JP3964631B2 - Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member - Google Patents

Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member Download PDF

Info

Publication number
JP3964631B2
JP3964631B2 JP2001144598A JP2001144598A JP3964631B2 JP 3964631 B2 JP3964631 B2 JP 3964631B2 JP 2001144598 A JP2001144598 A JP 2001144598A JP 2001144598 A JP2001144598 A JP 2001144598A JP 3964631 B2 JP3964631 B2 JP 3964631B2
Authority
JP
Japan
Prior art keywords
support
photosensitive member
electrophotographic photosensitive
electrophotographic
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001144598A
Other languages
Japanese (ja)
Other versions
JP2002341568A (en
Inventor
祐二 榊原
史隆 嶺岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001144598A priority Critical patent/JP3964631B2/en
Publication of JP2002341568A publication Critical patent/JP2002341568A/en
Application granted granted Critical
Publication of JP3964631B2 publication Critical patent/JP3964631B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体用支持体の製造方法に関するもので、より詳しくは、電子写真感光体用支持体に陽極酸化処理を施し、支持体上に陽極酸化被膜を形成した後、支持体を陰極として電解する工程を有する電子写真感光体用支持体の製造方法並びにその製造方法を用いた電子写真感光体の製造方法、更にはかかる電子写真感光体を用いた画像形成装置に関する。
【0002】
【従来の技術】
電子写真感光体は、電子写真感光体用支持体(以下、「支持体」という。)上に感光層(電荷発生層、電荷輸送層)等を有したものであり、電荷発生層には、光に反応して電荷を発生する電荷発生物質が含有されている。電荷発生物質としては、フタロシアニン系顔料や、アゾ系顔料等の顔料が代表的に使用される。通常、これらの感光層と支持体との間に抵抗を設けたり、支持体と感光層との接着性を向上させる等の観点から陽極酸化被膜が設けられることがある。更に、かかる陽極酸化被膜を支持体上に形成した後は、干渉縞対策として、形成した陽極酸化被膜に着色をするために染色処理を施したり、その陽極酸化被膜表面に形成された孔を塞ぐために封孔処理が施されることもある(例えば、特開平7−5717号公報、特公平7−120062号公報、特許第2718066号公報等)。また、陽極酸化処理工程で支持体を搬送するための治具として、電気伝導性があり耐食性のあるチタンを使用する場合が多い。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来の技術によれば、支持体に陽極酸化処理を施した後、染色処理や封孔処理等を施そうとすると、アルミニウムまたはアルミニウム合金中に含有される微量な不純物、あるいは鋳造過程で発生する微量な添加物の局在化によって発生する陽極酸化被膜上の微細な欠陥や傷等を起点として、陽極酸化被膜が腐食するという問題があった。陽極酸化被膜上の微細な欠陥や傷等を起点として腐食が発生する理由としては、支持体が電解液中にある状態で支持体を構成する金属、例えば、アルミニウムあるいはアルミニウム合金よりも貴な金属であるチタンと支持体が接触することにより起電力が生じて接触腐食と言われる現象が起こるためと考えられる。
【0004】
【課題を解決するための手段】
かかる問題点を解決すべく、本発明者等は鋭意検討を行ったところ、支持体上に陽極酸化被膜を形成させた後、腐食が発生する工程において支持体を陰極として電解することにより、上記のような問題点が解消されることを見いだして、本発明に到達した。すなわち、上記の課題は、陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用基体の製造方法において、該支持体に陽極酸化処理を施して該支持体上に陽極酸化被膜を形成した後、封孔処理としてニッケル封孔処理を行い、前記封孔処理開始時に該支持体を陰極として直流電解する工程を有することを特徴とする電子写真感光体用基体の製造方法、及びかかる方法によって得られた基体上に感光層を設けた電子写真感光体の製造方法並びにこの電子写真感光体を用いた画像形成装置によって解決される。
【0005】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明の電子写真感光体は、電子写真感光体用支持体に陽極酸化処理を施し、かかる支持体上に陽極酸化被膜を形成し、陽極酸化被膜が形成された支持体上に感光層が設けられたものである。
【0006】
かかる支持体は、アルミニウムあるいはアルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料、表面にアルミニウム、銅、パラジウム、酸化すず、酸化インジウム等の導電性層を設けたポリエステルフィルム、紙、ガラス等の絶縁性支持体が使用されるが、好ましくはアルミニウムあるいはアルミニウム合金からなる支持体がよい。支持体の形状は、通常の電子写真感光体に用いられる形状であれば特に限定されるものではないが、好ましくは円筒状の形状がよい。
【0007】
かかる支持体には陽極酸化処理により、支持体表面に陽極酸化被膜が形成されるが、陽極酸化処理を施す前に、酸、アルカリ、有機溶剤、界面活性剤、エマルジョン、電解などの各種脱脂洗浄方法により脱脂処理されることが好ましい。
陽極酸化被膜は通常の方法、例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸などの酸性浴中で、陽極酸化処理することにより形成されるが、硫酸中での陽極酸化処理が最も良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は15〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、これに限られるものではない。
このようにして形成された陽極酸化被膜の膜厚としては、通常は20μm以下であり、好ましくは10μm以下、更に好ましくは7μm以下である。
【0008】
本発明では、このようにして形成された陽極酸化被膜が形成された支持体を、腐食が発生する工程において陰極として電解することが重要である。具体的には、かかる支持体を陰極として液中で直流電解することにより行われる。印可される電圧は、チタン等の貴な金属と支持体を構成する金属(例えば、アルミニウムあるいはアルミニウム合金等)との間で発生する起電力を打ち消すに十分な電圧であれば、特に限定されるものではないが、液抵抗などによる通電ロスなどを考慮して、通常は−0.5〜−5V、好ましくは−0.6〜−3V、更に好ましくは−0.7〜−2Vの範囲の電位差であればよい。陽極と陰極である支持体との距離は数m以内でないと液抵抗が大きくなり好ましくない.
【0009】
陽極酸化被膜が形成された支持体を陰極として電解する方法としては、特に限定されるものではないが、例えば、通常の陽極酸化工程で使用されるカーボン電極と直流電源を用い、極性を逆にして接続すればよい.
【0010】
このような方法によって支持体を陰極として電解する。電解する時点は腐食が発生する工程中で、陽極酸化被膜が形成された後であって、腐食が発生する前であれば、工程液中への浸漬後の何れの時点でもよい。実際には腐食は、形成された陽極酸化被膜に対して行う染色処理あるいは封孔処理において発生することが多いため、実際にはこれらの製造工程液中への浸漬開始時に行うことが好ましい。
【0011】
ここで、染色処理とは、有機、無機化合物塩溶液中に支持体を浸漬し、それらの塩を多孔質層中に吸着させる工程であり、具体的には、アゾ系などの水溶性有機染料1〜10g/L、液温20〜60度、pH3〜9、浸漬時間1〜20分のような条件で行う。
【0012】
また、陽極酸化被膜に対して行う封孔処理とは、多孔質層中に水酸化アルミを成長させることにより封孔する工程であり、封孔処理方法は通常の方法でよいが、たとえば主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されることが好ましい。
【0013】
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液の濃度は適宜選べるが、3〜6g/lの範囲内で使用された場合が最も効果的である。
また封孔処理をスムーズに進めるために、処理温度としては25〜40℃、好ましくは30〜35℃で、又フッ化ニッケル水溶液のpHは4.5〜6.5、好ましくは5.5〜6.0の範囲で処理するのが良い。pH調節剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることができる。処理時間は、被膜の膜厚1μm当り1〜3分の範囲内で処理するのが好ましい。なお、被膜物性を更に改良するためフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。次いで水洗、乾燥して低温封孔処理を終える。
【0014】
前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることができるが、特に酢酸ニッケルを用いるのが好ましい。
酢酸ニッケル水溶液を用いる場合の濃度は5〜20g/lの範囲内で使用するのが好ましい。処理温度は80〜100℃、好ましくは90〜98℃で、又酢酸ニッケル水溶液のpHは5.0〜6.0の範囲で処理するのが良い。ここでpH調節剤としてはアンモニア水、酢酸ナトリウム等を用いることができる。
処理時間は10分以上、好ましくは20分以上処理するのが良い。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸塩、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加しても良い。次いで水洗、乾燥して高温封孔処理を終える。
【0015】
このような陽極酸化被膜上に設けられる感光層としては、無機系、有機系の各種感光層が使用できるが、電荷発生層、電荷移動層より成る積層型光導電体を用いた場合が極めて有用である。
【0016】
この場合の電荷発生層には、電荷発生物質と結着樹脂とを含む。電荷発生物質としては、電子写真感光体に用いられる物質であれば特に限定されるものではなく、具体的にはセレン及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜鉛、その他の無機光導電体、フタロシアニン、アゾ、キナクリドン、多環キノン、ペリレン、インジゴ、ベンズイミダゾールなどの有機顔料を使用することができる。特に銅、塩化インジウム、塩化カリウム、スズ、オキシチタニウム、亜鉛、バナジウムなどの金属、またはその酸化物や塩化物の配位したフタロシアニン類、無金属フタロシアニン類、または、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類などのアゾ顔料が好ましい。これらのうち特にアゾ顔料又はフタロシアニン類がより好ましく、特定結晶系を有するオキシチタニウムフタロシアニンが特に好ましい。これは、オキシチタニウムフタロシアニンが通常の顔料より熱による結晶変換が起きやすいためである。
【0017】
このようなオキシチタニウムフタロシアニンは、CuKα線によるX線回折においてブラッグ角(2θ±0.2)27.3゜に最大回折ピークを示すものがあげられる。この結晶型オキシチタニウムフタロシアニンは、一般にはY型あるいはD型と呼ばれているものであり、例えば特開昭62−67094号公報の第2図(同公報ではII型と称されている)、特開平2−8256号公報の第1図、特開昭64−82045号公報の第1図、電子写真学会誌第92巻(1990年発行)第3号第250〜258頁(同刊行物ではY型と称されている)に示されたものである。この結晶型オキシチタニウムフタロシアニンは、27.3°に最大回折ピークを示すことが特徴であるが、これ以外に通常7.4゜、9.7゜、24.2゜にピークを示す。
【0018】
回折ピークの強度は、結晶性、試料の配向性および測定法により変化する場合もあるが、粉末結晶のX線回折を行う場合に通常用いられるブラッグ−ブレンターノの集中法による測定では、上記の結晶型オキシチタニウムフタロシアニンは27.3°に最大回折ピークを有する。また、薄膜光学系(一般に薄膜法或いは平行法とも呼ばれる)により測定された場合には、試料の状態によっては27.3°が最大回折ピークとならない場合があるが、これは結晶粉末が特定の方向に配向しているためと考えられる。
【0019】
分散媒としては、電子写真感光体の製造工程で用いられるものであれば特に限定されるものではなく種々の溶媒を用いてよい。例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類;アセトン、メチルエチルケトン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;メタノール、エタノール、プロパノール等のアルコール類を単独あるいは2種以上混合して使用することができる。
【0020】
用いる分散媒の量は分散が充分行え、且つ分散液中に有効量の電荷発生物質が含まれる限りいかなる量でもよく、通常は分散時の分散液中の電荷発生物質の濃度にして3〜20wt%、より好ましくは4〜20wt%程度が好ましい。
【0021】
結着樹脂としては、電子写真感光体に使用されるものであれば特に限定されるものではないが、具体的には、ポリビニルブチラール、ポリビニルアセタール、ポリエステル、ポリカーボネート、ポリスチレン、ポリエステルカーボネート、ポリスルホン、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル等のビニル重合体、及びその共重合体、フェノキシ、エポキシ、シリコーン樹脂等またこれらの部分的架橋硬化物等を単独あるいは2種以上用いることができる。
【0022】
結着樹脂と電荷発生物質との混合方法としては例えば、電荷発生物質を分散処理工程に結着樹脂を粉末のまま或いはそのポリマー溶液を加え同時に分散する方法、分散処理工程で得られた分散液を結着樹脂のポリマー溶液中に混合する方法、或いは逆に分散液中にポリマー溶液を混合する方法等のいずれかの方法を用いてもかまわない。
【0023】
次にここで得られた分散液は、塗布をするのに適した液物性にするために、種々の溶剤を用いて希釈してもかまわない。このような溶剤としては、例えば前記分散媒として例示した溶媒を使用することができる。電荷発生物質と結着樹脂との割合は特に制限はないが一般には樹脂100重量部に対して電荷発生物質が5〜500重量部の範囲より使用される。また必要に応じて電荷輸送物質を含むことができる。電荷輸送物質としては例えば、2,4,7−トリニトロフルオレノン、テトラシアノキシジメタンなどの電子吸引性物質、セルバゾール、インドール、イミダゾール、オキサゾール、ピラゾール、オキサジアゾール、ピラゾリン、チアジアゾールなどの複素環化合物、アニリン誘導体、ヒドラゾン化合物、芳香族アミン誘導体、スチルベン誘導体、或いはこれらの化合物からなる基を主鎖もしくは側鎖に有する重合体などの電子供与性物質が挙げられる。電荷輸送物質と結着樹脂との割合は結着樹脂100重量に対して電荷輸送物質が5〜500重量部の範囲により使用される。
【0024】
この様にして調製された分散液を用いて、導電性支持体上に電荷発生層を形成させ、その上に電荷輸送層を積層させて感光層を形成する、或いは導電性支持体上に電荷輸送層を形成しその上に前記分散液を用いて電荷発生層を形成し感光層を形成する、或いは導電性支持体上に前記分散液を用いて電荷発生層を形成させ感光層とする、のいずれかの構造で感光層を形成することが出来る。電荷発生層の膜厚は電荷輸送層と積層させて感光層を形成する場合0.1μm〜10μmの範囲が好適であり電荷輸送層の膜厚は10〜40μmが好適である。電荷発生層のみの単層構造で感光層を形成する場合の電荷発生層の膜厚は5〜40μmの範囲が好適である。
【0025】
電荷輸送層を設ける場合、そこに使用される電荷輸送物質としては、前記電荷輸送物質として例示した材料を使用することが出来る。これらの電荷輸送物質とともに必要に応じて結着樹脂が配合される。結着樹脂としては、例えば前記結着樹脂として例示した結着樹脂を使用することが出来る。感光層には、必要に応じて電子写真感光体に用いられる酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。
【0026】
【実施例】
以下に製造例及び実施例により本発明を更に具体的に説明する。
【0027】
[電荷発生層塗布液]
本発明の実施例に用いる電荷発生層塗布液を以下のように調製した。
オキシチタニウムフタロシアニン10重量部に1・2−ジメトキシエタン140重量部を加え分散溶液とし、サンドグラインドミルで1時間、分散処理を行った。この際、粒径0.8mm程度のガラスビーズをサンドグラインドミル内に入れて分散処理を行った。次にホモジナイザー(特殊機化工工業株式会社製、T.K.ホモミクサー O型)にポリビニルブチラール(電気化学工業(株)製、商品名デンカブチラール#6000C)70重量部の7%エチレングリコールジメチルエーテル溶液を入れた。更に、この分散溶液をホモジナイザーに入れ、分散混合処理を施した。その後、分散液を取り出し、超音波分散処理を施し、電荷発生層塗布液を調製した。
【0028】
[電荷輸送層塗布液]
本発明の実施例に用いる電荷輸送層塗布液を以下のように調製した。
次に示すヒドラゾン化合物56重量部と
【化1】

Figure 0003964631
次に示すヒドラゾン化合物14重量部
【0029】
【化2】
Figure 0003964631
及び下記のシアノ化合物1.5重量部
【0030】
【化3】
Figure 0003964631
及びポリカーボネート樹脂(三菱化学(株)製、商品名ノバレックス7030A)100重量部をテトラヒドロフラン100重量部に混合攪拌して溶解させた電荷輸送層塗布液を調製した。
【0031】
[画像形成装置]
本発明で用いる画像形成装置としては、プリンター、複写機、ファクシミリ等が挙げられる。この画像形成装置には、現像ユニット(帯電器、現像器、定着器、除電器、クリーナー)、電子写真感光体、光学ユニット(露光器)、ホッパー、スタッカー、記録媒体(用紙)を搬送する搬送路、定着ユニット等が設けられている。
ホッパーは、記録媒体(用紙)を搬送路に提供するものである。スタッカーは、記録済みの媒体(印刷済み用紙)を積み重ねて保存するものである。搬送路は、記録媒体(用紙)を搬送するものである。定着ユニットは、電子写真感光体から記録媒体(用紙)に転写された画像を定着するものである。
現像ユニットは、電子写真感光体に形成された静電潜像に現像剤を与えて現像を行うものである。電子写真感光体は、得ようとする画像に応じた静電潜像を作成後、現像ユニットで現像された画像を記録媒体(用紙)に転写するものである。光学ユニットは、各画像データ(情報)により変調されたレーザー光で電子写真感光体上を走査して静電潜像を形成するものである。
画像形成装置の動作を以下説明する。コロトロン、ストロコロン等の帯電器を用いて電子写真感光体表面略均一に帯電する。上位コンピューターは、画像、文字等の情報に基づき印刷指令を送る。上位コンピューターからの印刷指令時に、印刷準備が整っていれば、データ要求を行い、各データーが送られてくると、画像形成装置の光学ユニットで各データに対応して変調されたレーザー光で電子写真感光体上を走査する。これにより、レーザー光が照射された電子写真感光体上の部分は、電荷が除去され、電子写真感光体上に静電潜像が形成される。その後、現像ユニットで電子写真感光体に形成された静電潜像にトナー等の現像剤を与えて、電子写真感光体上に可視像を形成する。次に、記録媒体(用紙)をこの可視像に重ね、記録媒体(用紙)の裏から帯電器で現像剤とは逆の電荷を記録媒体(用紙)に与え、静電力により可視像を記録媒体(用紙)に転写する。転写された可視像は、熱又は圧力により、記録媒体(用紙)に融着されて永久像とする。
一方、転写後の電子写真感光体上の潜像電荷は光により除電される。また、転写されずに残った残留トナー等の現像剤は、クリーナーにより除去する。このようなプロセスを繰り返すことにより連続的に画像形成を行う。また、フルカラー印刷を行う場合には、上述した画像形成プロセスを各色毎に行いカラー画像を得る。
また、記録媒体(用紙)がホッパーで一枚ずつ搬送路に送られ、ベルト状の搬送手段で記録媒体(用紙)が搬送される間に電子写真感光体に形成された可視像を順次記録媒体(用紙)に転写していき、定着ユニットで用紙に転写された像を定着し、最後にスタッカーで印刷済みの記録媒体(用紙)を積み重ねて保管する。なお、画像形成装置としては、フルカラー印刷を行う場合には、電子写真感光体上に付着したトナー等の現像剤を、一旦一つの中間転写ベルトに転写し、中間転写ベルト状で各色のトナーを合わせ、カラー可視像とした後、転写手段を用いて記録媒体(用紙)にカラー画像を形成するものであってもよい。
【0032】
[実施例1]
電子写真感光体用支持体として、表面を鏡面仕上げした長さ260mm、直径30mm、肉厚1mmの円筒状アルミニウム支持体を用いた。この支持体10本を同時に把持できるチタン製の治具を用いて、上記支持体を陽極酸化処理工程内で搬送した。
この支持体に対して、脱脂剤NG-30(キザイ(株)製)の30 g/L水溶液中で60度、5分間脱脂洗浄を行った.続いて水洗を行った後、7%硝酸に25度で1分間浸漬した.さらに水洗後、180g/Lの硫酸電解液中(溶存アルミ濃度 7g/L)で1.2A/dm2の電流密度で陽極酸化処理を施し、6μmの陽極酸化被膜を支持体上に形成した。さらに水洗後、
この支持体に以下の条件で封孔処理を行った。
ニッケル封孔槽の液組成:
奥野製薬社製DX-500 10g/L水溶液
pH 5.5
封孔槽温度:90度
封孔処理時間:20分
この封孔処理開始時に支持体を陰極として直流電解した。具体的には、支持体を陰極、処理槽を陽極として−0.5Vの電圧で10分間直流電解を行った。一回の処理で同時に封孔した支持体10本と処理槽壁との間隔は、30センチから300センチの範囲内にあった。その後、電解をやめ封孔を継続した.このようにして、導電性基体10本に封孔処理を施した。目視により確認したところ3本に0.5mm以下の腐食が1〜数個発生していた。その後、上記に示した電荷発生層塗布液を用いて、浸漬塗布法により電荷発生層を形成し、次いで上記の電荷輸送層塗布液を同様に浸漬塗布方法により電荷輸送層を形成し、電子写真感光体を得た。得られた電子写真感光体を市販の複写機に搭載し画像を形成したところいずれの画像も良好であった。
【0033】
[実施例2]
印可した電圧が、−1.0Vである以外は、実施例1と同様にして導電性基体を10本作成した。目視により確認したところいずれからも腐食が観測されなかった。その後、実施例1と同様に電荷輸送層、電荷発生層を形成し電子写真感光体とした。得られた電子写真感光体を用いて画像を形成したところいずれの画像も良好であった。
【0034】
[実施例3]
印可した電圧が、−1.5Vである以外は、実施例1と同様にして導電性基体を10本作成した。目視により確認したところいずれからも腐食が観測されなかった。その後、実施例1と同様に電荷輸送層、電荷発生層を形成し電子写真感光体とした。得られた電子写真感光体を用いて画像を形成したところいずれの画像も良好であった。
【0035】
[実施例4]
印可した電圧が、−2.0Vである以外は、実施例1と同様にして導電性基体を10本作成した。目視により確認したところいずれからも腐食が観測されなかった。その後、実施例1と同様に電荷輸送層、電荷発生層を形成し電子写真感光体とした。得られた電子写真感光体を用いて画像を形成したところいずれの画像も良好であった。
【0036】
[実施例5]
印可した電圧が、−2.5Vである以外は、実施例1と同様にして導電性基体を10本作成した。目視により確認したところいずれも腐食が観測されなかったが、全面にニッケル(Ni)が若干析出していた。その後、実施例1と同様に電荷輸送層、電荷発生層を形成し電子写真感光体とした。得られた電子写真感光体を用いて画像を形成したところいずれの画像も良好であった。
【0037】
[比較例1]
電解しなかった以外は、実施例1と同様にして導電性基体を10本作成した。目視により確認したところ全数に1mm程度の腐食が1〜10箇所存在した。その後、実施例1と同様に電荷輸送層、電荷発生層を形成し電子写真感光体とした。得られた電子写真感光体を用いて画像を形成したところ腐食に対応する部分に画像むらが観測された。
【0038】
【発明の効果】
本発明によれば、導電性基体の腐食を防止し、良好な画像を与える電子写真感光体の製造が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a support for an electrophotographic photoreceptor, and more specifically, after anodizing the support for an electrophotographic photoreceptor and forming an anodic oxide coating on the support, The present invention relates to a method for producing a support for an electrophotographic photoreceptor having an electrolysis step as a cathode, a method for producing an electrophotographic photoreceptor using the production method, and an image forming apparatus using the electrophotographic photoreceptor.
[0002]
[Prior art]
The electrophotographic photosensitive member has a photosensitive layer (charge generation layer, charge transport layer) and the like on a support for electrophotographic photosensitive member (hereinafter referred to as “support”). A charge generating material that generates a charge in response to light is contained. As the charge generation material, pigments such as phthalocyanine pigments and azo pigments are typically used. Usually, an anodized film may be provided from the viewpoint of providing a resistance between the photosensitive layer and the support or improving the adhesion between the support and the photosensitive layer. Further, after forming such an anodized film on the support, as a countermeasure against interference fringes, a dyeing process is performed to color the formed anodized film or pores formed on the surface of the anodized film are blocked. In order to prevent this, a sealing treatment may be performed (for example, Japanese Patent Application Laid-Open No. 7-5717, Japanese Patent Publication No. 7-120062, Japanese Patent No. 2718066, etc.). Further, titanium having electrical conductivity and corrosion resistance is often used as a jig for transporting the support in the anodizing treatment step.
[0003]
[Problems to be solved by the invention]
However, according to such a conventional technique, when an anodizing treatment is applied to the support, if a dyeing treatment or a sealing treatment is performed, a trace amount of impurities contained in aluminum or an aluminum alloy, or a casting process There is a problem that the anodic oxide film corrodes starting from fine defects and scratches on the anodic oxide film generated by the localization of a small amount of additives generated in the above. The reason why corrosion occurs starting from fine defects or scratches on the anodized film is that the metal constituting the support in a state where the support is in the electrolyte, for example, a metal more precious than aluminum or an aluminum alloy This is thought to be because a phenomenon called contact corrosion occurs due to an electromotive force generated by the contact between titanium and the support.
[0004]
[Means for Solving the Problems]
In order to solve such problems, the present inventors have conducted intensive studies, and after forming an anodic oxide coating on the support, electrolysis using the support as a cathode in a process in which corrosion occurs, The present inventors have found that such problems can be solved and have reached the present invention. That is, in the method for producing an electrophotographic photosensitive member substrate in which the anodic oxidation treatment is performed to form an anodic oxide film on the support for an electrophotographic photosensitive member, the support is subjected to an anodic oxidation treatment. An electrophotographic photosensitive member comprising a step of forming an anodic oxide film on a support , performing nickel sealing as a sealing treatment, and subjecting the support to a cathode at the start of the sealing treatment. The invention can be solved by a method for producing a substrate, a method for producing an electrophotographic photosensitive member provided with a photosensitive layer on a substrate obtained by such a method, and an image forming apparatus using the electrophotographic photosensitive member.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In the electrophotographic photoreceptor of the present invention, the support for an electrophotographic photoreceptor is anodized, an anodized film is formed on the support, and a photosensitive layer is provided on the support on which the anodized film is formed. It is what was done.
[0006]
Such a support is made of a metal material such as aluminum or aluminum alloy, stainless steel, copper or nickel, a polyester film provided with a conductive layer such as aluminum, copper, palladium, tin oxide or indium oxide on the surface, paper or glass. An insulating support is used, but a support made of aluminum or an aluminum alloy is preferable. The shape of the support is not particularly limited as long as it is a shape used for an ordinary electrophotographic photosensitive member, but a cylindrical shape is preferable.
[0007]
An anodized film is formed on the surface of the support by anodizing, but before performing the anodizing, various degreasing washings such as acid, alkali, organic solvent, surfactant, emulsion, and electrolysis are performed. It is preferable to degrease by the method.
An anodized film is formed by an anodizing treatment in an ordinary method, for example, an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc. Give good results. In the case of anodization in sulfuric acid, the sulfuric acid concentration is 100 to 300 g / l, the dissolved aluminum concentration is 2 to 15 g / l, the liquid temperature is 15 to 30 ° C., the electrolysis voltage is 10 to 20 V, and the current density is 0.5 to 2 A / liter. Although it is preferable to set within the range of dm2, it is not limited to this.
The thickness of the anodic oxide film thus formed is usually 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less.
[0008]
In the present invention, it is important to electrolyze the support on which the anodic oxide film thus formed is formed as a cathode in a process in which corrosion occurs. Specifically, it is carried out by direct current electrolysis in a liquid using such a support as a cathode. The applied voltage is particularly limited as long as it is a voltage sufficient to cancel an electromotive force generated between a noble metal such as titanium and a metal constituting the support (for example, aluminum or an aluminum alloy). Although it is not a thing, in consideration of current loss due to liquid resistance, etc., it is usually in the range of −0.5 to −5 V, preferably −0.6 to −3 V, more preferably −0.7 to −2 V. Any potential difference may be used. Unless the distance between the anode and the cathode support is within a few meters, the liquid resistance increases, which is not preferable.
[0009]
The method for electrolysis using the support on which the anodized film is formed as a cathode is not particularly limited. For example, the polarity is reversed using a carbon electrode and a DC power source used in a normal anodizing process. And connect.
[0010]
By such a method, electrolysis is performed using the support as a cathode. The time of electrolysis is after the formation of the anodic oxide film in the process where corrosion occurs and before corrosion occurs, and may be any time after immersion in the process liquid. Actually, corrosion often occurs in a dyeing process or a sealing process performed on the formed anodic oxide film, so in practice it is preferably performed at the start of immersion in these manufacturing process liquids.
[0011]
Here, the dyeing treatment is a step of immersing a support in an organic or inorganic compound salt solution and adsorbing the salt in a porous layer, and specifically, a water-soluble organic dye such as an azo type. 1 to 10 g / L, liquid temperature 20 to 60 degrees, pH 3 to 9, immersion time 1 to 20 minutes.
[0012]
Further, the sealing treatment performed on the anodized film is a step of sealing by growing aluminum hydroxide in the porous layer, and the sealing treatment method may be a normal method. It is preferable to perform a low temperature sealing treatment soaking in an aqueous solution containing nickel fluoride or a high temperature sealing treatment soaking in an aqueous solution containing nickel acetate as a main component.
[0013]
The concentration of the nickel fluoride aqueous solution used in the case of the low-temperature sealing treatment can be appropriately selected, but the most effective case is when it is used within the range of 3 to 6 g / l.
Moreover, in order to proceed the sealing treatment smoothly, the treatment temperature is 25 to 40 ° C., preferably 30 to 35 ° C., and the pH of the nickel fluoride aqueous solution is 4.5 to 6.5, preferably 5.5 to 6.0. Is good. As the pH adjuster, oxalic acid, boric acid, formic acid, acetic acid, sodium hydroxide, sodium acetate, aqueous ammonia and the like can be used. The treatment time is preferably within a range of 1 to 3 minutes per 1 μm of film thickness. In order to further improve the physical properties of the film, cobalt fluoride, cobalt acetate, nickel sulfate, a surfactant and the like may be added to the nickel fluoride aqueous solution. Subsequently, it is washed with water and dried to finish the low temperature sealing treatment.
[0014]
As the sealing agent in the case of the high-temperature sealing treatment, an aqueous solution of a metal salt such as nickel acetate, cobalt acetate, lead acetate, nickel acetate-cobalt, and barium nitrate can be used, and it is particularly preferable to use nickel acetate. .
The concentration in the case of using an aqueous nickel acetate solution is preferably in the range of 5 to 20 g / l. The treatment temperature is 80 to 100 ° C., preferably 90 to 98 ° C., and the pH of the nickel acetate aqueous solution is preferably 5.0 to 6.0. Here, ammonia water, sodium acetate, or the like can be used as the pH regulator.
The treatment time is 10 minutes or longer, preferably 20 minutes or longer. In this case, sodium acetate, organic carboxylate, anionic or nonionic surfactant may be added to the nickel acetate aqueous solution in order to improve the film properties. Subsequently, it is washed with water and dried to finish the high temperature sealing treatment.
[0015]
As the photosensitive layer provided on such an anodized film, various inorganic and organic photosensitive layers can be used, but it is extremely useful when using a multilayer photoconductor composed of a charge generation layer and a charge transfer layer. It is.
[0016]
In this case, the charge generation layer includes a charge generation material and a binder resin. The charge generation material is not particularly limited as long as it is a material used for an electrophotographic photosensitive member. Specifically, selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, and other inorganic photoconductors. Organic pigments such as phthalocyanine, azo, quinacridone, polycyclic quinone, perylene, indigo, and benzimidazole can be used. In particular, metals such as copper, indium chloride, potassium chloride, tin, oxytitanium, zinc, vanadium, or phthalocyanines coordinated with oxides or chlorides, metal-free phthalocyanines, or monoazo, bisazo, trisazo, polyazos Azo pigments such as are preferred. Of these, azo pigments or phthalocyanines are particularly preferable, and oxytitanium phthalocyanine having a specific crystal system is particularly preferable. This is because oxytitanium phthalocyanine is more susceptible to crystal conversion by heat than ordinary pigments.
[0017]
Examples of such oxytitanium phthalocyanine include those having a maximum diffraction peak at a Bragg angle (2θ ± 0.2) of 27.3 ° in X-ray diffraction by CuKα rays. This crystalline oxytitanium phthalocyanine is generally referred to as Y-type or D-type. For example, FIG. 2 of JP-A-62-67094 (referred to as type II in the same publication), Fig. 1 of JP-A-2-8256, Fig. 1 of JP-A-64-82045, Journal of Electrophotographic Society Vol. 92 (issued in 1990), No. 3, pages 250-258 (in the same publication) (Referred to as Y-type). This crystalline oxytitanium phthalocyanine is characterized by having a maximum diffraction peak at 27.3 °, but normally has peaks at 7.4 °, 9.7 °, and 24.2 °.
[0018]
The intensity of the diffraction peak may vary depending on the crystallinity, the orientation of the sample, and the measurement method. However, in the measurement by the Bragg-Brentano concentration method usually used when performing X-ray diffraction of a powder crystal, Type oxytitanium phthalocyanine has a maximum diffraction peak at 27.3 °. In addition, when measured by a thin film optical system (generally called thin film method or parallel method), 27.3 ° may not be the maximum diffraction peak depending on the state of the sample. This is probably because it is oriented in the direction.
[0019]
The dispersion medium is not particularly limited as long as it is used in the production process of the electrophotographic photosensitive member, and various solvents may be used. For example, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and 1,2-dimethoxyethane; ketones such as acetone and methyl ethyl ketone; esters such as methyl acetate and ethyl acetate; alcohols such as methanol, ethanol and propanol alone Alternatively, two or more kinds can be mixed and used.
[0020]
The amount of the dispersion medium to be used may be any amount as long as the dispersion can be sufficiently performed and an effective amount of the charge generating material is contained in the dispersion, and is usually 3 to 20 wt as the concentration of the charge generating material in the dispersion at the time of dispersion. %, More preferably about 4 to 20 wt%.
[0021]
The binder resin is not particularly limited as long as it is used in an electrophotographic photoreceptor, and specifically, polyvinyl butyral, polyvinyl acetal, polyester, polycarbonate, polystyrene, polyester carbonate, polysulfone, polyimide , Vinyl polymers such as polymethyl methacrylate and polyvinyl chloride, copolymers thereof, phenoxy, epoxy, silicone resins, and the like, or partially crosslinked cured products thereof can be used singly or in combination.
[0022]
Examples of the method for mixing the binder resin and the charge generation material include a method in which the charge generation material is dispersed in the dispersion treatment step while the binder resin is in powder form or its polymer solution is dispersed simultaneously, and the dispersion obtained in the dispersion treatment step Any method may be used, such as a method of mixing the polymer solution into the binder resin polymer solution, or a method of mixing the polymer solution into the dispersion.
[0023]
Next, the dispersion obtained here may be diluted with various solvents in order to obtain liquid properties suitable for coating. As such a solvent, the solvent illustrated as the said dispersion medium can be used, for example. The ratio between the charge generating material and the binder resin is not particularly limited, but generally the charge generating material is used in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the resin. Moreover, a charge transport material can be included as required. Examples of charge transport materials include electron-withdrawing materials such as 2,4,7-trinitrofluorenone and tetracyanoxydimethane, and heterocycles such as selbazole, indole, imidazole, oxazole, pyrazole, oxadiazole, pyrazoline, and thiadiazole. Examples thereof include an electron donating substance such as a compound, an aniline derivative, a hydrazone compound, an aromatic amine derivative, a stilbene derivative, or a polymer having a group composed of these compounds in the main chain or side chain. The ratio between the charge transport material and the binder resin is such that the charge transport material is in the range of 5 to 500 parts by weight with respect to 100 weight parts of the binder resin.
[0024]
Using the dispersion prepared in this way, a charge generation layer is formed on a conductive support, and a charge transport layer is laminated thereon to form a photosensitive layer, or a charge is formed on the conductive support. A transport layer is formed and a charge generation layer is formed thereon using the dispersion liquid to form a photosensitive layer, or a charge generation layer is formed using a dispersion liquid on a conductive support to form a photosensitive layer. The photosensitive layer can be formed with any of the following structures. In the case where the charge generation layer is laminated with the charge transport layer to form a photosensitive layer, the range of 0.1 μm to 10 μm is preferable, and the thickness of the charge transport layer is preferably 10 to 40 μm. When the photosensitive layer is formed with a single layer structure having only the charge generation layer, the thickness of the charge generation layer is preferably in the range of 5 to 40 μm.
[0025]
When the charge transport layer is provided, as the charge transport material used there, materials exemplified as the charge transport material can be used. A binder resin is blended with these charge transport materials as required. As the binder resin, for example, the binder resin exemplified as the binder resin can be used. The photosensitive layer may contain various additives such as antioxidants and sensitizers used for the electrophotographic photoreceptor as necessary.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to production examples and examples.
[0027]
[Charge generation layer coating solution]
The charge generation layer coating solution used in the examples of the present invention was prepared as follows.
140 parts by weight of 1,2-dimethoxyethane was added to 10 parts by weight of oxytitanium phthalocyanine to obtain a dispersion solution, which was subjected to dispersion treatment for 1 hour in a sand grind mill. At this time, glass beads having a particle size of about 0.8 mm were placed in a sand grind mill for dispersion treatment. Next, 70% by weight of a 7% ethylene glycol dimethyl ether solution of 70 parts by weight of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Denka Butyral # 6000C) was added to a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd., TK homomixer type O). I put it in. Furthermore, this dispersion solution was put into a homogenizer and subjected to dispersion mixing treatment. Thereafter, the dispersion liquid was taken out and subjected to ultrasonic dispersion treatment to prepare a charge generation layer coating liquid.
[0028]
[Charge transport layer coating solution]
The charge transport layer coating solution used in the examples of the present invention was prepared as follows.
56 parts by weight of the following hydrazone compound:
Figure 0003964631
14 parts by weight of the following hydrazone compound:
[Chemical formula 2]
Figure 0003964631
And 1.5 parts by weight of the following cyano compound:
[Chemical 3]
Figure 0003964631
Then, a charge transport layer coating solution was prepared by mixing 100 parts by weight of polycarbonate resin (product name: Novalex 7030A, manufactured by Mitsubishi Chemical Corporation) with 100 parts by weight of tetrahydrofuran and stirring them.
[0031]
[Image forming equipment]
Examples of the image forming apparatus used in the present invention include a printer, a copying machine, and a facsimile. In this image forming apparatus, a developer unit (charger, developer, fixing device, static eliminator, cleaner), electrophotographic photosensitive member, optical unit (exposure device), hopper, stacker, and conveyance for conveying a recording medium (paper) A path, a fixing unit and the like are provided.
The hopper provides a recording medium (paper) to the conveyance path. The stacker is a stack for storing recorded media (printed sheets). The conveyance path conveys a recording medium (paper). The fixing unit fixes an image transferred from the electrophotographic photosensitive member to a recording medium (paper).
The developing unit performs development by applying a developer to the electrostatic latent image formed on the electrophotographic photosensitive member. The electrophotographic photosensitive member is to transfer an image developed by the developing unit to a recording medium (paper) after creating an electrostatic latent image corresponding to the image to be obtained. The optical unit scans the electrophotographic photosensitive member with a laser beam modulated by each image data (information) to form an electrostatic latent image.
The operation of the image forming apparatus will be described below. The surface of the electrophotographic photosensitive member is charged substantially uniformly using a charger such as corotron or strolocolon. The host computer sends a print command based on information such as images and characters. If printing is ready at the time of a print command from the host computer, a data request is made, and when each data is sent, it is electronically emitted by a laser beam modulated in accordance with each data by the optical unit of the image forming apparatus. Scan over the photographic photoreceptor. Thereby, the electric charge is removed from the portion on the electrophotographic photosensitive member irradiated with the laser beam, and an electrostatic latent image is formed on the electrophotographic photosensitive member. Thereafter, a developer such as toner is applied to the electrostatic latent image formed on the electrophotographic photosensitive member by the developing unit to form a visible image on the electrophotographic photosensitive member. Next, the recording medium (paper) is superimposed on the visible image, and a charge opposite to the developer is applied to the recording medium (paper) from the back of the recording medium (paper) with a charger, and the visible image is formed by electrostatic force. Transfer to a recording medium (paper). The transferred visible image is fused to a recording medium (paper) by heat or pressure to form a permanent image.
On the other hand, the latent image charge on the electrophotographic photosensitive member after transfer is neutralized by light. Further, the developer such as residual toner remaining without being transferred is removed by a cleaner. Image formation is continuously performed by repeating such a process. When full-color printing is performed, the above-described image forming process is performed for each color to obtain a color image.
In addition, the recording medium (paper) is sent to the conveyance path one by one by the hopper, and the visible image formed on the electrophotographic photosensitive member is sequentially recorded while the recording medium (paper) is conveyed by the belt-shaped conveyance means. The image is transferred to the medium (paper), the image transferred onto the paper is fixed by the fixing unit, and finally the printed recording medium (paper) is stacked and stored by the stacker. As for the image forming apparatus, when full color printing is performed, a developer such as toner adhered on the electrophotographic photosensitive member is once transferred to one intermediate transfer belt, and toner of each color is formed in the form of an intermediate transfer belt. In addition, after forming a color visible image, a color image may be formed on a recording medium (paper) using a transfer unit.
[0032]
[Example 1]
A cylindrical aluminum support having a length of 260 mm, a diameter of 30 mm, and a wall thickness of 1 mm was used as the support for the electrophotographic photosensitive member. The support was transported in an anodizing process using a titanium jig capable of simultaneously holding the 10 supports.
The support was degreased and washed at 30 ° C. for 5 minutes in a 30 g / L aqueous solution of a degreasing agent NG-30 (manufactured by Kizai Co., Ltd.). Subsequently, it was washed with water and then immersed in 7% nitric acid at 25 ° C. for 1 minute. Further, after rinsing with water, anodization was performed at a current density of 1.2 A / dm 2 in a 180 g / L sulfuric acid electrolyte (dissolved aluminum concentration: 7 g / L) to form a 6 μm anodic oxide coating on the support. After washing with water,
The support was sealed under the following conditions.
Liquid composition of nickel sealing tank:
Okuno Pharmaceutical Co., Ltd. DX-500 10 g / L aqueous solution pH 5.5
Sealing bath temperature: 90 ° Sealing treatment time: 20 minutes At the start of this sealing treatment, direct current electrolysis was performed using the support as a cathode. Specifically, DC electrolysis was performed for 10 minutes at a voltage of −0.5 V using the support as a cathode and the treatment tank as an anode. The interval between the 10 substrates simultaneously sealed in one treatment and the treatment vessel wall was in the range of 30 cm to 300 cm. Thereafter, electrolysis was stopped and sealing was continued. In this way, 10 conductive substrates were sealed. As a result of visual inspection, one to several corrosions of 0.5 mm or less occurred in three pieces. Then, using the charge generation layer coating solution shown above, a charge generation layer is formed by a dip coating method, and then the charge transport layer coating solution is similarly formed by a dip coating method to form a charge transport layer. A photoreceptor was obtained. When the obtained electrophotographic photosensitive member was mounted on a commercially available copying machine and an image was formed, all the images were good.
[0033]
[Example 2]
Ten conductive substrates were prepared in the same manner as in Example 1 except that the applied voltage was -1.0V. As a result of visual confirmation, no corrosion was observed from any of them. Thereafter, a charge transport layer and a charge generation layer were formed in the same manner as in Example 1 to obtain an electrophotographic photoreceptor. When an image was formed using the obtained electrophotographic photosensitive member, all the images were good.
[0034]
[Example 3]
Ten conductive substrates were prepared in the same manner as in Example 1 except that the applied voltage was -1.5V. As a result of visual confirmation, no corrosion was observed from any of them. Thereafter, a charge transport layer and a charge generation layer were formed in the same manner as in Example 1 to obtain an electrophotographic photoreceptor. When an image was formed using the obtained electrophotographic photosensitive member, all the images were good.
[0035]
[Example 4]
Ten conductive substrates were prepared in the same manner as in Example 1 except that the applied voltage was -2.0V. As a result of visual confirmation, no corrosion was observed from any of them. Thereafter, a charge transport layer and a charge generation layer were formed in the same manner as in Example 1 to obtain an electrophotographic photoreceptor. When an image was formed using the obtained electrophotographic photosensitive member, all the images were good.
[0036]
[Example 5]
Ten conductive substrates were prepared in the same manner as in Example 1 except that the applied voltage was -2.5V. As a result of visual inspection, no corrosion was observed, but nickel (Ni) was slightly deposited on the entire surface. Thereafter, a charge transport layer and a charge generation layer were formed in the same manner as in Example 1 to obtain an electrophotographic photoreceptor. When an image was formed using the obtained electrophotographic photosensitive member, all the images were good.
[0037]
[Comparative Example 1]
Ten conductive substrates were prepared in the same manner as in Example 1 except that electrolysis was not performed. As a result of visual inspection, 1 to 10 corrosions of about 1 mm were present in the total number. Thereafter, a charge transport layer and a charge generation layer were formed in the same manner as in Example 1 to obtain an electrophotographic photoreceptor. When an image was formed using the obtained electrophotographic photosensitive member, image unevenness was observed in a portion corresponding to corrosion.
[0038]
【The invention's effect】
According to the present invention, it is possible to produce an electrophotographic photoreceptor that prevents corrosion of a conductive substrate and gives a good image.

Claims (5)

陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成する電子写真感光体用基体の製造方法において、該支持体に陽極酸化処理を施して該支持体上に陽極酸化被膜を形成した後、封孔処理としてニッケル封孔処理を行い、前記封孔処理開始時に該支持体を陰極として直流電解する工程を有することを特徴とする電子写真感光体用基体の製造方法。In a method for producing a base for an electrophotographic photosensitive member, which is anodized to form an anodic oxide coating on a support for an electrophotographic photosensitive member. A method for producing a substrate for an electrophotographic photoreceptor, comprising the steps of: nickel sealing treatment as a sealing treatment, and direct current electrolysis using the support as a cathode at the start of the sealing treatment . 電子写真感光体用支持体を陰極として直流電解する工程において、印可する負の電圧が、−0.5〜−5Vである、請求項1に記載の電子写真感光体用基体の製造方法。2. The method for producing a base for an electrophotographic photosensitive member according to claim 1, wherein the negative voltage applied in the step of direct current electrolysis using the electrophotographic photosensitive member support as a cathode is −0.5 to −5V. 陽極酸化処理を施して電子写真感光体用支持体上に陽極酸化被膜を形成し、次いで該被膜を有する電子写真感光体用基体上に感光層を設けた電子写真感光体の製造方法において、該支持体に陽極酸化処理を施して該支持体上に陽極酸化被膜を形成した後、封孔処理としてニッケル封孔処理を行い、前記封孔処理開始時に該支持体を陰極として直流電解することを特徴とする電子写真感光体の製造方法。In the method for producing an electrophotographic photoreceptor, the anodized film is formed on the support for an electrophotographic photoreceptor by anodizing, and then a photosensitive layer is provided on the electrophotographic photoreceptor substrate having the film. After anodizing the support to form an anodized film on the support , nickel sealing is performed as a sealing treatment, and direct current electrolysis is performed using the support as a cathode at the start of the sealing treatment. A method for producing an electrophotographic photosensitive member. 前記感光層が、電荷発生層、電荷輸送層より成ることを特徴とする請求項3に記載の電子写真感光体の製造方法。4. The method for producing an electrophotographic photoreceptor according to claim 3, wherein the photosensitive layer comprises a charge generation layer and a charge transport layer. 請求項3又は4の製造方法で得られた電子写真感光体を用いた画像形成装置。An image forming apparatus using the electrophotographic photosensitive member obtained by the manufacturing method according to claim 3 .
JP2001144598A 2001-05-15 2001-05-15 Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member Expired - Fee Related JP3964631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001144598A JP3964631B2 (en) 2001-05-15 2001-05-15 Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001144598A JP3964631B2 (en) 2001-05-15 2001-05-15 Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member

Publications (2)

Publication Number Publication Date
JP2002341568A JP2002341568A (en) 2002-11-27
JP3964631B2 true JP3964631B2 (en) 2007-08-22

Family

ID=18990517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001144598A Expired - Fee Related JP3964631B2 (en) 2001-05-15 2001-05-15 Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member

Country Status (1)

Country Link
JP (1) JP3964631B2 (en)

Also Published As

Publication number Publication date
JP2002341568A (en) 2002-11-27

Similar Documents

Publication Publication Date Title
JP2015141235A (en) Electrophotographic cartridge, electrophotographic photoreceptor, and image forming apparatus
US5875375A (en) Electrophotographic apparatus and process cartridge
JP2009150958A (en) Method of manufacturing support for electrophotographic photoreceptor
JP6146188B2 (en) Electrophotographic photosensitive member, electrophotographic process cartridge, and image forming apparatus
JP3964631B2 (en) Manufacturing method of substrate for electrophotographic photosensitive member and manufacturing method of electrophotographic photosensitive member
JP4640154B2 (en) Electrophotographic photosensitive member, image forming apparatus using the photosensitive member, and electrophotographic cartridge using the photosensitive member
JP4003415B2 (en) Method for producing support for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP2012103619A (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP4661617B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JPS63214759A (en) Electrophotographic sensitive body
JPH01280768A (en) Electrophotographic sensitive body
JP3932949B2 (en) Electrophotographic photosensitive member and image forming apparatus
JP2003015338A (en) Manufacture of electrophotographic photoreceptor supporting body, electrophotographic photoreceptor and image forming device
JP4196552B2 (en) Image forming method and image forming apparatus
JP4821795B2 (en) Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP4720527B2 (en) Electrophotographic photoreceptor, image forming method and image forming apparatus
JP2003195533A (en) Holder for drum base dipping, holding method for drum base, photoreceptor drum, and image forming device
JP3894023B2 (en) Image forming method and image forming apparatus
JP4142916B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus
JP3279167B2 (en) Electrophotographic photoreceptor
JP2763973B2 (en) Underlayer treatment method for laminated photoreceptor for electrophotography
JPH01312554A (en) Electrophotographic sensitive body
JP2006072342A (en) Electrophotographic photoreceptor, cartridge for electrophotography, image forming apparatus and image forming method
US20110311271A1 (en) Electrophotographic photoreceptor, electrophotographic cartridge, and image-forming apparatus
JP2718066B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees