JP4022794B2 - 光半導体装置の製造方法 - Google Patents

光半導体装置の製造方法 Download PDF

Info

Publication number
JP4022794B2
JP4022794B2 JP1943899A JP1943899A JP4022794B2 JP 4022794 B2 JP4022794 B2 JP 4022794B2 JP 1943899 A JP1943899 A JP 1943899A JP 1943899 A JP1943899 A JP 1943899A JP 4022794 B2 JP4022794 B2 JP 4022794B2
Authority
JP
Japan
Prior art keywords
diffraction grating
layer
inp
ingaasp
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1943899A
Other languages
English (en)
Other versions
JP2000223772A5 (ja
JP2000223772A (ja
Inventor
満 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1943899A priority Critical patent/JP4022794B2/ja
Publication of JP2000223772A publication Critical patent/JP2000223772A/ja
Publication of JP2000223772A5 publication Critical patent/JP2000223772A5/ja
Application granted granted Critical
Publication of JP4022794B2 publication Critical patent/JP4022794B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回折格子を要素の一つとして構成される分布帰還型(distributed feedback:DFB)半導体レーザのような光半導体装置を製造するのに好適な方法に関する。
【0002】
【従来の技術】
通常、DFB半導体レーザは、動作中、高温になる為、ペルチェ素子を用いてクーリングを行っているが、低コスト化の為、高温で動作するクーラーレスDFB半導体レーザの実現が期待されている。
【0003】
その為には、光と回折格子との結合効率を大きくして、動作電流を低減させなければならないが、結合効率を大きくするには、基本的に回折格子の深さを深くする必要がある。
【0004】
然しながら、InP基板に形成した回折格子に於いては、深い回折格子上に良好なInGaAsP結晶を成長することは難しく、従って、クーラーレスDFB半導体レーザの実現は極めて困難である。
【0005】
然しながら、本出願人に於いて開発された先行技術に依れば、回折格子が比較的深くても、InGaAsP結晶の成長は容易であることが示されている(要すれば、「特願平10−130771号」、を参照)。
【0006】
図3は先行技術を説明する為のDFB半導体レーザを表す要部切断側面(縦断面)図である。
【0007】
図に於いて、1はn−InP基板、2はn−InGaAsP回折格子用半導体層、2Gはn−InGaAsP回折格子(grating)、3はn−InPスペーサ層、4はInGaAsPからなるn側SCH(separate confinement heterostructure)層、5はInGaAsPMQW(multiple quantum wells)活性層、6はInGaAsPからなるp側SCH層、7はp−InPクラッド層、8はp−InGaAsPキャップ層、9はp−InPカバー層、dg は回折格子用半導体層2の厚さ、ds はスペーサ層3の厚さをそれぞれ示し、また、図の左側に記載した温度は、矢印で示した範囲の結晶を成長させた際の成長温度である。尚、図に現れているn−InGaAsP回折格子2Gは1本分の回折格子部の一部をなすものと考えれば良い。
【0008】
埋め込みn−InGaAsP回折格子部を形成する際、n−InGaAsP回折格子2Gの熱変形防止の為、まず500〔℃〕以下の低温InP成長に依ってn−InGaAsP回折格子2Gを被覆し、その後、通常の成長温度、即ち、600〔℃〕台に昇温してMQW活性層5を成長する。
【0009】
埋め込みn−InGaAsP回折格子部上に積層したMQW活性層5の結晶性は、低温InP成長時の成長速度と五族原料分圧に強く依存する。
【0010】
図4は温度470〔℃〕のInP成長でInGaAsP回折格子部を埋め込んだ下地にInGaAsPMQW活性層を成長した場合の結晶性マッピングを表す線図であり、横軸には低温InP成長速度=DR〔μm/h〕を、また、縦軸にはキャリヤ・ガスであるH2 の総流量に対するPH3 の流量比、即ち、PH3 /H2 =FR〔%〕をそれぞれ採ってある。
【0011】
この場合、InGaAsPMQW活性層の成長は有機金属気相成長(metalorganic vapor phase epitaxy:MOVPE)法で行ない、原料には、トリメチルインジウム(TMIn:In(CH3 3 )とトリエチルガリウム(TEGa:Ga(C2 5 3 )とホスフィン(PH3 )とアルシン(AsH3 )を用いている。
【0012】
図4内に見られる数値は、フォトルミネセンス(photoluminescence:PL)強度を電圧値として示したものであり、また、○や×はPL強度と表面モホロジ(morphology)から判定したInGaAsPMQW活性層の結晶性であって、○は良好、×は不良を示している。
【0013】
さて、面指数が(100)である平坦な基板上に於ける低温InP成長の成長速度をDR〔μm/h〕、H2 キャリヤ・ガスの総流量に対するPH3 の流量比をFR〔%〕とした場合、
log10FR≧4.4DR−1.3 ・・・・ (1)
なる式を満足させるようにInGaAsP回折格子部をInPで埋め込めば、その上に成長させるInGaAsPMQW活性層は良好なものになるとされ、概して低成長速度及び高PH3 供給なる条件で良好な結晶が得られている。
【0014】
ところで、近年、波長分割多重(wavelength division multiplexing:WDM)通信用光源として、発振波長を異にする半導体レーザをアレイ化する集積化成長技術の開発が希求されている。
【0015】
それを具現化する手段としては、選択成長法を利用した集積化成長技術の他、平坦基板上に周期を異にする回折格子部をアレイ状に配置したもの(以下、回折格子部アレイとする)を利用する方法がある。
【0016】
図5及び図6は回折格子部アレイを表す要部説明図であり、何れの図に於いても(A)は平面を、(B)は(A)に見られる線X−Xで切断した横断面をそれぞれ表している。因みに、図3は図5或いは図6の(A)に見られる線Y−Yで切断した縦断面を表している。
【0017】
図5に見られる回折格子部アレイと図6に見られる回折格子部アレイとの相違は、回折格子部が凹型、即ち、回折格子部の周囲に回折格子用半導体層が存在する構成になっているか、或いは、回折格子部が凸型、即ち、回折格子部の周囲から回折格子用半導体層を除去した構成になっているかの相違だけである。
【0018】
図に於いて、11は面指数が(100)のInP基板、12はInGaAsP回折格子用半導体層、12A1 ,12A2 ,12A3 ,12A4 は回折格子部、12Bは平坦部、W1 は回折格子部の幅、W2 は回折格子部のピッチをそれぞれ示している。尚、図5に於ける平坦部12Bとして、InGaAsP回折格子用半導体層12が表出され、図6に於ける平坦部12Bとして、InP基板11が表出されている。
【0019】
一例として、回折格子部の幅W1 は20〔μm〕、回折格子部のピッチW2 は300〔μm〕であり、回折格子部12A1 に於ける回折格子の周期はP1 、回折格子部12A2 に於ける回折格子の周期はP2 、回折格子部12A3 に於ける回折格子の周期はP3 、回折格子部12A4 に於ける回折格子の周期はP4 であって、この場合、周期P1 乃至周期P4 は、それぞれ異なっているものとする。
【0020】
ここで、InGaAsP回折格子がInP基板11の全面に形成されている場合には、数式(1)を満たす条件を適用し、InGaAsP回折格子をInPで埋め込めば、その上に形成されるMQW活性層の結晶性は良好なものとなるのであるが、図示されているように、回折格子部アレイの場合には、良好な結晶を得る為のInGaAsP回折格子部の埋め込み条件、従って、数式(1)と異なる式を見出さなければならない筈である。
【0021】
実験に依れば、図4について説明した全面回折格子で良好な結晶が得られた条件、即ち、成長速度0.2〔μm/h〕、PH3 /H2 流量比2.4〔%〕なる条件でInGaAsP回折格子部アレイを470〔℃〕の低温成長InPで埋め込んだところ、積層欠陥が発生し、MQW活性層を良好に積層成長することはできなかった。
【0022】
【発明が解決しようとする課題】
本発明では、回折格子部アレイ上に高品質の半導体層を再現性良く堆積する技術を実現し、発振波長を異にして且つ高温で動作するクーラーレスDFB半導体レーザをアレイ化できるようにする。
【0023】
【課題を解決するための手段】
前記説明した通り、(100)InP基板の全面に形成したInGaAsP回折格子の場合、それを埋め込む低温InP成長時の成長速度は基板面内の全ての箇所で(100)平坦基板上の成長速度と同じである。
【0024】
これに対して、部分的に形成したInGaAsP回折格子部の場合、回折格子部(図5及び図6参照)に於ける成長速度は増加すると考えられる。
【0025】
図1は本発明の原理を解説する為の工程要所に於ける光半導体装置を表す要部切断側面図である。
【0026】
図に於いて、21は面指数(100)のInP基板、22は面指数(100)のInGaAsP回折格子用半導体層、22Aは回折格子部、22Bは平坦部をそれぞれ示している。
【0027】
低温InP成長時には、回折格子用半導体層22に回折格子を切って形成した回折格子部22Aの方が(100)平坦部22Bに比較して成長原料の取り込み速度が速い為、(100)平坦部22Bから回折格子部22Aに拡散することで回折格子部22Aの成長速度が速まるものと考えられている。
【0028】
但し、回折格子部22Aが埋め込まれて平坦になった場合、平坦部22Bからの成長原料拡散はなくなり、成長速度は平坦部22B及び回折格子部22Aで同じになる。
【0029】
埋め込み成長当初の回折格子部22Aに於ける成長速度の増加率は、回折格子部22Aの面内被覆率にも依るが、大体A倍以上(A=2〜3)である。
【0030】
低温成長時の回折格子部22Aの成長速度が、結晶性が劣化する臨界成長速度に比較して速くなると、回折格子部22Aに欠陥が発生し、その上に積層成長するエピタキシャル成長層の結晶性を低下させる。
【0031】
従って、InGaAsP回折格子部アレイをもつ基板に良好な半導体層を堆積する為には、H2 キャリヤ・ガスの総流量に対するP原料の流量比をFR〔%〕としたとき、低温InP成長時に於ける回折格子部22Aの成長速度DRg 〔μm/h〕(「g 」はgratingの意)を
log10FR≧4.4DRg −1.3 ・・・・ (2)
を満たすように成長条件を設定すれば良いことが実験結果として得られた。
【0032】
また、式(2)に依らず、低温InP成長時の(100)平坦部22Bに於ける成長速度DRf 〔μm/h〕(「f 」はflatの意)を
log10FR≧4.4DRc −1.3 ・・・・ (3)
で定義される臨界成長速度DRc の1/A以下に設定しても良い。
【0033】
図2は本発明の原理を解説する為の結晶性マッピングを表す線図であり、図4と同様、470〔℃〕のInP成長でInGaAsP回折格子部を埋め込んだ下地にInGaAsPMQW活性層を成長した場合を表し、横軸には低温InP成長速度=DR〔μm/h〕を、また、縦軸にはキャリヤ・ガスであるH2 の総流量に対するPH3 の流量比、即ち、PH3 /H2 =FR〔%〕をそれぞれ採ってある。尚、図2に於ける破線は前記説明した先行技術に於ける式、即ち、
log10FR≧4.4DRf −1.3 ・・・・ (1)
に対応する線であり、その破線の左側の領域が先行技術を適用して良い結果が得られる成長条件の範囲に対応している。
【0034】
さて、式(3)から得られる結果を図2に当てはめ、
log10FR≧4.4A・DRf −1.3 (A=2〜3) ・・・・ (4)
を満たす条件を採用し、回折格子部アレイを低温InP成長で埋め込むと良い結果が得られる。
【0035】
尚、低温InP成長の成長温度やP原料の種類に依っては、式(4)の数値が若干変化することがあるので、低温InP成長の成長速度を0.1〔μm/h〕以下に設定すると良い。
【0036】
何れにせよ、実験結果からすると、式(4)で定められる範囲、即ち、図2に於いて砂地模様で施してある範囲に於いては、回折格子部アレイに対しては勿論のこと、全面回折格子、その他の如何なる回折格子に対しても最良の結果を得られることが確認されている。
【0037】
前記したところから、本発明に依る光半導体装置の製造方法に於いては、
(1)
面指数が(100)であるInP基板にInPと屈折率を異にする三族−五族化合物半導体からなる回折格子用半導体層を堆積する工程と、次いで、該回折格子用半導体層の局所に回折格子を切って複数条の回折格子部を形成する工程と、次いで、該複数条の回折格子部を埋め込むと共に該回折格子用半導体層を被覆するInPからなる第一の層を堆積する工程と、次いで、該第一の層を堆積した際に比較し基板温度を高くして該第一の層上にInPからなる第二の層を堆積する工程とが含まれ、該第一の層を堆積する工程は、Inの原料を有機金属、Pの原料をPH 3 或いは有機P、キャリヤ・ガスをH 2 とする有機金属気相成長法を適用し、且つ、該回折格子用半導体層の回折格子部以外の面指数が(100)の平坦部に於ける成長速度をDR 1 〔μm/h〕、キャリヤ・ガスH 2 の総流量に対するP原料の流量比をFR〔%〕としたとき、log 10 FR≧4.4A・DR 1 −1.3(A=2〜3)の条件を満たして実施されることを特徴とするか、又は、
【0038】
(2)
前記(1)に於いて、成長速度DR 1 を0.1〔μm/h〕以下とすることを特徴とする。
【0040】
前記手段を採ることに依り、回折格子部アレイ或いは全面回折格子を問わず、光との結合効率を大きくする為にそれ等回折格子を深く形成しても埋め込みを良好に行うことができ、従って、その上に積層成長される半導体結晶は高品質なものとなり、クーラーレスDFB半導体レーザをアレイ化してWDM用光源を実現する場合などに好結果を得ることができる。
【0041】
【発明の実施の形態】
本発明に於ける光半導体装置の構成は、先行技術に依る光半導体装置として説明した図3に見られるものと変わりなく、唯、結晶の成長条件が異なるので、以下の説明は、図3を参照すると良い。
【0042】
(1) MOVPE法を適用することに依り、面指数(100)のInP基板1に厚さdg =80〔nm〕であるInGaAsP(組成波長は1.1〔μm〕)回折格子用半導体層2を形成する。
【0043】
(2) EB(electron beam)描画及びドライ・エッチングに依って回折格子用半導体層2に回折格子2Gを切って回折格子部12A1 、12A2 、12A3 、12A4 (図5及び図6を参照)を形成する。
【0044】
回折格子部アレイに於ける回折格子部12A1 、12A2 、12A3 、12A4 などの幅は20〔μm〕、回折格子部間に存在する平坦部12B(図5及び図6参照)の幅は280〔μm〕、回折格子周期は200〔nm〕である。
【0045】
(3) 前記回折格子部アレイが形成されたInP基板1上に該回折格子部アレイを埋め、且つ、その上に図示のDFB半導体レーザを作成するのに必要な諸半導体結晶層を成長させる。
【0046】
それには、MOVPE法を適用し、原料としてTMIn、TEGa、PH3 、AsH3 、キャリヤ・ガスとしてH2 を用いる。尚、H2 の総流量は6000〔ccm〕である。
【0047】
また、InPスペーサ層3の厚さds は150〔nm〕であり、最初の50〔nm〕は470〔℃〕の低温で成長し、次に、残り100〔nm〕は470〔℃〕から630〔℃〕への昇温過程で成長する。
【0048】
因みに、PH3 流量を144〔ccm〕、即ち、PH3 /H2 流量比を2.4〔%〕として、全面回折格子の場合に良好な結晶が得られる(100)平坦基板上の成長速度0.2〔μm/h〕なる条件で、InGaAsPからなる回折格子部アレイを470〔℃〕のInP成長で埋め込み、その上にDFB半導体レーザを構成する諸半導体層を成長したところ、平坦部では良好な結晶性が得られたが、回折格子部では表面が荒れてMQW活性層のPL強度もかなり弱かった。
【0049】
成長した諸半導体層の断面をSEM(scanning electron microscopy)観察した結果、回折格子部では、InPスペーサ層から表面まで積層欠陥が存在し、また、InPスペーサ層の厚さも設計値の約2倍であることが判った。
【0050】
さて、本発明に依るInPスペーサ層3の形成に於いて、PH3 /H2 流量比を2.4〔%〕一定とし、470〔℃〕に於けるInP成長速度を平坦基板上の0.1〔μm/h〕に設定することで式(4)を満たす条件を整えて、InGaAsP回折格子部アレイを埋め込み、その上にDFB半導体レーザを構成する諸半導体層を成長したところ、回折格子部アレイに於ける回折格子部上では、平坦部上と同等に良好な結晶性が得られた。
【0051】
成長した諸半導体層の断面をSEM観察した結果、回折格子部上に積層欠陥は存在しなかった。
【0052】
前記したところから明らかであるが、InGaAsP回折格子部アレイを低温InP成長で埋め込む場合には、全面回折格子を埋め込む場合に比較し、更に成長速度を低下させると有効であることが確認された。
【0053】
前記実施の形態では、InGaAsP回折格子部アレイとして、平坦部にInGaAsP回折格子層が残っている凹型の回折格子部を対象として説明したが、平坦部のInGaAsP回折格子層を除去した凸型の回折格子部アレイを用いることも可能である。
【0054】
前記実施の形態では、アレイになっている各回折格子部の周期がそれぞれ異なっているものを例示して説明したが、本発明は、周期が同じの場合にも、同様に適用して有効である。
【0055】
【発明の効果】
本発明に依る光半導体装置の製造方法に於いては、面指数が(100)であるInP基板にInPと屈折率を異にする三族−五族化合物半導体からなる回折格子用半導体層を堆積する工程と、次いで、該回折格子用半導体層の局所に回折格子を切って複数条の回折格子部を形成する工程と、次いで、該複数条の回折格子部を埋め込むと共に該回折格子用半導体層を被覆するInPからなる第一の層を堆積する工程と、次いで、該第一の層を堆積した際に比較し基板温度を高くして該第一の層上にInPからなる第二の層を堆積する工程とが含まれ、該第一の層を堆積する工程は、Inの原料を有機金属、Pの原料をPH 3 或いは有機P、キャリヤ・ガスをH 2 とする有機金属気相成長法を適用し、且つ、該回折格子用半導体層の回折格子部以外の面指数が(100)の平坦部に於ける成長速度をDR 1 〔μm/h〕、キャリヤ・ガスH 2 の総流量に対するP原料の流量比をFR〔%〕としたとき、log 10 FR≧4.4A・DR 1 −1.3(A=2〜3)の条件を満たして実施される。
【0056】
前記構成を採ることに依り、回折格子部アレイ或いは全面回折格子を問わず、光との結合効率を大きくする為にそれ等回折格子を深く形成しても埋め込みを良好に行うことができ、従って、その上に積層成長される半導体結晶は高品質なものとなり、クーラーレスDFB半導体レーザをアレイ化してWDM用光源を実現する場合などに好結果を得ることができる。
【図面の簡単な説明】
【図1】本発明の原理を解説する為の工程要所に於ける光半導体装置を表す要部切断側面図である。
【図2】本発明の原理を解説する為の結晶性マッピングを表す線図である。
【図3】先行技術を説明する為のDFB半導体レーザを表す要部切断側面(縦断面)図である。
【図4】温度470〔℃〕のInP成長でInGaAsP回折格子部を埋め込んだ下地にInGaAsPMQW活性層を成長した場合の結晶性マッピングを表す線図である。
【図5】回折格子部アレイを表す要部説明図である。
【図6】回折格子部アレイを表す要部説明図である。
【符号の説明】
1 n−InP基板
2 n−InGaAsP回折格子用半導体層
2G n−InGaAsP回折格子(grating)
3 n−InPスペーサ層
4 InGaAsPからなるn側SCH層
5 InGaAsPMQW活性層
6 InGaAsPからなるp側SCH層
7 p−InPクラッド層
8 p−InGaAsPキャップ層
9 p−InPカバー層
11 面指数が(100)のInP基板
12 InGaAsP回折格子用半導体層
12A1 ,12A2 ,12A3 ,12A4 回折格子部
12B 平坦部
g 回折格子用半導体層2の厚さ
s スペーサ層3の厚さ
1 回折格子部の幅
2 回折格子部のピッチ

Claims (2)

  1. 面指数が(100)であるInP基板にInPと屈折率を異にする三族−五族化合物半導体からなる回折格子用半導体層を堆積する工程と、
    次いで、該回折格子用半導体層の局所に回折格子を切って複数条の回折格子部を形成する工程と、
    次いで、該複数条の回折格子部を埋め込むと共に該回折格子用半導体層を被覆するInPからなる第一の層を堆積する工程と、
    次いで、該第一の層を堆積した際に比較し基板温度を高くして該第一の層上にInPからなる第二の層を堆積する工程とが含まれ、
    該第一の層を堆積する工程は、
    Inの原料を有機金属、Pの原料をPH 3 或いは有機P、キャリヤ・ガスをH 2 とする有機金属気相成長法を適用し、且つ、該回折格子用半導体層の回折格子部以外の面指数が(100)の平坦部に於ける成長速度をDR 1 〔μm/h〕、キャリヤ・ガスH 2 の総流量に対するP原料の流量比をFR〔%〕としたとき、
    log 10 FR≧4.4A・DR 1 −1.3(A=2〜3)
    の条件を満たして実施されること
    を特徴とする光半導体装置の製造方法。
  2. 成長速度DR 1 を0.1〔μm/h〕以下とすること
    を特徴とする請求項1記載の光半導体装置の製造方法。
JP1943899A 1999-01-28 1999-01-28 光半導体装置の製造方法 Expired - Lifetime JP4022794B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1943899A JP4022794B2 (ja) 1999-01-28 1999-01-28 光半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1943899A JP4022794B2 (ja) 1999-01-28 1999-01-28 光半導体装置の製造方法

Publications (3)

Publication Number Publication Date
JP2000223772A JP2000223772A (ja) 2000-08-11
JP2000223772A5 JP2000223772A5 (ja) 2005-06-16
JP4022794B2 true JP4022794B2 (ja) 2007-12-19

Family

ID=11999309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1943899A Expired - Lifetime JP4022794B2 (ja) 1999-01-28 1999-01-28 光半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP4022794B2 (ja)

Also Published As

Publication number Publication date
JP2000223772A (ja) 2000-08-11

Similar Documents

Publication Publication Date Title
JP5082447B2 (ja) 半導体レーザ素子およびその製造方法
JP5146481B2 (ja) ナイトライド系iii−v族化合物半導体装置、及び半導体装置の製造方法
JP7279875B2 (ja) 面発光レーザ素子及び面発光レーザ素子の製造方法
JPH0878386A (ja) 半導体エッチング方法,半導体装置の製造方法,半導体レーザの製造方法,及び半導体レーザ
JP2007019492A (ja) 単一のステップmocvdによって製造される導波格子を組み込んだ埋め込みヘテロ構造デバイス
EP3588704B1 (en) Surface-emitting laser and method for manufacturing surface-emitting laser
JP3977920B2 (ja) 半導体装置の製造方法
JP2007035784A (ja) 分布帰還型半導体レーザ
JP3045115B2 (ja) 光半導体装置の製造方法
JP2008130731A (ja) 半導体発光装置の製造方法およびこれを用いて製造された半導体発光装置
JP5169534B2 (ja) 集積型光半導体装置の製造方法及び集積型光半導体装置
JP4022794B2 (ja) 光半導体装置の製造方法
JP3982940B2 (ja) 光半導体素子の製造方法
JPH0936487A (ja) 半導体装置の製造方法
JP4457578B2 (ja) 半導体光素子を製造する方法、及び半導体光素子
JPH077232A (ja) 光半導体装置
JP4325558B2 (ja) 半導体レーザ、および半導体レーザを作製する方法
JP2546381B2 (ja) 分布帰還型半導体レーザおよびその製造方法
JP4121539B2 (ja) 半導体装置の製造方法
JPH02283084A (ja) 半導体レーザの製造方法
JPH09186391A (ja) 化合物半導体装置及びその製造方法
JP4862749B2 (ja) Iii−v化合物半導体光素子を作製する方法
JP5573819B2 (ja) Iii−v化合物半導体光素子を作製する方法
JP2001044571A (ja) 半導体光素子およびその製造方法
JPH07176830A (ja) 半導体発光素子の製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19990128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19990602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070919

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term