成立しているものとして説明を続けると、CPU71はステップ805にて「Yes」と判定してステップ810に進み、現時点の上流側空燃比センサ66の出力vabyfsと後述するサブフィードバック制御量vafsfbとの和(vabyfs+vafsfb)を図3に示したマップに基いて変換することにより、現時点における三元触媒53の上流側制御用空燃比abyfsを求める。
【0044】
次に、CPU71はステップ815に進み、現時点からNストローク(N回の吸気行程)前に吸気行程を迎えた気筒の吸入空気量である筒内吸入空気量Mc(k−N)を前記求めた上流側制御用空燃比abyfsで除することにより、現時点からNストローク前の筒内燃料供給量Fc(k−N)を求める。値Nは、内燃機関の排気量、燃焼室25から上流側空燃比センサ66までの距離等により異なる値である。このように、現時点からNストローク前の筒内燃料供給量Fc(k−N)を求めるために、現時点からNストローク前の筒内吸入空気量Mc(k−N)を上流側制御用空燃比abyfsで除するのは、燃焼室25内で燃焼された混合気が上流側空燃比センサ66に到達するまでには、Nストロークに相当する時間を要しているからである。なお、筒内吸入空気量Mcは、各気筒の吸気行程毎に、その時点のエアフローメータ61の出力AFMと、エンジン回転速度NEとに基いて求められ(例えば、エアフローメータ61の出力AFMに一次遅れ処理を施した値をエンジン回転速度NEで除することにより求められ)、各吸気行程に対応してRAM73内に記憶されている。
【0045】
次いで、CPU71はステップ820に進み、現時点からNストローク前の筒内吸入空気量Mc(k−N)を現時点からNストローク前の時点における目標空燃比abyfr(k−N)(この例では、理論空燃比)で除することにより、現時点からNストローク前の目標筒内燃料供給量Fcr(k−N)を求める。そして、CPU71はステップ825に進んで目標筒内燃料供給量Fcr(k−N)から筒内燃料供給量Fc(k−N)を減じた値を筒内燃料供給量偏差DFcとして設定する。つまり、筒内燃料供給量偏差DFcは、Nストローク前の時点で筒内に供給された燃料の過不足分を表す量となる。次に、CPU71はステップ830に進み、下記数1に基いてフィードバック補正量DFiを求める。
【0046】
【数1】
DFi=(Gp・DFc+Gi・SDFc)・KFB
【0047】
上記数1において、Gpは予め設定された比例ゲイン、Giは予め設定された積分ゲインである。なお、数1の係数KFBはエンジン回転速度NE、及び筒内吸入空気量Mcにより可変とすることが好適であるが、ここでは「1」としている。また、値SDFcは筒内燃料供給量偏差DFcの積分値であり、次のステップ835にて更新される。即ち、CPU71は、ステップ835にてその時点における筒内燃料供給量偏差DFcの積分値SDFcに上記ステップ825にて求めた筒内燃料供給量偏差DFcを加えて、新たな筒内燃料供給量偏差の積分値SDFcを求め、ステップ895にて本ルーチンを一旦終了する。以上により、フィードバック補正量DFiが求められ、このフィードバック補正量DFiが前述した図7のステップ710,715により燃料噴射量に反映されるので、Nストローク前の燃料供給量の過不足が補償され、空燃比の平均値が目標空燃比abyfrと略一致せしめられる。
【0048】
一方、ステップ805の判定時において、空燃比フィードバック制御条件が不成立であると、CPU71は同ステップ805にて「No」と判定してステップ840に進み、空燃比フィードバック補正量DFiの値を「0」に設定し、ステップ895に進んで本ルーチンを一旦終了する。このように、空燃比フィードバック制御条件が不成立であるときは、空燃比フィードバック補正量DFiを「0」として空燃比(基本燃料噴射量Fbase)の補正を行わない。
【0049】
次に、下流側空燃比センサ67の出力に基く空燃比フィードバック制御について説明する。なお、かかる制御はサブフィードバック制御とも呼ばれる。このサブフィードバック制御により、サブフィードバック制御量vafsfbが算出される。
【0050】
CPU71は、サブフィードバック制御量vafsfbを求めるために、図9に示したルーチンを所定時間の経過毎に実行している。従って、所定のタイミングになると、CPU71はステップ900から処理を開始し、ステップ905に進んでサブフィードバック制御条件が成立しているか否かを判定する。サブフィードバック制御条件は、例えば、前述したステップ805での空燃比フィードバック制御条件に加え、機関の冷却水温THWが前記第1所定温度よりも高い第2所定温度以上のときに成立する。
【0051】
いま、サブフィードバック制御条件が成立しているものとして説明を続けると、CPU71はステップ905にて「Yes」と判定してステップ910に進み、所定の目標値Voxrefから現時点の下流側空燃比センサ67の出力Voxsを減じることにより、出力偏差量DVoxsを求める。この目標値Voxsrefは、三元触媒53の浄化効率が良好(最良)となるように定められ、ここでは、理論空燃比に対応した値(例えば、0.5(V))に設定されている。次に、CPU71はステップ915に進み、下記数2に基いてサブフィードバック制御量vafsfbを求める。
【0052】
【数2】
vafsfb=Kp・DVoxs+Ki・SDVoxs
【0053】
上記数2において、Kpは予め設定された比例ゲイン、Kiは予め設定された積分ゲインである。この比例ゲインKp、及び積分ゲインKiは、前述した空燃比フィードバック制御定数の一部を構成する劣化触媒に応じて(劣化したと判定すべき程度に劣化した三元触媒53に応じて)適合すべき量である。つまり、比例ゲインKp、及び積分ゲインKiは、劣化した触媒であると判定すべき程度に劣化した三元触媒53に対して下流側空燃比センサ67の出力Voxsの前記目標値Voxsrefに対する収束性が最適となるように定められる値である。また、SDVoxsは、出力偏差量DVoxsの積分値であって、次のステップ920にて更新される値である。即ち、CPU71は、ステップ920に進むと、その時点における出力偏差量の積分値SDVoxsに上記ステップ910にて求めた出力偏差量DVoxsを加えて、新たな出力偏差量の積分値SDVoxsを求め、その後、ステップ995に進んで本ルーチンを一旦終了する。
【0054】
このようにして、サブフィードバック制御量vafsfbが求められ、この値は前述した図8のステップ810にて上流側空燃比センサ66の実際の出力vabyfsに加えられ、その和(vabyfs + vafsfb)が図3に示したマップに基いて前記上流側制御用空燃比abyfsに変換される。換言すると、下流側空燃比センサ67の出力Voxsに基いて求められる(修正される)上流側制御用空燃比abyfsは、上流側空燃比センサ66が実際に検出している空燃比に対して、サブフィードバック制御量vafsfbに相当する分だけ異なる空燃比として求められる。この結果、前述した図8のステップ815にて計算される筒内燃料供給量Fc(k−N)が下流側空燃比センサ67の出力Voxsに応じて変化し、ステップ825,830にてフィードバック補正量DFiが同下流側空燃比センサ67の出力Voxsに応じて変更せしめられる。これにより、三元触媒53の下流側の空燃比が目標値Voxsrefに一致するように、機関の空燃比が制御せしめられる。
【0055】
例えば、機関の平均的な空燃比がリーンであるために下流側空燃比センサ67の出力Voxsが理論空燃比よりもリーンである空燃比に対応した値を示すと、ステップ910にて求められる出力偏差量DVoxsが正の値となるので、ステップ915にて求められるサブフィードバック制御量vafsfbは正の値となる。従って、ステップ810にて求められるabyfsは上流側空燃比センサ66が実際に検出している空燃比よりもリーンな値(より大きな値)として求められる。このため、ステップ815にて求められる筒内燃料供給量Fc(k−N)は小さい値となり、ステップ825にて求められる筒内燃料供給量偏差DFcは大きい正の値として求められるので、ステップ830にて求められる空燃比フィードバック補正量DFiが大きい正の値となる。これにより、図7のステップ710にて求められる最終燃料噴射量Fiは、基本燃料噴射量Fbaseよりも大きくなって、機関の空燃比がリッチとなるように制御される。
【0056】
反対に、機関の平均的な空燃比がリッチであるために下流側空燃比センサ67の出力Voxsが理論空燃比よりもリッチ空燃比に対応した値を示すと、ステップ910にて求められる出力偏差量DVoxsが負の値となるので、ステップ915にて求められるサブフィードバック制御量vafsfbは負の値となる。従って、ステップ910にて求められるabyfsは上流側空燃比センサ66が実際に検出している空燃比よりもリッチな値(より小さな値)として求められる。このため、ステップ915にて求められる筒内燃料供給量Fc(k−N)は大きい値となり、筒内燃料供給量偏差DFcは負の値として求められるので、フィードバック補正量DFiが負の値となる。これにより、図7のステップ710にて求められる最終燃料噴射量Fiは、基本燃料噴射量Fbaseよりも小さくなって、機関の空燃比がリーンとなるように制御される。
【0057】
次に、触媒劣化の判定を行うための作動について図10、図11を参照しながら説明する。図10は、触媒劣化判定に使用する下流側空燃比センサ67の出力Voxsの目標値Voxsrefに対する収束性の良否を表す収束度(ある出力を発生した頻度)を取得するルーチンをフローチャートにより示したものである。CPU71は、この図10のルーチンを所定時間の経過毎に実行するようになっている。
【0058】
従って、所定のタイミングになると、CPU71はステップ1000から処理を開始し、ステップ1002に進んで上述したサブフィードバック制御条件が成立しているか否かを判定し、成立していなければ直ちにステップ1095に進んで本ルーチンを一旦終了する。これは、サブフィードバック制御条件が成立して、下流側空燃比センサ67による空燃比フィードバック制御(サブフィードバック制御)が実行されている場合における同下流側空燃比センサ67の出力分布(目標値Voxsrefに対する収束度)に基いて、触媒の劣化有無を判定するためである。
【0059】
一方、サブフィードバック制御条件が成立していると、CPU71はステップ1002にて「Yes」と判定してステップ1004に進み、同ステップ1004にてその時点の下流側空燃比センサ出力Voxsが0.1(V)より小さいか否かを判定し、小さい場合にはステップ1006に進んでカウンタC0の値を1だけ増大し、その後、ステップ1008に進む。一方、下流側空燃比センサ出力Voxsが0.1(V)以上であれば、CPU71はステップ1004にて「No」と判定してステップ1008に直接進む。
【0060】
CPU71は、ステップ1008にてその時点の下流側空燃比センサ出力Voxsが0.1(V)以上で、且つ0.2(V)より小さいか否かを判定し、「Yes」と判定される場合にはステップ1010に進んでカウンタC1の値を1だけ増大し、その後、ステップ1012に進む。一方、CPU71は、ステップ1008にて「No」と判定される場合には、直接ステップ1012に進む。
【0061】
以下、CPU71は同様なステップの処理を行い、本ルーチンを実行する時点の下流側空燃比センサ出力Voxsの大きさに応じたカウンタC0〜C9の何れか一つの値を「1」だけ増大する。
【0062】
即ち、下流側空燃比センサ出力Voxsが、0.2(V)以上であって0.3(V)未満のときはカウンタC2、0.3(V)以上であって0.4(V)未満のときはカウンタC3、0.4(V)以上であって0.5(V)未満のときはカウンタC4、0.5(V)以上であって0.6(V)未満のときはカウンタC5、0.6(V)以上であって0.7(V)未満のときはカウンタC6、0.7(V)以上であって0.8(V)未満のときはカウンタC7、0.8(V)以上であって0.9(V)未満のときはカウンタC8、及び0.9(V)以上であるときはカウンタC9の値をそれぞれ「1」だけ増大する。
【0063】
そして、CPU71はステップ1044に進むと、同ステップ1044にてカウンタnの値を「1」だけ増大する。従って、このカウンタnの値は、出力分布のサンプリング回数を示す値となる。その後、CPU71はステップ1095に進み、本ルーチンを一旦終了する。
【0064】
また、CPU71は、図11にフローチャートにより示した三元触媒53が劣化したか否かを判定するためのルーチン(触媒劣化判定ルーチン)の処理を所定時間の経過毎に繰り返し実行するようになっている。従って、所定のタイミングになると、CPU71はステップ1100から処理を開始し、ステップ1105に進んで上記カウンタnの値が十分なサンプリングが行われたことを示す基準値n0以上となったか否かを判定する。このとき、カウンタnの値が基準値n0より小さければ、CPU71は触媒劣化判定を行うことなく、直接ステップ1195に進んで本ルーチンを一旦終了する。
【0065】
一方、図10に示したルーチンが、触媒劣化を判定するために十分な回数だけ行われると、カウンタnの値は基準値n0以上となる。この場合、CPU71はステップ1105にて「Yes」と判定してステップ1110に進み、カウンタC0〜C9の値を用いて触媒劣化判定を行う。具体的に述べると、CPU71は、図12に示した判定マップを参照してカウンタC0〜C9のうち劣化領域に存在するカウンタの個数を調べ、その個数が所定個数(例えば3個、または4個)以上であれば三元触媒53は劣化したものと判定する。図12に示した判定マップの境界線Lは、カウンタC4,C5の値が最も小さく、カウンタC3,C2,C1,C0の順に、及びカウンタC6,C7,C8,C9の順に次第にその値が大きくなるように構成された線である。これにより、下流側空燃比センサ67の出力Voxsが、図6に示した実線、又は破線の何れであるか、換言すると、下流側空燃比センサ出力Voxsの目標値Voxsrefに対する収束度が高いか否かが判定され、その結果により触媒が劣化したか否かが判定される。
【0066】
その後、CPU71はステップ1115にて触媒が劣化したか否かの判定結果をバックアップRAM74に格納し、ステップ1120にてカウンタnの値を「0」に設定するとともに、続くステップ1125にてカウンタC0〜C9の値を「0」に設定し、ステップ1195に進んで本ルーチンを一旦終了する。これにより、再度、カウンタnの値が基準値n0となるまで、カウンタC0〜C9の値が更新され、カウンタnの値が基準値n0となると更新されたカウンタC0〜C9の値に基づいて触媒劣化判定が行われる。
【0067】
以上、説明したように、本発明の実施形態によれば、下流側空燃比センサ67の出力Voxsが目標値Voxsrefと等しくなるように、且つ、三元触媒53が劣化触媒であると判定される程度にまで劣化した際に、下流側空燃比センサ67の出力Voxsが目標値Voxsrefを含む所定範囲(例えば、カウンタC4,C5に相当する出力範囲である0.4〜0.6(V))内の値を示す時間的頻度が最も大きくなるように空燃比フィードバック制御がなされ、同時に、下流側空燃比センサ67の出力Voxsの目標値Voxsrefに対する収束度に基いて三元触媒53が劣化したか否かを判定する(例えば、「収束度合い」を図12の劣化領域に存在する前記カウンタC0〜C9の個数とすれば、同収束度合いが所定値以上となったときに三元触媒53が劣化したと判定する。)。
【0068】
このような触媒劣化判定方法は、通常の空燃比フィードバック(サブフィードバック)における空燃比変動を伴うのみであって、従来技術のように機関が定常状態にあるときに空燃比を強制的に変化させないので、触媒劣化判定をドライバビリティの悪化を招くことなく行うことができる。また、三元触媒53が劣化触媒であると判定される程度にまで劣化した際に、下流側空燃比センサ67の出力Voxsが目標値Voxsrefを含む所定範囲内の値を示す時間的頻度が最も大きくなるように空燃比フィードバック制御がなされるから、三元触媒53が劣化した場合に空燃比が理論空燃比近傍に維持され易くなるため、三元触媒53による浄化を期待することができ、従って、エミッションを良好なものとすることができる。
【0069】
次に、上記実施形態の変形例について図13〜図15を参照して説明する。この変形例は、図10にフローチャートにより示したルーチンに代えて、図14にフローチャートにより示したルーチンを採用する点のみにおいて、上記実施形態と異なっている。従って、以下、かかる相違点についてのみ説明を加える。
【0070】
上記実施形態は、下流側空燃比センサ出力Voxsに基く空燃比フィードバック制御(サブフィードバック)を行った場合に、下流側空燃比センサ67の出力Voxsの目標値Voxsrefへの収束性(収束度、収束の程度)が三元触媒53の劣化の程度に応じて変化するとの知見に基いて、三元触媒53の劣化判定を行っていた。しかしながら、下流側空燃比センサ67の出力Voxsの目標値Voxsrefへの収束性は、触媒の劣化程度が同じであっても、内燃機関の運転状態、特に、筒内吸入空気量(一回の吸気行程あたりにその気筒が吸入する空気量)KL、及びエンジン回転速度NEに応じて変化する。
【0071】
即ち、図13に示したように、筒内吸入空気量KL、及びエンジン回転速度NEが大きい領域では、下流側空燃比センサ67の出力Voxsの目標値Voxsrefへの収束性は良好で、反対に、筒内吸入空気量KL、及びエンジン回転速度NEが小さい領域では、同収性は低下する。従って、これらの運転状態に拘らず、一律に前記収束度を求めると、触媒が劣化していないのにも拘らず劣化していると判定する可能性がある。そこで、本変形例では、下流側空燃比センサ67の出力Voxsの目標値Voxsrefへの収束度(収束の程度)に影響を及ぼす機関運転状態を考慮して、同収束度を求めることにより、触媒劣化判定の精度を高めた。
【0072】
具体的に述べると、CPU71は図14に示したルーチンを所定時間の経過毎に実行するようになっている。従って、所定のタイミングになると、CPU71はステップ1400から処理を開始し、ステップ1402に進んで上述したサブフィードバック制御条件が成立しているか否かを判定し、成立していなければ直ちにステップ1495に進んで本ルーチンを一旦終了する。ステップ1402の意義は、ステップ1002の意義と同じである。
【0073】
一方、サブフィードバック制御条件が成立していると、CPU71はステップ1402にて「Yes」と判定してステップ1404に進み、重み(加算値)gを算出する。具体的に述べると、CPU71はその時点のエンジン回転速度NEと図15(A)に示したマップとに基いて第1重み係数g1を求めるとともに、その時点の筒内吸入空気量KLと図15(B)に示したマップとに基いて第2重み係数g2を求め、前記第1重み係数g1と前記第2重み係数g2との積(g1・g2)を重みgとして算出する。図15(A)に示したマップは、エンジン回転速度NEが大きくなるに連れて第1重み係数g1が大きくなるように設定され、図15(B)に示したマップは、筒内吸入空気量KLが大きくなるに連れて第2重み係数g2が大きくなるように設定されている。この結果、エンジン回転速度NEが大きいほど、また、筒内吸入空気量KLが大きいほど大きい値を有する重みgが求められる。
【0074】
次いで、CPU71はステップ1406に進み、同ステップ1406にてその時点の下流側空燃比センサ出力Voxsが0.1(V)より小さいか否かを判定し、小さい場合にはステップ1408に進んでカウンタC0の値を上記求められた重みgだけ増大し、その後、ステップ1410に進む。一方、下流側空燃比センサ出力Voxsが0.1(V)以上であれば、CPU71はステップ1406にて「No」と判定してステップ1410に直接進む。
【0075】
CPU71は、ステップ1410にてその時点の下流側空燃比センサ出力Voxsが0.1(V)以上で、且つ0.2(V)より小さいか否かを判定し、「Yes」と判定される場合にはステップ1412に進んでカウンタC1の値を上記重みgだけ増大し、その後、ステップ1414に進む。一方、CPU71は、ステップ1410にて「No」と判定される場合には、直接ステップ1414に直接進む。
【0076】
以下、CPU71は同様なステップの処理を行い、本ルーチンを実行する時点の下流側空燃比センサ出力Voxsの大きさに応じたカウンタC0〜C9の何れか一つの値を上記重み「g」だけ増大する。そして、CPU71はステップ1446に進んでカウンタnの値を「1」だけ増大し、ステップ1495に進んで本ルーチンを一旦終了する。
【0077】
このようにして、カウンタC0〜C9の値は、前記空燃比フィードバック制御(サブフィードバック制御)下での下流側空燃比センサ出力Voxsの目標値Voxsrefに対する収束度に影響を与える機関の運転状態に応じて増大されることになる。換言すると、下流側空燃比センサ出力Voxsがある値であるとき、その値に対応する頻度がその時点の機関運転状態に応じて重み付けされて増大される。即ち、下流側空燃比センサ出力Voxsの目標値Voxsrefに対する収束度が高くなる(収束性が良好となる)機関の運転状態における下流側空燃比センサ出力Voxsの値を、他の運転状態における下流側空燃比センサ出力Voxsの値よりも尊重し、収束度(頻度)に大きく反映させる。この結果、三元触媒53の劣化度を精度良く表す収束度を得ることができるので、三元触媒53が劣化しているか否かの判定をより精度良く行うことができる。
【0078】
以上、説明したように、本発明による触媒劣化判定装置の実施形態とその変形例によれば、従来技術のように定常運転時における空燃比の強制的な変更を必要としないので、ドライバビリティを悪化させることなく三元触媒53が劣化しているか否かを判定することができる。また、通常の空燃比フィードバック制御(サブフィードバック制御)中に触媒劣化判定がなされるので、触媒劣化判定の機会を多く確保できるので、三元触媒53が劣化したか否かを遅滞なく判定することができる。
【0079】
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、三元触媒53の劣化判定は、上記カウンタC0〜C9のうち、ピーク値(最大値)を示すカウンタを探索し、そのカウンタがC4又はC5の何れかであれば、三元触媒53が劣化したものと判定するように構成してもよい。また、変形例において、重みgを決定する機関運転状態は、機関の単位時間当りの吸入空気量Gaであってもよい。また、サブフィードバック制御は、上記PI制御でなく、PID制御であってもよい。更に、下流側空燃比センサ67は、上流側空燃比センサ66と同様な空燃比センサであってもよい。また、下流側空燃比センサ67の出力Voxsのみに基づいて機関の空燃比をフィードバック制御するように構成してもよい。
【図面の簡単な説明】
【図1】 本発明による触媒劣化判定装置を適用した内燃機関の概略図である。
【図2】 図1に示したエアフローメータの出力電圧と計測された吸入空気量との関係を示したマップである。
【図3】 図1に示した上流側空燃比センサの出力電圧と空燃比との関係を示したマップである。
【図4】 図1に示した下流側空燃比センサの出力電圧と空燃比との関係を示したマップである。
【図5】 (A)は三元触媒が劣化していない場合の空燃比フィードバック制御(サブフィードバック制御)における下流側空燃比センサの出力波形を示したタイムチャートであり、(B)は三元触媒が劣化した場合の空燃比フィードバック制御(サブフィードバック制御)における下流側空燃比センサの出力波形を示したタイムチャートである。
【図6】 空燃比フィードバック制御(サブフィードバック制御)における下流側空燃比センサの出力分布を示したグラフである。
【図7】 図1に示したCPUが実行する燃料噴射量計算のためのルーチンを示したフローチャートである。
【図8】 図1に示したCPUが実行する空燃比フィードバック補正量の計算のためのルーチンを示したフローチャートである。
【図9】 図1に示したCPUが実行するサブフィードバック制御量の計算のためのルーチンを示したフローチャートである。
【図10】 触媒劣化判定に使用する下流側空燃比センサ出力の目標値に対する収束度(ある出力を発生した頻度)を取得するためのルーチンを示したフローチャートである。
【図11】 図1に示したCPUが実行する三元触媒が劣化したか否かを判定するためのルーチンを示したフローチャートである。
【図12】 図1に示したCPUが図11に示したルーチンを実行する際に参照するマップである。
【図13】 空燃比フィードバック制御における下流側空燃比センサ出力の収束性について説明するための図である。
【図14】 図1に示した触媒劣化判定装置の変形例において、触媒劣化判定に使用する下流側空燃比センサ出力の目標値に対する収束度を取得するためのルーチンを示したフローチャートである。
【図15】 (A)及び(B)は、図1に示したCPUが図14に示したルーチンを実行する際に使用するマップである。
【符号の説明】
10…内燃機関、25…燃焼室、39…インジェクタ、52…エキゾーストパイプ(排気管)、53…三元触媒、66…上流側空燃比センサ、67…下流側空燃比センサ、70…電気制御装置、71…CPU。

Claims (3)

  1. 内燃機関の排気通路に配設された三元触媒と、
    前記三元触媒下流の前記排気通路に配設された空燃比センサと、
    前記空燃比センサの出力が前記三元触媒の浄化効率が良好となる所定の目標値となるように同空燃比センサの出力と同目標値との偏差である出力偏差量に基くPI制御又はPID制御により前記機関の空燃比をフィードバック制御する空燃比フィードバック制御手段と、
    前記空燃比センサの出力に基いて前記三元触媒が劣化したか否かを判定する触媒劣化判定手段とを備えた触媒劣化判定装置において、
    前記空燃比フィードバック制御手段による前記空燃比のフィードバック制御におけるフィードバックゲインは、前記触媒劣化判定手段が劣化した触媒であると判定すべき程度に前記三元触媒が劣化した際に前記空燃比センサの出力が前記目標値を含む所定範囲内の値となっている時間的頻度が最大となり、劣化していない三元触媒に対する同空燃比センサの出力が同目標値を含む同所定範囲内の値となっている時間的頻度よりも大きくなるように、予め定められており、
    前記触媒劣化判定手段は、前記空燃比フィードバック制御下で、前記空燃比センサの出力が前記目標値を含む前記所定範囲内の値となる時間的頻度に基いて算出される同空燃比センサの出力の同目標値に対する収束度合いが所定値以上となったときに前記三元触媒が劣化した判定するように構成されてなる触媒劣化判定装置。
  2. 請求項1に記載の触媒劣化判定装置において、
    前記触媒劣化判定手段は、
    前記空燃比センサの出力の前記目標値に対する収束度合いを、同空燃比センサの出力が同目標値を含む所定範囲内の値となる時間的頻度と、同空燃比センサの出力が同所定範囲外の値となる時間的頻度とに基いて決定するように構成された触媒劣化判定装置。
  3. 請求項2に記載の触媒劣化判定装置において、
    前記触媒劣化判定手段は、
    前記空燃比フィードバック制御下での前記空燃比センサの出力の前記目標値に対する収束度合いに影響を与える前記機関の運転状態を検出し、前記検出した運転状態に基いて前記時間的頻度に重み付けし、同重み付けされた時間的頻度に基いて前記収束度合いを決定するように構成された触媒劣化判定装置。
JP2002032784A 2002-02-08 2002-02-08 触媒劣化判定装置 Expired - Fee Related JP4023174B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002032784A JP4023174B2 (ja) 2002-02-08 2002-02-08 触媒劣化判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002032784A JP4023174B2 (ja) 2002-02-08 2002-02-08 触媒劣化判定装置

Publications (2)

Publication Number Publication Date
JP2003232247A JP2003232247A (ja) 2003-08-22
JP4023174B2 true JP4023174B2 (ja) 2007-12-19

Family

ID=27775801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002032784A Expired - Fee Related JP4023174B2 (ja) 2002-02-08 2002-02-08 触媒劣化判定装置

Country Status (1)

Country Link
JP (1) JP4023174B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6823843B1 (en) * 2004-01-13 2004-11-30 Ford Global Technologies, Llc System and method to minimize the amount of NOx released from a NOx trap
JP6237460B2 (ja) 2013-09-26 2017-11-29 トヨタ自動車株式会社 内燃機関の異常診断装置

Also Published As

Publication number Publication date
JP2003232247A (ja) 2003-08-22

Similar Documents

Publication Publication Date Title
JP3846375B2 (ja) 触媒劣化判定方法
JP4957559B2 (ja) 内燃機関の空燃比制御装置
JP3963130B2 (ja) 触媒劣化判定装置
JP3846480B2 (ja) 内燃機関の排気浄化装置
JP4039380B2 (ja) 内燃機関の空燃比制御装置
JP5035389B2 (ja) 酸素濃度センサの応答性取得装置
JP3922091B2 (ja) 内燃機関の空燃比制御装置
JP4280931B2 (ja) 内燃機関の空燃比制御装置
JP2005351153A (ja) 触媒劣化判定装置
JP4082130B2 (ja) 触媒劣化判定装置
JP3815386B2 (ja) 触媒劣化判定方法
JP4023174B2 (ja) 触媒劣化判定装置
JP4893634B2 (ja) 内燃機関の空燃比制御装置
JP4807359B2 (ja) 内燃機関の空燃比制御装置
JP2006112274A (ja) 内燃機関の空燃比制御装置
JP2003314334A (ja) 内燃機関の空燃比制御装置
JP4349205B2 (ja) 空燃比制御装置
JP2005009401A (ja) 内燃機関の排気浄化装置
JP4888397B2 (ja) 内燃機関の空燃比制御装置
JP3879596B2 (ja) 空燃比センサ状態判定装置
JP4299218B2 (ja) 内燃機関の空燃比制御装置
JP2007231902A (ja) 内燃機関の空燃比制御装置
JP2017115802A (ja) 内燃機関の空燃比制御装置
JP2009197683A (ja) 内燃機関の空燃比制御装置
JP2009228498A (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees