JPH1092700A - Method and device for manufacturing solid-state electrolytic capacitor - Google Patents

Method and device for manufacturing solid-state electrolytic capacitor

Info

Publication number
JPH1092700A
JPH1092700A JP8243153A JP24315396A JPH1092700A JP H1092700 A JPH1092700 A JP H1092700A JP 8243153 A JP8243153 A JP 8243153A JP 24315396 A JP24315396 A JP 24315396A JP H1092700 A JPH1092700 A JP H1092700A
Authority
JP
Japan
Prior art keywords
solution
electrolytic
electrolytic solution
capacitor
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8243153A
Other languages
Japanese (ja)
Inventor
Mamoru Yamagami
守 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP8243153A priority Critical patent/JPH1092700A/en
Publication of JPH1092700A publication Critical patent/JPH1092700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain the characteristic of a solid-state electrolytic capacitor at a high level by preventing leakage currents by performing a chemical conversion treatment process, while impurities contained in the electrolytic solution used in the process are removed by performing weak electrolytic treatment on the electrolytic solution. SOLUTION: A circulating pipe 11 and pump 12 constitute an electrolytic solution circulating means between a container 4 and a sub-tank. While an electrolytic solution 5, such as a phosphoric acid solution, ammonium carbonate solution, etc., is contained in the container 4 and maintained at about 60 deg.C, a capacitor element 1, the anode lead 2 of which is partially welded to a stainless steel plate 3, is dipped in the solution 5 and anodic oxidation is performed by means of an anodic oxidation treating device which applies a voltage across the element 1 and the container 4 so that the element 1 and the container 4 sides can respectively become (+) and (-). On the other hand, part of the electrolytic solution 5 is transferred to the sub-tank 7 of a weak electrolytic treatment device, and such impurities as Fe, Ni, Cu, C, etc., dissolved in the solution 5 are removed by applying a voltage across electrodes 8 and 9 in the solution 5, so that the impurities can adhere to the electrode 9. Therefore, the occurrence of leakage failures can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体電解コンデンサ
の製法およびそれに用いる製造装置に関する。さらに詳
しくは、陽極酸化により金属粉末の表面に誘電体膜を形
成する化成処理工程や再化成処理工程などにおいて、鉄
やニッケルなどの不純物がコンデンサ内に侵入しないよ
うに電解液を清浄にしながら行う固体電解コンデンサの
製法およびその製造装置に関する。
The present invention relates to a method for manufacturing a solid electrolytic capacitor and a manufacturing apparatus used for the method. More specifically, in a chemical conversion process or a re-chemical conversion process in which a dielectric film is formed on the surface of metal powder by anodic oxidation, the process is performed while cleaning the electrolytic solution so that impurities such as iron and nickel do not enter the capacitor. The present invention relates to a method for manufacturing a solid electrolytic capacitor and an apparatus for manufacturing the same.

【0002】[0002]

【従来の技術】タンタルコンデンサなどの固体電解コン
デンサは、つぎのような手順で製造される。まず、タン
タル(Ta)、アルミニウム(Al)、ニオブ(Nb)
などの金属粉末を成形して焼結することによりコンデン
サ素子を作り、陽極酸化により各金属粉末の表面に酸化
皮膜を形成する化成処理を行う。つぎに硝酸マンガン水
溶液中に浸漬した後、炉中で水分を蒸発させることによ
り、酸化皮膜上に二酸化マンガン層の電解質を形成す
る。この操作を数回繰り返すと共に、この間の化成皮膜
の熱損傷を修復するため、再度の化成処理工程が挿入さ
れて再化成処理を行いながら二酸化マンガン層を形成
し、酸化皮膜を物理的、化学的、および電気的に保護す
る。その後、コンデンサ素子の外周にグラファイトを塗
布し、さらに銅や銀などの導電性塗料を塗布して金属層
を外周表面に形成する。そしてリードフレームに組み立
て、合成樹脂でモールド成形することにより製造され
る。
2. Description of the Related Art A solid electrolytic capacitor such as a tantalum capacitor is manufactured by the following procedure. First, tantalum (Ta), aluminum (Al), niobium (Nb)
A capacitor element is produced by molding and sintering such metal powders, and a chemical conversion treatment for forming an oxide film on the surface of each metal powder by anodic oxidation is performed. Next, after immersion in an aqueous solution of manganese nitrate, an electrolyte of a manganese dioxide layer is formed on the oxide film by evaporating water in a furnace. This operation is repeated several times, and in order to repair the thermal damage of the chemical conversion film during this time, another chemical conversion treatment step is inserted to form a manganese dioxide layer while performing the chemical conversion treatment again, and the oxide film is physically and chemically Protect, and electrically. Thereafter, graphite is applied to the outer periphery of the capacitor element, and a conductive paint such as copper or silver is applied to form a metal layer on the outer peripheral surface. Then, it is manufactured by assembling into a lead frame and molding with a synthetic resin.

【0003】この製造工程において、金属粉末の表面に
酸化皮膜を形成する化成処理工程や再化成処理工程はつ
ぎのように行われる。まず、図2に示されるように、成
形し、焼結されたコンデンサ素子1の陽極リード2の部
分をサスバー3と呼ばれるステンレス製の金属板に数十
個並べて溶接し、容器4中に入れられたリン酸水溶液ま
たは炭酸アンモニウム水溶液などの電解液5の中にサス
バー単位で数十個づつまとめて浸漬し、電源6によりコ
ンデンサ素子1の陽極リード2側を+(正)、電解液5
につながる容器4側を−(負)として陽極酸化を行う。
この化成処理は、電解液5をたとえば60℃程度に保持
して数時間程度の長時間浸漬して行われる。
In this manufacturing process, a chemical conversion treatment step and a re-chemical conversion treatment step for forming an oxide film on the surface of a metal powder are performed as follows. First, as shown in FIG. 2, several tens of the anode leads 2 of the molded and sintered capacitor element 1 are arranged and welded to a stainless steel plate called a suspension bar 3, and then put in a container 4. The anode lead 2 side of the capacitor element 1 is + (positive) by a power source 6 by immersing several tens of them in a suspension bar unit in an electrolyte solution 5 such as a phosphoric acid aqueous solution or an ammonium carbonate aqueous solution.
Anodization is performed by setting the container 4 side connected to to-(negative).
This chemical conversion treatment is performed by immersing the electrolytic solution 5 at, for example, about 60 ° C. for a long time of about several hours.

【0004】[0004]

【発明が解決しようとする課題】化成処理は、前述のよ
うに、長時間行われるため、陽極リード2を通じて電解
液5が染み上がり、サスバー3が濡れ、電気分解がなさ
れることがある。サスバー3が電気分解されるとステン
レス中に混入しているFe、Ni、Cr、Cなどの不純
物が電解液5中に陽イオンとなって溶け込む。このよう
な不純物が電解液中に溶け込むと、電解液5中に浸漬さ
れたコンデンサ素子1中に付着し、リーク電流の増大な
どのコンデンサの特性が低下するという問題がある。
As described above, since the chemical conversion treatment is carried out for a long time, the electrolytic solution 5 soaks through the anode lead 2 and the suspension bar 3 gets wet, so that electrolysis may be performed. When the suspension bar 3 is electrolyzed, impurities such as Fe, Ni, Cr, and C mixed in the stainless steel become cations and dissolve in the electrolyte 5. When such impurities dissolve in the electrolytic solution, they adhere to the capacitor element 1 immersed in the electrolytic solution 5, and there is a problem that the characteristics of the capacitor, such as an increase in leak current, deteriorate.

【0005】本発明は、このような問題を解決するため
になされたもので、電解液を常に清浄に保つことによ
り、コンデンサのリーク電流を防止し、その特性を高く
維持することができる固体電解コンデンサの製法を提供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. A solid electrolytic solution capable of preventing leakage current of a capacitor and maintaining its characteristics at a high level by always keeping the electrolytic solution clean. An object of the present invention is to provide a method for manufacturing a capacitor.

【0006】本発明の他の目的は、電解液内の不純物を
除去することにより、電解液を継続的に使用し、電解液
の無駄をなくし、ひいては固体電解コンデンサのコスト
を低下させることを目的とする。
Another object of the present invention is to remove impurities in the electrolytic solution, thereby continuously using the electrolytic solution, eliminating waste of the electrolytic solution, and reducing the cost of the solid electrolytic capacitor. And

【0007】本発明のさらに他の目的は、電解液の不純
物除去を自動的に行い、不純物濃度の管理の手間を省く
ことができると共に、電解液の浄化の遅れによりコンデ
ンサ素子に不純物が侵入してコンデンサの特性を低下さ
せることのない固体電解コンデンサの製法およびその製
造装置を提供することにある。
Still another object of the present invention is to automatically remove impurities from an electrolytic solution to save the trouble of controlling the impurity concentration, and to cause impurities to enter the capacitor element due to delay in purification of the electrolytic solution. It is an object of the present invention to provide a method of manufacturing a solid electrolytic capacitor without deteriorating the characteristics of the capacitor and an apparatus for manufacturing the same.

【0008】[0008]

【課題を解決するための手段】本発明者は、固体電解コ
ンデンサのリーク電流の改善などの特性向上のため鋭意
検討を重ねた結果、製造工程の化成処理の段階で電解液
の中にFe、Ni、Cr、Cなどの不純物が陽イオンと
なって溶け込み、それがコンデンサ素子に付着してリー
ク電流の増大などにつながることを見出した。この問題
を解決するために電解液を定期的に交換する方法も考え
られるが、電解液中への不純物の溶け込みは不規則であ
り、電解液の不純物濃度の限界を正確に把握することが
難しく、コンデンサ素子内に不純物が侵入してコンデン
サの特性が低下するものが出る可能性がある。さらに、
ある量の作業ごとに電解液を廃棄して新たな電解液と交
換しなければならないため、電解液が無駄になり、コス
トアップの原因となる。しかし、この電解液を弱電解処
理することにより溶け込んだ不純物を有効に除去するこ
とができ、電解液を無駄にすることなく、高特性の固体
電解コンデンサを得ることができることを見出した。
Means for Solving the Problems As a result of intensive studies for improving characteristics such as improvement of leakage current of a solid electrolytic capacitor, the present inventor has found that Fe, Fe, It has been found that impurities such as Ni, Cr, and C are dissolved as cations and adhere to the capacitor element, leading to an increase in leak current. In order to solve this problem, a method of periodically replacing the electrolyte may be considered, but the dissolution of impurities into the electrolyte is irregular, and it is difficult to accurately grasp the limit of the impurity concentration of the electrolyte. In some cases, impurities may enter the capacitor element and deteriorate the characteristics of the capacitor. further,
Since the electrolytic solution must be discarded and replaced with a new electrolytic solution every time a certain amount of work is performed, the electrolytic solution is wasted and causes an increase in cost. However, it has been found that by subjecting this electrolytic solution to weak electrolytic treatment, the dissolved impurities can be effectively removed, and a high-performance solid electrolytic capacitor can be obtained without wasting the electrolytic solution.

【0009】本発明による固体電解コンデンサの製法
は、金属粉末の表面に陽極酸化により誘電体膜を形成す
る化成処理工程を有する固体電解コンデンサの製法であ
って、前記化成処理工程を、電解液に弱電解処理を施す
ことにより該電解液内の不純物を除去しながら行うこと
を特徴とする。このようにすることにより、電解液を清
浄にすることができて固体電解コンデンサの特性を低下
させないと共に、電解液を廃棄せずに何度も繰り返して
使用することができる。
A method for manufacturing a solid electrolytic capacitor according to the present invention is a method for manufacturing a solid electrolytic capacitor having a chemical conversion treatment step of forming a dielectric film on the surface of a metal powder by anodic oxidation. The method is characterized in that the treatment is performed while removing impurities in the electrolytic solution by performing a weak electrolytic treatment. By doing so, the electrolytic solution can be cleaned and the characteristics of the solid electrolytic capacitor can be prevented from deteriorating, and the electrolytic solution can be used repeatedly without discarding.

【0010】前記陽極酸化を行う容器と連通したサブタ
ンクに前記電解液を還流させながら、該サブタンク内で
前記弱電解処理を行い、自動的に前記電解液の不純物を
除去することにより、常に電解液中の不純物濃度を低く
抑えることができ、固体電解コンデンサの性能を高く維
持することができると共に、電解液の浄化処理を定期的
に行わなくてもよいため、処理工程の自動化を行うこと
ができる。
[0010] While the electrolytic solution is refluxed in a sub-tank communicating with the vessel for performing the anodization, the weak electrolytic treatment is performed in the sub-tank to automatically remove impurities in the electrolytic solution, thereby always removing the electrolytic solution. The impurity concentration in the electrolyte can be kept low, the performance of the solid electrolytic capacitor can be kept high, and the purification process of the electrolyte does not need to be performed periodically, so that the process can be automated. .

【0011】本発明の製造装置は、容器内に電解液を充
填し、該電解液内に浸漬されるコンデンサ素子を陽極酸
化し得る陽極酸化処理装置と、サブタンク内に両電極が
対向して設けられ、内部に充填され得る電解液を弱電解
する弱電解処理装置と、前記容器とサブタンク内の電解
液を相互に循環させる循環手段とを有している。その結
果、コンデンサの化成処理を行いながら、連続的に電解
液の浄化処理を行うことができ、常に清浄な状態で化成
処理や再化成処理を行うことができ、リーク電流の少な
い高特性の固体電解コンデンサを得ることができる。
[0011] The production apparatus of the present invention comprises an anodizing apparatus capable of filling a container with an electrolytic solution and anodizing a capacitor element immersed in the electrolytic solution, and two electrodes provided in a sub-tank so as to face each other. A weak electrolysis treatment device for weakly electrolyzing the electrolyte solution that can be filled therein; and a circulating means for mutually circulating the electrolyte solution in the container and the sub tank. As a result, it is possible to continuously purify the electrolytic solution while performing the chemical conversion treatment of the capacitor, and it is possible to perform the chemical conversion treatment and the re-chemical conversion treatment in a clean state at all times. An electrolytic capacitor can be obtained.

【0012】[0012]

【発明の実施の形態】つぎに、図面を参照しながら本発
明の固体電解コンデンサの製法について説明をする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method for manufacturing a solid electrolytic capacitor of the present invention will be described with reference to the drawings.

【0013】図1は本発明の固体電解コンデンサの製法
の化成処理工程の説明図である。固体電解コンデンサ
は、前述のように、タンタル(Ta)、アルミニウム
(Al)、ニオブ(Nb)などの金属粉末を成形して焼
結することによりコンデンサ素子1を作り、そのコンデ
ンサ素子1の陽極リード2を数十個づつサスバー3に溶
接して陽極酸化により各粉末の表面に酸化皮膜を形成す
る化成処理を行い、ついでその酸化皮膜上に二酸化マン
ガン層を形成しながら、この間の化成皮膜の熱損傷を修
復するため、再度の化成処理(再化成処理)工程を挿入
して、銅や銀などの導電性塗料を塗布して金属層を外周
表面に形成することにより製造される。本発明ではこの
化成処理工程および再化成処理工程の方法が異なるもの
で、他の各工程やその後のリードフレームに組み立て、
合成樹脂でモールド成形する工程などは従来の方法と同
じである。
FIG. 1 is an explanatory view of a chemical conversion treatment step in the method for producing a solid electrolytic capacitor of the present invention. As described above, a solid electrolytic capacitor is formed by molding and sintering a metal powder such as tantalum (Ta), aluminum (Al), or niobium (Nb), and forms an anode lead of the capacitor element 1. 2 are welded to the suspension bar 3 by dozens, and a chemical conversion treatment is performed to form an oxide film on the surface of each powder by anodic oxidation. Then, a manganese dioxide layer is formed on the oxide film, In order to repair damage, a chemical conversion treatment (re-chemical conversion treatment) step is inserted again, and a conductive paint such as copper or silver is applied to form a metal layer on the outer peripheral surface. In the present invention, the method of the chemical conversion treatment step and the re-chemical conversion treatment step are different, and are assembled into other steps and subsequent lead frames,
The process of molding with a synthetic resin is the same as the conventional method.

【0014】図1において、1〜6は図2と同じ部分を
示し、7は弱電解処理用のサブタンク、8、9は弱電解
処理用電極、10は弱電解処理用電源、11は電解液5
の循環用パイプ、12は電解液5を循環させるためのポ
ンプで、この循環用パイプ11とポンプ12とにより容
器4とサブタンク7間の電解液の循環手段を構成してい
る。この化成処理の方法では、従来のように、容器4内
にリン酸水溶液または炭酸アンモニウム水溶液などの電
解液5を満たして60℃程度に保持し、その電解液5中
にサスバー3に陽極リード2の部分が溶接されたコンデ
ンサ素子1を浸漬し、電源6によりコンデンサ素子1側
を+、電解液4側が−になるように電圧を印加する陽極
酸化処理装置により陽極酸化を行う。
In FIG. 1, 1 to 6 indicate the same parts as in FIG. 2, 7 is a sub-tank for weak electrolysis treatment, 8 and 9 are electrodes for weak electrolysis treatment, 10 is a power supply for weak electrolysis treatment, and 11 is an electrolytic solution. 5
Is a pump for circulating the electrolyte 5. The circulation pipe 11 and the pump 12 constitute a means for circulating the electrolyte between the container 4 and the sub-tank 7. In this chemical conversion method, as in the prior art, the container 4 is filled with an electrolytic solution 5 such as a phosphoric acid aqueous solution or an ammonium carbonate aqueous solution and maintained at about 60 ° C. Is immersed, and anodic oxidation is performed by an anodic oxidation treatment apparatus which applies a voltage so that the capacitor element 1 side becomes + and the electrolytic solution 4 side becomes-by the power source 6.

【0015】一方で、電解液5の一部を弱電解処理装置
のサブタンク7に移し、サブタンク7の電解液5中の電
極8、9に電圧を印加して電解液5中に溶解した不純物
のFe、Ni、Cu、Cなどを負側の電極9に付着させ
て除去する。この弱電解処理装置による不純物を除去す
る時間は、電極8、9の面積や両電極8、9に印加され
る電圧の大きさによっても異なり、不純物の混入する量
に応じてこれらのパラメータを自在に選択することがで
きる。しかし、一般には電解液中に溶解する不純物はサ
スバー3に染み上がった電解液5により電気分解をされ
て混入するもので、非常に僅かであり、一方弱電解処理
による不純物の除去は処理液中に電極8、9を挿入して
電解処理することにより電極に不純物の金属を付着させ
るものであるため、同じ時間であれば溶け込む量より除
去する量の方を圧倒的に多くする能力がある。そのた
め、図1に示されるような電解液5を自動的に循環させ
る循環手段を用いれば、弱い電圧の弱電解処理法によっ
ても陽極酸化の時間中に溶け込む不純物を充分に除去す
ることができ、常に清浄な電解液5を維持することがで
き、不純物濃度をサブppm以下とすることができる。
On the other hand, a part of the electrolytic solution 5 is transferred to the sub-tank 7 of the weak electrolytic processing apparatus, and a voltage is applied to the electrodes 8 and 9 in the electrolytic solution 5 in the sub-tank 7 to remove impurities dissolved in the electrolytic solution 5. Fe, Ni, Cu, C and the like are attached to the negative electrode 9 and removed. The time for removing the impurities by the weak electrolyzer varies depending on the area of the electrodes 8 and 9 and the magnitude of the voltage applied to the electrodes 8 and 9, and these parameters can be freely adjusted according to the amount of the impurities mixed. Can be selected. However, generally, impurities dissolved in the electrolytic solution are mixed by being electrolyzed by the electrolytic solution 5 soaked into the sassbar 3, and are very small. Since the electrodes 8 and 9 are inserted into the electrodes and electrolytic treatment is performed to attach an impurity metal to the electrodes, the amount of the metal to be removed is much larger than the amount to be dissolved in the same time. Therefore, if a circulating means for automatically circulating the electrolytic solution 5 as shown in FIG. 1 is used, impurities dissolved during the anodic oxidation time can be sufficiently removed even by a weak voltage weak electrolytic treatment method, The clean electrolytic solution 5 can always be maintained, and the impurity concentration can be reduced to sub-ppm or less.

【0016】具体例として、Feの濃度が1.7ppm
の電解液を60℃程度の液温で、たとえば30Vで1A
の弱電解処理を4時間行った結果、Feの濃度が0.2
ppmとなった。この際、電極として+側の電極8には
Ti板に5μm程度の厚さのPtメッキを施したものを
使用し、−側の電極9にはステンレス板を使用した。−
側の電極9は電解により電極の金属が溶け込むことがな
いため、材料としては余り問題ないが、+側の電極8は
弱電解によっても電極金属が電解液に溶け込む可能性が
あるため、Niなどが直接露出するよりも電解され難い
白金メッキが施されたものが好ましい。この場合、白金
メッキとの馴染みの関係から地金としてチタン板を用い
ることが好ましい。
As a specific example, the concentration of Fe is 1.7 ppm.
At a solution temperature of about 60 ° C., for example, at 30 V and 1 A
For 4 hours, the Fe concentration became 0.2.
ppm. At this time, the electrode 8 on the + side used was a Ti plate plated with Pt to a thickness of about 5 μm, and the electrode 9 on the − side was a stainless steel plate. −
The electrode 9 on the side has no problem as a material because the metal of the electrode does not dissolve by electrolysis. However, the electrode 8 on the + side has a possibility that the electrode metal can be dissolved in the electrolytic solution even by weak electrolysis. Is preferably plated with platinum which is less likely to be electrolyzed than directly exposed. In this case, it is preferable to use a titanium plate as the base metal in view of familiarity with platinum plating.

【0017】化成処理を行う電解液中のFeの濃度と、
その電解液で化成処理を行って製造したタンタル電解コ
ンデンサのリーク不良の不良率との関係を調べた結果、
表1の結果が得られた。表1において、電圧はコンデン
サの両電極に電圧を印加した場合に、20μAに達する
ときの電圧の平均値を表し、バラツキ(σ)はその電圧
の最大値と最小値との差を示す。この電圧が一定値以下
を不良として試料の数に対する割合で不良率を算出して
いる。表1より、電解液中のFeの濃度が1ppm以下
であれば不良率は1%以下であるのに対して、Feの濃
度が10ppm以上になると不良率が45%と大幅に増
え、Feの濃度を減少させることによりコンデンサの歩
留りを大幅に向上させることができる。なお、他の不純
物もCuやNiなどの金属イオンが殆どで、弱電解処理
により同様に除去されており、不良率の低下に寄与して
いると考えられる。
The concentration of Fe in the electrolytic solution to be subjected to the chemical conversion treatment;
As a result of examining the relationship between the defect rate of the leak failure of the tantalum electrolytic capacitor manufactured by performing the chemical conversion treatment with the electrolytic solution,
The results in Table 1 were obtained. In Table 1, the voltage indicates the average value of the voltage when the voltage reaches 20 μA when the voltage is applied to both electrodes of the capacitor, and the variation (σ) indicates the difference between the maximum value and the minimum value of the voltage. When the voltage is equal to or lower than a certain value, the defect rate is calculated as a ratio to the number of samples as a defect. From Table 1, it can be seen that the defect rate is 1% or less when the concentration of Fe in the electrolytic solution is 1 ppm or less, whereas the defect rate is greatly increased to 45% when the concentration of Fe is 10 ppm or more, By reducing the concentration, the yield of the capacitor can be greatly improved. It should be noted that most of the other impurities are metal ions such as Cu and Ni, which have been similarly removed by the weak electrolysis treatment, and are considered to have contributed to a reduction in the defective rate.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、弱電解処理装置の電極間の距離によ
り、負の電極に付着し易い金属の種類が異なり、弱電解
処理中に電極間距離を変更したり、対向電極を平行では
なく、上下で間隔が異なるように斜めにして配設すると
効果的である。電極板に波を打たせて面積を大きくする
ことも効果的である。
The kind of metal that easily adheres to the negative electrode differs depending on the distance between the electrodes of the weak electrolysis treatment apparatus, and the distance between the electrodes is changed during the weak electrolysis treatment. It is effective to arrange them obliquely so that the intervals are different. It is also effective to make the electrode plate waved to increase the area.

【0020】また、前述の例では、電解液を化成処理の
陽極酸化を行いながら自動的に電解液を循環させて弱電
解処理を行ったが、前述のように、電解液中に溶け込む
不純物の量より弱電解処理により不純物を除去する能力
の方が大きいため、連続的に行わなくても、定期的にバ
ッチ式に弱電解処理を行ってもよい。この場合、従来の
ように、電解液を廃棄するものではないので、不純物が
あまり溶け込まない状態の早めに弱電解処理を行うこと
ができ、汚れ過ぎた電解液で化成処理を行うことがない
ように一定時間ごとに定期的に行える。その結果、誤っ
て不純物の多い電解液による化成処理を行う恐れがな
く、高性能の固体電解コンデンサが得られると共に、電
解液の不純物濃度の管理も容易にできる。
Further, in the above-described example, the weak electrolytic treatment was performed by automatically circulating the electrolytic solution while performing the anodic oxidation of the chemical conversion treatment. However, as described above, the impurities dissolved in the electrolytic solution were removed. Since the ability to remove impurities by the weak electrolysis treatment is larger than the amount, the weak electrolysis treatment may be periodically performed in a batch manner instead of continuously. In this case, unlike the conventional case, since the electrolytic solution is not discarded, it is possible to perform the weak electrolytic treatment as early as possible in a state where impurities are not so much dissolved, so that the chemical conversion treatment is not performed with the excessively dirty electrolytic solution. Can be performed periodically at regular intervals. As a result, there is no possibility that a chemical conversion treatment is performed by mistake with an electrolytic solution containing many impurities, and a high-performance solid electrolytic capacitor is obtained, and the impurity concentration of the electrolytic solution can be easily controlled.

【0021】[0021]

【発明の効果】本発明によれば、固体電解コンデンサの
製造工程における化成処理または再化成処理において、
定期的にまたは連続的に電解液を弱電解処理により清浄
化しているため、コンデンサ素子を保持するステンレス
板などの電解により電解液に不純物が混入しても、容易
にその不純物を除去することができ、電解液中の不純物
濃度をサブppm以下に維持することができる。その結
果、コンデンサ内にFeなどの不純物が侵入することが
なく、コンデンサのリーク不良などを大幅に減少させる
ことができ、歩留りが大幅に向上する。
According to the present invention, in a chemical conversion treatment or a re-chemical conversion treatment in a manufacturing process of a solid electrolytic capacitor,
Since the electrolyte is periodically or continuously cleaned by weak electrolysis, even if impurities are mixed into the electrolyte by electrolysis such as a stainless steel plate holding the capacitor element, the impurities can be easily removed. As a result, the impurity concentration in the electrolytic solution can be maintained at sub-ppm or less. As a result, impurities such as Fe do not enter the capacitor, the leakage failure of the capacitor can be greatly reduced, and the yield is greatly improved.

【0022】さらに、電解液の不純物濃度を厳密に管理
する必要もなく、しかも不純物濃度が高くなる度に電解
液を廃棄して交換する必要がなく、管理作業が非常に容
易になると共に、電解液の無駄がなくなり、コンデンサ
のコストダウンに大きく寄与する。
Further, there is no need to strictly control the impurity concentration of the electrolytic solution, and it is not necessary to discard and replace the electrolytic solution every time the impurity concentration becomes high. This eliminates waste of liquid and greatly contributes to cost reduction of the capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の固体電解コンデンサの製法の化成処理
を行う装置の概要を示す図である。
FIG. 1 is a diagram showing an outline of an apparatus for performing a chemical conversion treatment in a method for producing a solid electrolytic capacitor of the present invention.

【図2】従来の化成処理を行う装置の概要を示す図であ
る。
FIG. 2 is a diagram showing an outline of a conventional apparatus for performing a chemical conversion treatment.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 3 サスバー 5 電解液 7 サブタンク 8、9 弱電解用電極 11 循環用パイプ REFERENCE SIGNS LIST 1 capacitor element 3 suspension bar 5 electrolyte solution 7 sub tank 8, 9 electrode for weak electrolysis 11 circulation pipe

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末の表面に陽極酸化により誘電体
膜を形成する化成処理工程を有する固体電解コンデンサ
の製法であって、前記化成処理工程を、電解液に弱電解
処理を施すことにより該電解液内の不純物を除去しなが
ら行うことを特徴とする固体電解コンデンサの製法。
1. A method for producing a solid electrolytic capacitor having a chemical conversion treatment step of forming a dielectric film on the surface of a metal powder by anodic oxidation, wherein the chemical conversion treatment step is performed by subjecting an electrolytic solution to a weak electrolytic treatment. A method for producing a solid electrolytic capacitor, wherein the method is performed while removing impurities in an electrolytic solution.
【請求項2】 前記陽極酸化を行う容器と連通したサブ
タンクに前記電解液を還流させながら、該サブタンク内
で前記弱電解処理を行い、自動的に前記電解液の不純物
を除去する請求項1記載の固体電解コンデンサの製法。
2. The method according to claim 1, wherein the weak electrolytic treatment is performed in the sub-tank while refluxing the electrolytic solution in a sub-tank communicating with the container for performing the anodic oxidation, thereby automatically removing impurities in the electrolytic solution. Manufacturing method of solid electrolytic capacitor.
【請求項3】 容器内に電解液を充填し、該電解液内に
浸漬されるコンデンサ素子を陽極酸化し得る陽極酸化処
理装置と、サブタンク内に両電極が対向して設けられ、
内部に充填され得る電解液を弱電解する弱電解処理装置
と、前記容器とサブタンク内の電解液を相互に循環させ
る循環手段とを有する固体電解コンデンサの製造装置。
3. An anodizing apparatus capable of filling a container with an electrolytic solution and anodizing a capacitor element immersed in the electrolytic solution, and both electrodes provided in a sub-tank so as to face each other;
An apparatus for manufacturing a solid electrolytic capacitor, comprising: a weak electrolytic treatment device for weakly electrolyzing an electrolyte solution that can be filled therein; and a circulating means for mutually circulating the electrolyte solution in the container and the sub tank.
JP8243153A 1996-09-13 1996-09-13 Method and device for manufacturing solid-state electrolytic capacitor Pending JPH1092700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8243153A JPH1092700A (en) 1996-09-13 1996-09-13 Method and device for manufacturing solid-state electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8243153A JPH1092700A (en) 1996-09-13 1996-09-13 Method and device for manufacturing solid-state electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH1092700A true JPH1092700A (en) 1998-04-10

Family

ID=17099598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8243153A Pending JPH1092700A (en) 1996-09-13 1996-09-13 Method and device for manufacturing solid-state electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH1092700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015339A (en) * 2001-07-05 2003-01-17 Mitsubishi Chemicals Corp Manufacture of electrophotographic photoreceptor supporting body, electrophotographic photoreceptor and image forming device
KR100509709B1 (en) * 2002-04-20 2005-08-31 윤성환 Piston crown electroplating apparatus
CN113366668A (en) * 2019-01-23 2021-09-07 武藏能源解决方案有限公司 Doping system and doping method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003015339A (en) * 2001-07-05 2003-01-17 Mitsubishi Chemicals Corp Manufacture of electrophotographic photoreceptor supporting body, electrophotographic photoreceptor and image forming device
KR100509709B1 (en) * 2002-04-20 2005-08-31 윤성환 Piston crown electroplating apparatus
CN113366668A (en) * 2019-01-23 2021-09-07 武藏能源解决方案有限公司 Doping system and doping method

Similar Documents

Publication Publication Date Title
EP2849908B1 (en) Electropolishing of superconductive radio frequency cavities
US5403460A (en) Method and apparatus for nickel electro-plating
JP2007123569A (en) Manufacturing method of aluminum electrode foil of electrolytic capacitor and its manufacturing device
EP1477585B1 (en) Electrolytic electrode and process of producing the same
US20030141198A1 (en) Cathode for electrochemical regeneration of permanganate etching solutions
EP0079055A1 (en) Titanium clad copper electrode and method for making
JP5370188B2 (en) Method for producing anodized film
JPH1092700A (en) Method and device for manufacturing solid-state electrolytic capacitor
US3463707A (en) Electrodeposition of lead dioxide
US6432293B1 (en) Process for copper-plating a wafer using an anode having an iridium oxide coating
DE3815585A1 (en) METHOD FOR ELECTROLYTICALLY TREATING METALS
NO143069B (en) PROCEDURE FOR ELECTRICAL EXTRACTION OF METALS FROM Aqueous SOLUTIONS OF METAL COMPOUNDS
JPH07138687A (en) Aluminum alloy base material for planographic printing plate
JP3901450B2 (en) Metal surface treatment apparatus and metal surface treatment method using the same
JPS602684A (en) Reactivating method of insoluble electrode
JP2003086467A (en) Method for forming dielectric layer in capacitor element for solid electrolytic capacitor and apparatus thereof
JP4888468B2 (en) How to recycle dummy media
JPH02240292A (en) Anodic oxidation of aluminum material with superior corrosion resistance
JPH0885894A (en) Electrode
JP2551274B2 (en) Surface treatment method for aluminum materials
JP2009543369A (en) Improvements in the production of electrolytic capacitors
JP3406403B2 (en) Electrode for strong acid water
Ramachandran et al. Effect of pretreatment on the anodic behaviour of lead alloys for use in electrowinning operations. I
JPH04191394A (en) Production of copper coated steel wire
JP2003171788A (en) Equipment for fractional recovery of metallic base material from object to be plated and method for fractional recovery of the same