JP4014897B2 - 自動イオン濃度測定装置 - Google Patents

自動イオン濃度測定装置 Download PDF

Info

Publication number
JP4014897B2
JP4014897B2 JP2002064411A JP2002064411A JP4014897B2 JP 4014897 B2 JP4014897 B2 JP 4014897B2 JP 2002064411 A JP2002064411 A JP 2002064411A JP 2002064411 A JP2002064411 A JP 2002064411A JP 4014897 B2 JP4014897 B2 JP 4014897B2
Authority
JP
Japan
Prior art keywords
sensor
ion concentration
liquid
flow path
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002064411A
Other languages
English (en)
Other versions
JP2003262613A (ja
Inventor
聡 野村
伸樹 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002064411A priority Critical patent/JP4014897B2/ja
Publication of JP2003262613A publication Critical patent/JP2003262613A/ja
Application granted granted Critical
Publication of JP4014897B2 publication Critical patent/JP4014897B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動イオン濃度測定装置に関するものであり、より詳細には、イオン濃度測定装置における標準液を用いた校正、洗浄液を用いた洗浄、および測定対象試料の測定を全自動化できる自動イオン濃度測定装置に関する。
【0002】
【従来の技術】
従来よりpHなどのイオン測定にガラス電極31を用いたイオン濃度測定器が用いられている。図4は従来のガラス電極31を用いたpHの測定方法を説明する図である。
【0003】
図4(A)は、ガラス電極31を洗浄液32の収容された容器33に浸漬してこれを洗浄する手順を示しており、図4(B)は、ガラス電極31を第1標準液34が収容された容器35に浸漬して第1標準液34のpHを測定する手順を示している。図4(C)は、測定後のガラス電極31に洗浄液32を吹きつけて洗浄する手順を示しており、図4(D)は、ガラス電極31を第2標準液36が収容された容器37に浸漬して第2標準液36のpHを測定する手順を示している。
【0004】
すなわち、上述した従来例では2つのpH値を有する第1標準液34と第2標準液36を用いて2回の校正を行なって、ガラス電極31を用いた2つの標準液34,36のpH値をそれぞれ測定することにより、このガラス電極31を2点校正する。また、各標準液34,36の測定の間には、第1標準液34が第2標準液36に混合することがないように、洗浄液32を用いてガラス電極31を洗浄する必要がある。
【0005】
図5は従来のイオン濃度測定器を用いて測定対象試料SのpHの測定例を示す図である。図5(A)は適当な容器に測定対象試料Sを収容するサンプル容器38を準備する手順を示しており、図5(B)はガラス電極31を洗浄する手順を示しており、図5(C)は前記容器38にガラス電極31を浸漬して測定対象試料SのpHを測定する手順を示している。
【0006】
図5に示すガラス電極31は既に標準液34,36によって校正され、かつ、洗浄液32によって十分に洗浄されることにより、測定対象試料SのpHをより正確に測定することが可能となる。
【0007】
なお、洗浄液32を用いたガラス電極31の洗浄は、図4(A)に示すように、容器33内に収容した洗浄液32にガラス電極31を浸漬することによって行っても、図4(C)、図5(B)に示すように、洗浄液32を吹付けた後にこれを作業者が拭き取ることによって行ってもよい。
【0008】
【発明が解決しようとする課題】
しかしながら、前記従来のイオン濃度測定器を用いる場合には、標準液34,36やサンプル容器38を準備する必要があるだけでなく、装置使用者は一つの測定対象試料SのpHを測定するためにイオン濃度測定器の電極31を洗浄することなど、煩雑な測定手順を自ら行わなければ、正確な測定を行うことはできなかった。
【0009】
また、前記測定手順を正しく行なわなければ、測定値に誤差を生じさせるものとなることもあり、装置使用者の違いによって生じる測定手順の違いがそのまま測定値のばらつきになって測定値が不安定になることがあった。
【0010】
そこで、本発明者らは前述のイオン濃度測定器のようなイオン濃度計を一定の手順にしたがって自動校正する実験室用イオン濃度計の自動校正装置を考案し、実用新案登録を受けている(実用新案登録第2599994号)。しかしながら、多数の測定対象試料を測定する場合には、前記実験室用イオン濃度計の自動校正装置を用いて校正を行った後に、測定対象試料を測定することは煩わしいだけでなく、測定に長い時間がかかる原因ともなっていた。
【0011】
本発明は、上述の事柄を考慮に入れてなされたものであって、その目的は、少ない標準液、測定対象試料であっても一連の測定手順を全自動化して多数のサンプルのイオン濃度を簡便かつ高精度に測定することができ、また、イオン濃度センサの劣化に対して容易に対応することができる自動イオン濃度測定装置を提供することにある。
【0012】
【課題を解決するための手段】
第1発明の自動イオン濃度測定装置は、応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型のイオン濃度センサを有するとともに、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられ、かつ、取換え可能なカートリッジ構造に構成されたセンサブロックを備え、このセンサブロックはその装着時に前記センサ流路がその上流において標準液送液流路、洗浄液送液流路または測定対象試料送液流路に択一的に連通可能で、かつ、その下流において廃液部に連通するように構成されていることを特徴としている。
【0013】
すなわち、装置使用者は、本発明の自動イオン濃度測定装置を用いることにより、流通型のイオン濃度センサに対して標準液、洗浄液または測定対象試料の液体を適宜切り換えて送液することができ、これによってイオン濃度の測定に必要な一連の手順のみならずイオン濃度センサの測定準備から測定に至るまでの一連の手順を、前記各流路の切換えによって容易に実行することができる。
また、前記イオン濃度センサが応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型であるから、少ない標準液、測定対象試料であってもイオン濃度センサとの接触面積を十分にとって高精度に測定することができる。
さらに、前記イオン濃度センサを有するセンサブロックが取換え可能なカートリッジ構造であるから、イオン濃度センサの劣化が発生した場合にもセンサブロックを交換するだけでこれに容易に対応することができる。
【0014】
また、この第1発明において、前記センサブロックのセンサ流路に、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられているので、イオン濃度センサに対する各液の供給状況を確認することができ、信頼性が向上する。
【0015】
第2発明の自動イオン濃度測定装置は、応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型のイオン濃度センサを有するとともに、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられ、かつ、取換え可能なカートリッジ構造に構成されたセンサブロックと、標準液容器と、洗浄液容器と、液体である測定対象試料を収容する試料容器と、前記各液が前記センサブロックのセンサ流路に流通するよう送液する送液機構と、このセンサ流路に流通した後の廃液を収容する廃液容器と、前記送液機構の制御によって前記センサブロックのセンサ流路に洗浄液および標準液を供給し排出してイオン濃度センサの測定準備を行った後に前記センサブロックのセンサ流路に測定対象試料を供給して該測定対象試料のイオン濃度をイオン濃度センサを用いて測定するための一連の測定手順を実行する制御部とを有していることを特徴としている。
【0016】
すなわち、装置使用者は、本発明の自動イオン濃度測定装置を用いることにより、標準液、洗浄液を用いたイオン濃度センサの洗浄作業や校正作業などのイオン濃度センサの測定準備に続き、測定対象試料のイオン濃度を測定する一連の測定手順を制御部による送液機構の制御によって自動的に行なって、イオン濃度センサの校正から測定までを完全自動で達成することができる。
【0017】
したがって、装置使用者は試料容器に測定対象試料を投入してボタン入力などによって制御部に命令を与えるだけで、特別な操作を一切行うことなく、全自動的に一連の測定手順を実行できる。また、従来のように標準液、洗浄液および測定対象試料を収容する容器を準備する必要が全くなく、それだけ測定にかかる手間を少なくすることができる。
【0018】
前記一連の測定手順は制御部による画一的な制御によって行われるので、常に一定の手順で行われることにより、再現性がよく、装置使用者の技能に全く依存することなくばらつきのない正確な測定を行なうことができる。さらに、装置使用者が特に意識しなくても、制御部による制御によってイオン濃度センサが定期的に校正されるので、装置使用者に手間をかけることなく、測定値に対する信頼性を向上することができる。つまり、測定対象試料の数が多い場合にも、各測定対象試料のイオン濃度を簡単に精度良く測定することができる。
また、前記イオン濃度センサを有するセンサブロックが取換え可能なカートリッジ構造であるから、イオン濃度センサの劣化が発生した場合にもセンサブロックを交換するだけでこれに対応することができる。
さらにまた、前記センサブロックのセンサ流路には、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられているので、イオン濃度センサに対する標準液または測定対象試料の供給状況を確認しながらイオン濃度センサの校正または測定対象試料のイオン濃度測定を行なうことが可能であるから、より正確で信頼性の高い測定を行なうことが可能である。
【0019】
この第2発明において、前記標準液容器と、洗浄液容器が、取換え可能なカートリッジ構造に構成されている場合には、校正液容器と、洗浄液容器を一定期間毎に交換するだけの簡単な交換作業によって日々の測定を常に最善の状態にすることができる。
【0020】
【0021】
【0022】
【0023】
また、前記制御部によるイオン濃度センサの測定準備が、洗浄液容器から前記センサブロックのセンサ流路に洗浄液を供給してイオン濃度センサを洗浄する第1の洗浄手順と、標準液容器から前記センサブロックのセンサ流路に洗浄液を供給した状態におけるイオン濃度センサの検出値を用いてイオン濃度センサの校正を行なう校正手順と、再び洗浄液容器から前記センサブロックのセンサ流路に洗浄液を供給してイオン濃度センサを洗浄する第2の洗浄手順とからなる場合には、測定の毎に、イオン濃度センサの校正を行うことができるので、測定精度に対する信頼性を向上できる。
【0024】
【発明の実施の形態】
図1は本発明の自動イオン濃度測定装置1の第1実施例の全体構成を説明する図である。なお、以下の説明ではイオン濃度の一例としてpHを測定する例を示す。したがって、以下の説明においては前記自動イオン濃度測定装置1を自動pH測定装置として説明するが、本発明はpH測定に限定されるものではない。
【0025】
図1において、2は流通型のpHセンサ2aを取換え可能なカートリッジ構造にしたセンサブロック、3は標準液容器、4は洗浄液容器、5は液体である測定対象試料Sを収容する試料容器、6は各容器3〜5を切り換えてセンサブロック2に連通連結させて各液をpHサンサ2aに流通させる送液機構、7は廃液部の一例としてpHセンサ2aを流通した後の廃液を収容する廃液容器、8(図1のみ図示)は前記送液機構6を制御することによりpHセンサ2aの測定準備を行った後に測定対象試料SのpHをpHセンサ2aを用いて測定するための一連の測定手順を実行する制御部である。
【0026】
図2は流通型のpHセンサ2aを有する前記センサブロック2の構成の一例を示す図であって、9は例えばpH応答ガラスなどからなるチューブ、10はこのチューブ9の周りに形成された内部液充填部、11はこの内部液充填部10に設けられた内部電極、12は比較電極、13は温度補償電極である。すなわち、本例のpHセンサ2aは応答ガラスを用いてセンサ流路Fsの要部を形成することにより、応答ガラスに対する接触面積を十分にとりながら、より少ない標準液Sa,Sb,Scまたは測定対象試料SのpHを測定可能としている。
【0027】
また、2b,2cはセンサブロック2の上流側と下流側において、光を用いて標準液Sa,Sb,Scまたは測定対象試料Sの存在を確認するように形成された液体検知センサである。したがって、両液体検知センサ2b,2cが液を検知することにより、センサブロック2内のセンサ流路Fsが液で満たされていることを検知する。
【0028】
さらに、図2には比較電極12や温度補償電極13の構成を一般的な電極の構成としているが、この比較電極12や温度補償電極13も、流通型の電極とすることが望ましいことはいうまでもない。
【0029】
何れの場合においても、センサブロック2を取換え可能なカートリッジ構造、つまり、センサブロック2がその他の構成に対して着脱可能かつ装着時には連通連結されるように構成することにより、pHセンサ2aのメンテナンスを容易に行うことができる。また、pHセンサ2aの特性が劣化した場合にも、このセンサブロック2を交換することにより、極めて容易かつ迅速に新しいpHセンサ2aに交換することができる。
【0030】
前記標準液容器3は例えばpHがそれぞれ7.0,4.0,9.0の標準液Sa,Sb,Scを収容する標準液容器3a,3b,3cからなる。つまり、本発明の自動pH測定装置1はpHセンサ2aを3点校正することにより、より正確な校正を行うことが可能となる。また、以下の説明においては3つの標準液Sa,Sb,Scを用いた例を説明するが、本発明は標準液の数や種類を限定するものではない。そして、各標準液容器3a,3b,3cおよび洗浄液容器4はそれぞれ空気孔Aを形成して、標準液Sa,Sb,Scまたは洗浄液の流れをよくしている。
【0031】
また、各容器3,4は何れも取換え可能なカートリッジ構造、つまり、後述の切換えバルブ14に対して着脱自在かつ連通連結可能に構成することにより、容器3,4内の液の補充を、カートリッジ交換によって迅速に行うことができる。前記試料容器5は例えばその上端が漏斗状の開放部5aを形成して開放されており、測定対象試料Sをその内部に容易に収容できるように構成している。
【0032】
本例における送液機構6は、前記各容器3,4,5に連通連結されると共に前記センサブロック2の上流側に直結するように連通連結される切換えバルブ14と、前記センサブロック2の下流側に連通連結される三方弁15と、この三方弁15に一体的に連結されたシリンジを用いたポンプ(以下、シリンジポンプという)16とを有している。なお、このシリンジポンプ16はシリンジ16aと、このシリンジ16aを駆動するためのアクチュエータ16bとを有している。
【0033】
すなわち、制御部8からの制御によって前記切換えバルブ14を用いて標準液Sa,Sb,Sc、洗浄液、測定対象試料Sの何れか一つを選択した状態で、三方弁15を制御してシリンジポンプ16をセンサブロック2のセンサ流路Fsに連通連結させ、シリンジ16a内の容積を増やすように駆動することにより、前記切換えバルブ14によって選択された液をセンサブロック2のセンサ流路Fsに引き込んで流通させることができる。
【0034】
なお、本例の切換えバルブ14内には標準液送液流路Fa,Fb,Fc、洗浄液送液流路Fdまたは測定対象試料送液流路Feを形成すると共に、これらの流路Fa〜Feをこの切換えバルブ14によって択一的に選択して、前記pHセンサ2aを臨ませてなるセンサ流路Fsに連通可能としている。すなわち、本例では、切換えバルブ14による選択により、切換えバルブ14内に形成された内部流路Ffを介して各流路Fa〜Feとセンサブロック2のセンサ流路Fsとを択一的に連通させるようにしている。そして、内部流路Ffの容積をできるだけ小さく構成している。加えて、切換えバルブ14とセンサブロック2を直結することにより、この間に余分な流路をなくしている。
【0035】
また、三方弁15を切り換えてシリンジ16aを廃液容器7に連通連結した状態で、シリンジ16a内の容積を小さくするように駆動することにより、シリンジ16a内に引き込まれた液を廃液容器7に排出することができる。
【0036】
廃液容器7は前記標準液容器3、洗浄液容器4と同様の任意に取り外し可能なカートリッジ構造である。したがって、廃液の処分を廃液容器7のカートリッジの取り外しによって行うことができる。しかしながら、廃液部はカートリッジ構造の廃液容器7に限られるものではない。また、取り扱うイオンの種類や濃度によっては廃液部としての廃液流路を形成し、この廃液をそのまま廃棄することも可能である。
【0037】
前記制御部8は入出力部17を有しており、この入出力部17には表示部17aと例えば2つの入力キー(測定キー)17b,17cとを有している。また、制御部8は例えば、前記各部14〜16の制御を行って測定対象試料S、標準液Sa,Sb,Sc、洗浄液のうち任意の液体(以下、総称して単に溶液という)の流れを制御するための送液処理を実行する送液プログラムPfと、この送液プログラムPfを適宜呼び出して送液機構6を制御すると共に、センサブロック2を用いてpHの測定を行なう測定プログラムPdとを有している。
【0038】
また、前記送液プログラムPfの実行によって、バルブ14、弁15およびシリンジポンプ16を任意に制御することにより、前記任意の溶液の選択および選択された溶液のセンサブロック2のセンサ流路Fsへの供給に加え、センサブロック2のセンサ流路Fs内の溶液を適宜に吸い出して、廃液容器7に収容することが可能である。また、各送液動作において、前記液体検知センサ2b,2cからの検出信号によって、前記溶液がセンサブロック2のセンサ流路Fs内を確実に満たすものとなっていることを確認する。
【0039】
なお、前記送液プログラムPfの実行による、バルブ14,弁15およびシリンジポンプ16の制御によって行える送液制御は、上述のセンサブロック2のセンサ流路Fsに対する各溶液の供給および吸い出しに限られるものではない。
【0040】
すなわち、例えば、切換えバルブ14によって大気解放されている試料容器5を選択した状態で、三方弁15がセンサブロック2のセンサ流路Fsとシリンジ16aを連通連結するように切り換えてシリンジポンプ16を用いて測定対象試料Sを吸い込む動作と、三方弁15が廃液容器7とシリンジ16aを連通連結するように切り換えてシリンジポンプ16を用いて測定対象試料Sを吐き出す動作とを繰り返し行なうことにより、センサブロック2内の溶液を全て排出するように制御することができる。
【0041】
さらに、例えば、切換えバルブ14によって洗浄液容器4を選択した状態で、三方弁15がセンサブロック2とシリンジ16aを連通連結するように切り換えてシリンジポンプ16を用いて洗浄液を吸い込んだ後に、切換えバルブ14によって試料容器5を選択し、シリンジポンプ16を用いて洗浄液を吐き出す動作を行なうことにより、試料容器5のセンサ流路Fs内に洗浄液を送り込んでこれを洗浄することも可能である。
【0042】
本例の自動pH測定装置1は、センサブロック2のセンサ流路Fsが切換えバルブ14に直結するように連通連結しており、切換えバルブ14とセンサブロック2との間に配管のような無駄な空間がないので、前記各溶液を無駄に浪費することがなく、必要最小限の量の溶液をセンサブロック2のセンサ流路Fs内に供給することができる。つまり、一回の校正において使用する溶液の量を少なくすることにより、各容器3,4の容積に対する校正可能回数を多くすることができる。
【0043】
さらに、測定に必要とされる測定対象試料Sの量を少なくすることができるので、多量の測定対象試料Sを採取できないような場合に有用である。この場合、図1に示しているように、試料容器5とセンサブロック2との距離を最小にして、試料容器5からセンサブロック2までの間に生じる流路内の容積を最小とすることが望ましい。
【0044】
前記各溶液の消費量を節減するためには、前記液体検知センサ2b,2cによる検出信号を用いて、センサブロック2のセンサ流路Fsに溶液が満たされた時点でシリンジポンプ16を用いた溶液の吸い込みを止めたり、この時点から所定の短い時間だけ吸い込みを行ってから止めることにより、必要最小限の溶液を消費するようにプログラムすることも可能である。また、本例のように送液機構6にシリンジポンプ16を用いた場合は、前記時点を過ぎて余分に吸い込む溶液の量を的確に制御することも可能である。
【0045】
なお、本例のように液体検知センサ2b,2cをセンサブロック2のセンサ流路Fsの上流側と下流側にそれぞれ設けることにより、確実な制御が可能であるが、いずれか一方の液体検知センサだけ設けてもよいことはいうまでもない。
【0046】
加えて、消費する溶液の量を削減するためには、前記切換えバルブ14内の内部流路に形成される容積もできるだけ小さくすることが望ましいことはいうまでもない。
【0047】
図3は、前記測定プログラムPdの動作の一例を示す図である。図3において説明する動作は、前記2つの測定キー17b,17cのうちpHセンサ2aの校正を行った後に測定対象試料SのpH測定を行なう測定キー17bを押した場合の一連の動作を示している。なお、もう一方の測定キー17cは、校正を行わないで測定対象試料SのpH測定を行なうための測定キーである。この測定キー17cを用いることにより、校正作業の実行を選択可能となり、また校正に必要な標準液Sa〜Scおよび洗浄液の消費を抑えることができる。
【0048】
図3において、S1はセンサブロック2のセンサ流路Fsに洗浄液を供給した後にこの洗浄液を排出するステップ(洗浄液容器4からpHセンサ2aに洗浄液を供給する第1の洗浄手順)である。すなわち、装置使用者が前記測定キー17bを押すと、自動pH測定装置1は最初に洗浄液を用いてpHセンサ2aのチューブ9を洗浄する。
【0049】
S2はセンサブロック2のセンサ流路FsにpHが例えば7.0の標準液Saを供給するステップである。ここでセンサブロック2のセンサ流路Fsに供給される標準液Saはセンサブロック2のセンサ流路Fsに残っているかもしれない洗浄液を流し去ることができる程度、余分に供給することが望ましい。また、センサブロック2のセンサ流路Fsに対する標準液Saの供給状況は液体検知センサ2b,2cによって確認する。
【0050】
S3はpHセンサ2aを用いた標準液SaのpH測定を行って、pHセンサ2aの校正を行うステップ(標準液容器3aからpHセンサ2aに標準液Saを供給した状態におけるpHセンサ2aの検出値を用いてpHセンサ2aの校正を行なう校正手順)である。このとき、標準液Saを用いたpH測定および校正を行なう間は例えば切換えバルブ14と三方弁15を共に閉鎖して、標準液Saの消費を抑えることができる。
【0051】
S4はセンサブロック2のセンサ流路Fsから標準液Saを抜き取って、これを排出するステップである。ここで、例えば切換えバルブ14がセンサブロック2のセンサ流路Fsを外気に連通させる切換え流路(図外)を備える場合は、切換えバルブ14の切換えによって外気がセンサブロック2のセンサ流路Fs内に流れ込むように制御することで、標準液Saをセンサブロック2のセンサ流路Fsから完全に抜き取ることが可能である。あるいは、pHセンサ2aの校正段階では試料容器5に測定対象試料Sを入れないようにして、試料容器5の開放端側5aから外気を引き込むようにしてもよい。
【0052】
また、pHセンサ2aのチューブ9内の標準液Saが完全に排出されたことは、前記液体検知センサ2b,2cによって確認することができる。しかしながら、前記標準液Saの排出は、次の溶液の供給に伴って行われるようにすることも可能であることはいうまでもない。
【0053】
続くS5〜S8およびS9〜S12は、基本的に前記ステップS1〜S4と同じステップである。つまり、S5は洗浄液を供給した後にこれを排出するステップ、S6はpHが4.0である標準液Sbを供給するステップ、S7は標準液Sbを用いた校正を行なうステップ、S8は標準液Sbを排出するステップである。また、S9は洗浄液を供給した後にこれを排出するステップ、S10はpHが9.0である標準液Scを供給するステップ、S11は標準液Scを用いた校正を行なうステップ、S12は標準液Scを排出するステップである。
【0054】
前記一連のステップS1〜S12によって、pHセンサ2aは3点校正されることにより、pHセンサ2aの測定準備を行って、続いて行われる測定対象試料Sの測定に備えたpHセンサ2aの校正を全自動かつ適正に行うことができる。しかしながら、複数の測定対象試料Sを続けて測定する場合には、前記測定キー17cを押すことにより、これらのステップS1〜S12の処理を省略することも可能である。
【0055】
なお、上述したpHセンサ2aの校正手順は本発明の一例を示すものであるが、本発明はこの手順に限定されるものではない。すなわち、本例ではステップS1,S5,S9において洗浄液をセンサブロック2のセンサ流路Fsに供給し排出することにより、pHセンサ2aのチューブ9の洗浄を行っているが、この洗浄液の供給に代えて次のステップS2,S6,S10で用いる標準液Sa,Sb,Scを供給し排出することによりその洗浄を行なうことも可能である。さらに、前記ステップS1,S5,S9を省略して、次のステップS2,S6,S10の標準液Sa,Sb,Scの供給において、少し余分の標準液Sa,Sb,Scを供給し、排出するようにすることにより、洗浄ステップを代替することも可能である。
【0056】
S13はセンサブロック2のセンサ流路Fsに洗浄液を供給した後にこの洗浄液を排出するステップ(洗浄液容器4からpHセンサ2aに洗浄液を供給する第2の洗浄手順)である。すなわち、pHセンサ2aのコンディションを次に行われる測定対象試料SのpH測定に備えて整える。
【0057】
S14はセンサブロック2のセンサ流路Fsに測定対象試料Sを供給するステップである。この場合においてもセンサブロック2のセンサ流路Fsに供給される測定対象試料Sの量はセンサブロック2に残っているかもしれない洗浄液を流し去ることができる程度、少し余分に供給することが望ましい。また、センサブロック2のセンサ流路Fsに対する測定対象試料Sの供給状況は液体検知センサ2b,2cによって確認し、測定対象試料Sの量が少ない場合には、表示部17aに測定不能のメッセージを表示したり、アラームなどによってエラー発生を通知する。
【0058】
本発明の自動pH測定装置1はpHセンサ2aが流通型のpHセンサであるから、測定に必要とされる測定対象試料Sの量は比較的少なくなると共に、試料容器5からセンサブロック2のセンサ流路Fsまでの間の流通路における容積をできるだけ小さくできるように、試料容器5と切換えバルブ14とブロックセンサ2を密着させて余分な流路を無くしているので、これによって測定に必要とされる測定対象試料Sの量は可及的に少なくなる。
【0059】
また、本例のpHセンサ2aは応答ガラスチューブ9を用いたものとしているので、極く僅かな量の測定対象試料Sを測定可能としている。加えて、前記ステップS13における洗浄液の排出において、試料容器5を介して外気をセンサブロック2のセンサ流路Fs内に吸引するように制御し、洗浄液を確実に排出することにより、このステップS14において余分に供給する測定対象試料Sの量を少なくすることができる。この場合、制御部8がステップS14の処理を行なう直前に、装置使用者に対して測定対象試料Sの投入を促すメッセージの表示やアラームによる通知を行なうことができる。
【0060】
S15はpHセンサ2aを用いて測定対象試料SのpH測定を行なうステップ(試料容器5からpHセンサ2aのチューブ9に測定対象試料Sを供給した状態におけるpHセンサ2aの検出値を用いて測定対象試料SのpHを求める測定手順)である。
【0061】
本例の自動pH測定装置1は、ステップS15におけるpH測定時には切換えバルブ14と三方弁15を全閉にして、pHセンサ2aの部分における流れを止めることで、より安定したpH測定を行なうものである。よって、S16では、測定対象試料Sを排出するステップを設けている。
【0062】
しかしながら、このステップS15におけるpH測定は測定対象試料Sをシリンジポンプ16によって引き込みながら行うことも可能である。つまり、本例の前記送液機構6を構成するシリンジ16aは料容器5に連通連結し、測定対象試料Sを流しながらそのpHを測定可能とするものであってもよい。
【0063】
S17は測定後のpHセンサ2aを洗浄するために洗浄液を供給し、これを排出するステップである。
【0064】
以上のステップS1〜S17は制御部8によって実行される測定プログラムPdによって全自動的に実行されるものであるから、装置使用者が複雑なpHセンサ2aの校正処理を自ら行なう必要がなく、ワンタッチの操作で校正から測定までを完了することができる。また、校正手順が測定プログラムPdによってシーケンス制御される画一的な処理によって行われるので、装置使用者の技能に全く依存することなく、いつでも正確な測定を行うことができる。
【0065】
また、上述の例ではpHセンサ2aを3点校正しているので、その特性のずれをより正確に補正するように校正をかけることが可能であるが、前記測定プログラムPdによってpHセンサ2aを2点校正または1点校正するように制御することも可能である。逆に、4点以上の校正を行ってもよい。
【0066】
さらに、本例では測定プログラムPdが毎回の測定において校正処理を実行することにより、測定値に対する信頼性を極限まで高めているが、この校正処理を間欠的に行うようにプログラムされていてもよい。すなわち、比較的長い所定の間隔毎(測定数十回に1回や、数日1回など)に3点校正を行ったり、比較的短い所定の間隔毎(測定数回に1回や数時間に1回など)に1点校正を行なうなど、種々の変形が考えられる。何れにしても、装置使用者は校正処理を自動pH測定装置1に任せることで、自動pH測定装置1を操作するときにかかる手間をなくすことができる。
【0067】
加えて、本例の自動pH測定装置1においては、標準液容器3,洗浄液容器4および廃液容器7を取り外し可能なカートリッジ構造の容器としている。したがって、自動pH測定装置1は定期的に各容器3,4,7のカートリッジを取り替えることにより、装置使用者は自動pH測定装置1のメンテナンスを一切おこなう必要がなくなる。
【0068】
また、前記センサブロック2も切換えバルブ14と三方弁15との間に連通連結するように嵌め込まれることにより、これを容易に取り替えることが可能となる。したがって、pHセンサ2aの特性が前述の校正によって補いきれないほど劣化した場合も、比較的容易にこれに対応することができる。
【0069】
【0070】
【0071】
【0072】
【0073】
【0074】
【0075】
【0077】
【0078】
【0079】
【0080】
【発明の効果】
以上説明したように、本発明によれば、イオン濃度センサの洗浄と、標準液を用いたイオン濃度センサの校正と、測定対象試料のイオン濃度測定の一連の測定手順を制御部による制御によって全自動で行うことが可能となり、装置使用者の手間が軽減できる。すなわち、装置使用者は標準液や測定対象試料を収容する容器を装置使用者が用意する必要性も、イオン濃度センサのメンテナンスを行なう必要性もなくなる。そして、測定手順を画一的な手順で行なうことができるので、装置使用者による値のばらつきなどの問題が生じることもない。
また、前記イオン濃度センサが応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型であるから、少ない標準液、測定対象試料であってもイオン濃度センサとの接触面積を十分にとって高精度に測定することができる。
さらに、前記イオン濃度センサを有するセンサブロックが取換え可能なカートリッジ構造であるから、イオン濃度センサの劣化が発生した場合にもセンサブロックを交換するだけでこれに対応することができる。
さらにまた、前記センサブロックのセンサ流路には、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられているので、イオン濃度センサに対する標準液または測定対象試料の供給状況を確認しながらイオン濃度センサの校正または測定対象試料のイオン濃度測定を行なうことが可能であるから、より正確で信頼性の高い測定を行なうことができる。
【図面の簡単な説明】
【図1】 第1実施例の自動イオン濃度測定装置の全体構成を示す図である。
【図2】 前記自動イオン濃度測定装置の要部を拡大して示す図である。
【図3】 前記自動イオン濃度測定装置の動作を説明する図である。
【図4】 従来のイオン濃度センサを校正する方法を説明する図である。
【図5】 前記イオン濃度センサを用いてイオン濃度を測定する方法を説明する図である。
【符号の説明】
1…自動イオン濃度測定装置、2…センサブロック、2a…イオン濃度センサ、2b,2c…液体検知センサ、3…標準液容器、4…洗浄液容器、5…試料容器、6…送液機構、7…廃液容器(廃液部)、8…制御部、9…応答ガラスからなるチューブ、16…ポンプ(シリンジポンプ、18…ポンプ、Fa〜Fc…標準液送液流路、Fd…洗浄液送液流路、Fe…測定対象試料送液流路、Fs…センサ流路、S…測定対象試料、S1〜S17…一連の測定手順、S1,S5,S9…第1の洗浄手順、S3,S7,11…校正手順、S13…第2の洗浄手順、S15…測定手順。

Claims (4)

  1. 応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型のイオン濃度センサを有するとともに、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられ、かつ、取換え可能なカートリッジ構造に構成されたセンサブロックを備え、このセンサブロックはその装着時に前記センサ流路がその上流において標準液送液流路、洗浄液送液流路または測定対象試料送液流路に択一的に連通可能で、かつ、その下流において廃液部に連通するように構成されていることを特徴とする自動イオン濃度測定装置。
  2. 応答ガラスを用いて形成されるセンサ流路の周りに内部電極を設けてなる流通型のイオン濃度センサを有するとともに、前記イオン濃度センサに対する標準液または測定対象試料の供給状況を検知するための液体検知センサが設けられ、かつ、取換え可能なカートリッジ構造に構成されたセンサブロックと、標準液容器と、洗浄液容器と、液体である測定対象試料を収容する試料容器と、
    前記各液が前記センサブロックのセンサ流路に流通するよう送液する送液機構と、
    このセンサ流路に流通した後の廃液を収容する廃液容器と、
    前記送液機構の制御によって前記センサブロックのセンサ流路に洗浄液および標準液を供給し排出してイオン濃度センサの測定準備を行った後に前記センサブロックのセンサ流路に測定対象試料を供給して該測定対象試料のイオン濃度をイオン濃度センサを用いて測定するための一連の測定手順を実行する制御部とを有していることを特徴とする自動イオン濃度測定装置。
  3. 前記標準液容器と、洗浄液容器が、取換え可能なカートリッジ構造に構成されている請求項に記載の自動イオン濃度測定装置。
  4. 前記制御部によるイオン濃度センサの測定準備が、
    洗浄液容器から前記センサブロックのセンサ流路に洗浄液を供給してイオン濃度センサを洗浄する第1の洗浄手順と、
    標準液容器から前記センサブロックのセンサ流路に洗浄液を供給した状態におけるイオン濃度センサの検出値を用いてイオン濃度センサの校正を行なう校正手順と、
    再び洗浄液容器から前記センサブロックのセンサ流路に洗浄液を供給してイオン濃度センサを洗浄する第2の洗浄手順とからなる請求項2または3に記載の自動イオン濃度測定装置。
JP2002064411A 2002-03-08 2002-03-08 自動イオン濃度測定装置 Expired - Fee Related JP4014897B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064411A JP4014897B2 (ja) 2002-03-08 2002-03-08 自動イオン濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064411A JP4014897B2 (ja) 2002-03-08 2002-03-08 自動イオン濃度測定装置

Publications (2)

Publication Number Publication Date
JP2003262613A JP2003262613A (ja) 2003-09-19
JP4014897B2 true JP4014897B2 (ja) 2007-11-28

Family

ID=29197220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064411A Expired - Fee Related JP4014897B2 (ja) 2002-03-08 2002-03-08 自動イオン濃度測定装置

Country Status (1)

Country Link
JP (1) JP4014897B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100744630B1 (ko) * 2007-02-01 2007-08-02 (주)이엠엔씨코리아 하수관거내 염소 이온농도를 이용한 하수처리장 제어방법및 그 시스템과, 이를 위한 염소 이온측정기
EP2989975B1 (en) 2007-02-06 2018-06-13 Medtronic MiniMed, Inc. Optical systems and methods for rationmetric measurement of blood glucose concentration
US20090018426A1 (en) * 2007-05-10 2009-01-15 Glumetrics, Inc. Device and methods for calibrating analyte sensors
US8088097B2 (en) 2007-11-21 2012-01-03 Glumetrics, Inc. Use of an equilibrium intravascular sensor to achieve tight glycemic control
WO2008141241A1 (en) 2007-05-10 2008-11-20 Glumetrics, Inc. Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement
EP2483679A4 (en) 2009-09-30 2013-04-24 Glumetrics Inc SENSORS WITH THROMORETIC COATINGS
US8467843B2 (en) 2009-11-04 2013-06-18 Glumetrics, Inc. Optical sensor configuration for ratiometric correction of blood glucose measurement
CN102873053A (zh) * 2012-08-31 2013-01-16 绍兴文理学院 一种ph计的超声波清洗系统
CN102818829A (zh) * 2012-08-31 2012-12-12 绍兴文理学院 一种智能自动清洗在线ph计系统
JP6548185B2 (ja) * 2015-03-30 2019-07-24 国立大学法人高知大学 化学センサ校正装置
CN106111619A (zh) * 2016-06-22 2016-11-16 天津大学 一种利用超声波技术的pH计自洁装置
JP6424938B2 (ja) * 2017-10-30 2018-11-21 東亜ディーケーケー株式会社 フロー型電極装置
CN107894452B (zh) * 2017-11-01 2019-05-21 河海大学 一种自动保养的在线式离子浓度传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5639455A (en) * 1979-09-10 1981-04-15 Olympus Optical Co Ltd Method and device for measuring ion concentration
JPS60193455U (ja) * 1984-06-02 1985-12-23 株式会社 堀場製作所 流通型ガラス電極
JP2694315B2 (ja) * 1993-03-06 1997-12-24 株式会社堀場製作所 自動電解質分析装置の簡易温度調節方法
US5571396A (en) * 1993-07-12 1996-11-05 Dade International Inc. Fluid analysis system and sensing electrode, electrode assembly, and sensing module components

Also Published As

Publication number Publication date
JP2003262613A (ja) 2003-09-19

Similar Documents

Publication Publication Date Title
JP4014897B2 (ja) 自動イオン濃度測定装置
US9518900B2 (en) Sample preparation system for an analytical system for determining a measured variable of a liquid sample
WO2011070719A1 (ja) 電解質分析装置
US4852385A (en) Maintenance device for at least partially automatic cleaning and calibration of a probe containing a measured value transmitter
US10768136B2 (en) Electrolyte concentration measurement device
JP2010501842A (ja) 液体サンプルのテスト方法、テスト装置および複数のテスト装置の自動化システム
WO2011034169A1 (ja) 自動分析装置
JPH0616859U (ja) 実験室用イオン濃度計の自動校正装置
EP0842421B1 (de) Mobiles handgerät mit biosensor
JP7425235B2 (ja) 検体分析システム、起動コントローラ、検体分析装置の起動方法、コンピュータプログラム
JP5443775B2 (ja) 自動分析装置及び自動分析方法
US20210318266A1 (en) Electrolyte concentration measurement device
JPS6287860A (ja) 化学分析装置及び方法
AU774701B2 (en) Mobile hand-held unit comprising a reusable biosensor
CN108431598A (zh) 检测液体样本分析仪中是否存在凝块的方法
JP2000321270A (ja) 尿分析装置
JP2004522957A (ja) 液体サンプルのテストに使用するための方法、該方法を利用するテストユニットおよび該テストユニットを備えたシステム
WO2022158057A1 (ja) 電解質分析装置とその異常判定方法
JPH03108652A (ja) 電解質分析装置における校正液自動供給方式
JP6738717B2 (ja) 分析処理システム及び分析処理方法
JPH1062375A (ja) 電解質分析装置
CN102539301B (zh) 血液测量装置
JP2011191148A (ja) 自動分析装置
CN112666234B (zh) 电解质浓度测定装置、电解质浓度测定方法
US20220026387A1 (en) Automated analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees