JP4003415B2 - Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus - Google Patents

Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus Download PDF

Info

Publication number
JP4003415B2
JP4003415B2 JP2001204274A JP2001204274A JP4003415B2 JP 4003415 B2 JP4003415 B2 JP 4003415B2 JP 2001204274 A JP2001204274 A JP 2001204274A JP 2001204274 A JP2001204274 A JP 2001204274A JP 4003415 B2 JP4003415 B2 JP 4003415B2
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
support
copper
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001204274A
Other languages
Japanese (ja)
Other versions
JP2003015339A (en
Inventor
祐二 榊原
史隆 嶺岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001204274A priority Critical patent/JP4003415B2/en
Publication of JP2003015339A publication Critical patent/JP2003015339A/en
Application granted granted Critical
Publication of JP4003415B2 publication Critical patent/JP4003415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体用支持体の製造方法に関するもので、より詳しくは、均一な陽極酸化被膜を形成した電子写真感光体用支持体の製造方法、並びに係る電子写真感光体用支持体を用いて製造された電子写真感光体、更には係る電子写真感光体を用いた画像形成装置に関する。
【0002】
【従来の技術】
電子写真感光体は、電子写真感光体用支持体(以下、「支持体」という。)上に感光層(電荷発生層、電荷輸送層)等を有したものである。電荷発生層には、光に反応して電荷を発生する電荷発生物質が含有されている。電荷発生物質としては、フタロシアニン系顔料や、アゾ系顔料等の顔料が代表的に使用される。通常、これらの感光層と支持体との間に抵抗を設けたり、支持体と感光層との接着性を向上させる等の観点から陽極酸化被膜が設けられることがある。更に、かかる陽極酸化被膜を支持体上に形成した後は、干渉縞対策として、形成した陽極酸化被膜に着色をするために染色処理を施したり、その陽極酸化被膜表面に形成された孔を塞ぐために封孔処理が施されることもある(例えば、特開平7−5717号公報、特公平7−120062号公報、特許第2718066号公報等)。また、陽極酸化処理を施して陽極酸化被膜を形成させる工程において、陽極酸化処理槽では硫酸を使用することが一般的である。陽極酸化処理槽には、陽極酸化中に発生する熱を拡散・除去するための撹拌装置が必要であるが、一般的にエアレーションを行なう。また支持体を電極として反応させるために電気を供給する必要が有り、そのための電気接点部分等には、安価で電気伝導度の高い銅が使用されることが多い。
【0003】
【発明が解決しようとする課題】
しかしながら係る従来の技術によれば、陽極酸化処理中の硫酸溶液へのエアレーションによって発生する細かい硫酸ミストが、搬送部材などに使用されている銅に付着・溶解し、その部分に硫酸銅塩を形成していた。搬送部材などに付着した硫酸銅塩は、硫酸ミストによって陽極酸化処理槽中に再溶解することで、処理槽中の銅イオン濃度を増加させていた。その結果、支持体に陽極酸化処理を施した後、銅が陽極酸化被膜表面に析出してしまうといった問題があった。あるいは、搬送部材などに付着した硫酸銅がその後工程の槽中に同様に再溶解し、析出してしまうといった問題があった。析出した銅は大きさが数μmから10μm程度であり洗浄により除去することが出来ず、画像形成の際、画像欠陥の原因となった。
【0004】
【課題を解決するための手段】
係る問題点を解決すべく、本発明者等は鋭意検討を行ったところ、陽極酸化処理以降、封孔までの工程において、処理槽中の銅イオン濃度を20ppm以下とすることで、上記のような問題点が解消されることを見いだして、本発明に到達した。すなわち、上記の課題は、陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用支持体の製造方法において、陽極酸化処理以降、封孔までの工程において、処理槽中の銅イオン濃度を20ppm以下であり、かつ、陽極酸化処理以降の工程において、処理槽中に銅を吸着するための陰極を設置することを特徴とする電子写真感光体用支持体の製造方法及び係る方法によって得られた支持体上に感光層を設けた電子写真感光体並びに係る電子写真感光体を用いた画像形成装置によって解決される。
【0005】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明の電子写真感光体は、電子写真感光体用支持体に陽極酸化処理を施し、かかる支持体上に陽極酸化被膜を形成し、陽極酸化被膜が形成された支持体上に感光層が設けられたものである。
【0006】
本発明で用いられる支持体は電子写真感光体に用いられるものであれば特に限定されるものではないが具体的には、アルミニウムあるいはアルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料、表面にアルミニウム、銅、パラジウム、酸化すず、酸化インジウム等の導電性層を設けたポリエステルフィルム、紙、ガラス等の絶縁性支持体が使用される。好ましくはアルミニウムあるいはアルミニウム合金からなる支持体がよい。支持体の形状は、通常の電子写真感光体に用いられる形状であれば特に限定されるものではないが、好ましくは円筒状の形状がよい。
【0007】
かかる支持体には陽極酸化処理により、支持体表面に陽極酸化被膜が形成されるが、陽極酸化処理を施す前に、酸、アルカリ、有機溶剤、界面活性剤、エマルジョン、電解などの各種脱脂洗浄方法により脱脂処理されることが好ましい。
陽極酸化被膜は通常の方法、例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸などの酸性浴中で、陽極酸化処理することにより形成されるが、硫酸中での陽極酸化処理が最も良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は15〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、これに限られるものではない。このようにして形成された陽極酸化被膜の膜厚としては、通常は20μm以下であり、好ましくは7μm以下である。
【0008】
本発明では、このようにして陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用支持体の製造方法において、陽極酸化処理以降、封孔までの工程において、処理槽中の銅イオン濃度を20ppm以下とすることが重要である。ここで、陽極酸化処理以降、封孔までの工程の処理槽とは、陽極酸化処理、染色処理、水洗などを行う槽を示すが、これらに限られたものではない。陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用支持体の製造工程において、支持体を搬送する部材の電気接点部分等の治具には、通常、電気伝導度の高い銅が使用されることが多い。この銅が溶解し、溶解した銅は陽極酸化処理中あるいは陽極酸化処理後の工程において、陽極酸化被膜を有する支持体に付着し、陽極酸化被膜上に析出する。本発明の方法では、陽極酸化処理以降の工程の処理槽中の銅イオン濃度を20ppm以下とすることで、陽極酸化被膜上への銅の析出を防ぐことが可能となる。前記銅イオン濃度は好ましくは、10ppm以下、更に好ましくは 5ppm以下、最も好ましくは2ppm以下がよい。
【0009】
本発明において、処理槽中の銅イオン濃度を20ppm以下とする方法としては特に限定されるものではないが、陽極酸化処理以降の工程において、処理槽中に銅を吸着するための陰極を設置する方法あるいは陽極酸化被膜を形成する支持体の製造方法において使用されている銅製の治具を銅以外の物質で被覆し使用する方法で銅イオン濃度を20ppm以下とすることが簡便で好ましい。これらのうち、1つの方法を単独で使用してもよく、あるいは2つの方法を組み合わせて使用してもよい。
【0010】
具体的には、陽極酸化処理以降の工程において、処理槽中で銅を吸着するための陰極としては、鉛板、ステンレス板、アルミニウム板、カーボン板、カーボン棒があげられる。好ましくは、鉛板、カーボン板である。銅を吸着するための陰極を処理槽中に設置する方法は、支持体と搬送部材の邪魔にならないように槽壁に縦に吊り下げて置くことが好ましいが、この方法に限られない。銅を吸着するための陰極は、陽極酸化処理以降、封孔槽までの工程のすべての処理槽中に、或いはいずれかの処理槽中に設置することができる。
【0011】
支持体上に陽極酸化被膜を形成する際に使用される銅製の治具を銅以外の物質で被覆し使用する方法において、銅製の治具とは、具体的には支持体を搬送する部材の電気接点部分等の治具を意味するが、これに限られたものではない。また、銅以外の物質とは、耐酸性、耐熱性、耐久性があり、処理溶液等に溶解しない物質であれば特に限定はされないが、具体的には、塩化ビニル、テフロン、エポキシ、ポリエチレン、シリコン、強化プラスチック、チタン、アルミニウムが挙げられる。また、銅製の治具を銅以外の物質で被覆する方法は、簡単に脱離せず、液溜まり、エア溜まりを作らない方法であれば、どのような被覆方法でもよいが、浸漬塗布法(ディッピング法)が簡便である。
【0012】
陽極酸化処理の後の工程において、染色処理とは、有機、無機化合物塩溶液中に支持体を浸漬し、それらの塩を多孔質層中に吸着させる工程であり、具体的には、アゾ系などの水溶性有機染料1〜10g/L、液温20〜60℃、pH3〜9、浸漬時間1〜20分のような条件で行う。
【0013】
また、陽極酸化被膜に対して行う封孔処理とは、多孔質層中に水酸化アルミを成長させることにより封孔する工程であり、封孔処理方法は通常の方法でよいが、たとえば主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されることが好ましい。
【0014】
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液の濃度は適宜選べるが、3〜6g/lの範囲内で使用された場合が最も効果的である。また封孔処理をスムーズに進めるために、処理温度としては25〜40℃、好ましくは30〜35℃で、又フッ化ニッケル水溶液のpHは4.5〜6.5、好ましくは5.5〜6.0の範囲で処理するのが良い。pH調整剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることができる。処理時間は、被膜の膜厚1μm当り1〜3分の範囲内で処理するのが好ましい。
なお、被膜物性を更に改良するためフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。次いで水洗、乾燥して低温封孔処理を終える。
【0015】
前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることができるが、特に酢酸ニッケルを用いるのが好ましい。
酢酸ニッケル水溶液を用いる場合の濃度は5〜20g/lの範囲内で使用するのが好ましい。処理温度は80〜100℃、好ましくは90〜98℃で、又酢酸ニッケル水溶液のpHは5.0〜6.0の範囲で処理するのが良い。ここでpH調整剤としてはアンモニア水、酢酸ナトリウム等を用いることができる。
処理時間は10分以上、好ましくは20分以上処理するのが良い。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸塩、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加しても良い。次いで水洗、乾燥して高温封孔処理を終える。
【0016】
このような陽極酸化被膜上に設けられる感光層としては、無機系、有機系の各種感光層が使用できるが、電荷発生層、電荷移動層より成る積層型光導電体を用いた場合が有用である。
【0017】
この場合の電荷発生層には、電荷発生物質と結着樹脂とを含む。電荷発生物質としては、電子写真感光体に用いられる物質であれば特に限定されるものではなく、具体的にはセレン及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜鉛、その他の無機光導電体、フタロシアニン、アゾ、キナクリドン、多環キノン、ペリレン、インジゴ、ベンズイミダゾールなどの有機顔料を使用することができる。特に銅、塩化インジウム、塩化カリウム、スズ、オキシチタニウム、亜鉛、バナジウムなどの金属、またはその酸化物や塩化物の配位したフタロシアニン類、無金属フタロシアニン類、または、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類などのアゾ顔料が好ましい。これらのうち特にアゾ顔料又はフタロシアニン類がより好ましく、特定結晶系を有するオキシチタニウムフタロシアニンが特に好ましい。これは、オキシチタニウムフタロシアニンが通常の顔料より熱による結晶変換が起きやすいためである。
【0018】
このようなオキシチタニウムフタロシアニンは、CuKα線によるX線回折においてブラッグ角(2θ±0.2)27.3゜に最大回折ピークを示すものがあげられる。この結晶型オキシチタニウムフタロシアニンは、一般にはY型あるいはD型と呼ばれているものであり、例えば特開昭62−67094号公報の第2図(同公報ではII型と称されている)、特開平2−8256号公報の第1図、特開昭64−82045号公報の第1図、電子写真学会誌第92巻(1990年発行)第3号第250〜258頁(同刊行物ではY型と称されている)に示されたものである。この結晶型オキシチタニウムフタロシアニンは、27.3°に最大回折ピークを示すことが特徴であるが、これ以外に通常7.4゜、9.7゜、24.2゜にピークを示す。
【0019】
回折ピークの強度は、結晶性、試料の配向性および測定法により変化する場合もあるが、粉末結晶のX線回折を行う場合に通常用いられるブラッグ−ブレンターノの集中法による測定では、上記の結晶型オキシチタニウムフタロシアニンは27.3°に最大回折ピークを有する。また、薄膜光学系(一般に薄膜法或いは平行法とも呼ばれる)により測定された場合には、試料の状態によっては27.3°が最大回折ピークとならない場合があるが、これは結晶粉末が特定の方向に配向しているためと考えられる。
【0020】
分散媒としては、電子写真感光体の製造工程で用いられるものであれば特に限定されるものではなく種々の溶媒を用いてよい。例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;メタノール、エタノール、プロパノール等のアルコール類を単独あるいは2種以上混合して使用することができる。
【0021】
用いる分散媒の量は分散が充分行え、且つ分散液中に有効量の電荷発生物質が含まれる限りいかなる量でもよく、通常は分散時の分散液中の電荷発生物質の濃度にして3〜20wt%、より好ましくは4〜20wt%程度が好ましい。
【0022】
結着樹脂としては、電子写真感光体に使用されるものであれば特に限定されるものではないが、具体的には、ポリビニルブチラール、ポリビニルアセタール、ポリエステル、ポリカーボネート、ポリスチレン、ポリエステルカーボネート、ポリスルホン、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル等のビニル重合体、及びその共重合体、フェノキシ、エポキシ、シリコーン樹脂等またこれらの部分的架橋硬化物等を単独あるいは2種以上用いることができる。
【0023】
結着樹脂と電荷発生物質との混合方法としては例えば、電荷発生物質を分散処理工程に結着樹脂を粉末のまま或いはそのポリマー溶液を加え同時に分散する方法、分散処理工程で得られた分散液を結着樹脂のポリマー溶液中に混合する方法、或いは逆に分散液中にポリマー溶液を混合する方法等のいずれかの方法を用いてもかまわない。
【0024】
次にここで得られた分散液は、塗布をするのに適した液物性にするために、種々の溶剤を用いて希釈してもかまわない。このような溶剤としては、例えば前記分散媒として例示した溶媒を使用することができる。電荷発生物質と結着樹脂との割合は特に制限はないが一般には樹脂100重量部に対して電荷発生物質が5〜500重量部の範囲より使用される。また必要に応じて電荷輸送物質を含むことができる。電荷輸送物質としては例えば、2,4,7−トリニトロフルオレノン、テトラシアノキシジメタンなどの電子求引性物質、セルバゾール、インドール、イミダゾール、オキサゾール、ピラゾール、オキサジアゾール、ピラゾリン、チアジアゾールなどの複素環化合物、アニリン誘導体、ヒドラゾン化合物、芳香族アミン誘導体、スチルベン誘導体、或いはこれらの化合物からなる基を主鎖もしくは側鎖に有する重合体などの電子供与性物質が挙げられる。電荷輸送物質と結着樹脂との割合は結着樹脂100重量に対して電荷輸送物質が5〜500重量部の範囲により使用される。
【0025】
この様にして調製された分散液を用いて、支持体上に電荷発生層を形成させ、その上に電荷輸送層を積層させて感光層を形成する、或いは支持体上に電荷輸送層を形成しその上に前記分散液を用いて電荷発生層を形成し感光層を形成する、或いは支持体上に前記分散液を用いて電荷発生層を形成させ感光層とする、のいずれかの構造で感光層を形成することが出来る。電荷発生層の膜厚は電荷輸送層と積層させて感光層を形成する場合0.1〜10μmの範囲が好適であり電荷輸送層の膜厚は10〜40μmが好適である。電荷発生層のみの単層構造で感光層を形成する場合の電荷発生層の膜厚は5〜40μmの範囲が好適である。
【0026】
電荷輸送層を設ける場合、そこに使用される電荷輸送物質としては、前記電荷輸送物質として例示した材料を使用することが出来る。これらの電荷輸送物質とともに必要に応じて結着樹脂が配合される。結着樹脂としては、例えば前記結着樹脂として例示した結着樹脂を使用することが出来る。感光層には、必要に応じて電子写真感光体に用いられる酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。
【0027】
本発明において、前記の各層を形成するための塗布操作は、従来公知の塗布方法に従う。例えば、ディッピング法、スプレーコーティング法、スピンナーコーティング法、ブレードコーティング法等を採用して行うことができる。
【0028】
本発明で用いる画像形成装置としては、プリンター、複写機、ファクシミリ等が挙げられる。この画像形成装置には、現像ユニット(帯電器、現像器、定着器、除電器、クリーナー)、電子写真感光体、光学ユニット(露光器)、ホッパー、スタッカー、記録媒体(用紙)を搬送する搬送路、定着ユニット等が設けられている。
ホッパーは、記録媒体(用紙)を搬送路に提供するものである。スタッカーは、記録済みの媒体(印刷済み用紙)を積み重ねて保存するものである。搬送路は、記録媒体(用紙)を搬送するものである。定着ユニットは、電子写真感光体から記録媒体(用紙)に転写された画像を定着するものである。
【0029】
現像ユニットは、電子写真感光体に形成された静電潜像に現像剤を与えて現像を行うものである。電子写真感光体は、得ようとする画像に応じた静電潜像を作成後、現像ユニットで現像された画像を記録媒体(用紙)に転写するものである。光学ユニットは、各画像データ(情報)により変調されたレーザー光で電子写真感光体上を走査して静電潜像を形成するものである。
【0030】
画像形成装置の動作を以下説明する。コロトロン、ストロコロン等の帯電器を用いて電子写真感光体表面略均一に帯電する。上位コンピューターは、画像、文字等の情報に基づき印刷指令を送る。上位コンピューターからの印刷指令時に、印刷準備が整っていれば、データ要求を行い、各データーが送られてくると、画像形成装置の光学ユニットで各データに対応して変調されたレーザー光で電子写真感光体上を走査する。これにより、レーザー光が照射された電子写真感光体上の部分は、電荷が除去され、電子写真感光体上に静電潜像が形成される。その後、現像ユニットで電子写真感光体に形成された静電潜像にトナー等の現像剤を与えて、電子写真感光体上に可視像を形成する。次に、記録媒体(用紙)をこの可視像に重ね、記録媒体(用紙)の裏から帯電器で現像剤とは逆の電荷を記録媒体(用紙)に与え、静電力により可視像を記録媒体(用紙)に転写する。転写された可視像は、熱又は圧力により、記録媒体(用紙)に融着されて永久像とする。
【0031】
一方、転写後の電子写真感光体上の潜像電荷は光により除電される。また、転写されずに残った残留トナー等の現像剤は、クリーナーにより除去する。このようなプロセスを繰り返すことにより連続的に画像形成を行う。また、フルカラー印刷を行う場合には、上述した画像形成プロセスを各色毎に行いカラー画像を得る。
また、記録媒体(用紙)がホッパーで一枚ずつ搬送路に送られ、ベルト状の搬送手段で記録媒体(用紙)が搬送される間に電子写真感光体に形成された可視像を順次記録媒体(用紙)に転写していき、定着ユニットで用紙に転写された像を定着し、最後にスタッカーで印刷済みの記録媒体(用紙)を積み重ねて保管する。
なお、画像形成装置としては、フルカラー印刷を行う場合には、電子写真感光体上に付着したトナー等の現像剤を、一旦一つの中間転写ベルトに転写し、中間転写ベルト状で各色のトナーを合わせ、カラー可視像とした後、転写手段を用いて記録媒体(用紙)にカラー画像を形成するものであってもよい。
【0032】
【実施例】
以下に製造例及び実施例により本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0033】
[電荷発生層塗布液]
本発明の実施例に用いる電荷発生層塗布液を以下のように調製した。
オキシチタニウムフタロシアニン10重量部に1,2−ジメトキシエタン140重量部を加え分散溶液とし、サンドグラインドミルで1時間、分散処理を行った。この際、粒径0.8mm程度のガラスビーズをサンドグラインドミル内に入れて分散処理を行った。次にホモジナイザー(特殊機化工工業株式会社製、T.K.ホモミクサー O型)にポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)70重量部の7%エチレングリコールジメチルエーテル溶液を入れた。更に、この分散溶液をホモジナイザーに入れ、分散混合処理を施した。その後、分散液を取り出し、超音波分散処理を施し、電荷発生層塗布液を調製した。
【0034】
[電荷輸送層塗布液]
本発明の実施例に用いる電荷輸送層塗布液を以下のように調製した。
次に示すヒドラゾン化合物56重量部と
【化1】

Figure 0004003415
次に示すヒドラゾン化合物14重量部
【0035】
【化2】
Figure 0004003415
及び下記のシアノ化合物1.5重量部
【0036】
【化3】
Figure 0004003415
及びポリカーボネート樹脂(三菱化学(株)製、商品名ノバレックス7030A)100重量部をテトラヒドロフラン100重量部に混合攪拌して溶解させた電荷輸送層塗布液を調製した。
【0037】
[実施例1]
電子写真感光体用支持体として、表面を鏡面仕上げした長さ260mm、直径30mm、肉厚1mmの円筒状アルミニウム支持体を用いた。該支持体10本を同時に把持できる、銅製の電気接点部分を有する部材を用いて、陽極酸化処理工程の前に必要な処理を行うための処理槽へ搬送した。前記部材を用いて支持体を、陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用支持体の製造するすべての工程において搬送した。
【0038】
上記支持体に対して、脱脂剤NG−30(キザイ(株)製)の30 g/l水溶液中で60℃、5分間脱脂洗浄を行った。続いて水洗を行った後、7%硝酸に25℃で1分間浸漬した。さらに水洗後、陽極酸化処理工程を行った。すなわち、180g/lの硫酸電解液中(溶存アルミ濃度 7g/l)で1.2A/dm2の電流密度で陽極酸化処理を施し、6μmの陽極酸化被膜を支持体上に形成した。この際、銅を吸着させるための陰極として、カーボン板を陽極酸化処理槽に設置し、陽極酸化処理槽の銅イオン濃度を1ppmとした。その後、水洗処理をするために支持体を前記部材を用いて、水洗処理槽に搬送した。この際、水洗処理槽にも同様のカーボン板の陰極を設置し、水洗槽中の銅イオン濃度を1ppmとした。
水洗後、この支持体に以下の条件で封孔処理を行った。
ニッケル封孔槽の液組成:奥野製薬社製DX-500 10g/l水溶液、pH5.5
封孔槽温度:90℃
封孔処理時間:20分
支持体10本に封孔処理を施した。その後、上記に示した電荷発生層塗布液を用いて、浸漬塗布法(ディッピング法)により電荷発生層を形成し、次いで上記の電荷輸送層塗布液を同様に浸漬塗布法により電荷輸送層を形成し、電子写真感光体を得た。得られた電子写真感光体を市販の複写機に搭載し画像を形成したところ、いずれの画像も良好であった。
【0039】
[比較例1]
陰極を設置せずに、陽極酸化処理槽、水洗槽中の銅イオン濃度が30ppmであった以外は、実施例1と同様にして支持体を10本作製した。その後、実施例1と同様に電荷発生層、電荷輸送層を形成し電子写真感光体とした。該感光体を用いて、実施例1と同様に画像を形成したところ画像黒点が観測された。
【0040】
【発明の効果】
本発明によれば、支持体への銅の析出を防止し良好な画像を与える電子写真感光体の製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a support for an electrophotographic photosensitive member, and more specifically, a method for producing a support for an electrophotographic photosensitive member having a uniform anodic oxide coating, and the support for an electrophotographic photosensitive member. The present invention also relates to an electrophotographic photosensitive member manufactured by using the electrophotographic photosensitive member, and an image forming apparatus using the electrophotographic photosensitive member.
[0002]
[Prior art]
The electrophotographic photoreceptor has a photosensitive layer (charge generation layer, charge transport layer) and the like on an electrophotographic photoreceptor support (hereinafter referred to as “support”). The charge generation layer contains a charge generation material that generates charges in response to light. As the charge generation material, pigments such as phthalocyanine pigments and azo pigments are typically used. Usually, an anodized film may be provided from the viewpoint of providing a resistance between the photosensitive layer and the support or improving the adhesion between the support and the photosensitive layer. Further, after forming such an anodized film on the support, as a countermeasure against interference fringes, a dyeing process is performed to color the formed anodized film or pores formed on the surface of the anodized film are blocked. In order to prevent this, a sealing treatment may be performed (for example, Japanese Patent Application Laid-Open No. 7-5717, Japanese Patent Publication No. 7-120062, Japanese Patent No. 2718066, etc.). In the step of forming an anodized film by performing anodizing treatment, it is common to use sulfuric acid in the anodizing treatment tank. The anodizing tank requires a stirring device for diffusing and removing heat generated during anodizing, but aeration is generally performed. In addition, it is necessary to supply electricity in order to cause the support to act as an electrode, and copper having a high electrical conductivity is often used for an electrical contact portion for that purpose.
[0003]
[Problems to be solved by the invention]
However, according to such conventional technology, fine sulfuric acid mist generated by aeration to sulfuric acid solution during anodizing treatment adheres to and dissolves in copper used for conveying members and forms a copper sulfate salt in that portion Was. The copper sulfate salt adhering to the conveying member or the like was redissolved in the anodizing treatment tank with sulfuric acid mist, thereby increasing the copper ion concentration in the treatment tank. As a result, there was a problem that copper was deposited on the surface of the anodized film after the support was anodized. Or there existed a problem that the copper sulfate adhering to a conveyance member etc. will melt | dissolve similarly in the tank of a subsequent process, and will precipitate. The deposited copper has a size of several μm to 10 μm and cannot be removed by washing, causing image defects during image formation.
[0004]
[Means for Solving the Problems]
In order to solve such problems, the present inventors have conducted intensive studies, and in the steps from anodizing treatment to sealing, the copper ion concentration in the treatment tank is set to 20 ppm or less as described above. The present invention has been reached by finding out that such a problem can be solved. That is, in the method for producing an electrophotographic photosensitive member support, in which the anodization treatment is performed to form an anodized film on the support for an electrophotographic photosensitive member, the steps from the anodizing treatment to the sealing are performed. In claim 1, wherein the copper ion concentration in the processing tank is 20 ppm or less , and a cathode for adsorbing copper is installed in the processing tank in the steps after the anodizing treatment. This problem is solved by a method for producing a photosensitive member , an electrophotographic photosensitive member provided with a photosensitive layer on a support obtained by such a method , and an image forming apparatus using the electrophotographic photosensitive member.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In the electrophotographic photoreceptor of the present invention, the support for an electrophotographic photoreceptor is anodized, an anodized film is formed on the support, and a photosensitive layer is provided on the support on which the anodized film is formed. It is what was done.
[0006]
The support used in the present invention is not particularly limited as long as it is used for an electrophotographic photosensitive member. Specifically, the support may be a metal material such as aluminum or aluminum alloy, stainless steel, copper, nickel, etc. An insulating support such as a polyester film provided with a conductive layer such as aluminum, copper, palladium, tin oxide or indium oxide, paper or glass is used. A support made of aluminum or an aluminum alloy is preferable. The shape of the support is not particularly limited as long as it is a shape used for an ordinary electrophotographic photosensitive member, but a cylindrical shape is preferable.
[0007]
An anodized film is formed on the surface of the support by anodizing, but before performing the anodizing, various degreasing washings such as acid, alkali, organic solvent, surfactant, emulsion, and electrolysis are performed. It is preferable to degrease by the method.
An anodized film is formed by an anodizing treatment in an ordinary method, for example, an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc. Give good results. In the case of anodic oxidation in sulfuric acid, the sulfuric acid concentration is 100 to 300 g / l, the dissolved aluminum concentration is 2 to 15 g / l, the liquid temperature is 15 to 30 ° C., the electrolysis voltage is 10 to 20 V, and the current density is 0.5 to Although it is preferable to set within the range of 2 A / dm 2 , it is not limited to this. The film thickness of the anodic oxide film thus formed is usually 20 μm or less, preferably 7 μm or less.
[0008]
In the present invention, in the method for producing a support for an electrophotographic photosensitive member, which is anodized in this manner to form an anodic oxide film on the support for an electrophotographic photosensitive member, after the anodizing treatment, until the sealing is performed. In the process, it is important that the copper ion concentration in the treatment tank is 20 ppm or less. Here, the treatment tank in the steps from the anodizing treatment to the sealing is a tank for performing anodizing treatment, dyeing treatment, washing with water, etc., but is not limited thereto. In the manufacturing process of the support for an electrophotographic photosensitive member in which an anodized film is formed on the support for an electrophotographic photosensitive member by performing anodization treatment, a jig such as an electric contact portion of a member that transports the support includes: Usually, copper having high electrical conductivity is often used. The copper is dissolved, and the dissolved copper adheres to the support having the anodized film during the anodizing process or after the anodizing process and is deposited on the anodized film. In the method of the present invention, it is possible to prevent copper from being deposited on the anodized film by setting the copper ion concentration in the treatment tank in the steps after the anodizing treatment to 20 ppm or less. The copper ion concentration is preferably 10 ppm or less, more preferably 5 ppm or less, and most preferably 2 ppm or less.
[0009]
In the present invention, the method for setting the copper ion concentration in the treatment tank to 20 ppm or less is not particularly limited, but a cathode for adsorbing copper is installed in the treatment tank in the steps after the anodizing treatment. It is simple and preferable that the copper ion concentration is 20 ppm or less by a method in which a copper jig used in a method or a method for producing a support for forming an anodized film is coated with a substance other than copper. Of these, one method may be used alone, or two methods may be used in combination.
[0010]
Specifically, in the steps after the anodic oxidation treatment, examples of the cathode for adsorbing copper in the treatment tank include a lead plate, a stainless plate, an aluminum plate, a carbon plate, and a carbon rod. A lead plate and a carbon plate are preferable. The method of installing the cathode for adsorbing copper in the processing tank is preferably suspended vertically on the tank wall so as not to interfere with the support and the conveying member, but is not limited to this method. The cathode for adsorbing copper can be installed in all the processing tanks in the process from the anodizing process to the sealing tank, or in any processing tank.
[0011]
In the method of coating and using a copper jig used for forming an anodic oxide coating on a support with a substance other than copper, the copper jig is specifically a member for conveying the support. This means a jig such as an electric contact portion, but is not limited to this. In addition, the substance other than copper is not particularly limited as long as it has acid resistance, heat resistance, durability, and does not dissolve in the treatment solution. Specifically, vinyl chloride, Teflon, epoxy, polyethylene, Examples include silicon, reinforced plastic, titanium, and aluminum. In addition, the method of coating a copper jig with a material other than copper may be any coating method as long as it does not easily detach and does not create a liquid pool or an air pool. Method) is simple.
[0012]
In the step after the anodizing treatment, the dyeing treatment is a step of immersing the support in an organic or inorganic compound salt solution and adsorbing the salt in the porous layer. Water-soluble organic dye 1-10 g / L, liquid temperature 20-60 ° C., pH 3-9, immersion time 1-20 minutes.
[0013]
Further, the sealing treatment performed on the anodized film is a step of sealing by growing aluminum hydroxide in the porous layer, and the sealing treatment method may be a normal method. It is preferable to perform a low temperature sealing treatment soaking in an aqueous solution containing nickel fluoride or a high temperature sealing treatment soaking in an aqueous solution containing nickel acetate as a main component.
[0014]
The concentration of the nickel fluoride aqueous solution used in the case of the low-temperature sealing treatment can be appropriately selected, but it is most effective when used within the range of 3 to 6 g / l. Moreover, in order to advance a sealing process smoothly, as processing temperature, it is 25-40 degreeC, Preferably it is 30-35 degreeC, and pH of nickel fluoride aqueous solution is 4.5-6.5, Preferably it is 5.5. It is better to process in the range of 6.0. As a pH adjuster, oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia and the like can be used. The treatment time is preferably within a range of 1 to 3 minutes per 1 μm of film thickness.
In order to further improve the physical properties of the film, cobalt fluoride, cobalt acetate, nickel sulfate, a surfactant and the like may be added to the nickel fluoride aqueous solution. Subsequently, it is washed with water and dried to finish the low temperature sealing treatment.
[0015]
As the sealing agent in the case of the high-temperature sealing treatment, an aqueous solution of a metal salt such as nickel acetate, cobalt acetate, lead acetate, nickel acetate-cobalt, and barium nitrate can be used, and it is particularly preferable to use nickel acetate. .
The concentration in the case of using an aqueous nickel acetate solution is preferably 5 to 20 g / l. The treatment temperature is 80 to 100 ° C., preferably 90 to 98 ° C., and the pH of the nickel acetate aqueous solution is preferably 5.0 to 6.0. Here, ammonia water, sodium acetate, or the like can be used as the pH adjuster.
The treatment time is 10 minutes or longer, preferably 20 minutes or longer. In this case, sodium acetate, organic carboxylate, anionic or nonionic surfactant may be added to the nickel acetate aqueous solution in order to improve the film properties. Subsequently, it is washed with water and dried to finish the high temperature sealing treatment.
[0016]
As the photosensitive layer provided on such an anodized film, various inorganic and organic photosensitive layers can be used. However, it is useful to use a multilayer photoconductor composed of a charge generation layer and a charge transfer layer. is there.
[0017]
In this case, the charge generation layer includes a charge generation material and a binder resin. The charge generation material is not particularly limited as long as it is a material used for an electrophotographic photosensitive member. Specifically, selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, and other inorganic photoconductors. Organic pigments such as phthalocyanine, azo, quinacridone, polycyclic quinone, perylene, indigo, and benzimidazole can be used. In particular, metals such as copper, indium chloride, potassium chloride, tin, oxytitanium, zinc, vanadium, or phthalocyanines coordinated with oxides or chlorides, metal-free phthalocyanines, or monoazo, bisazo, trisazo, polyazos Azo pigments such as are preferred. Of these, azo pigments or phthalocyanines are particularly preferable, and oxytitanium phthalocyanine having a specific crystal system is particularly preferable. This is because oxytitanium phthalocyanine is more susceptible to crystal conversion by heat than ordinary pigments.
[0018]
Examples of such oxytitanium phthalocyanine include those having a maximum diffraction peak at a Bragg angle (2θ ± 0.2) of 27.3 ° in X-ray diffraction by CuKα rays. This crystalline oxytitanium phthalocyanine is generally referred to as Y-type or D-type. For example, FIG. 2 of JP-A-62-67094 (referred to as type II in the same publication), Fig. 1 of JP-A-2-8256, Fig. 1 of JP-A-64-82045, Journal of Electrophotographic Society Vol. 92 (issued in 1990), No. 3, pages 250-258 (in the same publication) (Referred to as Y-type). This crystalline oxytitanium phthalocyanine is characterized by having a maximum diffraction peak at 27.3 °, but normally has peaks at 7.4 °, 9.7 °, and 24.2 °.
[0019]
The intensity of the diffraction peak may vary depending on the crystallinity, the orientation of the sample, and the measurement method. However, in the measurement by the Bragg-Brentano concentration method usually used when performing X-ray diffraction of a powder crystal, Type oxytitanium phthalocyanine has a maximum diffraction peak at 27.3 °. In addition, when measured by a thin film optical system (generally called thin film method or parallel method), 27.3 ° may not be the maximum diffraction peak depending on the state of the sample. This is probably because it is oriented in the direction.
[0020]
The dispersion medium is not particularly limited as long as it is used in the production process of the electrophotographic photosensitive member, and various solvents may be used. For example, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and 1,2-dimethoxyethane; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; alcohols such as methanol, ethanol and propanol alone Alternatively, two or more kinds can be mixed and used.
[0021]
The amount of the dispersion medium to be used can be any amount as long as the dispersion can be sufficiently dispersed and an effective amount of the charge generation material is contained in the dispersion, and is usually 3 to 20 wt as the concentration of the charge generation material in the dispersion during dispersion. %, More preferably about 4 to 20 wt%.
[0022]
The binder resin is not particularly limited as long as it is used in an electrophotographic photoreceptor, and specifically, polyvinyl butyral, polyvinyl acetal, polyester, polycarbonate, polystyrene, polyester carbonate, polysulfone, polyimide , Vinyl polymers such as polymethyl methacrylate and polyvinyl chloride, copolymers thereof, phenoxy, epoxy, silicone resins, and the like, or partially crosslinked cured products thereof can be used singly or in combination.
[0023]
Examples of the method for mixing the binder resin and the charge generation material include a method in which the charge generation material is dispersed in the dispersion treatment step while the binder resin is in powder form or its polymer solution is dispersed simultaneously, and the dispersion obtained in the dispersion treatment step Any method may be used, such as a method of mixing the polymer solution into the binder resin polymer solution, or a method of mixing the polymer solution into the dispersion.
[0024]
Next, the dispersion obtained here may be diluted with various solvents in order to obtain liquid properties suitable for coating. As such a solvent, the solvent illustrated as the said dispersion medium can be used, for example. The ratio between the charge generating material and the binder resin is not particularly limited, but generally the charge generating material is used in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the resin. Moreover, a charge transport material can be included as required. Examples of charge transport materials include electron-withdrawing materials such as 2,4,7-trinitrofluorenone and tetracyanoxydimethane, and complex compounds such as selbazole, indole, imidazole, oxazole, pyrazole, oxadiazole, pyrazoline and thiadiazole. Examples thereof include an electron donating substance such as a ring compound, an aniline derivative, a hydrazone compound, an aromatic amine derivative, a stilbene derivative, or a polymer having a group composed of these compounds in the main chain or side chain. The ratio between the charge transport material and the binder resin is such that the charge transport material is in the range of 5 to 500 parts by weight with respect to 100 weight parts of the binder resin.
[0025]
Using the dispersion thus prepared, a charge generation layer is formed on a support, and a charge transport layer is laminated thereon to form a photosensitive layer, or a charge transport layer is formed on a support. Then, a charge generation layer is formed using the dispersion on the photosensitive layer to form a photosensitive layer, or a charge generation layer is formed on the support using the dispersion to form a photosensitive layer. A photosensitive layer can be formed. When the charge generating layer is laminated with the charge transport layer to form a photosensitive layer, the range of 0.1 to 10 μm is preferable, and the thickness of the charge transport layer is preferably 10 to 40 μm. When the photosensitive layer is formed with a single layer structure having only the charge generation layer, the thickness of the charge generation layer is preferably in the range of 5 to 40 μm.
[0026]
When the charge transport layer is provided, as the charge transport material used there, materials exemplified as the charge transport material can be used. A binder resin is blended with these charge transport materials as required. As the binder resin, for example, the binder resin exemplified as the binder resin can be used. The photosensitive layer may contain various additives such as antioxidants and sensitizers used for the electrophotographic photoreceptor as necessary.
[0027]
In the present invention, the coating operation for forming each of the layers follows a conventionally known coating method. For example, a dipping method, a spray coating method, a spinner coating method, a blade coating method, or the like can be employed.
[0028]
Examples of the image forming apparatus used in the present invention include a printer, a copying machine, and a facsimile. In this image forming apparatus, a developer unit (charger, developer, fixing device, static eliminator, cleaner), electrophotographic photosensitive member, optical unit (exposure device), hopper, stacker, and conveyance for conveying a recording medium (paper) A path, a fixing unit and the like are provided.
The hopper provides a recording medium (paper) to the conveyance path. The stacker is a stack for storing recorded media (printed sheets). The conveyance path conveys a recording medium (paper). The fixing unit fixes an image transferred from the electrophotographic photosensitive member to a recording medium (paper).
[0029]
The developing unit performs development by applying a developer to the electrostatic latent image formed on the electrophotographic photosensitive member. The electrophotographic photosensitive member is to transfer an image developed by the developing unit to a recording medium (paper) after creating an electrostatic latent image corresponding to the image to be obtained. The optical unit scans the electrophotographic photosensitive member with a laser beam modulated by each image data (information) to form an electrostatic latent image.
[0030]
The operation of the image forming apparatus will be described below. The surface of the electrophotographic photosensitive member is charged substantially uniformly using a charger such as corotron or strolocolon. The host computer sends a print command based on information such as images and characters. If printing is ready at the time of a print command from the host computer, a data request is made, and when each data is sent, it is electronically emitted by a laser beam modulated in accordance with each data by the optical unit of the image forming apparatus. Scan over the photographic photoreceptor. Thereby, the electric charge is removed from the portion on the electrophotographic photosensitive member irradiated with the laser beam, and an electrostatic latent image is formed on the electrophotographic photosensitive member. Thereafter, a developer such as toner is applied to the electrostatic latent image formed on the electrophotographic photosensitive member by the developing unit to form a visible image on the electrophotographic photosensitive member. Next, the recording medium (paper) is superimposed on the visible image, and a charge opposite to the developer is applied to the recording medium (paper) from the back of the recording medium (paper) with a charger, and the visible image is formed by electrostatic force. Transfer to a recording medium (paper). The transferred visible image is fused to a recording medium (paper) by heat or pressure to form a permanent image.
[0031]
On the other hand, the latent image charge on the electrophotographic photosensitive member after transfer is neutralized by light. Further, the developer such as residual toner remaining without being transferred is removed by a cleaner. Image formation is continuously performed by repeating such a process. When full-color printing is performed, the above-described image forming process is performed for each color to obtain a color image.
In addition, the recording medium (paper) is sent to the conveyance path one by one by the hopper, and the visible image formed on the electrophotographic photosensitive member is sequentially recorded while the recording medium (paper) is conveyed by the belt-shaped conveyance means. The image is transferred to the medium (paper), the image transferred onto the paper is fixed by the fixing unit, and finally the printed recording medium (paper) is stacked and stored by the stacker.
As for the image forming apparatus, when full color printing is performed, a developer such as toner adhered on the electrophotographic photosensitive member is once transferred to one intermediate transfer belt, and toner of each color is formed in the form of an intermediate transfer belt. In addition, after forming a color visible image, a color image may be formed on a recording medium (paper) using a transfer unit.
[0032]
【Example】
The present invention will be described more specifically with reference to production examples and examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0033]
[Charge generation layer coating solution]
The charge generation layer coating solution used in the examples of the present invention was prepared as follows.
To 10 parts by weight of oxytitanium phthalocyanine, 140 parts by weight of 1,2-dimethoxyethane was added to form a dispersion solution, which was subjected to dispersion treatment for 1 hour in a sand grind mill. At this time, glass beads having a particle size of about 0.8 mm were placed in a sand grind mill for dispersion treatment. Next, a 7% ethylene glycol dimethyl ether solution of 70 parts by weight of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Butyral # 6000C) was added to a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK homomixer type O). I put it in. Furthermore, this dispersion solution was put into a homogenizer and subjected to dispersion mixing treatment. Thereafter, the dispersion liquid was taken out and subjected to ultrasonic dispersion treatment to prepare a charge generation layer coating liquid.
[0034]
[Charge transport layer coating solution]
The charge transport layer coating solution used in the examples of the present invention was prepared as follows.
56 parts by weight of the following hydrazone compound:
Figure 0004003415
14 parts by weight of the following hydrazone compound:
[Chemical 2]
Figure 0004003415
And 1.5 parts by weight of the following cyano compound:
[Chemical 3]
Figure 0004003415
A charge transport layer coating solution was prepared by dissolving 100 parts by weight of polycarbonate resin (product name: Novalex 7030A, manufactured by Mitsubishi Chemical Corporation) with 100 parts by weight of tetrahydrofuran and stirring them.
[0037]
[Example 1]
As the electrophotographic photoreceptor support, a cylindrical aluminum support having a length of 260 mm, a diameter of 30 mm, and a wall thickness of 1 mm was used. Using a member having an electrical contact portion made of copper that can simultaneously hold the 10 supports, the substrate was transported to a treatment tank for performing necessary treatments before the anodizing treatment step. The support was transported in all steps of producing the support for electrophotographic photosensitive member, which was subjected to anodization treatment to form an anodized film on the support for electrophotographic photosensitive member.
[0038]
The support was degreased and washed at 60 ° C. for 5 minutes in a 30 g / l aqueous solution of a degreasing agent NG-30 (manufactured by Kizai Co., Ltd.). Subsequently, it was washed with water and then immersed in 7% nitric acid at 25 ° C. for 1 minute. Further, after washing with water, an anodizing treatment step was performed. That is, anodization treatment was performed at a current density of 1.2 A / dm 2 in a 180 g / l sulfuric acid electrolyte (dissolved aluminum concentration: 7 g / l) to form a 6 μm anodized film on the support. At this time, as a cathode for adsorbing copper, a carbon plate was installed in the anodizing bath, and the copper ion concentration in the anodizing bath was 1 ppm. Then, in order to perform a water washing process, the support body was conveyed to the water washing process tank using the said member. At this time, a cathode of the same carbon plate was also installed in the washing tank, and the copper ion concentration in the washing tank was set to 1 ppm.
After washing with water, the support was subjected to a sealing treatment under the following conditions.
Liquid composition of nickel sealing tank: DX-500 10 g / l aqueous solution manufactured by Okuno Pharmaceutical Co., pH 5.5
Sealing bath temperature: 90 ° C
Sealing treatment time: 20 minutes Sealing treatment was applied to 10 supports. Then, using the charge generation layer coating solution shown above, a charge generation layer is formed by a dip coating method (dipping method), and then the charge transport layer coating solution is similarly formed by a dip coating method. Thus, an electrophotographic photosensitive member was obtained. When the obtained electrophotographic photosensitive member was mounted on a commercially available copying machine and an image was formed, all the images were good.
[0039]
[Comparative Example 1]
Ten supports were prepared in the same manner as in Example 1 except that the cathode ion was not installed and the copper ion concentration in the anodizing tank and the washing tank was 30 ppm. Thereafter, a charge generation layer and a charge transport layer were formed in the same manner as in Example 1 to obtain an electrophotographic photosensitive member. When an image was formed using the photoconductor in the same manner as in Example 1, black spots were observed.
[0040]
【The invention's effect】
According to the present invention, it is possible to produce an electrophotographic photosensitive member that prevents the deposition of copper on the support and gives a good image.

Claims (4)

陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用支持体の製造方法において、陽極酸化処理以降、封孔までの工程の処理槽中の銅イオン濃度が、20ppm以下であり、かつ、陽極酸化処理以降の工程において、処理槽中に銅を吸着するための陰極を設置することを特徴とする電子写真感光体用支持体の製造方法。In the method for producing an electrophotographic photosensitive member support, which is anodized to form an anodic oxide film on the electrophotographic photosensitive member support, copper ions in the treatment tank in the process from anodizing to the sealing step A method for producing a support for an electrophotographic photosensitive member, wherein the concentration is 20 ppm or less and a cathode for adsorbing copper is installed in a treatment tank in the steps after anodizing treatment . 陽極酸化被膜を形成する前記支持体の製造方法において使用されている
銅製の治具を銅以外の物質で被覆し、使用することを特徴とする請求項1に記載の電子写真感光体用支持体の製造方法。
The support for an electrophotographic photosensitive member according to claim 1, wherein a copper jig used in the method for manufacturing the support for forming an anodized film is coated with a material other than copper. Manufacturing method.
請求項1または請求項2に記載の製造方法で製造された電子写真感光体用支持体を用いて製造された電子写真感光体。An electrophotographic photosensitive member manufactured using the support for an electrophotographic photosensitive member manufactured by the manufacturing method according to claim 1 . 請求項に記載の電子写真感光体を用いた画像形成装置。An image forming apparatus using the electrophotographic photosensitive member according to claim 3 .
JP2001204274A 2001-07-05 2001-07-05 Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus Expired - Lifetime JP4003415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204274A JP4003415B2 (en) 2001-07-05 2001-07-05 Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204274A JP4003415B2 (en) 2001-07-05 2001-07-05 Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2003015339A JP2003015339A (en) 2003-01-17
JP4003415B2 true JP4003415B2 (en) 2007-11-07

Family

ID=19040771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204274A Expired - Lifetime JP4003415B2 (en) 2001-07-05 2001-07-05 Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4003415B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294260U (en) * 1989-01-13 1990-07-26
JP3221767B2 (en) * 1993-05-19 2001-10-22 昭和電工株式会社 Multiple anodizing equipment for aluminum tubes
JPH08172271A (en) * 1994-12-15 1996-07-02 Ebara Yuujiraito Kk Plating method of printed-circuit board
JPH1092700A (en) * 1996-09-13 1998-04-10 Rohm Co Ltd Method and device for manufacturing solid-state electrolytic capacitor
JPH10282703A (en) * 1997-04-03 1998-10-23 Mitsubishi Chem Corp Electrophotographic photoreceptor for reversing development
JPH10284667A (en) * 1997-04-04 1998-10-23 Furukawa Electric Co Ltd:The Material for electric electronic device component having superior corrosion resistance and oxidation resistance

Also Published As

Publication number Publication date
JP2003015339A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4743000B2 (en) Electrophotographic photosensitive member, process cartridge, and image forming apparatus
JP2015141235A (en) Electrophotographic cartridge, electrophotographic photoreceptor, and image forming apparatus
EP0841595B1 (en) Photosensitive member, electrophotographic apparatus and process cartridge
JP6146188B2 (en) Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP4640154B2 (en) Electrophotographic photosensitive member, image forming apparatus using the photosensitive member, and electrophotographic cartridge using the photosensitive member
JP4003415B2 (en) Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP3964631B2 (en) Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member
JP4466414B2 (en) Electrophotographic photoreceptor, image forming apparatus using the photoreceptor, and cartridge
JP2005234321A (en) Electrophotographic photoreceptor, process cartridge and electrophotographic apparatus
JP4661617B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JP4196552B2 (en) Image forming method and image forming apparatus
JPS63214759A (en) Electrophotographic sensitive body
JP2003015338A (en) Manufacture of electrophotographic photoreceptor supporting body, electrophotographic photoreceptor and image forming device
JP3932949B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP4821795B2 (en) Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JPH07120062B2 (en) Electrophotographic photoreceptor
JP4142916B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus
JP4720527B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JP3279167B2 (en) Electrophotographic photoreceptor
JP2003195533A (en) Holder for drum base dipping, holding method for drum base, photoreceptor drum, and image forming device
JP4387930B2 (en) Method for producing electrophotographic photosensitive member
JP2763973B2 (en) Underlayer treatment method for laminated photoreceptor for electrophotography
JP6573364B2 (en) Process cartridge and image forming apparatus
JP2003131405A (en) Method for manufacturing electrophotographic photoreceptor and electrophotographic photoreceptor
JP2003345042A (en) Electrophotographic photoreceptor and process cartridge and electrophotographic device having the electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

R151 Written notification of patent or utility model registration

Ref document number: 4003415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term