JP5370014B2 - Method for sealing anodized film - Google Patents
Method for sealing anodized film Download PDFInfo
- Publication number
- JP5370014B2 JP5370014B2 JP2009201960A JP2009201960A JP5370014B2 JP 5370014 B2 JP5370014 B2 JP 5370014B2 JP 2009201960 A JP2009201960 A JP 2009201960A JP 2009201960 A JP2009201960 A JP 2009201960A JP 5370014 B2 JP5370014 B2 JP 5370014B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing
- treatment
- lithium
- test
- anodized film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Chemical Treatment Of Metals (AREA)
Abstract
Description
本発明は、アルミニウム又はアルミニウム合金の表面に施した陽極酸化皮膜の封孔処理方法に関する。 The present invention relates to a method for sealing a anodic oxide film applied to the surface of aluminum or an aluminum alloy.
アルミニウムやアルミ展伸材、アルミ鋳造材、アルミダイカスト材などのアルミニウム合金の耐食性を向上させる方法として、従来から陽極酸化処理が行われている。陽極酸化処理が施されたアルミニウム又はアルミニウム合金の表面には、バリア層21と多孔質層22の二層からなる陽極酸化皮膜20が形成される(図1)。アルミニウム又はアルミニウム合金にはアルミニウム以外の不純物元素が含まれており、その周囲は陽極酸化皮膜20が成長しにくいため、隙間が生じ、腐食を発生、促進する陽極酸化浴が溜まりやすく、耐食性が低下する。また、陽極酸化皮膜20の多孔質層22には微細な孔24が多数存在し、耐食性低下の一因となっているため、更なる耐食性の向上を目的として、陽極酸化処理後に孔24を塞ぐ封孔処理が行われている。 As a method for improving the corrosion resistance of aluminum alloys such as aluminum, aluminum wrought material, aluminum cast material, and aluminum die-cast material, anodizing treatment has been conventionally performed. An anodized film 20 comprising two layers of a barrier layer 21 and a porous layer 22 is formed on the surface of the anodized aluminum or aluminum alloy (FIG. 1). Aluminum or an aluminum alloy contains an impurity element other than aluminum, and the anodic oxide film 20 hardly grows around the aluminum or aluminum alloy, so that a gap is formed, and an anodic oxidation bath that easily generates and accelerates corrosion is easily collected, resulting in a decrease in corrosion resistance. To do. In addition, since the porous layer 22 of the anodic oxide film 20 has many fine holes 24 and contributes to a decrease in corrosion resistance, the holes 24 are blocked after the anodizing treatment in order to further improve the corrosion resistance. Sealing treatment is performed.
従来から知られている封孔処理の一つである水和封孔処理には、蒸気によって陽極酸化皮膜を封孔する蒸気封孔型と、封孔助剤を添加した30〜50℃の温水にアルミニウムを浸漬する低温水和型と、金属塩等の封孔助剤を添加した80〜100℃の熱水にアルミニウム材を浸漬する高温水和型とがある。船外機などの高い耐食性が必要とされるアルミニウム部品では、高温水和型の封孔処理が施されている。 Hydration sealing treatment, one of the conventionally known sealing treatments, includes a steam sealing mold that seals the anodized film with steam, and hot water at 30 to 50 ° C. to which a sealing aid is added. There are a low temperature hydration type in which aluminum is immersed in and a high temperature hydration type in which an aluminum material is immersed in hot water at 80 to 100 ° C. to which a sealing aid such as a metal salt is added. Aluminum parts that require high corrosion resistance such as outboard motors are subjected to high-temperature hydration-type sealing treatment.
高温水和型の封孔処理として、例えば、80〜100℃の酢酸ニッケル浴に、陽極酸化処理品を10分以上浸漬して封孔処理するものがある。この高温封孔処理では、下記式(I)に示すように、皮膜の体積膨張を伴う「水和反応」と、水酸化ニッケル33を孔34内へ析出させる「析出反応」という二種類の反応機構により封孔を行っている(図2)。
Al2O3 + H2O → Al2O3・H2O (ベーマイト) (式I)
As a high-temperature hydration type sealing treatment, for example, there is one in which an anodized product is immersed in a nickel acetate bath at 80 to 100 ° C. for 10 minutes or more to perform sealing treatment. In this high temperature sealing treatment, as shown in the following formula (I), there are two kinds of reactions, a “hydration reaction” accompanied by a volume expansion of the film and a “precipitation reaction” in which nickel hydroxide 33 is precipitated in the holes 34. Sealing is performed by the mechanism (FIG. 2).
Al 2 O 3 + H 2 O → Al 2 O 3 .H 2 O (Boehmite) (Formula I)
また、その他の高温水和型の封孔処理として、特許文献1には、フルオロアルキル基を有するアクリル酸、メタクリル酸のフッ素化ポリマー又はコポリマーを含有し、さらにリチウムイオン(0.0001〜0.01g/L)及びマグネシウムイオンを含有する水溶液(pH5.5〜8.5)に、70℃〜沸点で接触させる方法が開示されている。特許文献2には、アルカリ金属イオン及び/又はアルカリ土類金属イオン(好適には、リチウムイオン及びマグネシウムイオンであり、濃度は0.01〜50g/L)を含む有機酸の水溶液(pH5.5〜8.5)に、75℃〜沸点で陽極酸化処理品を接触させる方法が開示されている。特許文献3には、耐食性向上を目的とした陽極酸化皮膜の封孔処理で、第一工程で温度15〜35℃及びpH値5.0〜6.5、0.1〜3g/Lのリチウムイオン及び0.1〜5g/Lのフッ化物イオンを含有する水溶液に、3〜30分接触させ、第二工程で市販の封孔材を用い、96℃、20分間封孔処理を行うことが開示されている。 As another high temperature hydration type sealing treatment, Patent Document 1 contains a fluorinated polymer or copolymer of acrylic acid or methacrylic acid having a fluoroalkyl group, and lithium ions (0.0001 to 0.001). 01 g / L) and an aqueous solution (pH 5.5 to 8.5) containing magnesium ions at 70 ° C. to boiling point. Patent Document 2 discloses an aqueous solution of an organic acid (pH 5.5) containing alkali metal ions and / or alkaline earth metal ions (preferably lithium ions and magnesium ions, and a concentration of 0.01 to 50 g / L). ~ 8.5) discloses a method of contacting an anodized product at 75 ° C to the boiling point. Patent Document 3 discloses a lithium oxide having a temperature of 15 to 35 ° C., a pH value of 5.0 to 6.5, and a pH of 0.1 to 3 g / L in the first step by sealing the anodized film for the purpose of improving corrosion resistance. Contact with an aqueous solution containing ions and 0.1 to 5 g / L fluoride ions for 3 to 30 minutes, and use a commercially available sealing material in the second step to perform sealing treatment at 96 ° C. for 20 minutes. It is disclosed.
しかしながら、これらの封孔処理は、陽極酸化処理品を浸漬する処理なので、大型部品を封孔処理する場合など、その部品よりもさらに大きな処理槽が必要になり、処理液も大量に必要となる。 However, since these sealing processes are processes in which an anodized product is immersed, a larger processing tank is required than when the large parts are sealed, and a large amount of processing liquid is required. .
本発明は、アルミニウム又はアルミニウム合金表面に施した陽極酸化皮膜の封孔処理を短時間で行うことができ、かつ、優れた耐食性を維持できる陽極酸化皮膜の封孔処理方法を提供することを目的とする。 An object of the present invention is to provide a method for sealing an anodic oxide film that can perform the anodic oxide film sealing treatment applied to the surface of aluminum or an aluminum alloy in a short time and can maintain excellent corrosion resistance. And
上記の課題を解決するため、本発明においては、アルミニウム又はアルミニウム合金の表面に形成された陽極酸化皮膜の表面を、封孔処理液で処理する工程を含む陽極酸化皮膜の封孔処理方法であって、前記封孔処理液が0.02〜20g/Lのリチウムイオンを含み、前記封孔処理液のpH値が10.5以上であり、前記封孔処理液の温度が65℃以下である陽極酸化皮膜の封孔処理方法とした。
前記封孔処理液のリチウムイオン源は、炭酸リチウム又は水酸化リチウムが好ましい。
前記封孔処理液での処理は、前記陽極酸化皮膜の表面の少なくとも一部に前記封孔処理液を塗布又はスプレーする処理が好ましく、この処理面を水洗する工程をさらに含むことが好ましい。
前記封孔処理液での処理は、前記陽極酸化皮膜の表面の少なくとも一部を前記封孔処理液に浸漬する処理が好ましく、この処理面を水洗する工程をさらに含むことが好ましい。
前記封孔処理液での処理工程と前記処理面の水洗工程との間に、前記陽極酸化皮膜を有する被処理物を空気中で保持する工程をさらに含むことが好ましい。
In order to solve the above problems, the present invention is a method for sealing an anodized film comprising a step of treating the surface of an anodized film formed on the surface of aluminum or an aluminum alloy with a sealing solution. The sealing treatment liquid contains 0.02 to 20 g / L of lithium ions, the sealing treatment liquid has a pH value of 10.5 or more, and the sealing treatment liquid has a temperature of 65 ° C. or less. An anodized film was sealed.
The lithium ion source of the sealing treatment liquid is preferably lithium carbonate or lithium hydroxide.
The treatment with the sealing treatment liquid is preferably a treatment of applying or spraying the sealing treatment liquid on at least a part of the surface of the anodic oxide film, and preferably further includes a step of washing the treated surface with water.
The treatment with the sealing treatment liquid is preferably a treatment of immersing at least a part of the surface of the anodized film in the sealing treatment solution, and preferably further includes a step of washing the treated surface with water.
It is preferable that the method further includes a step of holding the object to be processed having the anodized film in the air between the treatment step with the sealing treatment liquid and the rinsing step of the treatment surface.
本発明によれば、アルミニウム又はアルミニウム合金表面に施した陽極酸化皮膜の封孔処理を短時間で行うことができ、かつ、優れた耐食性を維持できる。 According to the present invention, the sealing treatment of the anodized film applied to the surface of aluminum or aluminum alloy can be performed in a short time, and excellent corrosion resistance can be maintained.
以下、本発明の実施の形態について説明する。
本発明において、封孔処理の処理対象物は、陽極酸化皮膜が表面に形成されたアルミニウム又はアルミニウム合金の部材である。陽極酸化皮膜は、陽極酸化処理液中でアルミニウム又はアルミニウム合金を作用電極として、処理液を電気分解することによって得られる。陽極酸化処理液としては、硫酸、シュウ酸、リン酸、クロム酸等の酸性浴、水酸化ナトリウム、リン酸ナトリウム、フッ化ナトリウム等の塩基性浴のいずれを用いてもよく、本発明において封孔処理の対象となる陽極酸化皮膜を表面に生成させたアルミニウム又はアルミニウム合金の部材は、特定の陽極酸化処理浴を使用したものには限定されない。また、陽極酸化皮膜の膜厚も特に限定されないが、通常3〜40μmがよい。
Embodiments of the present invention will be described below.
In the present invention, the object to be sealed is an aluminum or aluminum alloy member having an anodized film formed on the surface thereof. The anodized film is obtained by electrolyzing the treatment liquid in an anodizing treatment liquid using aluminum or an aluminum alloy as a working electrode. As an anodizing treatment solution, any of acidic baths such as sulfuric acid, oxalic acid, phosphoric acid and chromic acid, and basic baths such as sodium hydroxide, sodium phosphate and sodium fluoride may be used. The aluminum or aluminum alloy member on which the anodized film to be subjected to the hole treatment is formed is not limited to a member using a specific anodizing bath. The thickness of the anodized film is not particularly limited, but usually 3 to 40 μm is preferable.
被処理物である陽極酸化皮膜を生成させたアルミニウム材又はアルミニウム合金材は、封孔処理液に浸漬、又は、封孔処理液を塗布する前に、水洗浄等の前処理を行うことが好ましい。被処理物に付着した陽極酸化処理液が封孔処理液に混入することを防止し、また孔内の陽極酸化処理液を除去するためである。 The aluminum material or aluminum alloy material on which the anodized film that is the object to be processed is preferably immersed in the sealing treatment liquid or subjected to a pretreatment such as water washing before the sealing treatment liquid is applied. . This is to prevent the anodizing treatment liquid adhering to the object to be processed from being mixed into the sealing treatment liquid and to remove the anodizing treatment liquid in the holes.
封孔処理液はリチウムイオンを含む水溶液であり、リチウムイオン源となる薬品としては、硫酸リチウム、塩化リチウム、ケイ酸リチウム、硝酸リチウム、炭酸リチウム、リン酸リチウム、水酸化リチウムなどを使用することができる。そのうち、水溶液が塩基性を示すものとして水酸化リチウム、炭酸リチウム、ケイ酸リチウムが好ましい。但し、ケイ酸リチウムは毒性が強く、水に溶けにくいため、実用的ではない。よって、炭酸リチウムと水酸化リチウムがより好適である。 The sealing treatment solution is an aqueous solution containing lithium ions, and the lithium ion source must be lithium sulfate, lithium chloride, lithium silicate, lithium nitrate, lithium carbonate, lithium phosphate, lithium hydroxide, etc. Can do. Of these, lithium hydroxide, lithium carbonate, and lithium silicate are preferred as the aqueous solution exhibits basicity. However, lithium silicate is not practical because it is highly toxic and hardly soluble in water. Therefore, lithium carbonate and lithium hydroxide are more preferable.
リチウムは非常に小さい元素であり、皮膜の隙間に入って反応しやすいため、好適である。リチウムと同族の元素であるナトリウムやカリウムは、皮膜の封孔処理回数に対して敏感であり、処理回数の増加に伴い、耐食性は顕著に低下する。また、薬液管理に関してコスト高を招くため、生産を考慮すると望ましくない。これに対して、リチウムは処理回数に鈍感で、安定した耐食性を有する。 Lithium is a very small element and is suitable because it easily enters a gap in the film and reacts. Sodium and potassium, which are elements of the same family as lithium, are sensitive to the number of sealing treatments of the film, and the corrosion resistance decreases significantly with the increase in the number of treatments. In addition, the cost associated with chemical solution management is undesirable, and this is not desirable in consideration of production. On the other hand, lithium is insensitive to the number of treatments and has stable corrosion resistance.
封孔処理液のリチウムイオン濃度は、0.02〜20g/Lにする必要がある。0.02g/L以上の濃度のリチウムイオンで封孔処理の反応が促進される。下限は、好ましくは0.08g/Lであり、より好ましくは2g/Lである。上限は、より好ましくは10g/Lである。リチウムイオン濃度が10g/Lを超えた封孔処理液では、急速に反応が進み、陽極酸化皮膜のないアルミニウム素地の溶解が起こるため、好ましくない。 The lithium ion concentration of the sealing treatment liquid needs to be 0.02 to 20 g / L. The reaction of the sealing treatment is promoted by lithium ions having a concentration of 0.02 g / L or more. The lower limit is preferably 0.08 g / L, and more preferably 2 g / L. The upper limit is more preferably 10 g / L. A sealing treatment liquid having a lithium ion concentration exceeding 10 g / L is not preferable because the reaction proceeds rapidly and dissolution of the aluminum base without an anodized film occurs.
封孔処理液のpH値は、10.5以上にする必要がある。好ましくは11以上であり、さらに好ましくは12以上である。また、pH値の上限は14が好ましい。封孔処理液が塩基性のため、酸性浴で処理した皮膜と反応しやすく、ベーマイトを速やかに生成する。また、pH値12以上では、ベーマイトをより速やかに生成する。pH値が10.5未満の封孔処理液では、腐食率が高く、耐食性を向上させる効果が低い。また、リチウムイオン源によってpH値は異なるので、硫酸、シュウ酸、リン酸、クロム酸等の酸や、水酸化ナトリウム、リン酸ナトリウム、フッ化ナトリウム等の塩基を用いてpHを調整することができる。 The pH value of the sealing treatment liquid needs to be 10.5 or more. Preferably it is 11 or more, More preferably, it is 12 or more. Further, the upper limit of the pH value is preferably 14. Since the sealing treatment liquid is basic, it easily reacts with a film treated with an acidic bath, and boehmite is rapidly generated. Further, when the pH value is 12 or more, boehmite is generated more rapidly. In the sealing treatment liquid having a pH value of less than 10.5, the corrosion rate is high and the effect of improving the corrosion resistance is low. Since the pH value varies depending on the lithium ion source, it is possible to adjust the pH using an acid such as sulfuric acid, oxalic acid, phosphoric acid or chromic acid, or a base such as sodium hydroxide, sodium phosphate or sodium fluoride. it can.
封孔処理液の温度は、65℃以下にする必要がある。下限は10℃以上が好ましい。より好ましくは25〜50℃である。25℃よりも低い温度で処理を施すと、活性が低く、反応が弱くなるが、ある程度の耐食性は期待できる。逆に、65℃を超える温度では、陽極酸化皮膜表面からの皮膜の溶解が急速に進み、皮膜が消失して高い耐食性は得られなくなる。 The temperature of the sealing treatment liquid needs to be 65 ° C. or lower. The lower limit is preferably 10 ° C. or higher. More preferably, it is 25-50 degreeC. When the treatment is performed at a temperature lower than 25 ° C., the activity is low and the reaction becomes weak, but a certain degree of corrosion resistance can be expected. On the other hand, at a temperature exceeding 65 ° C., dissolution of the film from the surface of the anodized film proceeds rapidly, the film disappears, and high corrosion resistance cannot be obtained.
本発明の封孔処理液によれば、短時間の封孔処理で優れた耐食性を有する皮膜にすることができる。封孔処理液の処理時間(浸漬時間)は、少なくとも0.5分あれば、高い耐食性が発揮される。上限は好ましくは5分以下である。5分を超える処理時間では、皮膜の溶解が急速に進み、耐食性は低下する。 According to the sealing treatment liquid of the present invention, a film having excellent corrosion resistance can be obtained by a short sealing treatment. When the treatment time (immersion time) of the sealing treatment liquid is at least 0.5 minutes, high corrosion resistance is exhibited. The upper limit is preferably 5 minutes or less. When the treatment time exceeds 5 minutes, the dissolution of the film proceeds rapidly and the corrosion resistance decreases.
前述した封孔処理液の浸漬時間の後に、空気中で保持する保持時間を設け、これらを合わせて処理時間としてもよい。この場合の処理時間(浸漬時間と保持時間の合計)は、0.5〜5分であることが好ましい。浸漬時間の下限は、陽極酸化皮膜を有する被処理物の大きさにもよるが、約1秒以上であることが好ましく、上限は、処理時間未満であれば任意に選択することができる。空気中で保持する際は、被処理物から落ちる液滴が処理浴に入らないように、例えば水洗槽の上で保持することが好ましい。液滴にはアルミニウムイオンが多く含まれているからである。
リチウムイオンを含む水溶液を用いて封孔処理を行う場合、その封孔反応は常温でも進行するため、空気中で保持している状態(処理浴から取り出した状態)でも封孔反応は進行する。また、封孔処理時に必要なリチウムイオン源となる薬品の量が少ないため(約0.7g/m2)、被処理物に処理液が付着していれば、封孔反応は進行する。そのため、浸漬時間を短縮することができ、それによってアルミニウムイオンの溶出を低減することができるため、処理浴の劣化を抑制することができる。例えば、被処理物の浸漬に15秒かかる場合、浸漬時間は1/20〜1/2に短縮され、処理浴の寿命は2〜20倍に延びる。また、処理浴から取り出す際に持ち出す処理液の量は従来と変わらないため、処理浴の管理方法を変える必要はなく、陽極酸化皮膜の耐食性が低下することはない。
After the dipping time of the sealing treatment liquid described above, a holding time for holding in the air is provided, and these may be combined to be a processing time. In this case, the treatment time (the total of the immersion time and the holding time) is preferably 0.5 to 5 minutes. Although the minimum of immersion time is based also on the magnitude | size of the to-be-processed object which has an anodized film, it is preferable that it is about 1 second or more, and an upper limit can be arbitrarily selected if it is less than processing time. When holding in the air, it is preferable to hold, for example, on a washing tank so that the liquid droplets falling from the object to be processed do not enter the treatment bath. This is because the droplet contains a lot of aluminum ions.
When the sealing treatment is performed using an aqueous solution containing lithium ions, the sealing reaction proceeds even at room temperature, and therefore the sealing reaction proceeds even in a state where the sealing reaction is held in air (a state where the solution is removed from the treatment bath). Further, since the amount of the chemical agent that becomes a lithium ion source necessary for the sealing treatment is small (about 0.7 g / m 2 ), the sealing reaction proceeds if the treatment liquid adheres to the object to be treated. Therefore, the immersion time can be shortened, whereby the elution of aluminum ions can be reduced, so that deterioration of the treatment bath can be suppressed. For example, when it takes 15 seconds to immerse the workpiece, the immersion time is reduced to 1/20 to 1/2, and the life of the treatment bath is extended 2 to 20 times. Further, since the amount of the processing liquid to be taken out when taking out from the processing bath is not different from the conventional one, it is not necessary to change the management method of the processing bath, and the corrosion resistance of the anodized film is not lowered.
封孔処理方法は、陽極酸化皮膜を有する被処理物に処理液を塗布やスプレーし、又は被処理物を処理液に浸漬し、空気中で保持してから水洗、乾燥することが好ましい。また、陽極酸化皮膜を有する被処理物を処理液に浸漬し、5分以下で処理液から取り出し、水洗、乾燥することが好ましい。塗布やスプレーによる封孔処理方法は、部分的に封孔処理することができ、大型部品でも浸漬する必要がないため、大型の槽を必要としない。 In the sealing treatment method, it is preferable to apply or spray a treatment liquid onto a treatment object having an anodic oxide film, or to immerse the treatment object in the treatment liquid and hold it in the air before washing and drying. Moreover, it is preferable that the to-be-processed object which has an anodic oxide film is immersed in a process liquid, it takes out from a process liquid in 5 minutes or less, and it wash | cleans and dries. The sealing treatment method by coating or spraying can partially seal and does not need to immerse even a large component, and therefore does not require a large tank.
以下、試験例、実施例を用いてさらに具体的に説明する。以下の試験例1〜6では、陽極酸化皮膜の封孔処理として、リチウム処理液が耐食性向上効果を示す条件を調査した。 Hereinafter, it demonstrates still more concretely using a test example and an Example. In the following Test Examples 1 to 6, the conditions under which the lithium treatment solution showed an effect of improving the corrosion resistance were investigated as the sealing treatment of the anodized film.
(試験例1)
アルミニウム合金ダイカスト材ADC12の船外機カバーをテストピースとして、硫酸浴の陽極酸化処理を施し、表面に約10μmの陽極酸化皮膜を形成した。このテストピースに本発明の封孔処理を施し、塩水噴霧試験240時間後の腐食面積を腐食率として耐食性を評価した。
耐食性向上に必要なリチウムイオン濃度の範囲を調査するため、処理浴の温度は20℃、処理時間は0.5分間の浸漬処理で固定した。処理浴のリチウムイオン濃度は0〜20g/Lの範囲で、水酸化リチウムを用いて調整した。封孔処理品を塩水噴霧試験にかけて240時間後に取出し、腐食面積を測定して腐食率の評価を行った。試験の結果を図3に示す。
(Test Example 1)
Using the outboard motor cover of the aluminum alloy die cast material ADC12 as a test piece, an anodizing treatment of a sulfuric acid bath was performed to form an anodized film of about 10 μm on the surface. The test piece was subjected to the sealing treatment of the present invention, and the corrosion resistance was evaluated using the corrosion area after 240 hours of the salt spray test as the corrosion rate.
In order to investigate the range of the lithium ion concentration necessary for improving the corrosion resistance, the temperature of the treatment bath was fixed at 20 ° C. and the treatment time was 0.5 minutes. The lithium ion concentration of the treatment bath was adjusted using lithium hydroxide in the range of 0 to 20 g / L. The sealed product was taken out after 240 hours in a salt spray test, and the corrosion area was measured to evaluate the corrosion rate. The test results are shown in FIG.
ここで、腐食率は、耐食性を評価するひとつの指標として、独自に定めたものである。塩水噴霧試験後の試験片の外観をデジタルカメラで撮影し、画像処理ソフトにより評価領域の全体に対して、腐食している面積の割合を腐食率として測定し、評価した。なお、この腐食率は、同時に試験した試験片での相対的な比較は可能であるが、試験条件や試験片の種類を変更した場合は比較できない。 Here, the corrosion rate is uniquely determined as one index for evaluating the corrosion resistance. The appearance of the test piece after the salt spray test was photographed with a digital camera, and the ratio of the corroded area was measured as the corrosion rate with respect to the entire evaluation area by image processing software, and evaluated. In addition, although this corrosion rate can be compared with the test piece tested simultaneously, it cannot be compared when the test conditions and the kind of test piece are changed.
試験例1の結果、リチウムイオン濃度が0.02〜20g/Lの領域で耐食性の向上効果が得られた(図3)。しかし、リチウムイオン濃度が10g/Lを超える処理浴では急速に反応が進み、陽極酸化皮膜のないアルミニウム素地の溶解が起こる。より好ましいリチウムイオン濃度の範囲は10g/L以下となる。リチウムイオン濃度が0〜0.02g/Lのとき、腐食率は13.7%以上となるため、リチウムイオン濃度の下限値としては、腐食率が3.3%となる0.08g/Lがより好ましい。 As a result of Test Example 1, an effect of improving the corrosion resistance was obtained in the region where the lithium ion concentration was 0.02 to 20 g / L (FIG. 3). However, in a treatment bath in which the lithium ion concentration exceeds 10 g / L, the reaction proceeds rapidly, and dissolution of the aluminum base without an anodized film occurs. A more preferable range of the lithium ion concentration is 10 g / L or less. When the lithium ion concentration is 0 to 0.02 g / L, the corrosion rate is 13.7% or more. Therefore, the lower limit value of the lithium ion concentration is 0.08 g / L at which the corrosion rate is 3.3%. More preferred.
(試験例2)
アルミニウム合金ダイカスト材ADC12をテストピースとして、硫酸浴の陽極酸化処理を施し、表面に約10μmの陽極酸化皮膜を形成した。
処理浴のpH依存性を調査するため、リチウムイオン濃度2g/L、処理浴の温度は20℃、処理時間は0.5分間の浸漬処理で固定した。処理浴は水酸化リチウムにより調整し、pHはリチウムイオン濃度を変化させないよう、硫酸により処理液のpH値を6〜13の範囲で調整した。封孔処理品を塩水噴霧試験にかけて120時間後に取出し、腐食率の評価を行った。試験の結果を図4に示す。
(Test Example 2)
Using an aluminum alloy die-cast material ADC12 as a test piece, an anodizing treatment of a sulfuric acid bath was performed to form an anodized film of about 10 μm on the surface.
In order to investigate the pH dependence of the treatment bath, the lithium ion concentration was fixed at 2 g / L, the treatment bath temperature was 20 ° C., and the treatment time was 0.5 minutes. The treatment bath was adjusted with lithium hydroxide, and the pH value of the treatment solution was adjusted in the range of 6 to 13 with sulfuric acid so as not to change the lithium ion concentration. The sealed product was taken out after 120 hours in a salt spray test, and the corrosion rate was evaluated. The result of the test is shown in FIG.
試験例2の結果、処理液のpHは10.5以上で腐食率が約2%以下となり、耐食性を向上させる効果が高かった(図4)。 As a result of Test Example 2, the pH of the treatment liquid was 10.5 or more, and the corrosion rate was about 2% or less, and the effect of improving the corrosion resistance was high (FIG. 4).
(試験例3)
アルミニウム合金ダイカスト材ADC12をテストピースとして、硫酸浴の陽極酸化処理を施し、表面に約10μmの陽極酸化皮膜を形成した。
処理温度の依存性を調査するため、リチウムイオン濃度5g/L、pH12、処理時間は1分間の浸漬処理で固定した。処理浴は水酸化リチウムにより調整し、温度は10〜100℃の範囲で調整した。処理品を塩水噴霧試験にかけて120時間後に取出し、腐食率の評価を行った。試験の結果を図5に示す。
(Test Example 3)
Using an aluminum alloy die-cast material ADC12 as a test piece, an anodizing treatment of a sulfuric acid bath was performed to form an anodized film of about 10 μm on the surface.
In order to investigate the dependence of the treatment temperature, the lithium ion concentration was 5 g / L, pH 12, and the treatment time was fixed by an immersion treatment for 1 minute. The treatment bath was adjusted with lithium hydroxide, and the temperature was adjusted in the range of 10 to 100 ° C. The treated product was taken out after 120 hours in a salt spray test, and the corrosion rate was evaluated. The test results are shown in FIG.
試験例3の結果、耐食性を向上させる処理液の温度は陽極酸化皮膜の溶解がなかった65℃以下で高い効果が得られた。より効果が高いのは25〜50℃であった(図5)。10℃などの25℃よりも低い温度でも、ある程度の耐食性が得られた。 As a result of Test Example 3, a high effect was obtained when the temperature of the treatment liquid for improving the corrosion resistance was 65 ° C. or less where the anodized film was not dissolved. The higher effect was 25 to 50 ° C. (FIG. 5). Even at a temperature lower than 25 ° C. such as 10 ° C., a certain degree of corrosion resistance was obtained.
(試験例4)
アルミニウム合金ダイカスト材ADC12をテストピースとして、硫酸浴の陽極酸化処理を施し、表面に約10μmの陽極酸化皮膜を形成した。
浸漬する場合の最適な処理時間を調査するため、リチウムイオン濃度5g/L、pH12、処理温度は25℃で固定した。処理液は水酸化リチウムで調整し、処理時間は0.5〜10分の範囲で変化させた。処理品を塩水噴霧試験にかけて240時間後に取出し、腐食率の評価を行った。試験の結果を図6に示す。
(Test Example 4)
Using an aluminum alloy die-cast material ADC12 as a test piece, an anodizing treatment of a sulfuric acid bath was performed to form an anodized film of about 10 μm on the surface.
In order to investigate the optimum treatment time when immersed, the lithium ion concentration was fixed at 5 g / L, pH 12, and the treatment temperature was 25 ° C. The treatment liquid was adjusted with lithium hydroxide, and the treatment time was changed in the range of 0.5 to 10 minutes. The treated product was subjected to a salt spray test and taken out after 240 hours, and the corrosion rate was evaluated. The test results are shown in FIG.
試験例4の結果、耐食性を向上させる浸漬時間は0.5分以上で優れた効果があった(図6)。また、5分を超える処理時間では、皮膜の溶解が急速に進み、耐食性は低下した。 As a result of Test Example 4, the immersion time for improving the corrosion resistance was 0.5 minutes or more, and an excellent effect was obtained (FIG. 6). In addition, when the treatment time exceeded 5 minutes, the dissolution of the film progressed rapidly and the corrosion resistance decreased.
(試験例5)
リチウムと同族の元素で、一般的なナトリウムやカリウム、マグネシウム、カルシウムでも、本発明と同様の結果が得られるか調査するため、約10μmの陽極酸化皮膜を有するアルミニウム合金ダイカスト材ADC12をテストピースとして、それぞれを表1の条件で封孔処理し、塩水噴霧試験に240時間かけ、乾燥後の腐食率を比較した。試験の結果を図7に示す。なお、水酸化マグネシウムと水酸化カルシウムは水に不溶であった。
いずれのテストピースもN数2で処理し、それぞれ処理温度を20℃、処理時間を0.5分で行った。比較として陽極酸化皮膜のみの封孔未処理品も調査した。
(Test Example 5)
In order to investigate whether the same results as those of the present invention can be obtained even with common sodium, potassium, magnesium, and calcium, which are elements of the same family as lithium, an aluminum alloy die-cast material ADC12 having an anodized film of about 10 μm is used as a test piece. Each was sealed under the conditions shown in Table 1, and subjected to a salt spray test for 240 hours, and the corrosion rates after drying were compared. The test results are shown in FIG. Magnesium hydroxide and calcium hydroxide were insoluble in water.
All the test pieces were processed with N number of 2, and the processing temperature was 20 ° C. and the processing time was 0.5 minutes. As a comparison, a non-sealed product with only an anodized film was also investigated.
試験例5の結果、ナトリウムとカリウムに関しては、1回目の処理よりも2回目の処理の方が耐食性は顕著に低下する傾向にあった(図7)。処理回数に対して敏感であり、また、薬液管理に関してコスト高を招くため、生産を考慮すると望ましくない。これに対してリチウムは処理回数に鈍感で、安定した耐食性を有した。なお、水酸化ナトリウムや水酸化カリウムの水溶液は皮膜の溶解力が強いため、皮膜を急速に溶解した。 As a result of Test Example 5, with respect to sodium and potassium, the corrosion resistance tended to be significantly lower in the second treatment than in the first treatment (FIG. 7). Since it is sensitive to the number of treatments and increases the cost of chemical solution management, it is not desirable in consideration of production. In contrast, lithium was insensitive to the number of treatments and had stable corrosion resistance. In addition, since the aqueous solution of sodium hydroxide or potassium hydroxide has a strong dissolving power of the film, the film was rapidly dissolved.
(試験例6)
リチウムを含む薬品の内、塩基性を示す水酸化リチウム、炭酸リチウム、酸性のリン酸リチウムで、本発明の優れた効果が得られるか調査するため、約10μmの陽極酸化皮膜を有するアルミニウム合金ダイカスト材ADC12をテストピースとして、それぞれを表2の条件で封孔処理し、塩水噴霧試験に120時間かけ、乾燥後の腐食率を比較した。試験の結果を図8に示す。比較として陽極酸化皮膜のみの封孔未処理品と従来技術である市販の酢酸ニッケル系封孔処理液(奥野製薬工業株式会社製、「トップシール」(商品名))に90℃で15分浸漬した後、水洗、乾燥したテストピースを調査した。
(Test Example 6)
Among the chemicals containing lithium, an aluminum alloy die casting having an anodized film of about 10 μm is used to investigate whether the excellent effects of the present invention can be obtained with basic lithium hydroxide, lithium carbonate, and acidic lithium phosphate. Using the material ADC12 as a test piece, each was sealed under the conditions shown in Table 2, and subjected to a salt spray test for 120 hours, and the corrosion rates after drying were compared. The test results are shown in FIG. For comparison, anodic oxide film-only non-sealing product and conventional nickel acetate-based sealing liquid (Okuno Pharmaceutical Co., Ltd., “Top Seal” (trade name)) are immersed for 15 minutes at 90 ° C. After that, the test pieces washed with water and dried were investigated.
試験例6の結果、本発明のpH範囲を外れたリン酸リチウムでは耐食性向上効果は得られず、本発明の適用範囲を満たしている炭酸リチウムでは、水酸化リチウムと同様、本発明の効果が得られた(図8)。従って、炭酸リチウムと水酸化リチウムを好適に用いることができる。 As a result of Test Example 6, the lithium phosphate outside the pH range of the present invention does not provide an effect of improving the corrosion resistance, and the lithium carbonate satisfying the scope of the present invention has the effect of the present invention as in the case of lithium hydroxide. Obtained (FIG. 8). Accordingly, lithium carbonate and lithium hydroxide can be preferably used.
(実施例1)
アルミニウム合金ダイカスト材ADC12の船外機カバーに、硫酸浴の陽極酸化処理を施し、表面に約10μmの皮膜を形成した。この船外機カバーを水酸化リチウムで調整したリチウムイオン濃度2g/L、pH12、処理浴温度20℃の処理液に0.5分浸漬したあと、水洗、乾燥し、塩水噴霧試験による耐食性試験を行った。
Example 1
The outboard motor cover of the aluminum alloy die-cast material ADC12 was anodized with a sulfuric acid bath to form a film of about 10 μm on the surface. This outboard motor cover is immersed in a treatment solution with a lithium ion concentration of 2 g / L, pH 12, treatment bath temperature 20 ° C. adjusted with lithium hydroxide for 0.5 minutes, washed with water, dried, and subjected to a corrosion resistance test by a salt spray test. went.
(比較例1)
封孔処理を行わなかった点を除き、実施例1と同様に行った。
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the sealing treatment was not performed.
(比較例2)
実施例1と同様に、皮膜を形成した後、市販の酸化ニッケル系封孔処理液(奥野製薬工業株式会社製、「トップシール」(商品名))に90℃で15分浸漬した後、水洗、乾燥した。
(Comparative Example 2)
In the same manner as in Example 1, after forming a film, the film was immersed in a commercially available nickel oxide sealing solution (Okuno Pharmaceutical Co., Ltd., “Top Seal” (trade name)) at 90 ° C. for 15 minutes, and then washed with water. , Dried.
実施例1、比較例1、比較例2の試験結果を図9〜13、表3に示す。 The test results of Example 1, Comparative Example 1, and Comparative Example 2 are shown in FIGS.
実施例1(図11)は、比較例1(図12)、比較例2(図13)と比べて、耐食性向上効果が示された。 Example 1 (FIG. 11) showed an effect of improving corrosion resistance as compared with Comparative Example 1 (FIG. 12) and Comparative Example 2 (FIG. 13).
(実施例2)
アルミニウム合金ダイカスト材ADC12の船外機部品に、硫酸浴の陽極酸化処理を施し、表面に約10μmの皮膜を形成した。この船外機部品の一部に描いた円の内部に、リチウムイオン濃度2g/Lの処理液を塗布してしばらく放置し、水洗して乾燥させ、塩水噴霧試験に120時間かけた。試験の結果を図14、15に示す。
(Example 2)
The outboard motor parts of the aluminum alloy die-cast material ADC12 were subjected to an anodizing treatment in a sulfuric acid bath to form a film of about 10 μm on the surface. A treatment liquid having a lithium ion concentration of 2 g / L was applied to the inside of a circle drawn on a part of this outboard motor part, left for a while, washed with water and dried, and subjected to a salt spray test for 120 hours. The test results are shown in FIGS.
実施例2の結果、処理液を塗布した円の内部は腐食せず、部分的に封孔処理できることが示された(図14、15)。 As a result of Example 2, it was shown that the inside of the circle to which the treatment liquid was applied did not corrode and could be partially sealed (FIGS. 14 and 15).
(実施例3)
アルミニウム合金AC8Aをテストピースとして、硫酸浴の陽極酸化処理を施し、表面に約10μmの皮膜を形成した。その後、リチウムイオン濃度2g/L、pH12、処理浴温度25℃の処理液に0.5分間浸漬した後、水洗して乾燥させ、塩水噴霧試験による耐食性試験を50時間行った。
(Example 3)
An aluminum alloy AC8A was used as a test piece, and a sulfuric acid bath was anodized to form a film of about 10 μm on the surface. Then, after being immersed in a treatment solution having a lithium ion concentration of 2 g / L, pH 12, and treatment bath temperature of 25 ° C. for 0.5 minutes, it was washed with water and dried, and a corrosion resistance test by a salt spray test was conducted for 50 hours.
(比較例3)
封孔処理を行わなかった点を除き、実施例3と同様に行った。
(Comparative Example 3)
The same operation as in Example 3 was performed except that the sealing treatment was not performed.
実施例3の試験前のテストピースの写真を図16に、試験後のテストピースの写真を図17に示す。比較例3の試験前のテストピースの写真を図18に、試験後のテストピースの写真を図19に示す。また、腐食率を表4に示す。 A photograph of the test piece before the test of Example 3 is shown in FIG. 16, and a photograph of the test piece after the test is shown in FIG. A photograph of the test piece before the test of Comparative Example 3 is shown in FIG. 18, and a photograph of the test piece after the test is shown in FIG. The corrosion rate is shown in Table 4.
実施例3(図17)は、比較例3(図19)と比べて腐食率が低く、耐食性向上効果が示された。 Example 3 (FIG. 17) had a lower corrosion rate than Comparative Example 3 (FIG. 19), and showed an effect of improving corrosion resistance.
(実施例4)
アルミニウム合金ダイカスト材ADC12をテストピースとして硫酸浴の陽極酸化処理を施し、表面に約10μmの皮膜を形成した。このテストピースを水酸化リチウムで調整したリチウムイオン濃度2g/L、pH12、処理浴温度25℃の処理液に15秒浸漬して取り出し、45秒空気中で保持したあと、水洗、乾燥し、塩水噴霧試験による耐食性試験を120時間行った。
Example 4
The aluminum alloy die-cast material ADC12 was used as a test piece, and an anodizing treatment in a sulfuric acid bath was performed to form a film of about 10 μm on the surface. This test piece was immersed in a treatment solution adjusted with lithium hydroxide at a lithium ion concentration of 2 g / L, pH 12, treatment bath temperature 25 ° C. for 15 seconds, taken out for 15 seconds, held in air, washed with water, dried, and brine A corrosion resistance test by a spray test was performed for 120 hours.
(実施例5)
処理液に1分浸漬したあと、空気中で保持しなかった点を除き、実施例4と同様に行った。
(Example 5)
It was carried out in the same manner as in Example 4 except that it was not immersed in the air after being immersed in the treatment liquid for 1 minute.
実施例4の試験後のテストピースの写真を図20に、実施例5の試験後のテストピースの写真を図21に示す。 A photograph of the test piece after the test of Example 4 is shown in FIG. 20, and a photograph of the test piece after the test of Example 5 is shown in FIG.
実施例4(図20)は、実施例5(図21)と同等の耐食性を有することが示された。このことから、処理液から取り出し、空気中で保持している間においても、封孔反応は進行していることが確認された。したがって、浸漬時間を短縮することによって、処理液の寿命を延ばすことができる。 Example 4 (FIG. 20) was shown to have the same corrosion resistance as Example 5 (FIG. 21). From this, it was confirmed that the sealing reaction was proceeding even while being taken out from the treatment liquid and held in the air. Therefore, the life of the treatment liquid can be extended by shortening the immersion time.
10 アルミ基材
20 陽極酸化皮膜
21 バリア層
22 多孔質層
24 孔
25 セル
33 水酸化ニッケル
34 孔
35 セル
DESCRIPTION OF SYMBOLS 10 Aluminum base material 20 Anodized film 21 Barrier layer 22 Porous layer 24 Hole 25 Cell 33 Nickel hydroxide 34 Hole 35 Cell
Claims (5)
5. The anodization according to claim 3, further comprising a step of holding the object to be treated having the anodized film in the air between the treatment step with the sealing treatment liquid and the water washing step of the treatment surface. Sealing method for film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009201960A JP5370014B2 (en) | 2008-09-01 | 2009-09-01 | Method for sealing anodized film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008223222 | 2008-09-01 | ||
JP2008223222 | 2008-09-01 | ||
JP2009201960A JP5370014B2 (en) | 2008-09-01 | 2009-09-01 | Method for sealing anodized film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010077532A JP2010077532A (en) | 2010-04-08 |
JP5370014B2 true JP5370014B2 (en) | 2013-12-18 |
Family
ID=42208274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009201960A Active JP5370014B2 (en) | 2008-09-01 | 2009-09-01 | Method for sealing anodized film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5370014B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5633429B2 (en) | 2011-02-25 | 2014-12-03 | スズキ株式会社 | Method of painting the workpiece |
KR101270671B1 (en) * | 2011-03-25 | 2013-06-03 | 주식회사 영광와이케이엠씨 | Composition for sealing treatment of aluminium anodizing |
JP6004181B2 (en) * | 2013-01-18 | 2016-10-05 | スズキ株式会社 | Anodized film and method for producing the same |
JP5995144B2 (en) * | 2013-03-08 | 2016-09-21 | スズキ株式会社 | Aluminum member repair method, repair solution, aluminum material and method for manufacturing the same |
US9771481B2 (en) * | 2014-01-03 | 2017-09-26 | The Boeing Company | Composition and method for inhibiting corrosion of an anodized material |
JP6361956B2 (en) * | 2014-02-18 | 2018-07-25 | スズキ株式会社 | Metal member having excellent corrosion resistance, method for manufacturing the same, repair material for metal member, and repair method |
JP6369745B2 (en) | 2014-03-27 | 2018-08-08 | スズキ株式会社 | Anodized film and sealing method thereof |
JP6418498B2 (en) | 2014-03-27 | 2018-11-07 | スズキ株式会社 | Anodizing method and structure of internal combustion engine |
JP5904425B2 (en) | 2014-03-27 | 2016-04-13 | スズキ株式会社 | Anodized film, treatment method thereof, and piston for internal combustion engine |
JP6295843B2 (en) * | 2014-06-04 | 2018-03-20 | スズキ株式会社 | Method for forming a film on aluminum or aluminum alloy, pretreatment liquid used therefor, and member obtained thereby |
JP6507652B2 (en) * | 2015-01-09 | 2019-05-08 | スズキ株式会社 | Aluminum or aluminum alloy member and method of manufacturing the same |
US20210285121A1 (en) * | 2016-08-12 | 2021-09-16 | Prc-Desoto International, Inc. | Systems and Methods for Treating a Metal Substrate |
JP6992314B2 (en) * | 2017-08-07 | 2022-01-13 | スズキ株式会社 | Anodic oxide film and its manufacturing method |
CN109338434B (en) * | 2018-11-28 | 2019-11-05 | 广州旭淼新材料科技有限公司 | Room temperature is without nickel hole sealing agent |
JP2022072859A (en) | 2020-10-30 | 2022-05-17 | スズキ株式会社 | Piston for internal combustion engine, and its manufacturing method |
DE102021128163A1 (en) | 2020-11-04 | 2022-05-05 | Suzuki Motor Corporation | Pistons for internal combustion engines and their manufacturing processes |
CN113512744A (en) * | 2021-06-30 | 2021-10-19 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Protection method of high-corrosion-resistance airborne aluminum-based LRM module |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19621818A1 (en) * | 1996-05-31 | 1997-12-04 | Henkel Kgaa | Short-term hot compression of anodized metal surfaces with solutions containing surfactants |
JP4445762B2 (en) * | 2004-01-29 | 2010-04-07 | 富士フイルム株式会社 | Method for producing support for lithographic printing plate |
JP2008163382A (en) * | 2006-12-27 | 2008-07-17 | Fujifilm Corp | Method for treating surface of aluminum alloy, and method for manufacturing support for planographic printing plate |
-
2009
- 2009-09-01 JP JP2009201960A patent/JP5370014B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010077532A (en) | 2010-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5370014B2 (en) | Method for sealing anodized film | |
JP6004181B2 (en) | Anodized film and method for producing the same | |
CN107937958A (en) | A kind of preparation process of novel aluminum alloy anode oxide film | |
JP2008190033A (en) | Peeling liquid for anodized film and peeling method of anodized film | |
JP2006348368A (en) | Method for surface treating aluminum and aluminum alloy | |
JP6295843B2 (en) | Method for forming a film on aluminum or aluminum alloy, pretreatment liquid used therefor, and member obtained thereby | |
JP2008095192A (en) | Electropolishing process for niobium and tantalum | |
JP5995144B2 (en) | Aluminum member repair method, repair solution, aluminum material and method for manufacturing the same | |
US20040242449A1 (en) | Nitric acid and chromic acid-free compositions and process for cleaning aluminum and aluminum alloy surfaces | |
JP2012246512A (en) | Sealing treatment method for anodic oxide film | |
JP2005097707A (en) | Sealing treatment method for aluminum anodized coating | |
US20160168742A1 (en) | Method for anodizing aluminum alloy workpiece, method for surface treating aluminum alloy workpiece, and anodizing solution mixes | |
CN105829585A (en) | Method for performing electropolishing treatment on aluminum material | |
JP6507652B2 (en) | Aluminum or aluminum alloy member and method of manufacturing the same | |
JP4151301B2 (en) | Surface treatment method and treatment liquid for aluminum or aluminum alloy | |
JP2013104087A (en) | Nickel plating liquid | |
JP2551274B2 (en) | Surface treatment method for aluminum materials | |
JP7101972B2 (en) | Nickel remover and nickel removal method | |
KR20180061045A (en) | PLASMA ELECTROLYSING OXCIDATION METHOD FOR Mg ALLOYS GOODS | |
JP6992314B2 (en) | Anodic oxide film and its manufacturing method | |
US3174916A (en) | Treatment of aluminum oxide coatings | |
KR101791539B1 (en) | TECH ARC COATING METHOD FOR Al ALLOYS GOODS | |
RU2491369C1 (en) | Method for chemical application of stannic coating onto parts from copper or its alloys | |
JPH09302499A (en) | Aluminum material | |
RU2709913C1 (en) | Method of applying galvanic coatings on complex-profile parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110523 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130131 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130820 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130902 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5370014 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |