JP2551274B2 - Surface treatment method for aluminum materials - Google Patents

Surface treatment method for aluminum materials

Info

Publication number
JP2551274B2
JP2551274B2 JP3222172A JP22217291A JP2551274B2 JP 2551274 B2 JP2551274 B2 JP 2551274B2 JP 3222172 A JP3222172 A JP 3222172A JP 22217291 A JP22217291 A JP 22217291A JP 2551274 B2 JP2551274 B2 JP 2551274B2
Authority
JP
Japan
Prior art keywords
aluminum
potential
based material
test piece
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3222172A
Other languages
Japanese (ja)
Other versions
JPH0544100A (en
Inventor
修美 世利
薫 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP3222172A priority Critical patent/JP2551274B2/en
Publication of JPH0544100A publication Critical patent/JPH0544100A/en
Application granted granted Critical
Publication of JP2551274B2 publication Critical patent/JP2551274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム又はアル
ミニウム合金(以下、これをアルミ系材料という)の腐
食反応を抑制する表面処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for suppressing a corrosion reaction of aluminum or an aluminum alloy (hereinafter referred to as an aluminum material).

【0002】[0002]

【従来の技術】機械的性質,化学的性質等の必要特性を
アルミ系材料に付与するため、種々の合金元素がアルミ
ニウムに添加されている。また、純アルミニウムとして
扱われている材料でも、製造上から随伴されるFe,S
i,Cu等の不純物を少量ながら含有している。
2. Description of the Related Art Various alloying elements are added to aluminum in order to impart necessary properties such as mechanical properties and chemical properties to aluminum-based materials. In addition, even if the material is treated as pure aluminum, Fe, S, which are associated with it from the manufacturing stage,
It contains a small amount of impurities such as i and Cu.

【0003】たとえば、アルミニウムにCuを含有させ
るとき、マトリックスが固溶強化され、アルミ系材料の
機械的性質が向上する。しかし、マトリックスに固溶し
ないCuは、CuAl2 系の金属間化合物として結晶粒
界に析出する。そして、析出したCuAl2 系金属間化
合物とマトリックスとの間に電位差が生じ、アルミ系材
料に腐食が発生する原因となる。
For example, when Cu is contained in aluminum, the matrix is solid-solution strengthened and the mechanical properties of the aluminum-based material are improved. However, Cu, which does not form a solid solution in the matrix, precipitates at the grain boundaries as a CuAl 2 -based intermetallic compound. Then, a potential difference is generated between the precipitated CuAl 2 -based intermetallic compound and the matrix, which causes corrosion of the aluminum-based material.

【0004】腐食反応は、ごく初期の段階では表面に露
出しているCuAl2 系金属間化合物とマトリックス表
面との間の反応に律速される。そして、アルミ系材料の
内部に埋もれ、表面に露出していないCuAl2 系金属
間化合物は、初期段階における腐食反応に関与しない。
このような腐食反応は、CuAl2 系金属間化合物に限
ったものではなく、他の金属間化合物の場合も同様であ
る。そこで、アルミ系材料の表面に金属間化合物が露出
しないような処理を施すとき、アルミ系材料の機械的性
質等に影響を与えず、耐食性の向上が図れることが予測
される。
The corrosion reaction is limited by the reaction between the CuAl 2 -based intermetallic compound exposed on the surface in the very initial stage and the matrix surface. The CuAl 2 -based intermetallic compound that is buried inside the aluminum-based material and is not exposed on the surface does not participate in the corrosion reaction in the initial stage.
Such a corrosion reaction is not limited to the CuAl 2 -based intermetallic compound, and the same applies to other intermetallic compounds. Therefore, it is expected that, when a treatment for preventing the intermetallic compound from being exposed on the surface of the aluminum-based material, the corrosion resistance is improved without affecting the mechanical properties of the aluminum-based material.

【0005】たとえば、アルミ系材料の表面を高純度ア
ルミニウム層で被覆するとき、アルミ系材料の耐食性が
向上する。また、特開平2−97700号公報では、ア
ルミ系材料に対してアノード分極処理及びカソード分極
処理を交互に繰り返し施すことによって、表面にあるA
l−Fe系晶出物を優先的に溶解し、アルミ系材料の表
面を高純度化及び均質化する方法が提案されている。こ
の方法で処理されたアルミ系材料は、均質な高純度アル
ミニウム表面をもっているので、耐食性に優れ且つ均質
な化成処理皮膜を形成することが可能とされている。
For example, when the surface of an aluminum-based material is coated with a high-purity aluminum layer, the corrosion resistance of the aluminum-based material is improved. Further, in Japanese Patent Application Laid-Open No. 2-97700, an A-based material on the surface is formed by alternately repeating anode polarization processing and cathode polarization processing on an aluminum-based material.
A method has been proposed in which 1-Fe-based crystallized substances are preferentially dissolved to highly purify and homogenize the surface of an aluminum-based material. Since the aluminum-based material treated by this method has a homogeneous high-purity aluminum surface, it is possible to form a uniform chemical conversion treatment film having excellent corrosion resistance.

【0006】[0006]

【発明が解決しようとする課題】特開平2−97700
号公報記載の方法でアルミ系材料を処理するとき、表面
にあるAl−Fe系晶出物を優先的に溶解する。しか
し、アルミ系材料には、Fe以外にCuを始めとして種
々の合金元素或いは不純物元素が含まれている。これら
元素も同様に晶出物或いは金属間化合物となってマトリ
ックスから析出し、腐食の起点となり易い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
When the aluminum-based material is treated by the method described in the publication, the Al-Fe-based crystallized substance on the surface is preferentially dissolved. However, aluminum-based materials contain various alloy elements or impurity elements such as Cu in addition to Fe. Similarly, these elements also become crystallized substances or intermetallic compounds and are precipitated from the matrix, and are likely to be the starting point of corrosion.

【0007】なかでも、CuAl2 系金属間化合物は、
処理前とほとんど変わらない状態でアルミ系材料の表面
に露出していた。このことから、アノード分極処理とカ
ソード分極処理を繰り返す方法は、Feを合金元素或い
は不純物として専ら含有するアルミニウム系材料に対し
てのみ有効であり、汎用性に乏しい。
Among them, CuAl 2 type intermetallic compounds are
It was exposed on the surface of the aluminum-based material in almost the same state as before treatment. From this, the method of repeating the anode polarization treatment and the cathode polarization treatment is effective only for an aluminum-based material containing Fe as an alloying element or an impurity, and is not versatile.

【0008】本発明は、このような問題を解消すべく案
出されたものであり、電解条件の制御によって、マトリ
ックスを溶解することなく、CuAl2 系金属間化合物
を初めとする晶出物を優先的にアルミ系材料の表面から
除去し、均質な高純度アルミニウム層をアルミ系材料の
表面に形成することを目的とする。
The present invention has been devised to solve such problems, and by controlling the electrolysis conditions, it is possible to form crystallized substances such as CuAl 2 intermetallic compounds without dissolving the matrix. The purpose is to preferentially remove from the surface of the aluminum-based material to form a uniform high-purity aluminum layer on the surface of the aluminum-based material.

【0009】[0009]

【課題を解決するための手段】本発明の表面処理方法
は、その目的を達成するため、アルミ系材料を電解質溶
液に浸漬してカソード分極させ、次いでアノード側に分
極させ、前記電解質溶液中での自然腐食電位と孔食電位
との間で前記アルミ系材料の電位を周期的に変動させる
ことを特徴とする。
In order to achieve the object, the surface treatment method of the present invention comprises immersing an aluminum-based material in an electrolyte solution for cathode polarization, and then for polarization on the anode side in the electrolyte solution. The potential of the aluminum-based material is periodically changed between the natural corrosion potential and the pitting corrosion potential.

【0010】アルミ系材料としては、たとえば合金元素
或いは不純物元素としてCuを含有する材料が使用され
る。また、電解質溶液としては、従来からアルミ系材料
の電解処理に使用されている硝酸等の各種酸液が使用さ
れる。
As the aluminum-based material, for example, a material containing Cu as an alloy element or an impurity element is used. As the electrolyte solution, various acid solutions such as nitric acid, which have been conventionally used for electrolytic treatment of aluminum-based materials, are used.

【0011】[0011]

【作 用】CuAl2 系金属間化合物を初めとする晶出
物が以下に述べる電解操作によってアルミ系材料の表面
から優先的に除去されることを見出した。実験には、図
1に示す装置を使用した。すなわち、電解槽10に処理
液11を入れ、試験片12を白金等の対極13に対向さ
せる。処理液11は、インペラー14で撹拌されると共
にヒータ15で加熱されることによって、均一な温度に
保たれる。
[Operation] It was found that crystallized substances such as CuAl 2 -based intermetallic compounds are preferentially removed from the surface of an aluminum-based material by the electrolytic operation described below. The apparatus shown in FIG. 1 was used for the experiment. That is, the treatment liquid 11 is put in the electrolytic bath 10, and the test piece 12 is opposed to the counter electrode 13 such as platinum. The treatment liquid 11 is kept at a uniform temperature by being stirred by the impeller 14 and being heated by the heater 15.

【0012】試験片12及び対極13からは、ポテンシ
ョスタット20に接続されたリード線21,22を導き
出している。ポテンショスタット20は、更に照合電極
室30にリード線23で接続されている。
From the test piece 12 and the counter electrode 13, lead wires 21 and 22 connected to the potentiostat 20 are led out. The potentiostat 20 is further connected to the reference electrode chamber 30 by a lead wire 23.

【0013】照合電極室30は、内部に収容した飽和K
Cl水溶液31に塩化銀電極等の照合極32を浸漬して
いる。また、飽和KCl水溶液31と試験片12との間
を塩橋33で結んでいる。なお、飽和KCl水溶液31
中には固体KCl34が存在しており、飽和KCl水溶
液31の飽和濃度が維持されている。
The reference electrode chamber 30 has a saturated K inside.
A reference electrode 32 such as a silver chloride electrode is immersed in a Cl aqueous solution 31. A salt bridge 33 connects the saturated KCl aqueous solution 31 and the test piece 12. A saturated KCl aqueous solution 31
Solid KCl 34 exists therein, and the saturated concentration of the saturated KCl aqueous solution 31 is maintained.

【0014】Cu1.3重量%を含有するアルミ合金
を、試験片12として使用した。処理液11として、E
DTAを10g/l添加した濃度60%のHNO3 水溶
液を調製した。この処理液11における試験片12の孔
食電位Epit を予め測定したところ、+1.15V(A
g/AgCl)であった。
An aluminum alloy containing 1.3% by weight of Cu was used as the test piece 12. As the processing liquid 11, E
A 60% concentration HNO 3 aqueous solution containing 10 g / l of DTA was prepared. When the pitting potential E pit of the test piece 12 in the treatment liquid 11 was measured in advance, it was +1.15 V (A
g / AgCl).

【0015】処理液11に試験片12を浸漬して自然腐
食電位Ecorrを測定したところ、+0.26V(Ag/
AgCl)であった。このとき、試験片12と対極13
との間には、電流が流れていない。この状態を、図2の
電圧−電流曲線でポイントP1 として示す
When the test piece 12 was immersed in the treatment liquid 11 and the natural corrosion potential E corr was measured, it was +0.26 V (Ag /
AgCl). At this time, the test piece 12 and the counter electrode 13
There is no current flowing between and. This state is shown as a point P 1 in the voltage-current curve of FIG.

【0016】次いで、−0.1V/秒の速度で試験片1
2の電位を−1.0V(Ag/AgCl)に調整し、カ
ソード分極を行った。このとき、試験片12と対極13
との間に、点線の方向に0.33A/4.5cm2 の電
流−i´が流れた(図2のP2)。このとき、試験片12
の片面の表面積は、4.5cm2 であった。
Then, the test piece 1 was run at a speed of -0.1 V / sec.
The potential of 2 was adjusted to -1.0 V (Ag / AgCl), and the cathode polarization was performed. At this time, the test piece 12 and the counter electrode 13
A current −i ′ of 0.33 A / 4.5 cm 2 flowed in the direction of the dotted line between and ( 2 ) (P 2 in FIG. 2 ). At this time, the test piece 12
The surface area of one side of the sample was 4.5 cm 2 .

【0017】カソード分極電位Ecaに試験片12を5分
間保持したところ、対極13から試験片12に流れる電
流は、0.23A/4.5cm2 まで減少した(図2の
3)。このカソード分極により、試験片12の表面から
水素ガスの発生が見られた。そして、試験片12の表面
は、クリーニングされた。
When the test piece 12 was held at the cathode polarization potential E ca for 5 minutes, the current flowing from the counter electrode 13 to the test piece 12 decreased to 0.23 A / 4.5 cm 2 (P 3 in FIG. 2). Due to this cathode polarization, generation of hydrogen gas was observed from the surface of the test piece 12. Then, the surface of the test piece 12 was cleaned.

【0018】次いで、試験片12の電位を+0.1V/
秒の速度で、孔食電位Epit を超えない+1.0V(A
g/AgCl)までアノード分極した。この電位変化に
よって、図1の実線で示すように試験片12から対極1
3に向けて電流iが流れた。このときの電流は、3.5
mA/4.5cm2であった(図2のP4)。この後、す
みやかに電位を−0.1V/秒の速度で自然腐食電位E
corrまで戻した(図2のP5)。自然腐食電位Ecorrに達
したとき、試験片12と対極13との間に電流iが流れ
なくなった。
Next, the potential of the test piece 12 is set to +0.1 V /
Seconds a rate of no more than the pitting potential E pit + 1.0V (A
anodic polarization up to g / AgCl). Due to this potential change, as shown by the solid line in FIG.
The electric current i flowed toward 3. The current at this time is 3.5
It was mA / 4.5 cm 2 (P 4 in FIG. 2). After this, the potential was promptly changed to the spontaneous corrosion potential E at a rate of -0.1 V / sec.
It returned to corr (P 5 in Figure 2). When the natural corrosion potential E corr was reached, the current i stopped flowing between the test piece 12 and the counter electrode 13.

【0019】更に、電位を+0.1V/秒の速度でプラ
ス側に+1.0V(Ag/AgCl)まで動かしたとこ
ろ、試験片12から対極13に再び電流iが流れ始めた
(図2のP6)。しかし、このときの電流iは、ポイント
4 で流れた電流3.5mA/4.5cm2 より少なく
なっていた。
Further, when the potential was moved to +1.0 V (Ag / AgCl) in the positive direction at a rate of +0.1 V / sec, the current i started to flow again from the test piece 12 to the counter electrode 13 (P in FIG. 2). 6 ). However, the current i at this time was smaller than the current of 3.5 mA / 4.5 cm 2 flowing at the point P 4 .

【0020】以後、自然腐食電位Ecorrとアノード分極
電位Eanとの間で繰り返し電位変化を行わせたところ、
図2に示すようにアノード分極電位Eanで試験片12か
ら対極13に流れる電流iが次第に減少して、ほぼ一定
値(約1.2mA/4.5cm2 )に収束した(図2の
n)。この状態は、試験片12の表面にあるCuAl2
系金属間化合物等の晶出物が完全に溶出したことを示
す。
After that, when the potential was repeatedly changed between the natural corrosion potential E corr and the anode polarization potential E an ,
As shown in FIG. 2, the current i flowing from the test piece 12 to the counter electrode 13 gradually decreased at the anodic polarization potential E an and converged to a substantially constant value (about 1.2 mA / 4.5 cm 2 ) (P in FIG. 2). n ). In this state, CuAl 2 on the surface of the test piece 12
It shows that crystallized substances such as intermetallic compounds were completely eluted.

【0021】もっとも、一定の電位に保持したままで試
験片12をアノード分極することによっても、表面にあ
る晶出物を除去することができる。しかし、この場合、
晶出物を溶出させる反応が遅く、自然腐食電位Ecorr
アノード分極電位Eanとの間で繰り返し電位変化させる
ときに比較し5倍の時間を要した。また、アノード分極
処理の長時間化に伴って、マトリックスの部分的な溶解
が生じ、処理後の試験片12に肌荒れが見られる。
However, the crystallized substances on the surface can also be removed by subjecting the test piece 12 to anodic polarization while the potential is kept constant. But in this case
The reaction for eluting the crystallized substance was slow, and it took 5 times as long as when the potential was repeatedly changed between the natural corrosion potential E corr and the anode polarization potential E an . Further, as the anodic polarization treatment is prolonged, the matrix partially dissolves, and the test piece 12 after the treatment has rough skin.

【0022】処理液11としては、マトリックスの溶解
がなく、晶出物のみを効率よく溶出させることから、た
とえば濃度10%以上の硝酸水溶液を使用することが好
ましい。硝酸水溶液の濃度の上限は、特に規定されるも
のではない。また、処理液中に溶出したCuイオンがア
ルミニウム表面に再析出することを防止するため、Cu
イオンと錯化合物を形成するEDTA,EDTAのナト
リウム塩,Cuイオンと化学的に結合して不溶性塩を生
成するシュウ酸等の物質を、好ましくは1〜10%の範
囲で添加することができる。
As the treatment liquid 11, it is preferable to use, for example, an aqueous nitric acid solution having a concentration of 10% or more, since the matrix is not dissolved and only the crystallized substance is efficiently eluted. The upper limit of the concentration of the nitric acid aqueous solution is not particularly specified. Further, in order to prevent the Cu ions eluted in the treatment liquid from re-precipitating on the aluminum surface,
Substances such as EDTA that forms a complex compound with ions, sodium salt of EDTA, and oxalic acid that chemically bonds with Cu ions to form an insoluble salt can be added, preferably in the range of 1 to 10%.

【0023】カソード分極によって多量の水素ガスが発
生し、アルミ系材料の表面が清浄化されると共に活性化
する。このカソード分極は、定電位法又は定電流法で行
われる。電解時間は、必要とするカソード分極効果を得
る上から1〜10分とすることが好ましい。
A large amount of hydrogen gas is generated by the cathode polarization, and the surface of the aluminum-based material is cleaned and activated. This cathodic polarization is performed by a constant potential method or a constant current method. The electrolysis time is preferably 1 to 10 minutes in order to obtain the required cathode polarization effect.

【0024】定電位法でカソード分極を行う場合、自然
腐食電位Ecorrとカソード分極の設定電位Ecaとの差Δ
E(=Ecorr−Eca)が0.1〜2.0Vの範囲となる
ように設定電位Ecaを調節することが好ましい。電位差
ΔEが0.1V未満のときには、カソード反応が十分に
行われず、表面活性化効果が不足する。逆に、電位差Δ
Eが2.0Vを超えるとき、水素ガスの発生量が急激に
増加し、アルミ系材料を定電位に保持することが困難に
なる。
When performing cathodic polarization by the potentiostatic method, the difference Δ between the natural corrosion potential E corr and the set potential E ca of cathodic polarization is Δ.
It is preferable to adjust the set potential E ca so that E (= E corr −E ca ) is in the range of 0.1 to 2.0V. When the potential difference ΔE is less than 0.1 V, the cathode reaction is not sufficiently performed and the surface activation effect is insufficient. Conversely, the potential difference Δ
When E exceeds 2.0 V, the amount of hydrogen gas generated sharply increases, making it difficult to hold the aluminum-based material at a constant potential.

【0025】定電流法でカソード分極を行う場合、0.
01〜1A/4.5cm2 のカソード電流Icaを流すこ
とが好ましい。カソード電流Icaが0.01A/4.5
cm2 未満では、カソード反応が不十分で、アルミ系材
料の表面を所期通りに活性化することができない。逆
に、1A/4.5cm2 を超えるカソード電流Ica
は、水素ガス発生が急激になり、電流が不安定に変化す
るため、一定した処理状態を維持することが困難にな
る。
When the cathode polarization is performed by the constant current method,
It is preferable to flow a cathode current I ca of 01 to 1 A / 4.5 cm 2 . Cathode current I ca is 0.01A / 4.5
If it is less than cm 2 , the cathode reaction is insufficient and the surface of the aluminum-based material cannot be activated as expected. On the other hand, when the cathode current I ca exceeds 1 A / 4.5 cm 2 , the hydrogen gas generation becomes abrupt and the current changes unstablely, making it difficult to maintain a constant processing state.

【0026】カソード分極電位Ecaからアノード分極電
位Eanに移行するとき、電位をプラス側に移行させる速
度、すなわち電位掃引速度は、0.05〜5V/秒の範
囲に維持される。電位掃引速度が0.05V/秒未満の
ときには、反応が緩やかに進行し晶出物の優先溶解反応
が起こりにくく、また1回の操作に要する時間が長くな
り、作業性が低下する。逆に、5V/秒を超える電位掃
引速度では、急激な反応が行われ、電流変化が激しく、
一定条件下での電解反応が困難になる。アノード分極電
位Eanから自然腐食電位Ecorrに移行するときの電位掃
引速度も、同様に0.05〜5V/秒の範囲に維持され
る。
When the cathode polarization potential E ca is shifted to the anode polarization potential E an , the speed of shifting the potential to the plus side, that is, the potential sweep speed is maintained in the range of 0.05 to 5 V / sec. When the potential sweep rate is less than 0.05 V / sec, the reaction proceeds slowly and the preferential dissolution reaction of the crystallized substance is unlikely to occur, and the time required for one operation becomes long, which lowers the workability. On the other hand, at a potential sweep speed exceeding 5 V / sec, a rapid reaction occurs and the current changes drastically,
The electrolytic reaction under certain conditions becomes difficult. The potential sweep rate at the time of transition from the anodic polarization potential E an to the natural corrosion potential E corr is also maintained in the range of 0.05 to 5 V / sec.

【0027】アノード分極は、自然腐食電位Ecorrと孔
食電位Epit との間でアルミ系材料の電位を周期的に変
化させ、分極−復極を繰り返すことによって行われる。
このとき、アルミ系材料の電位が孔食電位Epit を超え
て貴になると、CuAl2 系金属間化合物等の晶出物以
外にマトリックス自体の溶解が開始され、アルミ系材料
の表面に孔食が発生する。逆に、アルミ系材料が自然腐
食電位Ecorrよりも卑な電位になると、処理液中に溶出
したCuイオンがアルミ系材料の表面に析出するため、
アノード分極処理の効果が失われる。
Anodic polarization is performed by periodically changing the potential of the aluminum-based material between the natural corrosion potential E corr and the pitting corrosion potential E pit, and repeating polarization-depolarization.
At this time, when the potential of the aluminum-based material exceeds the pitting potential E pit and becomes noble, dissolution of the matrix itself in addition to crystallized substances such as CuAl 2 -based intermetallic compounds starts, and pitting corrosion occurs on the surface of the aluminum-based material. Occurs. On the contrary, when the aluminum-based material has a base potential lower than the natural corrosion potential E corr , Cu ions eluted in the treatment liquid are deposited on the surface of the aluminum-based material.
The effect of the anodic polarization process is lost.

【0028】カソード分極後にアノード分極すると、最
初は分極が大きくなるに従って大きなアノード電流が観
測される。これは、アルミ系材料の表面からCuAl2
系金属間化合物等の晶出物が優先的に且つ活発に溶出し
ていることを示す。アルミ系材料の電位を自然腐食電位
corrまで復極した後で再びアノード分極すると、アノ
ード電流が次第に小さくなり、アノード分極電位Ean
流れる電流が一定値に収束する。
When anodic polarization is performed after cathodic polarization, a large anodic current is initially observed as the polarization increases. This is because CuAl 2
It shows that crystallized substances such as intermetallic compounds are preferentially and actively eluted. When the potential of the aluminum-based material is depolarized to the natural corrosion potential E corr and then anodic polarized again, the anode current gradually decreases and the current flowing at the anodic polarization potential E an converges to a constant value.

【0029】アノード分極によって、アルミ系材料の表
面にあるCuAl2 系金属間化合物等の晶出物が優先的
に除去される。分極−復極の繰返し周期は、2〜20サ
イクル程度であり、アノード分極電位Eanで流れる電流
が一定値(Al−1.3重量%Cu合金では約1.2m
A)に収束したときに電解操作を終了する。通常は、5
〜20サイクルで、電流の収束が見られる。
By anodic polarization, crystallized substances such as CuAl 2 -based intermetallic compounds on the surface of the aluminum-based material are preferentially removed. The polarization-depolarization repetition period is about 2 to 20 cycles, and the current flowing at the anode polarization potential E an has a constant value (about 1.2 m for Al-1.3 wt% Cu alloy).
When converged to A), the electrolysis operation is terminated. Usually 5
At ~ 20 cycles, current convergence is seen.

【0030】孔食電位Epit 及び自然腐食電位E
corrは、処理されるアルミ系材料の種類や電解処理液の
種類,濃度,温度等によって異なる。そこで、電解処理
に先立って孔食電位Epit 及び自然腐食電位Ecorrを予
め測定し、それに対応したカソード分極電位Eca及びア
ノード分極電位Eanを決定することが好ましい。
Pitting potential E pit and spontaneous corrosion potential E
The corr varies depending on the type of aluminum-based material to be treated, the type, concentration, temperature, etc. of the electrolytic treatment liquid. Therefore, it is preferable to measure the pitting corrosion potential E pit and the spontaneous corrosion potential E corr in advance prior to the electrolytic treatment, and to determine the cathode polarization potential E ca and the anode polarization potential E an corresponding thereto.

【0031】アルミ系材料の表面は、カソード分極によ
って活性化される。しかし、アルミ系材料の表面には、
自然酸化皮膜や汚れ等が付着している。そこで、自然酸
化皮膜,汚れ等を除去して表面活性化を円滑に行わせる
ため、水酸化ナトリウム水溶液等を使用した通常のアル
カリエッチングによってアルミ系材料の表面清浄化をし
てもよい。
The surface of the aluminum-based material is activated by cathodic polarization. However, on the surface of aluminum material,
Natural oxide film and dirt are attached. Therefore, in order to remove the natural oxide film, stains and the like to smoothly activate the surface, the surface of the aluminum-based material may be cleaned by ordinary alkali etching using an aqueous solution of sodium hydroxide or the like.

【0032】[0032]

【実施例】高純度アルミニウムにCuを1.3重量%添
加して溶製,鋳造及び圧延して板厚1.0mmのアルミ
ニウム板を得た。このアルミニウム板を温度70℃の1
0%NaOH水溶液に1分間浸漬し、水洗した後、更に
30%硝酸水溶液中に1分間浸漬し、再び水洗して、乾
燥させた。この前処理で、アルミニウム板の表面に付着
していた圧延油等の異物が完全に除去された。
EXAMPLE 1.3% by weight of Cu was added to high-purity aluminum, which was melted, cast and rolled to obtain an aluminum plate having a plate thickness of 1.0 mm. This aluminum plate is kept at a temperature of 70 ° C for 1
After dipping in a 0% NaOH aqueous solution for 1 minute and washing with water, it was further dipped in a 30% nitric acid aqueous solution for 1 minute, washed again with water, and dried. By this pretreatment, foreign matters such as rolling oil adhering to the surface of the aluminum plate were completely removed.

【0033】前処理されたアルミニウム板を試験片と
し、表1に示す条件で電解処理した。なお、処理液に
は、アノード処理によって溶出したCuイオンの再析出
を抑制するため、EDTAを10g/l添加した。ま
た、表1における自然腐食電位は、塩化銀照合電極基準
で表した。なお、表1には、電解処理前の無処理の試験
片を比較例2として掲げている。
The pretreated aluminum plate was used as a test piece and subjected to electrolytic treatment under the conditions shown in Table 1. In addition, EDTA was added to the treatment liquid in an amount of 10 g / l in order to suppress reprecipitation of Cu ions eluted by the anode treatment. In addition, the spontaneous corrosion potential in Table 1 is expressed on the basis of a silver chloride reference electrode. In Table 1, untreated test pieces before electrolytic treatment are listed as Comparative Example 2.

【0034】電解処理後の各試験片及び無処理の試験片
(比較例2)の表面を、走査型電子顕微鏡で観察した。
無処理の試験片の表面には、図7に示すように白色で粒
状の晶出物aが観察された。また、粒状の晶出物aは、
結晶粒界に沿って分布していた。この晶出物aをX線回
折によって分析したところ、CuAl2 系金属間化合物
を主体とする晶出物であることが判った。
The surface of each test piece after electrolytic treatment and the untreated test piece (Comparative Example 2) were observed with a scanning electron microscope.
As shown in FIG. 7, white and granular crystallized substances a were observed on the surface of the untreated test piece. Further, the granular crystallized substance a is
It was distributed along the grain boundaries. When this crystallized substance a was analyzed by X-ray diffraction, it was found to be a crystallized substance mainly composed of a CuAl 2 -based intermetallic compound.

【0035】これに対し、本発明に従って電解処理され
た試験片では、図3〜5に示すように、無処理の試験片
(図7)の表面に見られた白色の粒が無くなっており、
代わりに黒味がかった孔bが観察された。これは、アノ
ード分極によって試験片表面から晶出物が除去されてい
ることを示す。また、マトリックスcに、侵食の痕跡を
検出することができなかった。
On the other hand, in the test piece electrolytically treated in accordance with the present invention, as shown in FIGS. 3 to 5, the white particles found on the surface of the untreated test piece (FIG. 7) were eliminated,
Instead, blackish holes b were observed. This indicates that crystallized substances were removed from the surface of the test piece by anodic polarization. Further, no trace of erosion could be detected in the matrix c.

【0036】他方、比較例1の試験片では、図6に示す
ように晶出物の除去が完全に行われておらず、処理後の
試験片表面に残留晶出物dが観察された。これは、比較
例1で使用した処理液の硝酸濃度が不足し、アノード分
極時の晶出物の溶解反応が十分に起こらなかったことに
起因するものと推察される。
On the other hand, in the test piece of Comparative Example 1, the crystallized substance was not completely removed as shown in FIG. 6, and residual crystallized substance d was observed on the surface of the treated test piece. It is speculated that this is because the nitric acid concentration of the treatment liquid used in Comparative Example 1 was insufficient and the dissolution reaction of the crystallized substance during anode polarization did not sufficiently occur.

【0037】[0037]

【表1】 [Table 1]

【0038】比較例1,2と実施例1〜3を対比すると
き、本発明に従って電解処理された試験片の表面から晶
出物の除去が完全に行われており、しかもマトリックス
表面は何ら侵食を受けていないことが明らかである。そ
のため、実施例1〜3の試験片に対して陽極酸化処理を
施したとき、均質な着色皮膜を形成することができた。
また、晶出物を起点とする腐食の発生も見られなかっ
た。
When comparing Comparative Examples 1 and 2 with Examples 1 to 3, the crystallized substances were completely removed from the surface of the test piece electrolytically treated according to the present invention, and the matrix surface was not corroded at all. It is clear that they have not received any. Therefore, when the anodizing treatment was performed on the test pieces of Examples 1 to 3, a uniform colored film could be formed.
In addition, the occurrence of corrosion starting from crystallized substances was not observed.

【0039】[0039]

【発明の効果】以上に説明したように本発明によると
き、マトリックス表面に何ら損傷を与えることなく、ア
ルミ系材料の表面に露出しているCuAl2系金属間化
合物等の晶出物を完全に除去することができる。処理さ
れたアルミ系材料の表面層には高純度のアルミニウム層
が形成され、耐食性に優れたものとなる。また、処理後
のアルミ系材料に化成処理,陽極酸化処理等を施すと
き、晶出物による悪影響を受けることがなく、均質な皮
膜が形成される。しかも、マトリックスに固溶している
Cuや表面に露出せず腐食反応に関与しない晶析出物等
は、カソード分極及びアノード分極の影響を受けること
がない。したがって、アルミ系材料に期待される機械的
性質等に何ら悪影響を与えることなく、表面層の改質が
可能となる。
As described above, according to the present invention, the crystallized substances such as CuAl 2 -based intermetallic compounds exposed on the surface of the aluminum-based material can be completely removed without damaging the matrix surface. Can be removed. A high-purity aluminum layer is formed on the surface layer of the treated aluminum-based material, resulting in excellent corrosion resistance. Further, when the treated aluminum-based material is subjected to chemical conversion treatment, anodic oxidation treatment, etc., a uniform film is formed without being adversely affected by crystallized substances. Moreover, Cu that is solid-dissolved in the matrix and crystal precipitates that are not exposed on the surface and do not participate in the corrosion reaction are not affected by the cathode polarization and the anode polarization. Therefore, the surface layer can be modified without adversely affecting the mechanical properties expected of the aluminum-based material.

【図面の簡単な説明】[Brief description of drawings]

【図1】 カソード分極及びアノード分極を行うために
使用した実験装置を示す。
1 shows the experimental setup used to perform cathodic and anodic polarization.

【図2】 試験片に印加した電位の経時的変化を示すグ
ラフ
FIG. 2 is a graph showing changes over time in the potential applied to the test piece.

【図3】 本発明の実施例1で電解処理された試験片の
表面状態を5000倍の走査型電子顕微鏡で観察したと
きのスケッチ
FIG. 3 is a sketch of the surface condition of a test piece electrolytically treated in Example 1 of the present invention, observed with a scanning electron microscope at a magnification of 5000.

【図4】 本発明の実施例2で電解処理された試験片の
表面状態を5000倍の走査型電子顕微鏡で観察したと
きのスケッチ
FIG. 4 is a sketch of the surface condition of a test piece electrolytically treated in Example 2 of the present invention, observed with a scanning electron microscope at a magnification of 5000.

【図5】 本発明の実施例3で電解処理された試験片の
表面状態を5000倍の走査型電子顕微鏡で観察したと
きのスケッチ
FIG. 5 is a sketch of the surface condition of a test piece electrolytically treated in Example 3 of the present invention, observed with a scanning electron microscope at a magnification of 5000.

【図6】 電解処理された比較例1の試験片の表面状態
を5000倍の走査型電子顕微鏡で観察したときのスケ
ッチ
6 is a sketch of the surface condition of the electrolytically treated test piece of Comparative Example 1 observed with a scanning electron microscope at a magnification of 5000. FIG.

【図7】 無処理の試験片の表面状態を5000倍の走
査型電子顕微鏡で観察したときのスケッチ
FIG. 7 is a sketch of the surface condition of an untreated test piece observed with a scanning electron microscope at a magnification of 5000.

【符号の説明】[Explanation of symbols]

corr 自然腐食電位 Epit 孔食電位 Eca カソード分極の設定電位 Ean アノード分極
の設定電位
E corr spontaneous corrosion potential E pit pitting potential E ca cathodic polarization setting potential E an anodic polarization setting potential

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミ系材料を電解質溶液に浸漬してカ
ソード分極させ、次いでアノード側に分極させ、前記電
解質溶液中での自然腐食電位と孔食電位との間で前記ア
ルミ系材料の電位を周期的に変動させることを特徴とす
るアルミ系材料の表面処理方法。
1. An aluminum-based material is immersed in an electrolyte solution for cathode polarization, and then polarized on the anode side, and the potential of the aluminum-based material is adjusted between the spontaneous corrosion potential and the pitting potential in the electrolyte solution. A surface treatment method for an aluminum-based material, which is characterized by varying periodically.
JP3222172A 1991-08-07 1991-08-07 Surface treatment method for aluminum materials Expired - Fee Related JP2551274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222172A JP2551274B2 (en) 1991-08-07 1991-08-07 Surface treatment method for aluminum materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222172A JP2551274B2 (en) 1991-08-07 1991-08-07 Surface treatment method for aluminum materials

Publications (2)

Publication Number Publication Date
JPH0544100A JPH0544100A (en) 1993-02-23
JP2551274B2 true JP2551274B2 (en) 1996-11-06

Family

ID=16778305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222172A Expired - Fee Related JP2551274B2 (en) 1991-08-07 1991-08-07 Surface treatment method for aluminum materials

Country Status (1)

Country Link
JP (1) JP2551274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3359179B2 (en) * 1995-02-28 2002-12-24 株式会社タチエス Armrest manufacturing method
JP4886628B2 (en) * 2007-08-06 2012-02-29 住友重機械工業株式会社 Sliding surface formation method
KR101148000B1 (en) * 2012-03-15 2012-05-24 (유)유달조선 Electrochemical method to improve cavitation resistivity of copper alloy

Also Published As

Publication number Publication date
JPH0544100A (en) 1993-02-23

Similar Documents

Publication Publication Date Title
JP5370014B2 (en) Method for sealing anodized film
US3645862A (en) Method of making an electrode
Saidman et al. Activation of aluminium by indium ions in chloride solutions
JPS636636B2 (en)
Cabot et al. Electrochemical study of aluminium corrosion in acid chloride solutions
EP3359710A1 (en) Process for indium or indium alloy deposition and article
JPH0347999A (en) Support metal having improved surface mor- phology
JP2551274B2 (en) Surface treatment method for aluminum materials
US3684577A (en) Removal of conductive coating from dimensionally stable electrodes
Donten et al. Voltammetric, Optical, and Spectroscopic Examination of Anodically Forced Passivation of Cobalt‐Tungsten Amorphous Alloys
Jalal et al. Effect of organic additives on AA6066 anodization
US3674655A (en) Surface preparation of uranium parts
US3837879A (en) Removing of worn coating from metal electrodes
JPH0631167A (en) Oxidation catalyst and its production
JP4763363B2 (en) Aluminum material for electrolytic capacitor electrode having excellent etching characteristics and method for producing the same, electrode material for aluminum electrolytic capacitor, and aluminum electrolytic capacitor
JP7291858B2 (en) Electrolytic processor for preparing plastic parts to be metallized and method for etching plastic parts
JPH0154438B2 (en)
JPH0245710B2 (en) CHITANOYOBICHITANGOKINNOMAESHORYOKU
JPS6047913B2 (en) How to apply gold plating directly to stainless steel
JPH1197298A (en) Method of manufacturing electrode foil for aluminum electrolytic capacitor
US3378668A (en) Method of making non-porous weld beads
JP3406403B2 (en) Electrode for strong acid water
FR2471426A1 (en) PALLADIUM ELECTRODEPOSITION PROCESS AND ELECTROLYTIC BATH FOR CARRYING OUT SAID METHOD
KR19980027909A (en) Heat treatment method of lead frame
Golby et al. Factors influencing the growth of zinc immersion deposits on aluminium alloys

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees