JP4020757B2 - Light emitting element array - Google Patents

Light emitting element array Download PDF

Info

Publication number
JP4020757B2
JP4020757B2 JP2002325436A JP2002325436A JP4020757B2 JP 4020757 B2 JP4020757 B2 JP 4020757B2 JP 2002325436 A JP2002325436 A JP 2002325436A JP 2002325436 A JP2002325436 A JP 2002325436A JP 4020757 B2 JP4020757 B2 JP 4020757B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
common
wiring
element array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002325436A
Other languages
Japanese (ja)
Other versions
JP2004158799A (en
Inventor
裕記 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tottori Sanyo Electric Co Ltd
Priority to JP2002325436A priority Critical patent/JP4020757B2/en
Publication of JP2004158799A publication Critical patent/JP2004158799A/en
Application granted granted Critical
Publication of JP4020757B2 publication Critical patent/JP4020757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LEDプリンタ等に用いられる発光素子アレイに関する。
【0002】
【従来の技術】
近年、電子写真式の光プリンタの光源には、発光素子アレイが使用されている。この発光素子アレイは、単一の半導体基板に複数の発光素子を1次元的等間隔で配置形成した半導体発光装置である。又、従来、発光素子アレイとしては、半導体レーザを発光素子として用いた半導体レーザアレイと、発光ダイオード(Light Emitting Diode;以下、「LED」という。)を発光素子として用いたLEDアレイとが、使用されている。
【0003】
図8には、従来例に係る多層配線型LEDアレイ200の概略構成を示す。
【0004】
同図に示すように、多層配線型LEDアレイ200には、複数の発光部201が一次元的に配列されており、相互に分離された発光部のグループが、2以上のブロック204に分かれ、ブロック分離のために分離溝205が形成されている。又、多層配線型LEDアレイ200には、発光素子201に接続される個別配線202が形成されており、個別配線202は、複数のブロック204にまたがって形成されている共通配線203に、平面方向で略垂直となるように多層接続されている。(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平11―8409号公報(第8−9頁、第17、19図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来例では、個別配線202と共通配線203を多層配線にし、個別配線202と共通配線203が交差する構造となっているため、製造工程が複雑になるとともに、各配線間で短絡が生じ、発光素子アレイの歩留が低下する可能性があった。又、共通配線203には発光部を全点灯させるだけの電流が流れるため、その巾や厚さはその電流値により設計され、共通配線203に接続される個別配線202の数が増加すると、共通配線203の配線幅と厚さが大きくなってしまい、発光素子アレイの寸法に影響を及ぼすという問題があった。
【0007】
本発明は、上記問題点を解決し、配線間の短絡を回避でき、発光素子アレイの歩留を向上させるとともに、製造工程の複雑化を防止することができる発光素子アレイを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の発光素子アレイは、発光素子列における発光素子を複数個毎に分割した2以上のブロックを有する発光素子アレイにおいて、ブロックの各々には、ブロックに含まれる発光素子に1対1で接続される個別配線が形成され、個別配線に接続される共通配線がブロックにまたがって発光素子列の両側に配置され、ブロックのいずれかには、共通配線を外部に接続するためのボンディング電極が設けられ、ブロックのいずれかに含まれる発光素子の間に形成された接続用配線により共通配線とボンディング電極が接続されていることを特徴とする。
【0009】
ここで、ボンディング電極は発光素子列の片側に設けられおり、ブロックにまたがって発光素子列の両側に配置された共通配線であって、発光素子列に対してボンディング電極と反対側に配置された共通配線が、接続用配線によりボンディング電極と接続されているものとすることかできる。
【0010】
又、接続用配線が形成されたブロックに含まれる発光素子のうちのいずれかの発光素子とボンディング電極は、接続用配線が形成されたブロックに設けられた他の接続用配線により接続されているものとすることができる。
【0011】
又、複数のブロック毎にグループを形成し、グループ毎に共通配線を分離して設けたものとすることができる。
【0012】
又、複数の発光素子が形成された半導体層を備え、半導体層にブロックを分離するための分離溝が設けられているものとすることができる。
【0015】
【発明の実施の形態】
以下、図面を参照して、本発明の実施形態を詳細に説明する。図1は、本発明の実施形態のLEDアレイを概略的に示す平面図である。発光素子アレイ100には、複数の発光素子101が一次元的に配列されており、相互に分離された発光素子のグループが、2以上の個別ブロック104に分かれている。ここで、各個別ブロック104には、発光素子列における発光素子101が2個毎に分割されて形成されているが、各個別ブロックに形成される発光素子は3個以上であっても良い。
【0016】
各発光素子101には、発光素子101に1対1で接続される個別配線102が接続されており、個別配線102は、複数のブロック104にまたがって形成されている共通配線103aと103bに接続されている。ここで、共通配線103a、103bは、発光素子アレイ100上に形成された発光素子列の両側に配置されておいる。
【0017】
各ブロック104に形成された2個の発光素子101a、101bのうち、発光素子101aに接続されている個別配線102aが、共通配線103aに接続され、発光素子101bに接続されている個別配線102bが、共通配線103bに接続されている。
【0018】
発光素子アレイ100には、ブロック分離のための分離溝105が形成されており、この分離溝105により個別ブロック104は互いに電気的に分離されている。又、2つ以上のブロック104毎にグループ108を形成し、各グループ毎に共通配線103a、103bを分離して設ける構造としている。尚、本実施形態では、6つのブロック毎にグループを形成しており、各グループの個別配線102a、102bと共通配線103a、103bの接続は、同一のパターンで形成されている。又、上記ブロックの数は、用途に応じて適宜選択することができ、複数であればいくつでも良く、2つ以上のブロック毎にグループを形成する構成とすることができる。
【0019】
また、図1に示す様に、n側のワイヤボンディングパッドである共通n側電極パッド(共通n側電極)106a、106bが、グループ108を形成するブロック104に形成されている。これらの共通n側電極パッド(共通n側電極)106a、106bは、共通配線103a、103bを外部に接続するために設けられたボンディングパッド(ボンディング電極)であり、発光素子101の列に対して片側(即ち、図1においては上側)に設けられている。
【0020】
ここで、本実施形態においては、図1に示す様に、共通n側電極パッド106aは、発光素子アレイ100上に形成された発光素子列の両側に配置されている共通配線103a、103bのうち、共通配線103aと接続されており、共通n側電極パッド106bは、ブロック104に含まれる2つの発光素子101a、101bの間に形成された接続用配線130により、共通配線103bと接続されている点に特徴がある。
【0021】
即ち、共通n側電極パッド106bは、接続用配線130を介して、ブロック104にまたがって発光素子101の両側に配置された共通配線103a、103bのうち、発光素子101の列に対して、共通n側電極パッド106bが形成されている側と反対側(即ち、図1においては下側)に配置された共通配線103bと接続されていることを特徴とする。
【0022】
p側のワイヤボンディングパッドである個別p側電極パッド107(個別p側電極)は、各ブロック104に1ずつ形成されている。ここで、個別p側電極パッド107は、発光素子列に対して、共通n側電極パッド106a、106bが形成されている側と反対側に形成されている。尚、本実施形態では、共通n側電極パッド106a、106b上と個別p側電極パッド107上には、それぞれ、外部電極との接続の都合やワイヤボンディングの都合等による高さの調整のため、更に他の電極パッドを形成することもできる。
【0023】
以上に説明した様に、本実施形態においては、個別配線102aに接続される共通配線103a、及び個別配線102bに接続される共通配線103bがブロック104にまたがって発光素子列の両側に配置されており、共通n側電極パッド(共通n側電極)106a、106bが発光素子101の列に対して片側に設けられており、かつ、共通n側電極パッド106aは、共通配線103aと接続されており、共通n側電極パッド106bは、接続用配線130を介して、発光素子101の列に対して、共通n側電極パッド106bが形成されている側と反対側(即ち、図1においては下側)に配置された共通配線103bと接続されている。
【0024】
かかる構造により、個別配線102a、102bと共通配線103a、103bが多層配線となることを防止できるため、製造工程の複雑化を防止できるとともに、配線間の短絡を回避でき、発光素子アレイ100の歩留を向上させることができる。
【0025】
又、本実施形態においては、共通n側電極パッド106aは、共通配線103aと接続されており、共通n側電極パッド106bは、接続用配線130を介して、発光素子101の列に対して、共通n側電極パッド106bが形成されている側と反対側に配置された共通配線103bと接続されている。従って、共通配線103a、103bに発光部を全点灯させるだけの電流を流しても、各発光素子101に対して均等に電流を流す(又は、電圧をかける)ことができるため、各発光素子の発光強度を均一にすることができるとともに、共通配線103a、103bに接続される個別配線102の数の増加により、共通配線103a、103bに流れる電流が増加した場合であっても、共通配線103a、103bの配線幅と厚さは殆ど影響を受けないため、発光素子アレイの寸法に影響を及ぼすという悪影響を回避することができる。
【0026】
又、本実施形態では、各グループ毎に共通配線103a、103bを分離し、これらの共通配線103a、103bを外部に接続するためのボンディング電極106a、106bを各グループ毎に設けている。かかる構造により、グループ毎に分割して特性検査をすることができ、
又、グループ数を増減することにより、所望のドットを有する発光素子アレイを製造することができる。
【0027】
尚、本実施形態においては、上述のごとく、共通n側電極パッド106bは、接続用配線130を介して、共通配線103bと接続される構成としたが、図2に示す様に、共通n側電極パッド106bは、接続用配線130が形成されたブロック104に設けられた他の接続用配線131により、接続用配線130が形成されたブロック104に含まれる発光素子101a、101bのうち、共通配線103bに接続された発光素子101bにも接続される構成としても良い。
【0028】
この様な構成にすることにより、上述した図1の発光素子アレイによる効果に加え、発光素子101aと101bの間隔が非常に狭いため、接続用配線130を細くせざるを得ない場合に、図1に示した発光素子アレイにおいて接続用配線130のみに流れる電流を、図2の発光素子アレイにおいては、接続用配線130と他の接続用配線131に分配することができるため、接続用配線130に過電流が流れるのを防止することができるという効果を得ることができる。
【0029】
次に、本実施形態に係るLEDアレイ100の製造方法例を図3〜図5を参照しながら説明する。尚、図3(a)〜(c)は、本発明の実施形態であるLEDアレイの製造方法を説明するための断面工程図であり、図1に示したA−A断面を考慮した断面工程図である。又、図5は、図4のB−B断面図である。
【0030】
まず、本製造方法では、図3(a)に示すように、半導体基板110上に半導体層109を形成する。ここで、半導体基板110としては、例えば高抵抗GaAs基板を用いる。半導体層109は、例えば、p型AlGaAs層、活性層、n型AlGaAs層、n型GaAs層を順次エピタキシャル成長法により成長させたものである。ここで、エピタキシャル成長法とは、基板上に結晶膜を成長させる方法であって、VPE(気相エピタキシャル)法、CVD(化学気相デポジション)法、MOVPE(有機金属気相エピタキシャル)法、MOCVD(有機金属化学気相デポジション)法、Halide−VPE(ハロゲン化学気相エピタキシャル)法、MBE(分子線エピタキシャル)法、MOMBE(有機金属分子線エピタキシャル)法、GSMBE(ガス原料分子線エピタキシャル)法、CBE(化学ビームエピタキシャル)法を含む。又、半導体層109の厚さは、例えば5μmとする。
【0031】
尚、半導体基板110上に半導体層109を形成する際、P型、N型の順に半導体層が形成される。従って、半導体層109において、上層109aがN型、下層109bがP型となっている。
【0032】
次に、半導体層109の表面に、拡散マスク(図示省略)を成膜した後、拡散分離部と拡散導通部(いずれも図示省略)を前記膜に開口する。開口部形成は、例えばフォトリソグラフィー及びエッチングにより行うことができる。次に、半導体層109上に成膜された拡散マスク上に、所定の不純物をドープした拡散源(図示省略)を成膜する。ここで、所定の不純物としては、例えばZnを用いる。また拡散源としては、例えば、ZnO−SiO2膜(例えば、150オングストローム)を用いることができる。また、成膜方法としては、例えば、スパッタ法を用いることができる。
【0033】
次に、所定の不純物をドープした拡散源上に、アニールキャップ膜(図示省略)を成膜する。ここで、アニールキャップ膜としては、例えば、Si3N4膜(例えば、1000オングストローム)を用いることができる。また、アニールキャップ膜の成膜方法としては、例えばスパッタ法を用いることができる。
【0034】
次に、図3(b)に示すように、所定の不純物をドープした拡散源を用いて拡散アニールを行い、半導体層109内に所定の不純物を拡散させて、発光素子101とp型の拡散分離層112、及び拡散導通層113を形成する。ここで、拡散層は、半導体層109の下層のp型AlGaAs層109bに到達するように形成され、例えば3μm拡散させる。次に、アニールキャップ膜と拡散源とを除去し、次いで、半導体層109の表面に成膜された拡散マスクを除去する。
【0035】
次に、図4に示すように、半導体層109に、ブロック分離のための分離溝105を形成する。かかる分離溝105は図5に示すように半導体基板110に達する深さで形成される。
【0036】
次に、図3(c)に示す様に、半導体層109上に絶縁膜114を成膜し、発光素子101の一部を露出させる開口部117と、拡散導通層113の表面を露出させる開口部118を形成する。ここで開口部形成は、例えば、ホトリソグラフィー及びエッチングにより行うことができる。尚、図5に示す様に、絶縁膜114は、分離溝105を覆う様に半導体層109上に成膜される。これにより、半導体層を各ブロックに物理的かつ電気的に分離することができる。
【0037】
次に、図3(c)に示す様に、リフトオフ法によりパターンを形成し、成膜により個別配線102、共通配線103a、103b、及び共通n側電極パッド106a(図2に示したLEDアレイにおいては、共通n側電極パッド106b)を同時に形成する。尚、図3(c)では図示していないが、この際に、接続用配線130も同時に形成され、又、図2に示したLEDアレイにおいては、他の接続用配線131も同時に形成される。
【0038】
ここで、n側電極は、個別配線102と共通配線103a、103bとから成り、n側電極は、2つ以上のブロック104で形成されるグループ108内で、個別配線102と共通配線103a、103bにより2つに分離接続され、同一グループ108内に形成された2つの共通n側電極パッド(共通n側電極)106a、106bのうち、少なくとも1つの共通n側電極パッドにそれぞれ接続されている。尚、電極材料は、半導体とオーミック接続可能なものであれば良い。例えば、Ti(200オングストローム)/Au(50オングストローム)/Ni/Ge/Au(1.2μm)等のAu積層膜を用いることができる。
【0039】
次に、図3(c)に示すように、p側電極パッドの形成についても、リフトオフ法によりパターンを形成し、開口部118を介して拡散導通層113上に個別p側電極パッド107(個別p側電極)を形成する。個別p側電極パッド107は、半導体層109の下層として形成されたp層109bに突き抜けるように形成されたP型拡散導通層113とオーミック接続される。即ち、個別p側電極パッド107は、発光素子101が形成される発光領域以外の素子表面に形成されたP型拡散導通層113を介して、半導体層109の下層に形成されたP型AlGaAs層からなるエピ層に電気的に接続されている。ここで、電極材料は、半導体とオーミック接続可能なものであれば良い。例えば、Ti(200オングストローム)/Au(1.2μm)等のAu合金膜を用いることができる。
【0040】
尚、共通n側電極パッド106a、106bと個別p側電極パッド107は、必ずしも別工程で形成する必要はなく、同一工程で同時に形成してもよい。この様に同時に形成することにより、外部とワイヤーボンディング接続をする際に、N側、P側とも同一条件で接続することができる。
【0041】
次に、電極と半導体層109をオーミック接続させるためのシンター処理(熱処理)を施し、必要に応じて半導体基板110の裏面を研磨後、図4に示した発光素子アレイ100が製造される。
【0042】
図6は上記発光素子アレイの使用例を示している。同図において、共通n側電極パッド106a、106bはスイッチQ1、Q2を介して電源ラインLに接続されている。一方、個別p側電極パッド107a、107b、107c、107d、107e、107fは、スイッチS1、S2、S3、S4、S5、S6を介して出力端子Tに接続されている。Wは入力される画像データに応じて出力端子P1、P2、P3、P4、P5、P6にパルスを順次出力する出力回路であって、その出力パルスは、スイッチS1、S2、S3、S4、S5、S6を順次オンする。光プリントヘッドは、複数のグループ108を有するものであるが、当該プリントヘッドの長さは、例えば、感光体ドラムの軸方向長に応じて決められる。発光素子アレイの各ブロックにおける2つの発光素子のうち、101a、101c、101e、101g、101i、101kは奇数ラインの書き込みに用いられ、101b、101d、101f、101h、101j、101mは偶数ラインの書き込みに用いられる。そのため、スイッチQ1とスイッチQ2は、図7に示すように、一方がONの時、他方がOFFとなるように制御される。
【0043】
尚、本発明は、上記実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々の変形をすることが可能であり、それらを本発明の範囲から除外するものではない。
【0044】
例えば、本発明の実施形態においては発光素子アレイとしてLEDアレイを用いる場合について説明したが、発光素子はこれに限られず、発光レーザ等の他の素子を用いることができる。
【0045】
又、基板、電極、不純物等の材料、組成等も各実施形態のものに限られず、他のものを選択することができる。
【0046】
例えば、上記実施形態においては、半導体基板としてGaAs基板を適用したが、その他の基板、例えば、Si基板やガラス基板等を適用することができる。
【0047】
又、上記実施形態においては、ドープ不純物としてZnを適用したが、本発明は、他の様々な不純物、例えば、PやAs等の5族元素の不純物や、BやGa等の3族元素の不純物、及びを適用することができる。
【0048】
【発明の効果】
以上に説明した様に、本発明に係る発光素子アレイにおいては、個別配線102aに接続される共通配線103a、及び個別配線102bに接続される共通配線103bがブロック104にまたがって発光素子列の両側に配置されており、共通n側電極パッド(共通n側電極)106a、106bが発光素子101の列に対して片側に設けられており、かつ、共通n側電極パッド106aは、共通配線103aと接続されており、共通n側電極パッド106bは、接続用配線130を介して、発光素子101の列に対して、共通n側電極パッド106bが形成されている側と反対側に配置された共通配線103bと接続されている。
【0049】
かかる構造により、個別配線102a、102bと共通配線103a、103bが多層配線となることを防止できるため、製造工程の複雑化を防止できるとともに、配線間の短絡を回避でき、発光素子アレイ100の歩留を向上させることができる。
【0050】
又、グループ内のブロック数を適宜選択することができるため、共通配線103a、103bに流れる電流値の上限を調整することができ、その結果、最小の配線幅と厚さで共通配線103a、103bを設計することができるため、安価なLEDアレイを提供することができる。
【0051】
又、共通n側電極パッド106aは、共通配線103aと接続されており、共通n側電極パッド106bは、接続用配線130を介して、発光素子101の列に対して、共通n側電極パッド106bが形成されている側と反対側に配置された共通配線103bと接続されている。従って、共通配線103a、103bに発光部を全点灯させるだけの電流を流しても、各発光素子101に対して均等に電流を流す(又は、電圧をかける)ことができるため、各発光素子n発光強度を均一にすることができるとともに、共通配線103a、103bに流れる電流が増加した場合であっても、共通配線103a、103bの配線幅と厚さは殆ど影響を受けないため、発光素子アレイの寸法に影響を及ぼすという悪影響を回避することができる。
【0052】
又、本発明に係る発光素子アレイにおいては、共通n側電極パッド106bは、接続用配線130が形成されたブロック104に設けられた他の接続用配線131により、接続用配線130が形成されたブロック104に含まれる発光素子101a、101bのうち、共通配線103bに接続された発光素子101bにも接続される。
【0053】
この様な構成にすることにより、発光素子101aと101bの間隔が非常に狭いため、接続用配線130を細くせざるを得ない場合に、本来、接続用配線130のみに流れる電流を、接続用配線130と他の接続用配線131に分配することができるため、接続用配線130に過電流が流れるのを防止することができる。
【0054】
又、半導体基板110上に設けられた半導体層109に分離溝105が設けられているため、半導体層109を各ブロックに物理的に分離することができる。
【0055】
又、半導体基板110に半導体層109と比べて充分に高抵抗なものを適用すれば、半導体層109を各ブロックに物理的かつ電気的に分離することができる。
【0056】
又、各ブロックに形成された個別P側電極107は、発光領域以外の素子表面に形成されたP型拡散導通層113を介して、半導体層109の下層に形成されたP型AlGaAsエピ層109bに接続されているため、ワイヤーボンディングの際の衝撃による発光層への悪影響を回避することができる。
【0057】
又、P型、N型の順で既に形成されている半導体層109に所定の不純物を拡散させることにより、発光素子101が形成される。従って、エピタキシャル成長、及び拡散の2つの要因が関係する拡散による発光層形成においては、発光層の最終的な特性が拡散後でなければ判明しないが、本実施形態では、既に発光層が形成されているため、当該発光層の安定した特性を事前に検証することができる。
【図面の簡単な説明】
【図1】本発明の実施形態にかかるLEDアレイを概略的に示す平面図である。
【図2】本発明の他の実施形態にかかるLEDアレイを概略的に示す平面図である。
【図3】本発明の実施形態にかかるLEDアレイの製造方法を説明するための断面工程図である。
【図4】本発明の実施形態にかかるLEDアレイを概略的に示す平面図である。
【図5】図4に示した概略平面図におけるB−B断面図である。
【図6】本発明の実施形態にかかるLEDアレイの使用例を示す概略図である。
【図7】図7の動作説明の信号波形図である。
【図8】従来のLEDアレイを概略的に示す平面図である。
【符号の説明】
100:LEDアレイ
101:発光素子
102:個別配線
103a、103b:共通配線
106a、106b:共通n側電極パッド
107:個別p側電極パッド
109:半導体層
110:半導体基板
112:拡散分離層
113:拡散導通層
114:絶縁層
130:接続用配線
131:他の接続用配線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light emitting element array used in an LED printer or the like.
[0002]
[Prior art]
In recent years, a light emitting element array has been used as a light source of an electrophotographic optical printer. This light-emitting element array is a semiconductor light-emitting device in which a plurality of light-emitting elements are arranged and formed on a single semiconductor substrate at regular intervals. Conventionally, as a light emitting element array, a semiconductor laser array using a semiconductor laser as a light emitting element and an LED array using a light emitting diode (hereinafter referred to as “LED”) as a light emitting element are used. Has been.
[0003]
FIG. 8 shows a schematic configuration of a multilayer wiring type LED array 200 according to a conventional example.
[0004]
As shown in the figure, in the multilayer wiring type LED array 200, a plurality of light emitting units 201 are arranged one-dimensionally, and a group of light emitting units separated from each other is divided into two or more blocks 204, A separation groove 205 is formed for block separation. In addition, the multilayer wiring type LED array 200 is formed with individual wirings 202 connected to the light emitting elements 201. The individual wirings 202 are arranged in a plane direction with respect to the common wiring 203 formed over a plurality of blocks 204. Multi-layer connection is made so as to be substantially vertical. (For example, refer to Patent Document 1).
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-8409 (pages 8-9, 17 and 19)
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional example, the individual wiring 202 and the common wiring 203 are multi-layered, and the individual wiring 202 and the common wiring 203 intersect each other. Therefore, the manufacturing process becomes complicated and a short circuit occurs between the wirings. As a result, the yield of the light emitting element array may be reduced. In addition, since current sufficient to light all the light emitting parts flows through the common wiring 203, the width and thickness are designed according to the current value, and if the number of individual wirings 202 connected to the common wiring 203 increases, There is a problem in that the wiring width and thickness of the wiring 203 are increased, which affects the dimensions of the light emitting element array.
[0007]
An object of the present invention is to provide a light emitting element array that can solve the above problems, avoid a short circuit between wirings, improve the yield of the light emitting element array, and prevent the manufacturing process from becoming complicated. And
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, a light-emitting element array according to the present invention includes a light-emitting element array having two or more blocks obtained by dividing a plurality of light-emitting elements in a light-emitting element array. Individual wirings connected to the light emitting elements on a one-to-one basis are formed, and common wirings connected to the individual wirings are arranged on both sides of the light emitting element array across the block. A bonding electrode for connection is provided, and the common wiring and the bonding electrode are connected by a connection wiring formed between light emitting elements included in any of the blocks.
[0009]
Here, the bonding electrode is provided on one side of the light emitting element array, and is a common wiring disposed on both sides of the light emitting element array across the block, and is disposed on the opposite side to the bonding electrode with respect to the light emitting element array. The common wiring may be connected to the bonding electrode by a connection wiring.
[0010]
Further, any one of the light emitting elements included in the block in which the connection wiring is formed and the bonding electrode are connected by another connection wiring provided in the block in which the connection wiring is formed. Can be.
[0011]
In addition, a group may be formed for each of a plurality of blocks, and common wiring may be provided separately for each group.
[0012]
In addition, a semiconductor layer in which a plurality of light emitting elements are formed may be provided, and a separation groove for separating blocks may be provided in the semiconductor layer.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a plan view schematically showing an LED array according to an embodiment of the present invention. In the light emitting element array 100, a plurality of light emitting elements 101 are arranged one-dimensionally, and a group of light emitting elements separated from each other is divided into two or more individual blocks 104. Here, in each individual block 104, the light emitting elements 101 in the light emitting element array are divided into two pieces, but the number of light emitting elements formed in each individual block may be three or more.
[0016]
Each light emitting element 101 is connected to an individual wiring 102 connected to the light emitting element 101 on a one-to-one basis, and the individual wiring 102 is connected to common wirings 103 a and 103 b formed across a plurality of blocks 104. Has been. Here, the common wirings 103 a and 103 b are disposed on both sides of the light emitting element row formed on the light emitting element array 100.
[0017]
Of the two light emitting elements 101a and 101b formed in each block 104, the individual wiring 102a connected to the light emitting element 101a is connected to the common wiring 103a, and the individual wiring 102b connected to the light emitting element 101b is provided. Are connected to the common wiring 103b.
[0018]
In the light emitting element array 100, a separation groove 105 for block separation is formed, and the individual blocks 104 are electrically separated from each other by the separation groove 105. In addition, a group 108 is formed for every two or more blocks 104, and common wirings 103a and 103b are provided separately for each group. In this embodiment, a group is formed for every six blocks, and the connection between the individual wirings 102a and 102b and the common wirings 103a and 103b in each group is formed in the same pattern. Further, the number of the blocks can be appropriately selected according to the application, and any number of blocks may be used as long as it is plural, and a group can be formed for every two or more blocks.
[0019]
Further, as shown in FIG. 1, common n-side electrode pads (common n-side electrodes) 106 a and 106 b that are n-side wire bonding pads are formed in a block 104 that forms a group 108. These common n-side electrode pads (common n-side electrodes) 106 a and 106 b are bonding pads (bonding electrodes) provided to connect the common wirings 103 a and 103 b to the outside. It is provided on one side (that is, the upper side in FIG. 1).
[0020]
Here, in this embodiment, as shown in FIG. 1, the common n-side electrode pad 106 a is formed of the common wirings 103 a and 103 b arranged on both sides of the light emitting element column formed on the light emitting element array 100. The common n-side electrode pad 106b is connected to the common wiring 103b by a connection wiring 130 formed between the two light emitting elements 101a and 101b included in the block 104. There is a feature in the point.
[0021]
That is, the common n-side electrode pad 106b is common to the column of the light emitting elements 101 among the common lines 103a and 103b arranged on both sides of the light emitting elements 101 across the block 104 via the connection wirings 130. It is characterized in that it is connected to a common wiring 103b arranged on the side opposite to the side on which the n-side electrode pad 106b is formed (that is, the lower side in FIG. 1).
[0022]
One individual p-side electrode pad 107 (individual p-side electrode) which is a p-side wire bonding pad is formed in each block 104. Here, the individual p-side electrode pad 107 is formed on the side opposite to the side where the common n-side electrode pads 106a and 106b are formed with respect to the light emitting element array. In the present embodiment, on the common n-side electrode pads 106a and 106b and the individual p-side electrode pad 107, respectively, for height adjustment due to the convenience of connection with external electrodes, the convenience of wire bonding, etc. Still other electrode pads can be formed.
[0023]
As described above, in the present embodiment, the common wiring 103a connected to the individual wiring 102a and the common wiring 103b connected to the individual wiring 102b are arranged on both sides of the light emitting element array across the block 104. The common n-side electrode pads (common n-side electrodes) 106a and 106b are provided on one side with respect to the column of the light emitting elements 101, and the common n-side electrode pad 106a is connected to the common wiring 103a. The common n-side electrode pad 106b is opposite to the side where the common n-side electrode pad 106b is formed with respect to the column of the light emitting elements 101 via the connection wiring 130 (that is, the lower side in FIG. 1). ) Is connected to the common wiring 103b.
[0024]
With such a structure, the individual wirings 102a and 102b and the common wirings 103a and 103b can be prevented from becoming multi-layer wirings, so that the manufacturing process can be prevented from being complicated, and a short circuit between the wirings can be avoided. Can be improved.
[0025]
In the present embodiment, the common n-side electrode pad 106a is connected to the common wiring 103a, and the common n-side electrode pad 106b is connected to the column of the light emitting elements 101 via the connection wiring 130. The common n-side electrode pad 106b is connected to a common wiring 103b disposed on the side opposite to the side on which the common n-side electrode pad 106b is formed. Therefore, even if a current sufficient to turn on all the light emitting portions is supplied to the common wirings 103a and 103b, a current can be supplied evenly (or voltage is applied) to each light emitting element 101. Even when the emission intensity can be made uniform and the current flowing through the common lines 103a and 103b increases due to the increase in the number of individual lines 102 connected to the common lines 103a and 103b, the common lines 103a and 103b Since the wiring width and thickness of 103b are hardly affected, the adverse effect of affecting the dimensions of the light emitting element array can be avoided.
[0026]
In this embodiment, the common wires 103a and 103b are separated for each group, and bonding electrodes 106a and 106b for connecting the common wires 103a and 103b to the outside are provided for each group. With this structure, it is possible to divide into groups and perform characteristic inspections.
Further, by increasing or decreasing the number of groups, a light emitting element array having desired dots can be manufactured.
[0027]
In the present embodiment, as described above, the common n-side electrode pad 106b is connected to the common wiring 103b via the connection wiring 130. However, as shown in FIG. The electrode pad 106b is a common wiring among the light emitting elements 101a and 101b included in the block 104 in which the connection wiring 130 is formed by another connection wiring 131 provided in the block 104 in which the connection wiring 130 is formed. The light-emitting element 101b connected to 103b may be connected.
[0028]
With such a configuration, in addition to the effect of the light emitting element array of FIG. 1 described above, the distance between the light emitting elements 101a and 101b is very narrow, so that the connection wiring 130 must be made thin. The current flowing only in the connection wiring 130 in the light emitting element array shown in FIG. 1 can be distributed to the connection wiring 130 and the other connection wiring 131 in the light emitting element array in FIG. The effect that it is possible to prevent the overcurrent from flowing through is obtained.
[0029]
Next, an example of a method for manufacturing the LED array 100 according to this embodiment will be described with reference to FIGS. 3A to 3C are cross-sectional process diagrams for explaining a method of manufacturing the LED array according to the embodiment of the present invention, and a cross-sectional process considering the AA cross section shown in FIG. FIG. 5 is a cross-sectional view taken along the line BB in FIG.
[0030]
First, in this manufacturing method, the semiconductor layer 109 is formed on the semiconductor substrate 110 as shown in FIG. Here, as the semiconductor substrate 110, for example, a high-resistance GaAs substrate is used. For example, the semiconductor layer 109 is formed by sequentially growing a p-type AlGaAs layer, an active layer, an n-type AlGaAs layer, and an n-type GaAs layer by an epitaxial growth method. Here, the epitaxial growth method is a method of growing a crystal film on a substrate, and includes a VPE (vapor phase epitaxial) method, a CVD (chemical vapor deposition) method, a MOVPE (metal organic vapor phase epitaxial) method, and MOCVD. (Metal organic chemical vapor deposition) method, Halide-VPE (halogen chemical vapor epitaxy) method, MBE (molecular beam epitaxy) method, MOMBE (organometallic molecular beam epitaxy) method, GSMBE (gas source molecular beam epitaxy) method Including CBE (Chemical Beam Epitaxial) method. The thickness of the semiconductor layer 109 is, for example, 5 μm.
[0031]
Note that when the semiconductor layer 109 is formed on the semiconductor substrate 110, the semiconductor layers are formed in the order of P-type and N-type. Therefore, in the semiconductor layer 109, the upper layer 109a is N-type and the lower layer 109b is P-type.
[0032]
Next, after forming a diffusion mask (not shown) on the surface of the semiconductor layer 109, a diffusion separation portion and a diffusion conduction portion (both not shown) are opened in the film. The opening can be formed by, for example, photolithography and etching. Next, a diffusion source (not shown) doped with a predetermined impurity is formed on the diffusion mask formed on the semiconductor layer 109. Here, for example, Zn is used as the predetermined impurity. As the diffusion source, for example, a ZnO—SiO 2 film (for example, 150 Å) can be used. Further, as a film forming method, for example, a sputtering method can be used.
[0033]
Next, an annealing cap film (not shown) is formed on the diffusion source doped with a predetermined impurity. Here, as the annealing cap film, for example, a Si 3 N 4 film (for example, 1000 Å) can be used. Further, as a method for forming the anneal cap film, for example, a sputtering method can be used.
[0034]
Next, as shown in FIG. 3B, diffusion annealing is performed using a diffusion source doped with a predetermined impurity to diffuse the predetermined impurity into the semiconductor layer 109, so that the light emitting element 101 and the p-type diffusion are diffused. A separation layer 112 and a diffusion conductive layer 113 are formed. Here, the diffusion layer is formed so as to reach the p-type AlGaAs layer 109b below the semiconductor layer 109, and is diffused by 3 μm, for example. Next, the annealing cap film and the diffusion source are removed, and then the diffusion mask formed on the surface of the semiconductor layer 109 is removed.
[0035]
Next, as illustrated in FIG. 4, an isolation groove 105 for block isolation is formed in the semiconductor layer 109. The separation groove 105 is formed with a depth reaching the semiconductor substrate 110 as shown in FIG.
[0036]
Next, as shown in FIG. 3C, an insulating film 114 is formed on the semiconductor layer 109, and an opening 117 exposing a part of the light emitting element 101 and an opening exposing the surface of the diffusion conductive layer 113 are formed. A portion 118 is formed. Here, the opening can be formed by, for example, photolithography and etching. As shown in FIG. 5, the insulating film 114 is formed on the semiconductor layer 109 so as to cover the separation groove 105. Thereby, the semiconductor layer can be physically and electrically separated into blocks.
[0037]
Next, as shown in FIG. 3C, a pattern is formed by a lift-off method, and individual wiring 102, common wiring 103a, 103b, and common n-side electrode pad 106a (in the LED array shown in FIG. 2) are formed by film formation. Forms the common n-side electrode pad 106b) simultaneously. Although not shown in FIG. 3C, the connection wiring 130 is also formed at this time, and in the LED array shown in FIG. 2, other connection wiring 131 is also formed at the same time. .
[0038]
Here, the n-side electrode is composed of the individual wiring 102 and the common wirings 103a and 103b, and the n-side electrode is within the group 108 formed by two or more blocks 104, and the individual wiring 102 and the common wirings 103a and 103b. Are separated and connected to each other, and are connected to at least one common n-side electrode pad among the two common n-side electrode pads (common n-side electrode) 106a and 106b formed in the same group 108. The electrode material may be any material that can be ohmic-connected to the semiconductor. For example, an Au laminated film such as Ti (200 Å) / Au (50 Å) / Ni / Ge / Au (1.2 μm) can be used.
[0039]
Next, as shown in FIG. 3C, the p-side electrode pad is also formed by a lift-off method, and the individual p-side electrode pad 107 (individually) is formed on the diffusion conductive layer 113 through the opening 118. p-side electrode) is formed. The individual p-side electrode pad 107 is ohmically connected to a P-type diffusion conductive layer 113 formed so as to penetrate through a p-layer 109 b formed as a lower layer of the semiconductor layer 109. That is, the individual p-side electrode pad 107 is a P-type AlGaAs layer formed under the semiconductor layer 109 via a P-type diffusion conduction layer 113 formed on the element surface other than the light emitting region where the light emitting element 101 is formed. Is electrically connected to the epi layer. Here, the electrode material may be any material that can be ohmic-connected to the semiconductor. For example, an Au alloy film such as Ti (200 Å) / Au (1.2 μm) can be used.
[0040]
The common n-side electrode pads 106a and 106b and the individual p-side electrode pad 107 are not necessarily formed in separate steps, and may be formed simultaneously in the same step. By simultaneously forming in this way, the N side and the P side can be connected under the same conditions when wire bonding connection is made with the outside.
[0041]
Next, a sintering process (heat treatment) for ohmic connection between the electrode and the semiconductor layer 109 is performed, and if necessary, the back surface of the semiconductor substrate 110 is polished to manufacture the light emitting element array 100 shown in FIG.
[0042]
FIG. 6 shows an example of use of the light emitting element array. In the figure, common n-side electrode pads 106a and 106b are connected to a power supply line L via switches Q1 and Q2. On the other hand, the individual p-side electrode pads 107a, 107b, 107c, 107d, 107e, and 107f are connected to the output terminal T via switches S1, S2, S3, S4, S5, and S6. W is an output circuit that sequentially outputs pulses to the output terminals P1, P2, P3, P4, P5, and P6 in accordance with input image data. The output pulses are switches S1, S2, S3, S4, and S5. , S6 are sequentially turned on. The optical print head has a plurality of groups 108, and the length of the print head is determined according to, for example, the axial length of the photosensitive drum. Of the two light emitting elements in each block of the light emitting element array, 101a, 101c, 101e, 101g, 101i, and 101k are used for writing odd lines, and 101b, 101d, 101f, 101h, 101j, and 101m are writing even lines. Used for. Therefore, as shown in FIG. 7, the switches Q1 and Q2 are controlled such that when one is ON, the other is OFF.
[0043]
In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible based on the meaning of this invention, and they are not excluded from the scope of the present invention.
[0044]
For example, although the case where an LED array is used as the light emitting element array has been described in the embodiment of the present invention, the light emitting element is not limited to this, and other elements such as a light emitting laser can be used.
[0045]
Further, the material, composition, etc. of the substrate, electrodes, impurities, etc. are not limited to those of each embodiment, and other materials can be selected.
[0046]
For example, in the above embodiment, a GaAs substrate is applied as a semiconductor substrate, but other substrates such as a Si substrate and a glass substrate can be applied.
[0047]
In the above embodiment, Zn is applied as a doping impurity. However, the present invention is not limited to other various impurities, for example, impurities of Group 5 elements such as P and As, and Group 3 elements such as B and Ga. Impurities, and can be applied.
[0048]
【The invention's effect】
As described above, in the light emitting element array according to the present invention, the common wiring 103a connected to the individual wiring 102a and the common wiring 103b connected to the individual wiring 102b extend across the block 104 on both sides of the light emitting element array. Common n-side electrode pads (common n-side electrodes) 106a and 106b are provided on one side with respect to the column of the light-emitting elements 101, and the common n-side electrode pad 106a is connected to the common wiring 103a. The common n-side electrode pad 106b is connected to the common light-emitting element 101 on the side opposite to the side where the common n-side electrode pad 106b is formed with respect to the column of the light emitting elements 101 via the connection wiring 130. It is connected to the wiring 103b.
[0049]
With such a structure, the individual wirings 102a and 102b and the common wirings 103a and 103b can be prevented from becoming multi-layer wirings, so that the manufacturing process can be prevented from being complicated, and a short circuit between the wirings can be avoided. Can be improved.
[0050]
In addition, since the number of blocks in the group can be selected as appropriate, the upper limit of the current value flowing through the common wirings 103a and 103b can be adjusted. As a result, the common wirings 103a and 103b can be adjusted with the minimum wiring width and thickness. Therefore, an inexpensive LED array can be provided.
[0051]
The common n-side electrode pad 106a is connected to the common wiring 103a, and the common n-side electrode pad 106b is connected to the column of the light emitting elements 101 via the connection wiring 130. Is connected to the common wiring 103b arranged on the opposite side to the side where the is formed. Therefore, even if a current sufficient to turn on all the light emitting portions is supplied to the common wirings 103a and 103b, a current can be supplied evenly (or a voltage is applied) to each light emitting element 101. The light emission intensity can be made uniform, and even if the current flowing through the common wirings 103a and 103b increases, the wiring width and thickness of the common wirings 103a and 103b are hardly affected. The adverse effect of affecting the dimensions of the can be avoided.
[0052]
In the light emitting element array according to the present invention, the common n-side electrode pad 106b has the connection wiring 130 formed by the other connection wiring 131 provided in the block 104 in which the connection wiring 130 is formed. Of the light emitting elements 101a and 101b included in the block 104, the light emitting element 101b connected to the common wiring 103b is also connected.
[0053]
By adopting such a configuration, since the distance between the light emitting elements 101a and 101b is very narrow, when the connection wiring 130 must be narrowed, the current that flows only in the connection wiring 130 is originally used for the connection. Since the wiring 130 and the other connection wiring 131 can be distributed, it is possible to prevent an overcurrent from flowing through the connection wiring 130.
[0054]
Further, since the separation groove 105 is provided in the semiconductor layer 109 provided on the semiconductor substrate 110, the semiconductor layer 109 can be physically separated into blocks.
[0055]
Further, if a semiconductor substrate 110 having a sufficiently high resistance compared to the semiconductor layer 109 is applied, the semiconductor layer 109 can be physically and electrically separated into blocks.
[0056]
The individual P-side electrode 107 formed in each block is connected to a P-type AlGaAs epi layer 109b formed under the semiconductor layer 109 via a P-type diffusion conduction layer 113 formed on the element surface other than the light emitting region. Therefore, it is possible to avoid an adverse effect on the light emitting layer due to an impact during wire bonding.
[0057]
Further, the light emitting element 101 is formed by diffusing a predetermined impurity in the semiconductor layer 109 already formed in the order of P-type and N-type. Therefore, in the formation of the light emitting layer by diffusion involving two factors of epitaxial growth and diffusion, the final characteristics of the light emitting layer are not known until after diffusion, but in this embodiment, the light emitting layer has already been formed. Therefore, the stable characteristics of the light emitting layer can be verified in advance.
[Brief description of the drawings]
FIG. 1 is a plan view schematically showing an LED array according to an embodiment of the present invention.
FIG. 2 is a plan view schematically showing an LED array according to another embodiment of the present invention.
FIG. 3 is a cross-sectional process diagram for explaining the method of manufacturing the LED array according to the embodiment of the present invention.
FIG. 4 is a plan view schematically showing an LED array according to an embodiment of the present invention.
5 is a cross-sectional view taken along the line BB in the schematic plan view shown in FIG.
FIG. 6 is a schematic view showing an example of use of an LED array according to an embodiment of the present invention.
7 is a signal waveform diagram for explaining the operation of FIG. 7;
FIG. 8 is a plan view schematically showing a conventional LED array.
[Explanation of symbols]
100: LED array 101: Light emitting element 102: Individual wiring 103a, 103b: Common wiring 106a, 106b: Common n-side electrode pad 107: Individual p-side electrode pad 109: Semiconductor layer 110: Semiconductor substrate 112: Diffusion separation layer 113: Diffusion Conductive layer 114: insulating layer 130: connection wiring 131: other connection wiring

Claims (5)

発光素子列における発光素子を複数個毎に分割した2以上のブロックを有する発光素子アレイにおいて、前記ブロックの各々には、前記ブロックに含まれる発光素子に1対1で接続される個別配線が形成され、前記個別配線に接続される共通配線が前記ブロックにまたがって前記発光素子列の両側に配置され、前記ブロックのいずれかには、前記共通配線を外部に接続するためのボンディング電極が設けられ、前記ブロックのいずれかに含まれる発光素子の間に形成された接続用配線により前記共通配線と前記ボンディング電極が接続されていることを特徴とする発光素子アレイ。In a light emitting element array having two or more blocks obtained by dividing a plurality of light emitting elements in a light emitting element array, individual wirings connected to the light emitting elements included in the blocks are formed in each of the blocks. The common wiring connected to the individual wiring is disposed on both sides of the light emitting element array across the block, and a bonding electrode for connecting the common wiring to the outside is provided in any of the blocks. The light emitting element array, wherein the common wiring and the bonding electrode are connected by a connection wiring formed between the light emitting elements included in any of the blocks. 前記ボンディング電極は前記発光素子列の片側に設けられおり、前記ブロックにまたがって前記発光素子列の両側に配置された共通配線であって、前記発光素子列に対して前記ボンディング電極と反対側に配置された共通配線が、前記接続用配線により前記ボンディング電極と接続されていることを特徴とする請求項1に記載の発光素子アレイ。The bonding electrode is provided on one side of the light emitting element row, and is a common wiring disposed on both sides of the light emitting element row across the block, and is on the opposite side of the bonding electrode with respect to the light emitting element row. The light emitting element array according to claim 1, wherein the arranged common wiring is connected to the bonding electrode by the connection wiring. 前記接続用配線が形成されたブロックに含まれる発光素子のうちのいずれかの発光素子と前記ボンディング電極は、前記接続用配線が形成されたブロックに設けられた他の接続用配線により接続されていることを特徴とする請求項1または2に記載の発光素子アレイ。One of the light emitting elements included in the block in which the connection wiring is formed and the bonding electrode are connected by another connection wiring provided in the block in which the connection wiring is formed. The light emitting element array according to claim 1, wherein the light emitting element array is provided. 複数のブロック毎にグループを形成し、前記グループ毎に前記共通配線を分離して設けたことを特徴とする請求項1乃至3のいずれかに記載の発光素子アレイ。4. The light emitting element array according to claim 1, wherein a group is formed for each of a plurality of blocks, and the common wiring is provided separately for each group. 複数の発光素子が形成された半導体層を備え、前記半導体層に前記ブロックを分離するための分離溝が設けられていることを特徴とする請求項1乃至3のいずれかに記載の発光素子アレイ。4. The light emitting element array according to claim 1, further comprising: a semiconductor layer in which a plurality of light emitting elements are formed, wherein a separation groove for separating the block is provided in the semiconductor layer. .
JP2002325436A 2002-11-08 2002-11-08 Light emitting element array Expired - Fee Related JP4020757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325436A JP4020757B2 (en) 2002-11-08 2002-11-08 Light emitting element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325436A JP4020757B2 (en) 2002-11-08 2002-11-08 Light emitting element array

Publications (2)

Publication Number Publication Date
JP2004158799A JP2004158799A (en) 2004-06-03
JP4020757B2 true JP4020757B2 (en) 2007-12-12

Family

ID=32804663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325436A Expired - Fee Related JP4020757B2 (en) 2002-11-08 2002-11-08 Light emitting element array

Country Status (1)

Country Link
JP (1) JP4020757B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201029230A (en) 2009-01-23 2010-08-01 Everlight Electronics Co Ltd Light emitting diode package
JP7094694B2 (en) 2017-12-01 2022-07-04 キヤノン株式会社 Light emitting element array and exposure head and image forming device using this

Also Published As

Publication number Publication date
JP2004158799A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US9099614B2 (en) Semiconductor light emitting element
JP2003258305A (en) Semiconductor element array
JP3824497B2 (en) Light emitting element array
JP4023893B2 (en) Light emitting element array and light emitting element
JP4233280B2 (en) LED array
JP3681306B2 (en) Light emitting element array, LED array, and electrophotographic printer
JP4020757B2 (en) Light emitting element array
JP2004023019A (en) Light-emitting device array
JP4683832B2 (en) Light emitting diode array device and light emitting diode printer using the same
JP2005136142A (en) Light emitting diode array device and light emitting diode printer using it
JP3717284B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING ELEMENT ARRAY, AND LIGHT EMITTING ELEMENT MANUFACTURING METHOD
JP3722680B2 (en) LED array
JP3722683B2 (en) LED array
JP2002009331A (en) Light emitting diode array
JP2863979B2 (en) Method for manufacturing semiconductor light emitting device
JP3464124B2 (en) Light emitting diode array
JP4303571B2 (en) Light emitting diode array device and light emitting diode printer using the same
JP2001196629A (en) Semiconductor light emitting device and its manufacturing method
JP2007043059A (en) Light emitting diode and light emitting diode array
JP4036800B2 (en) Light emitting element array
JP2002043622A (en) Light emitting element array
JP2005136238A (en) Light emitting diode array device and light emitting diode printer using it
JP3891833B2 (en) Semiconductor device and LED array
JP3420417B2 (en) Light emitting diode array
JP2001007386A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070925

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees