JP4013116B2 - 駆動装置 - Google Patents

駆動装置 Download PDF

Info

Publication number
JP4013116B2
JP4013116B2 JP2002008512A JP2002008512A JP4013116B2 JP 4013116 B2 JP4013116 B2 JP 4013116B2 JP 2002008512 A JP2002008512 A JP 2002008512A JP 2002008512 A JP2002008512 A JP 2002008512A JP 4013116 B2 JP4013116 B2 JP 4013116B2
Authority
JP
Japan
Prior art keywords
temperature
thermistor
detection
voltage
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002008512A
Other languages
English (en)
Other versions
JP2003219686A (ja
Inventor
博一 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2002008512A priority Critical patent/JP4013116B2/ja
Publication of JP2003219686A publication Critical patent/JP2003219686A/ja
Application granted granted Critical
Publication of JP4013116B2 publication Critical patent/JP4013116B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Direct Current Motors (AREA)
  • Window Of Vehicle (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば車両のパワーウインドウ用モータなどを駆動する駆動装置に関する。
【0002】
【従来の技術】
例えば、車両のパワーウインドウの円滑な動作や所要の機能(挟み込み防止機能等)を高度に実現するためには、そのモータの回転方向に加えて回転速度或いは出力トルク(電流)を制御する必要があり、モータ(負荷)の通電ラインを開閉するスイッチング素子(例えばFET)が不可欠である。
図3(a)は、パワーウインドウシステムにおけるモータ1(直流モータ)の駆動装置の一例を示す図である。この駆動装置は、モータ1の通電状態や回転方向(通電方向)を切り替えるためのリレー2,3と、モータ1の電流量をPWM制御するためのMOS型FET4(スイッチング素子)と、リレー2,3やFET4を制御する制御回路5(マイクロコンピュータを含む回路)とを備える。なお、符号6は車両のバッテリを示し、符号7は回生電流を流すためのダイオードであり、符号8は電流検出用のシャント抵抗を示している。
この駆動装置では、図示省略した操作スイッチの操作によってウインドの開閉動作が指令されると、制御回路5が図示省略したリレー駆動回路を介してリレー2,3のうちの一方(ウインドの作動方向に対応した側)を作動させるとともに、FET4を所定のデューティ比でオンオフ駆動する。すると、モータ1のコイル端子の一方が電源(バッテリ6の正極)に接続され、同コイル端子の他方がFET4やシャント抵抗8を介してグランドに接続されるため、モータ1に所定の電流が流れてウインドが所定方向に所定トルク或いは所定速度で作動する。即ち、リレー2,3や、モータ1の通電ラインを開閉するFET4(スイッチング素子)によって、モータ1(負荷)の作動状態や回転方向さらには出力トルク等が制御されている。
【0003】
ところで、上述したようなスイッチング素子(特にFET4のようにオンオフ駆動されるトランジスタなど)は、当然に相当の電気抵抗を有するため、通電によって素子そのものが発熱し、連続して通電が行われた場合(例えば、短時間に頻繁にパワーウインドウが操作された場合)、素子の温度が上昇し、最悪の場合には許容温度を超えて破損する恐れがある。
このため、このようなスイッチング素子を有する駆動装置では、スイッチング素子の温度検出を行って、所定のフェール温度(許容温度以下の設定温度)になると、制御回路の制御によって電流を強制的に低下させたり、通電状態を強制停止する(電流を強制的に遮断する)フェールセーフ機能が設けられるのが一般的である。
しかしながら従来では、例えば図3(b)に示すような温度検出回路(上記FET4を含む駆動回路とは別個に設けられた温度検出回路)によって、上記温度検出が行われていた。この温度検出回路は、温度検出素子であるサーミスタ9(温度変化に応じて抵抗値が変化する素子)のグランド側端子を上記FET4のグランド側端子とは別個のグランド側導体パターンに接続するとともに、サーミスタ9の電源側端子(出力端子)をプルアップ抵抗10(R1)によって電源ライン(バッテリ6を電源とする所定電圧Vaが供給される回路ライン)に接続してなり、サーミスタ9の電源側端子の電圧Vtを温度検出値として出力するもので、サーミスタ9を回路基板上においてFET4のなるべく近傍に実装してFET4の温度変化がサーミスタ9になるべく伝導されるようにしたものである。即ち、従来の温度検出回路は、スイッチング素子の熱が回路基板の基材部分等(ガラスエポキシ樹脂などの熱伝導率の低い部分)を介して温度検出素子に伝導される構成であった。
【0004】
【発明が解決しようとする課題】
このため、上記従来の駆動装置では、スイッチング素子の実際の温度と、温度検出回路で検出される温度との間には、回路基板構成上の種々の要因による比較的大きな誤差が存在していた。したがって、この誤差を考慮してフェール温度を低めに設定して早めにフェールセーフ機能を働かせる必要があり、その分だけ駆動装置の連続動作可能時間が相当短くなってしまう問題があった。また、回路基板の仕様変更の際には、上記誤差が変化するため、その都度上記誤差を測定して上記フェール温度の設定をやり直す必要があるという問題もあった。
【0005】
なお、スイッチング素子の端子と、温度検出素子である例えばサーミスタの端子を、回路導体(銅箔パターンなど)によって直結した構成とすることによって、上記問題を解決することが考えられる。例えば図3(c)に示すように、サーミスタ9のグランド側端子をFET4のグランド側端子(シャント抵抗8の高電位側)に接続する構成が考えられる。このようにスイッチング素子と温度検出素子のグランド側端子を電気的に接続すれば、熱伝導率の高い回路導体を介してスイッチング素子の熱が温度検出素子に良好に伝達されるため、スイッチング素子の実際の温度と温度検出回路で検出される温度との間の誤差が格段に小さくなり、回路基板構成によってこの誤差が大きく変化することもなくなる。
【0006】
しかしこの場合には、電流変化に伴うスイッチング素子の端子の電圧変動によって温度検出素子の出力電圧(温度検出値)が変化するため、熱伝導不良による誤差が解消されるものの、電流変動による温度検出誤差が発生する。例えば、図3(a)及び(c)に示す回路構成では、リレー2,3の一方が作動した状態で、FET4がオンとなりモータ1に電流が流れるときと、FET4がオフとされてモータ1に電流が流れないときとで、FET4のグランド側端子の電圧Vcは、シャント抵抗8の電圧降下分だけ当然に異なる。このため、図3(c)の温度検出回路の出力電圧Vtは、同じ温度であっても、モータ1に電流が流れるときの方が、シャント抵抗8の電圧降下分だけ高くなる。したがって、モータ1に電流が流れないとき(電圧Vcがグランド電位のとき)を基準とすると、モータ1に電流が流れるときには、シャント抵抗8の電圧降下分が温度検出値Vtに誤差として含まれることになる。なお、図3(a)及び(c)に示す回路構成においてシャント抵抗8が仮に削除されれば、このような誤差は発生しないが、フィードバック制御によりモータ電流(出力トルク)を良好に制御したり、モータ電流を正確に把握して挟み込み防止機能などを高度かつ問題なく実現するためには、実用上この位置に電流検出用のシャント抵抗8を設けざるを得ない。
そこで本発明は、熱伝導不良による温度検出誤差及び電流変化による温度検出誤差の両方が解消されたスイッチング素子の温度検出機能を備え、スイッチング素子の温度を正確に把握してスイッチング素子の過熱防止機能(前述のフェールセーフ機能)を的確に実現できる駆動装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
この発明による駆動装置は、直流負荷の通電ライン上に接続されこの通電ラインを開閉するスイッチング素子と、このスイッチング素子の温度を検出する温度検出部とを有し、前記温度検出部の検出値に応じて前記通電ラインの通電状態を制御して前記スイッチング素子の過熱防止機能を実行する駆動装置において、
前記温度検出部が、
前記スイッチング素子のグランド側端子に一方の端子が接続された検出用サーミスタと、この検出用サーミスタの他方の端子を電源ラインに接続するプルアップ抵抗と、前記検出用サーミスタの他方の端子の電圧から、前記スイッチング素子のグランド側端子の電圧による変動分を差し引いて前記検出値として出力する補正手段とを備えたものである。
ここで「直流負荷」とは、例えば直流モータである。また「スイッチング素子」とは、例えばFETなどのトランジスタである。また「電源ライン」とは、電源の高電位側電圧が供給される回路ラインを意味する。また、差分検出回路は、例えばいわゆるオペアンプを利用したアナログ演算回路(減算回路)によって容易に構成できる。
【0008】
この駆動装置では、スイッチング素子とサーミスタのグランド側端子が電気的に接続されており、熱伝導率の高い回路導体を介してスイッチング素子の熱がサーミスタに良好に伝達されるため、スイッチング素子の実際の温度と温度検出部で検出される温度との間の誤差が格段に小さくなり、回路基板構成によってこの誤差が大きく変化することもなくなる。
しかも、スイッチング素子のグランド側端子の電圧による温度検出値の変動分が補正手段において差し引かれるため、スイッチング素子のグランド側端子の電圧が変動しても(即ち、通電ラインの電流量が変動しても)、温度が同じであれば、温度検出部の検出値(補正手段の出力)は変動しない。即ち、電流変動に起因する温度検出誤差も解消される。
したがってこの駆動装置によれば、スイッチング素子の温度を正確に把握してスイッチング素子の過熱防止機能(前述のフェールセーフ機能)を的確に実現でき、連続動作可能時間もスイッチング素子の耐熱限度ぎりぎりまで増やすことができる。
【0009】
なお、本発明の好ましい態様は、前記補正手段が、
前記検出用サーミスタと同等の特性を有し、前記スイッチング素子のグランド側端子に一方の端子が接続された補正用サーミスタと、
前記プルアップ抵抗と同じ抵抗値を有し、前記補正用サーミスタの他方の端子をグランドラインに接続するプルダウン抵抗と、
前記検出用サーミスタの他方の端子の電圧から前記補正用サーミスタの他方の端子の電圧を差し引いた電圧を前記検出値として出力する差分検出回路と
を備えるものである。
ここで、「グランドライン」とは、グランド(アース)電位或いは電源の低電位側電圧となる回路ラインを意味する。また「差分検出回路」は、例えばいわゆるオペアンプを利用したアナログ演算回路(減算回路)によって容易に構成できる。
このような構成であると、本発明の補正手段が簡単な回路構成によってハード的に実現できる。またこの場合、後述する第1形態例のように、全温度範囲において温度検出誤差が解消され、常に正確な温度が判定可能となるなどの利点が得られる。
【0010】
また、本発明の好ましい別の態様は、前記補正手段が、
前記スイッチング素子のフェール温度において前記検出用サーミスタと同じ抵抗値を有し、前記スイッチング素子のグランド側端子に一方の端子が接続された補正用抵抗と、
前記プルアップ抵抗と同じ抵抗値を有し、前記補正用抵抗の他方の端子をグランドラインに接続するプルダウン抵抗と、
前記サーミスタの他方の端子の電圧から前記補正用抵抗の他方の端子の電圧を差し引いた電圧を前記検出値として出力する差分検出回路と
を備えるものである。
即ちこの態様は、前述の態様における補正用サーミスタの代わりに、通常の抵抗である補正用抵抗を設け、この補正用抵抗の抵抗値が、スイッチング素子のフェール温度において前記検出用サーミスタと同じになるように設定したものである。
【0011】
この駆動装置では、スイッチング素子の温度がそのフェール温度になったときには、補正用抵抗の抵抗値と検出用サーミスタの抵抗値が同等になるため、補正用抵抗が前述の態様における補正用サーミスタと同様に機能し、前述の態様と同様に温度検出誤差が解消される作用効果が得られる。即ち、スイッチング素子の過熱防止機能を単純な制御で的確に実現するためには、スイッチング素子の温度がフェール温度に到達したか否かのみが正確に把握できればよいが、この駆動装置によれば、最低限この判定が的確に可能となる。そしてこの場合、比較的高価なサーミスタが一つでよいので、コスト面では前述の態様よりも有利になる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
(第1形態例)
まず、本発明の第1形態例を説明する。
図1(a)は、本例の駆動装置(車両のパワーウインドウの駆動装置)の主要回路構成(例えば運転席ウインドウの制御部分)を示す図であり、リレーの駆動回路や電流検出回路、或いは操作スイッチなども図示省略している。次に図1(b)は、本装置の温度検出部を示す図である。なお、図3に示した既述の構成要素と同様のものについては、同符号を使用して重複する説明を省略する。
本装置の基本構成は、図1(a)に示すように、図3(a)に示した前述の装置と同じである。しかし温度検出部については、図1(b)に示すように、二つのサーミスタを備えた構成となっている。即ち、FET4のグランド側端子(この場合ソース端子)に一方の端子が接続された検出用サーミスタ11(サーミスタA)と、この検出用サーミスタ11と同等の特性を有し、やはりFET4のグランド側端子に一方の端子が接続された補正用サーミスタ12(サーミスタB)と、検出用サーミスタ11の他方の端子(出力端子)を電源ライン(所定電圧Vaが印加されるライン)に接続するプルアップ抵抗13(抵抗値R1)と、このプルアップ抵抗13と同じ抵抗値R2(R2=R1)を有し、補正用サーミスタ12の他方の端子(出力端子)をグランドラインに接続するプルダウン抵抗14と、検出用サーミスタ11の出力電圧Vbから補正用サーミスタ12の出力電圧Vdを差し引いた電圧を検出値として出力する差分検出回路15と、この差分検出回路15の出力からノイズ成分を除去し検出電圧Vt(温度検出値)として出力するノイズフィルタ16とを備える構成となっている。
なお制御回路5は、上記検出電圧VtからFET4の温度を判定し、フェール温度に到達していると判定した場合には、モータ1の通電制御(リレー2,3の一方をオンし、FET4を駆動する動作)を操作スイッチの状態に無関係に強制停止し、或いは操作スイッチが操作されてもこの通電制御を行わないようにプログラムされ、これによって前述のフェールセーフ機能が実現される構成となっている。なお、通電ラインに電流遮断用のリレーを別途設けて、フェール温度に到達した場合には、上記通電制御を停止するとともに、このリレーをオフしてより確実に電流を遮断する構成であってもよい。
【0013】
ここで、FET4のグランド側端子(ソース端子)はFET内部の熱源に直結しているため、FET4の熱は、回路導体(回路基板上の銅箔パターン)を介して検出用サーミスタ11及び補正用サーミスタ12に極めて良く伝導され、検出用サーミスタ11及び補正用サーミスタ12の温度とFET4の温度はほとんど同じか強い相関関係を有するものとなる。少なくとも、図3(b)に示すように別個の回路として温度検出部を構成した従来と比較すると、電気回路上で接続しているために熱的に極めて近い状態に設置でき、また基板の材質や空気などの熱伝導率を低下させる要因の悪影響が極めて小さくなる。
また本装置では、FET4のグランド側端子の電圧Vcによる温度検出値の変動分が差分検出回路15において差し引かれることになるため(詳細後述する)、この電圧Vcが変動しても(即ち、モータ1の通電ラインの電流量が変動しても)、FET4の温度が同じであれば、温度検出部の検出値(差分検出回路15及びノイズフィルタ16の出力)は変動しない。即ち、電流変動に起因する温度検出誤差も解消される。
したがってこの駆動装置によれば、FET4の温度を正確に把握してFET4の過熱防止機能(前述のフェールセーフ機能)を的確に実現でき、連続動作可能時間もFET4の耐熱限度ぎりぎりまで増やすことができる。また本装置では、全温度範囲で温度検出値が正確なものとなるので、例えば、フェール温度に到達する前から、フェール温度に近づいた程度に応じて電流を徐々に制限するといったきめ細かい過熱防止機能も的確に行える。また本例の場合、温度検出部を構成する要素(例えばサーミスタ11,12)の仕様は、FET4の仕様(特にフェール温度)に特に無関係に設定できる。いいかえると、後述する第2形態例における補正用抵抗12aのようにFET4とセットで設ける必要のある部品がない。このため、温度検出部の汎用性が高いという長所がある。
【0014】
なお以下では、上記温度検出部の原理や作用効果を詳細に説明する。
サーミスタは、温度によって所定の変化率で抵抗値が変化する素子であり、温度上昇に応じて抵抗値が下がるものと上がるものがある。上記検出用サーミスタ11及び補正用サーミスタ12は、このどちらのタイプでもよいが(但し、両方の特性が同じである必要がある)、以下では温度上昇に応じて抵抗値が下がるネガティブタイプであるとして説明する。
ネガティブタイプのサーミスタの場合、抵抗値の変化率をB、基準温度をT0、基準温度のときの抵抗値(基準抵抗値)をR0とすると、サーミスタの任意の温度Tとその際の抵抗値Rの関係は、次式(1)となる。
R=R0・exp{B(1/T−1/TO)} …(1)
また、モータ電流がゼロ(FET4がオフ)のときは、電圧Vcと電圧Vdもゼロ(グランド電位)であるため、ノイズ成分を無視すれば検出電圧Vtは検出用サーミスタ11の出力電圧Vb(プルアップ抵抗13との分圧値)と等しくなるから、検出用サーミスタ11の抵抗値をRAとすれば、次式(2)が成り立つ。
Vt=Va・{RA/(R1+RA)} …(2)
このため、例えば検出用サーミスタ11のBが3423Kで、T0が25℃で、R0が10kΩであり、また、プルアップ抵抗13の抵抗値R1が10kΩであるとすると、上記式(1)及び(2)から、各温度に対する検出用サーミスタ11の抵抗値RAと分圧値Vb(即ち、検出電圧Vt)の値を、図2(a)のように求めることができる。
【0015】
制御回路5には、図2(a)のような相関マップのデータが予め設定されているか、上記式(1)及び(2)のような関係式のデータが予め設定されており、検出電圧Vtの値から検出用サーミスタ11の温度Tが判定又は算出され、さらにこの温度Tに基づいてFET4の温度が判定されるようになっている。
ところで、FET4のグランド側端子の電圧Vcは、実際には常時ゼロではなく、前述したようにシャント抵抗8の電圧降下分だけモータ電流に応じて増加し、これに伴って検出用サーミスタ11の出力電圧Vb(分圧値)も増加する。このため、この電圧Vbの値は、一般式として次式(3)で表せる。
Vb=Va・{RA/(R1+RA)}+Vc・{R1/(R1+RA)} …(3)
したがって、モータ1の作動中には、FET4のオンオフ動作に対応して例えば図2(b)に点線で示すように出力電圧Vbが変動する。ちなみに、シャント抵抗8の抵抗値が10mΩ、モータ電流が20Aのとき、電圧Vcは0.2Vとなり、図2(a)の場合には約4℃程度の温度検出誤差に相当する電圧となる。このため、図3(c)に示したような単純な温度検出回路の場合(電圧Vbをそのまま温度検出値Vtとして出力する場合)には、このような電流変動に起因する無視できない大きさの温度検出誤差が発生する。
【0016】
しかし本装置では、差分検出回路15によって上記電圧Vbから補正用サーミスタ12の出力電圧Vd(分圧値)を差し引いた電圧が検出電圧Vtとして出力される。ここで電圧Vdは、補正用サーミスタ12の抵抗値をRBとした場合、プルダウン抵抗14の抵抗値R2等によって次式(4)で表せる。
Vd=Vc・{R2/(R2+RB)} …(4)
そして、R2=R1であり、RB=RAであるため、上記電圧Vdは前記式(3)の右辺第2項(電圧Vcによる電圧Vbの変動分)に等しい。このため本装置では、前記式(3)の右辺第2項の変動分が差分検出回路15における減算によって常に差し引かれることになる。この結果、電圧Vcに無関係に(即ちモータ電流に無関係に)常に前記式(2)が成立し、検出電圧Vtは、例えば図2(b)に実線で示すようにモータ電流に起因する誤差を含まない真値となる。
しかも、図3(b)に示した従来構成と異なり、検出用サーミスタ11等の温度とFET4の温度はほとんど同じか強い相関関係を有するものとなるため、上記検出電圧Vtに基づく制御回路5の判定(FET4の温度判定)は、熱伝導不良に起因する誤差をも含まず、格段に正確になる。
【0017】
(第2形態例)
次に、本発明の第2形態例を説明する。
この駆動装置は、図1(c)に示すように、第1形態例(図1(b))の温度検出部における補正用サーミスタ12の代わりに、通常の抵抗である補正用抵抗12aを設け、この補正用抵抗12aの抵抗値Rxが、FET4のフェール温度において検出用サーミスタ11と同じになるように設定したものである。このため、この補正用抵抗12aは、FET4とセットで設ける必要がある(即ち、FET4のフェール温度が変更される場合、検出用サーミスタ11を変更しないのであれば、この補正用抵抗12aを新たなフェール温度に対応した抵抗値のものに変更する必要がある)。
この駆動装置では、FET4の温度がそのフェール温度になったときには、補正用抵抗12aの抵抗値Rxと検出用サーミスタ11の抵抗値RAが同等になるため、補正用抵抗12aが第1形態例における補正用サーミスタ12と同様に機能し、図2(c)に示すように第1形態例と同様の作用効果(温度検出誤差が解消される作用効果)が得られる。即ち、前述の過熱防止機能を単純な制御で的確に実現するためには、FET4の温度がフェール温度に到達したか否かのみが正確に把握できればよいが、この駆動装置によれば、最低限この判定が的確に可能となる。そして、比較的高価なサーミスタが一つでよいので、コスト面では第1形態例よりも有利になる。
【0018】
なおこの場合、検出用サーミスタ11は温度上昇に応じて抵抗値が下がるネガティブタイプであるから、図2(c)に示すように、温度がフェール温度よりも低い範囲では、抵抗値RAに対して相対的に抵抗値Rxが小さくなり、電圧Vbから差し引かれる電圧Vdの値が相対的に大きくなるため、電圧Vcがゼロでないかぎり検出電圧Vtは正確な値(真値)よりも低くなる。また、温度がフェール温度よりも高い範囲では、逆に検出電圧Vtは正確な値(真値)よりも高くなる。即ち本例の場合、フェール温度よりも低い範囲では、モータ電流に起因する誤差によって温度が高めに判定される。このため、モータ電流に起因する誤差が安全側に働く特性(誤差によってフェール温度に到達したと早めに判定され易くなる傾向)が得られる利点がある。
【0019】
なお、本発明は上述した形態例に限られず、各種の変形や応用があり得る。
例えば、本発明の補正手段は、上述したような回路によってハード的に構成する態様に限られず、マイクロコンピュータなどの処理機能としてソフト的に実現することもできる。ちなみに、図1(c)に示した第2形態例の温度検出部における補正用抵抗12aや差分検出回路15の機能は、例えば制御回路5における情報処理によって実現できる可能性がある。原理的には、電圧Vbと電圧Vcを制御回路5に入力するようにし、電圧Vcからフェール温度における電圧Vbの変動分を算出し、この変動分を電圧Vbから減算する処理を制御回路5で実行すればよいからである。
また、前述した形態例におけるノイズフィルタ16の機能は、制御回路5における処理によってソフト的に実現することもできる。また、このようなノイズフィルタは、ノイズ成分を考慮する必要がない装置の場合には、当然不要である。また、本発明における直流負荷は、モータに限定されず、車両用機器にも限定されない。また本発明は、パワーウインドウ以外の車両用機器の駆動装置にも適用可能である。例えば、電動サンルーフ、電動パワーステアリング、電動スライドドア、或いは電動スライドシートなどのモータ駆動装置にも適用できる。
【0020】
【発明の効果】
本発明の駆動装置では、スイッチング素子とサーミスタのグランド側端子が電気的に接続されており、熱伝導率の高い回路導体を介してスイッチング素子の熱がサーミスタに良好に伝達されるため、スイッチング素子の実際の温度と温度検出部で検出される温度との間の誤差が格段に小さくなり、回路基板構成によってこの誤差が大きく変化することもなくなる。
しかも、スイッチング素子のグランド側端子の電圧による温度検出値の変動分が補正手段において差し引かれるため、スイッチング素子のグランド側端子の電圧が変動しても(即ち、通電ラインの電流量が変動しても)、温度が同じであれば、温度検出部の検出値(補正手段の出力)は変動しない。即ち、電流変動に起因する温度検出誤差も解消される。
したがってこの駆動装置によれば、スイッチング素子の温度を正確に把握してスイッチング素子の過熱防止機能(前述のフェールセーフ機能)を的確に実現でき、連続動作可能時間もスイッチング素子の耐熱限度ぎりぎりまで増やすことができる。
【図面の簡単な説明】
【図1】駆動装置の回路構成を示す回路図である。
【図2】温度検出部の作用を説明する図である。
【図3】従来の駆動装置及び比較例を説明する回路図である。
【符号の説明】
1 モータ(直流負荷)
4 FET(スイッチング素子)
11 検出用サーミスタ
12 補正用サーミスタ(補正手段)
12a 補正用抵抗(補正手段)
13 プルアップ抵抗
14 プルダウン抵抗(補正手段)
15 差分検出回路(補正手段)

Claims (3)

  1. 直流負荷の通電ライン上に接続されこの通電ラインを開閉するスイッチング素子と、このスイッチング素子の温度を検出する温度検出部とを有し、前記温度検出部の検出値に応じて前記通電ラインの通電状態を制御して前記スイッチング素子の過熱防止機能を実行する駆動装置において、
    前記温度検出部が、
    前記スイッチング素子のグランド側端子に一方の端子が接続された検出用サーミスタと、この検出用サーミスタの他方の端子を電源ラインに接続するプルアップ抵抗と、前記検出用サーミスタの他方の端子の電圧から、前記スイッチング素子のグランド側端子の電圧による変動分を差し引いて前記検出値として出力する補正手段とを備えることを特徴とする駆動装置。
  2. 前記補正手段が、
    前記検出用サーミスタと同等の特性を有し、前記スイッチング素子のグランド側端子に一方の端子が接続された補正用サーミスタと、
    前記プルアップ抵抗と同じ抵抗値を有し、前記補正用サーミスタの他方の端子をグランドラインに接続するプルダウン抵抗と、
    前記検出用サーミスタの他方の端子の電圧から前記補正用サーミスタの他方の端子の電圧を差し引いた電圧を前記検出値として出力する差分検出回路と
    を備えることを特徴とする請求項1記載の駆動装置。
  3. 前記補正手段が、
    前記スイッチング素子のフェール温度において前記検出用サーミスタと同じ抵抗値を有し、前記スイッチング素子のグランド側端子に一方の端子が接続された補正用抵抗と、
    前記プルアップ抵抗と同じ抵抗値を有し、前記補正用抵抗の他方の端子をグランドラインに接続するプルダウン抵抗と、
    前記検出用サーミスタの他方の端子の電圧から前記補正用抵抗の他方の端子の電圧を差し引いた電圧を前記検出値として出力する差分検出回路と
    を備えることを特徴とする請求項1記載の駆動装置。
JP2002008512A 2002-01-17 2002-01-17 駆動装置 Expired - Fee Related JP4013116B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008512A JP4013116B2 (ja) 2002-01-17 2002-01-17 駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008512A JP4013116B2 (ja) 2002-01-17 2002-01-17 駆動装置

Publications (2)

Publication Number Publication Date
JP2003219686A JP2003219686A (ja) 2003-07-31
JP4013116B2 true JP4013116B2 (ja) 2007-11-28

Family

ID=27646751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008512A Expired - Fee Related JP4013116B2 (ja) 2002-01-17 2002-01-17 駆動装置

Country Status (1)

Country Link
JP (1) JP4013116B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544883B1 (ko) 2009-06-18 2015-08-17 한온시스템 주식회사 차량용 공조시스템
JP2014143777A (ja) * 2013-01-22 2014-08-07 Makita Corp モータ制御回路
KR101661958B1 (ko) * 2014-12-22 2016-10-10 엘지전자 주식회사 인쇄회로기판 및 인쇄회로기판을 포함하는 모터구동장치

Also Published As

Publication number Publication date
JP2003219686A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
US5552684A (en) Control apparatus for reversible motor and motor-driven power steering system for motor vehicle using the same
EP2328268A1 (en) Motor controller and electric power steering device
JP3812720B2 (ja) モータ制御装置及び電動パワーステアリング装置
JPH11208488A (ja) 電動パワーステアリング装置の制御装置
US7852023B2 (en) Electric power steering controller
US10263546B2 (en) Method for determining a multiphase motor current and electric motor drive
JPWO2003078237A1 (ja) 電動パワーステアリング装置の制御装置
JP4013116B2 (ja) 駆動装置
JP4016976B2 (ja) 電動パワーステアリング装置の制御装置
JPH11286278A (ja) 電動パワーステアリング装置の制御装置
JP2006044437A (ja) 電動パワーステアリング装置
JP4221906B2 (ja) 電動パワーステアリング装置の制御装置
JPH11263240A (ja) 電動パワーステアリング装置の制御装置
JP3550978B2 (ja) 電動パワーステアリング装置の制御装置
JP4506784B2 (ja) 電動パワーステアリング装置の制御装置
WO2003084798A1 (fr) Systeme de direction assistee, motorise
JP2007074831A (ja) モータ制御装置およびそれを用いた車両用操舵装置
JP3188806B2 (ja) 直流モータ回転不良検出装置および直流モータ駆動装置
JP4792820B2 (ja) 電動パワーステアリング装置の制御装置
JP7203003B2 (ja) 制御装置および制御方法
JP2000308391A (ja) モータ制御装置
JP3385609B2 (ja) 車載モータの正逆転制御回路
JP3951753B2 (ja) 電動パワーステアリング装置
JPH0653368U (ja) 電動パワーステアリング装置
JP2007327220A (ja) パワーウィンドウ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees