JP4821795B2 - Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus - Google Patents

Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus Download PDF

Info

Publication number
JP4821795B2
JP4821795B2 JP2008101435A JP2008101435A JP4821795B2 JP 4821795 B2 JP4821795 B2 JP 4821795B2 JP 2008101435 A JP2008101435 A JP 2008101435A JP 2008101435 A JP2008101435 A JP 2008101435A JP 4821795 B2 JP4821795 B2 JP 4821795B2
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
substrate
inner diameter
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008101435A
Other languages
Japanese (ja)
Other versions
JP2008186028A (en
Inventor
慎一 飯嶋
千尋 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2008101435A priority Critical patent/JP4821795B2/en
Publication of JP2008186028A publication Critical patent/JP2008186028A/en
Application granted granted Critical
Publication of JP4821795B2 publication Critical patent/JP4821795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、複写機あるいはレーザービームプリンターなどの画像形成装置、該画像形成装置に搭載される電子写真感光体、及び該電子写真感光体に使用される電子写真感光体用基体に関する。   The present invention relates to an image forming apparatus such as a copying machine or a laser beam printer, an electrophotographic photosensitive member mounted on the image forming apparatus, and a base for an electrophotographic photosensitive member used for the electrophotographic photosensitive member.

近年の電子写真装置の高解像度化、カラー化、小型化の推進により電子写真感光体用基体(感光体ドラム)に対する高精度化要求がより一層高まってきている。感光体ドラムに曲がり(感光体ドラム自体が湾曲している状態)や膨れ(感光体ドラム自体が軸方向で太鼓状になったり、鼓状になったりする状態)があると、これらに起因する振れ回りにより、静電潜像形成時及び転写時に本来画像が形成されるべき位置からの画像ズレが生じる。   In recent years, the demand for higher accuracy of the electrophotographic photoreceptor substrate (photoreceptor drum) has been further increased by the promotion of higher resolution, colorization, and miniaturization of the electrophotographic apparatus. If the photoconductor drum is bent (the photoconductor drum itself is curved) or swelled (the photoconductor drum itself becomes a drum shape or a drum shape in the axial direction), it is caused by these. Due to the shake, an image shift from a position where an image should originally be formed during electrostatic latent image formation and transfer occurs.

より詳細に説明すると、レーザービームプリンターなどのようにポリゴンミラーを用いてレーザー操作を行うものでは、静電潜像形成時、感光体ドラムの端部に近いほど斜めにレーザービームが入射するので、感光体ドラムに曲がりや膨れがあるとレーザービームの到達位置がドラム軸方向にずれるといった主操作方向のズレが生じる。また、感光体ドラムに曲がりや膨れがあると感光体の回転中心から感光体ドラム表面までの距離、すなわち回転半径の違いにより、回転半径の小さい部位では感光体ドラム表面の露光系に対する移動速度が遅くなって静電潜像が詰まり、回転半径の大きい部位では感光体ドラム表面の露光系に対する移動速度が速くなって静電潜像が伸びる副走査方向ズレが生じる。   More specifically, in the case of performing laser operation using a polygon mirror such as a laser beam printer, when forming an electrostatic latent image, the laser beam is incident obliquely closer to the end of the photosensitive drum. When the photosensitive drum is bent or swollen, a deviation in the main operation direction such as the arrival position of the laser beam deviates in the drum axis direction occurs. In addition, when the photosensitive drum is bent or swollen, the moving speed of the photosensitive drum surface relative to the exposure system is small at a portion having a small rotational radius due to a difference in the distance from the rotational center of the photosensitive member to the surface of the photosensitive drum, that is, the rotational radius. The electrostatic latent image becomes clogged and the moving speed of the surface of the photosensitive drum with respect to the exposure system is increased at a portion having a large rotation radius, and a deviation in the sub-scanning direction in which the electrostatic latent image extends is generated.

その結果、印刷された画像にひずみが生じる。特にタンデム型と呼ばれる、複数の感光体ドラムを平行に並べて使用するカラー複写機、プリンタの場合には位置ズレ、色ズレとして顕在化する。他にも発光ダイオードを露光装置として使用するものでは、焦点距離が近いことから振れ回りによる画像ボケが生じやすく、重要な問題となっている。これらの理由から感光体ドラムの高精度化、特に基体については曲がりや膨れのない高精度な基体が要求される。   As a result, the printed image is distorted. In particular, in the case of a color copying machine or printer called a tandem type that uses a plurality of photosensitive drums arranged in parallel, it becomes manifest as a positional shift and a color shift. In addition, in the case of using a light emitting diode as an exposure apparatus, since the focal length is short, image blurring due to shaking is likely to occur, which is an important problem. For these reasons, high accuracy of the photosensitive drum is required, and in particular, a high-precision base without bending or swelling is required for the base.

このような状況下で、一般的には電子写真感光体用基体(以下、適宜「基体」と呼ぶ)としてアルミニウム製の中空円筒体を押出し、引抜工程を経て外周を切削してなる、或いは外周を切削後、ブラストしてなる基体を採用するケースが多く、その高精度化のためには主に超精密旋盤を利用して高精度に加工する手法が取られていた。しかしながら、このようなケースでは引抜管の振れ精度や、切削加工後の材料の応力開放により、切削後に高精度の基体をばらつき少なく得ることは不可能であった。また、かかる現象は仮に機械寸法における高精度の引抜管を切削しても同様であり大きな問題となっていた。   Under such circumstances, generally, an aluminum hollow cylindrical body is extruded as a base for an electrophotographic photosensitive member (hereinafter referred to as “base” as appropriate), and the outer periphery is cut through a drawing process, or the outer periphery In many cases, a base that is blasted after cutting is used, and in order to increase the precision, a technique of processing with high precision using mainly an ultra-precision lathe has been taken. However, in such a case, it has been impossible to obtain a highly accurate base body with less variation after cutting due to runout accuracy of the drawn tube and release of stress of the material after cutting. Further, such a phenomenon is the same even if a high-precision drawn tube in machine dimensions is cut, and has been a big problem.

また、特許文献1では、アルミニウム管の任意の部分の振れ値を0.2mm以下とすることにより、寸法精度が良好な感光体が得られることが示されている。しかしながら、該発明(特開平11−174704号)では、引抜管の残留応力により切削加工後に基体が変形を起こしてしまうことがあり、必ずしも安定して精度が良好な基体を得られないという問題点があった。
特開平11−174704号公報
Further, Patent Document 1 shows that a photoconductor with good dimensional accuracy can be obtained by setting the deflection value of an arbitrary portion of the aluminum tube to 0.2 mm or less. However, in the invention (Japanese Patent Application Laid-Open No. 11-174704), the base body may be deformed after cutting due to the residual stress of the drawn tube, and it is not always possible to obtain a stable base body with good accuracy. was there.
JP 11-174704 A

本発明者は上記課題を解決すべく、引抜管の内部応力等による原因の可能性も含め検討を行った結果、押出管の偏肉を所定値以下とすること、より好ましくは、引抜管端部及び中央部の振れ精度を所定値以下にすること、引抜管内径のバラツキを抑えることなどにより、切削加工後の精度に影響する引抜管内部の残留応力を低減でき、しかも切削加工後に安定して高精度の基体が得られることを見いだし本発明に到達した。すなわち、本発明は表面に感光層が形成されて電子写真感光体が製造される電子写真感光体用基体の製造方法において、基体用金属材料を押出加工処理し偏肉が0.2mm以下である押出管を用いて前記基体を製造することを特徴とする電子写真感光体用基体の製造方法に存する。   In order to solve the above problems, the present inventor has examined the possibility of the cause due to the internal stress of the drawn tube, and as a result, the uneven thickness of the extruded tube is set to a predetermined value or less, more preferably the drawn tube end. The residual stress inside the drawn tube, which affects the accuracy after cutting, can be reduced by making the runout accuracy at the center and the center below the specified value, and suppressing variations in the inside diameter of the drawn tube. The inventors have found that a highly accurate substrate can be obtained, and have reached the present invention. That is, the present invention provides a method for producing a substrate for an electrophotographic photosensitive member in which a photosensitive layer is formed on the surface to produce an electrophotographic photosensitive member, and the metal material for the substrate is subjected to an extrusion process and the uneven thickness is 0.2 mm or less. The present invention resides in a method for manufacturing a substrate for an electrophotographic photosensitive member, wherein the substrate is manufactured using an extruded tube.

本発明によれば、引抜管内部の残留応力を低減すること、及び切削加工時の加工機械のセッティングによる加工バラツキが低減されることなどができることから、高精度の電子写真感光体用基体を得ることができる。また、切削加工後に変形がなく安定して高精度の基体を得ることができる。該基体を使用した感光体は、画像形成の際、基体の振れによる影響が発生しにくいことから、良好な画像を得ることができる。   According to the present invention, it is possible to reduce the residual stress inside the drawn tube and to reduce the processing variation due to the setting of the processing machine at the time of cutting, so that a highly accurate electrophotographic photoreceptor substrate is obtained. be able to. In addition, it is possible to obtain a stable and highly accurate substrate without deformation after cutting. The photoreceptor using the substrate is less susceptible to the influence of the shaking of the substrate during image formation, so that a good image can be obtained.

以下、本発明を詳細に説明する。本発明の電子写真感光体用基体の材料としては、電子写真感光体用基体用に使用できる金属材料であれば限定されないが、アルミニウム製材料が使用されることが好ましい。本発明におけるアルミニウム製材料とは、アルミニウム或いはアルミニウム合金を示す。アルミニウム製材料は、加工時の切削抵抗により加工用バイトから逃げてしまい、精度が悪くなる可能性があるなどの点から、ビッカース硬度40Hv以上であることが好ましい。   Hereinafter, the present invention will be described in detail. The material for the electrophotographic photoreceptor substrate of the present invention is not limited as long as it is a metal material that can be used for the electrophotographic photoreceptor substrate, but an aluminum material is preferably used. The aluminum material in the present invention refers to aluminum or an aluminum alloy. The aluminum material preferably has a Vickers hardness of 40 Hv or more from the viewpoint that it may escape from the cutting tool due to cutting resistance during processing and the accuracy may deteriorate.

該金属材料は、通常、ポートホール法、マンドレル法等の押出加工により円筒状に加工された後、所定の肉厚、長さ、外径寸法の円筒とするため、引抜加工、切削加工等による処理加工が行なわれ、電子写真感光体用基体とされる。ここで、押出加工処理後の円筒状金属材料を「押出管」、引抜加工処理後所定の長さに切断されたものを「引抜管」と呼ぶ。   The metal material is usually formed into a cylinder having a predetermined thickness, length, and outer diameter after being processed into a cylindrical shape by an extrusion process such as a porthole method or a mandrel method. Processing is performed to obtain an electrophotographic photosensitive member substrate. Here, the cylindrical metal material after the extrusion processing is referred to as an “extruded tube”, and the one cut into a predetermined length after the drawing processing is referred to as a “drawn tube”.

本発明においては、押出加工処理はポートホール法、マンドレル法のどちらを用いても良いが、ポートホール法を用いた方が押出管の偏肉が出しやすく、歩留も高く有利である。押出加工処理の手法としては、熱間押出加工方法が最も一般的に採用される。ここで、偏肉とは押出管肉厚を円周方向に6等分以上分割して測定したときの肉厚の偏差である。押出管の偏肉は、0.2mm以下、好ましくは0.15mm以下、最も好適には0.1mm以下とすることが高精度な基体を得るために好ましい。   In the present invention, either the porthole method or the mandrel method may be used for the extrusion processing. However, the use of the porthole method is advantageous in that the extruded tube can be easily made uneven in thickness and the yield is high. As a method for the extrusion process, a hot extrusion method is most generally employed. Here, the uneven thickness is a deviation in the thickness when the thickness of the extruded tube is measured by dividing it into six equal parts or more in the circumferential direction. The uneven thickness of the extruded tube is preferably 0.2 mm or less, preferably 0.15 mm or less, and most preferably 0.1 mm or less in order to obtain a highly accurate substrate.

引抜加工処理の手法としては、冷間引抜加工が施されることが好ましく、その引抜回数は1回、引抜後の矯正加工は行わず、そのまま所定の長さに切断することが好ましい。ここで得られた引抜管の外周基準振れを中央部において、0.1mm以下、より好ましくは0.07mm以下、最も好適には0.04mm以下とし、管端において0.03mm以下、より好ましくは0.02mm以下、最も好適には0.01mm以下とする。ここで、管端の外周基準振れとは、その基準を引抜管端部より10mm程度としたときの引抜管端部より10mm付近の外周基準コロ振れ値であり、中央部の外周基準振れとは基準を引抜管端部より10mm程度としたときの引抜管中央部付近の外周基準コロ振れ値である。上記偏肉及びかかる外周基準振れ値を達成することにより、切削加工処理後の精度が中央の振れ量で20μmを下回る高精度の基体を安定して得ることができる。   As a method of the drawing process, it is preferable to perform cold drawing, and the number of times of drawing is 1, and it is preferable to cut the sheet as it is to a predetermined length without performing the straightening after drawing. The outer peripheral reference runout of the drawn tube obtained here is 0.1 mm or less, more preferably 0.07 mm or less, most preferably 0.04 mm or less at the center, and 0.03 mm or less, more preferably at the tube end. 0.02 mm or less, and most preferably 0.01 mm or less. Here, the outer peripheral reference runout at the tube end is the outer reference rollout value around 10 mm from the drawn tube end when the reference is about 10 mm from the drawn tube end. This is the outer peripheral reference roller runout value near the center of the drawing tube when the reference is about 10 mm from the end of the drawing tube. By achieving the above-described uneven thickness and the outer peripheral reference runout value, it is possible to stably obtain a highly accurate base body whose accuracy after the cutting process is less than 20 μm in the center runout amount.

また、引抜管の内径を幅20μmで層別すること、好ましくは10μmで層別すること、最も好適には幅5μmで層別すること、すなわち、引抜管の内径バラツキを±20μm、好ましくは±10μm、最も好適には±5μmとすることで、切削加工処理後にバラツキの少ない基体が得られる。切削加工処理時には超精密旋盤を使用し、治工具の芯出しに細心の注意を払うことが必要である。切削加工処理の条件としては特に限定されないが、ごく一般的な条件として主軸回転数5,000回転、送りスピード0.4mm/rev程度で加工される。   Further, the inner diameter of the drawn tube is stratified by a width of 20 μm, preferably stratified by 10 μm, most preferably stratified by a width of 5 μm, that is, the inner diameter variation of the drawn tube is ± 20 μm, preferably ± By setting the thickness to 10 μm, most preferably ± 5 μm, a substrate with little variation after the cutting process can be obtained. When cutting, it is necessary to use an ultra-precision lathe and pay close attention to the centering of the tool. The cutting process conditions are not particularly limited, but as general conditions, the machining is performed at a spindle speed of 5,000 and a feed speed of about 0.4 mm / rev.

特に、高精度の基体を得るためには、両側の内径受けチャック治具の回転振れを抑えて加工することが重要である。すなわち、該内径受けチャック治具の旋盤の軸に対する振れ量を10μm以下、好ましくは5μm以下に抑えて加工することが好ましい。また、該内径受けチャック治具は、加工する引抜管内径の層別幅の中央値に対して0〜50μmのしめしろを持つものを使用することが好ましい。また、このような本発明の方法は基体の外径がφ40mm未満のものに対して使用されることでさらに好ましい効果を得ることができる。   In particular, in order to obtain a highly accurate substrate, it is important to perform processing while suppressing rotational runout of the inner diameter receiving chuck jigs on both sides. That is, it is preferable to process the inner diameter receiving chuck jig with the deflection amount with respect to the lathe axis being 10 μm or less, preferably 5 μm or less. Moreover, it is preferable to use the inner diameter receiving chuck jig having an interference of 0 to 50 μm with respect to the median value of the stratified width of the drawn pipe inner diameter to be processed. Further, such a method of the present invention can obtain a more preferable effect by being used for a substrate having an outer diameter of less than φ40 mm.

前記の様にして作製された電子写真感光体用基体は、基体上にそのまま感光層を形成してもよいが、濃度ムラを防止する上でブロッキング層を形成した上に感光層を形成することが好ましい。ここで、ブロッキング層とは、陽極酸化被膜や下引き層等を示す。   The electrophotographic photoreceptor substrate produced as described above may be directly formed with a photosensitive layer on the substrate. However, in order to prevent density unevenness, a photosensitive layer is formed after forming a blocking layer. Is preferred. Here, the blocking layer refers to an anodized film, an undercoat layer, and the like.

陽極酸化被膜は、基体表面に陽極酸化処理を施すことにより形成される。陽極酸化処理を施す前に、酸、アルカリ、有機溶剤、界面活性剤、エマルジョン、電解などの各種脱脂洗浄方法により脱脂処理されることが好ましい。陽極酸化被膜は通常の方法、例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸などの酸性浴中で、陽極酸化処理することにより形成されるが、硫酸中での陽極酸化処理が最も良好な結果を与える。硫酸中での陽極酸化処理の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は0〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、これに限られるものではない。このようにし
て形成された陽極酸化被膜の膜厚としては、通常は20μm以下であり、好ましくは10μm以下、更に好ましくは7μm以下である。
The anodized film is formed by subjecting the substrate surface to an anodizing treatment. Prior to the anodizing treatment, it is preferable to perform a degreasing treatment by various degreasing cleaning methods such as acid, alkali, organic solvent, surfactant, emulsion, electrolysis and the like. An anodized film is formed by an anodizing treatment in an ordinary method, for example, an acidic bath such as chromic acid, sulfuric acid, oxalic acid, boric acid, sulfamic acid, etc. Give good results. In the case of anodizing treatment in sulfuric acid, the sulfuric acid concentration is 100 to 300 g / l, the dissolved aluminum concentration is 2 to 15 g / l, the liquid temperature is 0 to 30 ° C., the electrolysis voltage is 10 to 20 V, and the current density is 0.5. It is preferably set within the range of ˜2 A / dm 2 , but is not limited thereto. The thickness of the anodic oxide film thus formed is usually 20 μm or less, preferably 10 μm or less, more preferably 7 μm or less.

陽極酸化処理された基体は封孔処理や染色処理を行うことができる。封孔処理は多孔質層中に水和酸化アルミニウム等を成長させることにより封孔する工程である。封孔処理方法は通常の方法でよいが、例えばニッケルイオンを含む液(例えば酢酸ニッケルを含む液、フッ化ニッケルを含む液)に浸漬させ施されることが好ましい。また、染色処理を行う場合は、有機、無機化合物塩溶液中に基体を浸漬しそれらの塩を吸着させる。具体的にはアゾ系などの水溶性有機染料1〜10g/l、液温20〜60℃、pH3〜9、浸漬時間1〜20分のような条件で行う。   The anodized substrate can be sealed or dyed. The sealing treatment is a step of sealing by growing hydrated aluminum oxide or the like in the porous layer. The sealing treatment method may be a normal method, but is preferably performed by dipping in a liquid containing nickel ions (for example, a liquid containing nickel acetate or a liquid containing nickel fluoride). In the case of dyeing, the base is immersed in an organic or inorganic compound salt solution to adsorb those salts. Specifically, it is carried out under conditions such as azo-based water-soluble organic dyes 1 to 10 g / l, liquid temperature 20 to 60 ° C., pH 3 to 9, and immersion time 1 to 20 minutes.

下引き層としては、ポリビニルアルコール、カゼイン、ポリビニルピロリドン、ポリアクリル酸、セルロース類、ゼラチン、デンプン、ポリウレタン、ポリイミド、ポリアミド等の有機層を用いることができる。なかでも、基体との接着性に優れ、電荷発生層塗布液に用いられる溶媒に対する溶解性の小さなポリアミド樹脂が好ましい。下引き層中には、アルミナ、チタニア等の金属酸化物微粒子や有機または無機の色素を含有させることが効果的である。下引き層の膜厚は通常0.1〜10μm、好ましくは0.2〜5μmである。本発明においては、陽極酸化被膜が形成された上に下引き層を形成することもできる。   As the undercoat layer, organic layers such as polyvinyl alcohol, casein, polyvinyl pyrrolidone, polyacrylic acid, celluloses, gelatin, starch, polyurethane, polyimide, and polyamide can be used. Of these, a polyamide resin having excellent adhesion to the substrate and low solubility in the solvent used in the charge generation layer coating solution is preferable. In the undercoat layer, it is effective to contain fine metal oxide particles such as alumina and titania and organic or inorganic pigments. The thickness of the undercoat layer is usually 0.1 to 10 μm, preferably 0.2 to 5 μm. In the present invention, an undercoat layer can be formed on the anodic oxide film.

前記基体上には感光層が形成される。感光層は電荷発生物質を含有する電荷発生層と電荷輸送層をこの順に積層したもの、逆に積層したもの、または電荷輸送媒体中に電荷発生物質粒子を分散したいわゆる単層型などいずれも用いることができるが、電荷発生層および電荷輸送層を有する積層型感光層が好ましい。感光層が単層構造の場合には、感光材料が結着材料に分散してなる公知のものが使用される。例えば、色素増感されたZnO感光層、CdS感光層、電荷発生物質を電荷輸送物質に分散させた感光層が挙げられる。   A photosensitive layer is formed on the substrate. As the photosensitive layer, a layer in which a charge generation layer containing a charge generation material and a charge transport layer are laminated in this order, a layer in which layers are reversed, or a so-called single layer type in which charge generation material particles are dispersed in a charge transport medium are used. However, a laminated photosensitive layer having a charge generation layer and a charge transport layer is preferred. When the photosensitive layer has a single layer structure, a known material in which a photosensitive material is dispersed in a binder material is used. Examples thereof include a dye-sensitized ZnO photosensitive layer, a CdS photosensitive layer, and a photosensitive layer in which a charge generation material is dispersed in a charge transport material.

電荷発生層には、電荷発生物質とバインダー樹脂とを含む。電荷発生物質としては、電子写真感光体に用いられる物質であれば特に限定されるものではなく、具体的にはセレン及びその合金、ヒ素−セレン、硫化カドミウム、酸化亜鉛、その他の無機光導電体、フタロシアニン、アゾ、キナクリドン、多環キノン、ペリレン、インジゴ、ベンズイミダゾールなどの有機顔料を使用することができる。特に銅、塩化インジウム、塩化カリウム、スズ、オキシチタニウム、亜鉛、バナジウムなどの金属、またはその酸化物や塩化物の配位したフタロシアニン類、無金属フタロシアニン類などのフタロシアニン顔料、または、モノアゾ、ビスアゾ、トリスアゾ、ポリアゾ類などのアゾ顔料が好ましい。これらのうち特にフタロシアニン顔料がより好ましく、特定結晶系を有するオキシチタニウムフタロシアニンが特に好ましい。これは、オキシチタニウムフタロシアニンが通常の顔料より熱による結晶変換が起きやすいためである。   The charge generation layer includes a charge generation material and a binder resin. The charge generation material is not particularly limited as long as it is a material used for an electrophotographic photosensitive member. Specifically, selenium and its alloys, arsenic-selenium, cadmium sulfide, zinc oxide, and other inorganic photoconductors. Organic pigments such as phthalocyanine, azo, quinacridone, polycyclic quinone, perylene, indigo, and benzimidazole can be used. In particular, metals such as copper, indium chloride, potassium chloride, tin, oxytitanium, zinc, vanadium, or phthalocyanine pigments such as phthalocyanines coordinated with oxides and chlorides thereof, metal-free phthalocyanines, or monoazo, bisazo, Azo pigments such as trisazo and polyazos are preferred. Of these, phthalocyanine pigments are particularly preferred, and oxytitanium phthalocyanine having a specific crystal system is particularly preferred. This is because oxytitanium phthalocyanine is more susceptible to crystal conversion by heat than ordinary pigments.

このようなオキシチタニウムフタロシアニンの例としては、CuKα線によるX線回折においてブラッグ角(2θ±0.2゜)27.3゜に最大回折ピークを示すものがあげられるが、これに限定されるものではない。このオキシチタニウムフタロシアニンの結晶型は、一般にはY型あるいはD型と呼ばれているものであり、例えば特開昭62−67094号公報の第2図(同公報ではII型と称されている)、特開平2−8256号公報の第1図、特開昭64−82045号公報の第1図、電子写真学会誌第92巻(1990年発行)第3号第250〜258頁(同刊行物ではY型と称されている)に示されたものである。この結晶型オキシチタニウムフタロシアニンは、27.3°に最大回折ピークを示すことが特徴であるが、これ以外に通常7.4°、9.7°、24.2°にピークを示す。   Examples of such oxytitanium phthalocyanine include those showing a maximum diffraction peak at a Bragg angle (2θ ± 0.2 °) of 27.3 ° in X-ray diffraction by CuKα rays, but are not limited thereto. is not. The crystal form of oxytitanium phthalocyanine is generally called Y type or D type. For example, FIG. 2 of Japanese Patent Application Laid-Open No. 62-67094 (referred to as type II in the same publication). Fig. 1 of JP-A-2-8256, Fig. 1 of JP-A-64-82045, Journal of Electrophotographic Society Vol. 92 (issued in 1990), No. 3, pages 250-258 (the same publication) Is referred to as Y-type). This crystalline oxytitanium phthalocyanine is characterized by having a maximum diffraction peak at 27.3 °, but normally has peaks at 7.4 °, 9.7 °, and 24.2 °.

回折ピークの強度は、結晶性、試料の配向性および測定法により変化する場合もあるが、粉末結晶のX線回折を行う場合に通常用いられるブラッグ−ブレンターノの集中法による測定では、上記の結晶型オキシチタニウムフタロシアニンは27.3°に最大回折ピークを有する。また、薄膜光学系(一般に薄膜法或いは平行法とも呼ばれる)により測定された場合には、試料の状態によっては27.3°が最大回折ピークとならない場合があるが、これは結晶粉末が特定の方向に配向しているためと考えられる。   The intensity of the diffraction peak may vary depending on the crystallinity, the orientation of the sample, and the measurement method. However, in the measurement by the Bragg-Brentano concentration method usually used when performing X-ray diffraction of a powder crystal, Type oxytitanium phthalocyanine has a maximum diffraction peak at 27.3 °. In addition, when measured by a thin film optical system (generally called thin film method or parallel method), 27.3 ° may not be the maximum diffraction peak depending on the state of the sample. This is probably because it is oriented in the direction.

分散媒としては、電子写真感光体の製造工程で用いられるものであれば特に限定されるものではなく種々の溶媒を用いてよい。例えば、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,2−ジメトキシエタン等のエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル等のエステル類;メタノール、エタノール、プロパノール等のアルコール類;トルエン、キシレン等の芳香族炭化水素を単独あるいは2種以上混合して使用することができる。用いる分散媒の量は分散が充分行え、且つ分散液中に有効量の電荷発生物質が含まれる限りいかなる量でもよく、通常は分散時の分散液中の電荷発生物質の濃度にして3〜20wt%、より好ましくは4〜20wt%程度が好ましい。   The dispersion medium is not particularly limited as long as it is used in the production process of the electrophotographic photosensitive member, and various solvents may be used. For example, ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and 1,2-dimethoxyethane; ketones such as acetone, methyl ethyl ketone and cyclohexanone; esters such as methyl acetate and ethyl acetate; alcohols such as methanol, ethanol and propanol Aromatic hydrocarbons such as toluene and xylene can be used alone or in admixture of two or more. The amount of the dispersion medium to be used can be any amount as long as the dispersion can be sufficiently dispersed and an effective amount of the charge generation material is contained in the dispersion, and is usually 3 to 20 wt as the concentration of the charge generation material in the dispersion during dispersion. %, More preferably about 4 to 20 wt%.

バインダー樹脂としては、電子写真感光体に使用されるものであれば特に限定されるものではないが、具体的には、ポリビニルブチラール、ポリビニルアセタール、ポリエステル、ポリカーボネート、ポリスチレン、ポリエステルカーボネート、ポリスルホン、ポリイミド、ポリメチルメタクリレート、ポリ塩化ビニル等のビニル重合体、及びその共重合体、フェノキシ、エポキシ、シリコーン樹脂等またこれらの部分的架橋硬化物等を単独あるいは2種以上用いることができる。バインダー樹脂と電荷発生物質との混合方法としては例えば、電荷発生物質を分散処理工程にバインダー樹脂を粉末のまま或いはそのポリマー溶液を加え同時に分散する方法、分散処理工程で得られた分散液をバインダー樹脂のポリマー溶液中に混合する方法、或いは逆に分散液中にポリマー溶液を混合する方法等のいずれかの方法を用いてもかまわない。   The binder resin is not particularly limited as long as it is used for an electrophotographic photoreceptor, and specifically, polyvinyl butyral, polyvinyl acetal, polyester, polycarbonate, polystyrene, polyester carbonate, polysulfone, polyimide, Vinyl polymers such as polymethyl methacrylate and polyvinyl chloride, and copolymers thereof, phenoxy, epoxy, silicone resins, etc., and partially crosslinked cured products thereof can be used singly or in combination. As a method for mixing the binder resin and the charge generation material, for example, a method of dispersing the charge generation material in a dispersion treatment step while the binder resin is powdered or adding a polymer solution thereof, and dispersing the dispersion liquid obtained in the dispersion treatment step as a binder. Any method such as a method of mixing in a polymer solution of a resin or a method of mixing a polymer solution in a dispersion may be used.

次にここで得られた分散液は、塗布をするのに適した液物性にするために、種々の溶剤を用いて希釈してもかまわない。このような溶剤としては、例えば前記分散媒として例示した溶媒を使用することができる。電荷発生物質とバインダー樹脂との割合は特に制限はないが一般には樹脂100重量部に対して電荷発生物質が5〜500重量部の範囲より使用される。また必要に応じて電荷輸送物質を含むことができる。電荷輸送物質としては例えば、ポリビニルカルバゾール、ポリビニルピレン、ポリアセナフチレン等の有機高分子化合物、フルオレノン誘導体、テトラシアノキシジメタン、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、ジフェノキノン誘導体などの電子吸引性物質、カルバゾール、インドール、イミダゾール、オキサゾール、ピラゾール、オキサジアゾール、ピラゾリン、チアジアゾールなどの複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、或いはこれらの化合物からなる基を主鎖もしくは側鎖に有する重合体などの電子供与性物質が挙げられる。電荷輸送物質とバインダー樹脂との割合はバインダー樹脂100重量部に対して電荷輸送物質が5〜500重量部の範囲により使用される。   Next, the dispersion obtained here may be diluted with various solvents in order to obtain liquid properties suitable for coating. As such a solvent, the solvent illustrated as the said dispersion medium can be used, for example. The ratio between the charge generation material and the binder resin is not particularly limited, but generally the charge generation material is used in the range of 5 to 500 parts by weight with respect to 100 parts by weight of the resin. Moreover, a charge transport material can be included as required. Examples of the charge transport material include organic polymer compounds such as polyvinyl carbazole, polyvinyl pyrene, and polyacenaphthylene, fluorenone derivatives, tetracyanoxydimethane, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, and diphenoquinone derivatives. , Carbazole, indole, imidazole, oxazole, pyrazole, oxadiazole, pyrazoline, thiadiazole and other heterocyclic compounds, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, stilbene derivatives, or groups comprising these compounds on the main chain or side Examples thereof include an electron donating substance such as a polymer in the chain. The ratio of the charge transport material to the binder resin is such that the charge transport material is 5 to 500 parts by weight with respect to 100 parts by weight of the binder resin.

この様にして調製された分散液を用いて、切削加工後の基体上或いは下引き層や陽極酸化被膜の形成された基体上に電荷発生層を形成させ、その上に電荷輸送層を積層させて感光層を形成する、或いは該基体上に電荷輸送層を形成しその上に前記分散液を用いて電荷発生層を形成し感光層を形成する、或いは該基体上に前記分散液を用いて電荷発生層を形成させ感光層とする、のいずれかの構造で感光層を形成することが出来る。電荷発生層の膜厚は電荷輸送層と積層させて感光層を形成する場合0.1〜10μmの範囲が好適であり電荷輸送層の膜厚は10〜40μmが好適である。単層構造で感光層を形成する場合の感光層の膜厚は5〜40μmの範囲が好適である。   Using the dispersion thus prepared, a charge generation layer is formed on the substrate after cutting or a substrate on which an undercoat layer or an anodized film is formed, and a charge transport layer is laminated thereon. A photosensitive layer is formed, or a charge transport layer is formed on the substrate, and a charge generation layer is formed thereon using the dispersion, thereby forming a photosensitive layer, or using the dispersion on the substrate. The photosensitive layer can be formed by any structure of forming a charge generation layer and forming a photosensitive layer. When the charge generating layer is laminated with the charge transport layer to form a photosensitive layer, the range of 0.1 to 10 μm is preferable, and the thickness of the charge transport layer is preferably 10 to 40 μm. When forming the photosensitive layer with a single layer structure, the thickness of the photosensitive layer is preferably in the range of 5 to 40 μm.

電荷輸送層は、上記電荷発生層の上に、バインダー樹脂として優れた性能を有する公知のポリマーと混合して電荷輸送物質と共に適当な溶剤中に溶解し、必要に応じて電子吸引性化合物、あるいは、可塑剤、顔料その他の添加剤を添加して得られる塗布液を塗布することにより、製造することができる。   The charge transport layer is mixed with a known polymer having excellent performance as a binder resin on the charge generation layer and dissolved in a suitable solvent together with the charge transport material, and if necessary, an electron withdrawing compound, or It can be produced by applying a coating liquid obtained by adding a plasticizer, a pigment and other additives.

電荷輸送層中の電荷輸送物質としては、上記の電荷輸送物質を使用することができる。電荷輸送物質とともに使用されるバインダー樹脂としては種々の公知の樹脂が使用できる。ポリカーボネート樹脂、ポリエステル樹脂、ポリアリレート樹脂、アクリル樹脂、メタクリレート樹脂、スチレン樹脂、シリコーン樹脂などの熱可塑性樹脂や硬化性の樹脂が使用できる。とくに摩耗、傷の発生の少ないポリカーボネート樹脂、ポリアリレート樹脂、ポリエステル樹脂が好ましい。ポリカーボネート樹脂は、そのビスフェノール成分としてビスフェノールA、ビスフェノールC、ビスフェノールP、ビスフェノールZ、あるいは、公知の種々の成分が使用出来る。また、これらの成分からなる共重合物であってもよい。電荷輸送物質とバインダー樹脂の配合比率は、バインダー樹脂100重量部に対して例えば10〜200重量部、好ましくは30〜150重量部の範囲で配合される。積層型感光体の場合、電荷輸送層として上記の成分を主成分として形成される。   As the charge transport material in the charge transport layer, the charge transport materials described above can be used. Various known resins can be used as the binder resin used together with the charge transport material. Thermoplastic resins and curable resins such as polycarbonate resin, polyester resin, polyarylate resin, acrylic resin, methacrylate resin, styrene resin, and silicone resin can be used. In particular, polycarbonate resins, polyarylate resins, and polyester resins that cause less wear and scratches are preferable. The polycarbonate resin can use bisphenol A, bisphenol C, bisphenol P, bisphenol Z, or various known components as its bisphenol component. Moreover, the copolymer which consists of these components may be sufficient. The mixing ratio of the charge transport material and the binder resin is, for example, 10 to 200 parts by weight, preferably 30 to 150 parts by weight, based on 100 parts by weight of the binder resin. In the case of a multilayer photoreceptor, the charge transport layer is formed with the above components as the main component.

電荷輸送層用塗布液に用いる溶剤としては、テトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、アニソール等のエーテル類;メチルエチルケトン、2,4−ペンタンジオン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族炭化水素;酢酸エチル、蟻酸メチル、マロン酸ジメチル等のエステル類;3−メトキシブチルアセテート、プロピレングリコールメチルエーテルアセテート等のエーテルエステル類;ジクロロメタン、ジクロロエタン等の塩素化炭化水素などが挙げられる。もちろんこれらの中から1種または2種以上選択して用いてもよい。好ましくは、テトラヒドロフラン、1,4−ジオキサン、2,4−ペンタンジオン、アニソール、トルエン、マロン酸ジメチル、3−メトキシブチルアセテート、プロピレングリコールメチルエーテルアセテートの中から選択するのが好ましい。   Solvents used for the coating solution for the charge transport layer include ethers such as tetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane and anisole; ketones such as methyl ethyl ketone, 2,4-pentanedione and cyclohexanone; toluene, Aromatic hydrocarbons such as xylene; esters such as ethyl acetate, methyl formate and dimethyl malonate; ether esters such as 3-methoxybutyl acetate and propylene glycol methyl ether acetate; chlorinated hydrocarbons such as dichloromethane and dichloroethane Can be mentioned. Of course, one or more of these may be selected and used. Preferably, it is selected from tetrahydrofuran, 1,4-dioxane, 2,4-pentanedione, anisole, toluene, dimethyl malonate, 3-methoxybutyl acetate, and propylene glycol methyl ether acetate.

更に、本発明の電子写真感光体の感光層は成膜性、可とう性、塗布性、機械的強度を向上させるために周知の可塑剤、酸化防止剤、紫外線吸収剤、レベリング剤を含有していてもよい。更に、感光層の上に、機械的特性の向上及びオゾン,NOx等の耐ガス特性向上のために、オーバーコート層を設けても良い。更に必要に応じて、接着層、中間層、透明絶縁層等を有していてもよいことは言うまでもない。   Further, the photosensitive layer of the electrophotographic photoreceptor of the present invention contains a well-known plasticizer, antioxidant, ultraviolet absorber and leveling agent in order to improve the film formability, flexibility, coatability and mechanical strength. It may be. Furthermore, an overcoat layer may be provided on the photosensitive layer in order to improve mechanical properties and gas resistant properties such as ozone and NOx. Furthermore, it goes without saying that an adhesive layer, an intermediate layer, a transparent insulating layer, and the like may be provided as necessary.

本発明において、前記の各層を形成するための塗布操作は、従来公知の塗布方法に従う。例えば、浸漬塗布法、スプレー塗布法、スピンナーコーティング法、ブレードコーティング法等を採用して行うことができる。   In the present invention, the coating operation for forming each of the layers follows a conventionally known coating method. For example, a dip coating method, a spray coating method, a spinner coating method, a blade coating method, or the like can be employed.

本発明で用いる画像形成装置としては、モノクロプリンター、複写機、カラープリンター、カラー複写機、ファクシミリなどがあげられる。特に、本発明の感光体は高画質の画像を提供できることから、高解像度の画像形成装置に適している。特に、600dpi以上の解像度の画像を得る画像形成装置にも利用することができる。また、本発明の感光体を使用する画像形成装置においては、通常、従来公知の波長域を有するレーザー光等の光源を利用することで本発明の効果を得ることが出来るが、380nm〜600nmに波長域を有する光源を利用する該画像形成装置においても、本発明の奏する効果は達成されると考えられる。   Examples of the image forming apparatus used in the present invention include a monochrome printer, a copier, a color printer, a color copier, and a facsimile. In particular, since the photoconductor of the present invention can provide a high-quality image, it is suitable for a high-resolution image forming apparatus. In particular, it can also be used in an image forming apparatus that obtains an image having a resolution of 600 dpi or more. Moreover, in an image forming apparatus using the photoreceptor of the present invention, the effect of the present invention can be usually obtained by using a light source such as a laser beam having a conventionally known wavelength range. Even in the image forming apparatus using a light source having a wavelength range, it is considered that the effect of the present invention is achieved.

該画像形成装置には、現像ユニット(帯電器、現像器、定着器、除電器、クリーナー)、電子写真感光体、光学ユニット(露光器)、ホッパー、スタッカー、記録媒体(用紙)を搬送する搬送路、定着ユニット等が設けられている。
ホッパーは、記録媒体(用紙)を搬送路に提供するものである。スタッカーは、記録済みの媒体(印刷済み用紙)を積み重ねて保存するものである。搬送路は、記録媒体(用紙)を搬送するものである。定着ユニットは、電子写真感光体から記録媒体(用紙)に転写された画像を定着するものである。
The image forming apparatus includes a developing unit (charging device, developing device, fixing device, static eliminator, cleaner), electrophotographic photosensitive member, optical unit (exposure device), hopper, stacker, and conveyance for recording medium (paper). A path, a fixing unit and the like are provided.
The hopper provides a recording medium (paper) to the conveyance path. The stacker is a stack for storing recorded media (printed sheets). The conveyance path conveys a recording medium (paper). The fixing unit fixes an image transferred from the electrophotographic photosensitive member to a recording medium (paper).

現像ユニットは、電子写真感光体に形成された静電潜像に現像剤を与えて現像を行うものである。電子写真感光体は、得ようとする画像に応じた静電潜像を作成後、現像ユニットで現像された画像を記録媒体(用紙)に転写するものである。光学ユニットは、各画像データ(情報)により変調されたレーザー光で電子写真感光体上を走査して静電潜像を形成するものである。   The developing unit performs development by applying a developer to the electrostatic latent image formed on the electrophotographic photosensitive member. The electrophotographic photosensitive member is to transfer an image developed by the developing unit to a recording medium (paper) after creating an electrostatic latent image corresponding to the image to be obtained. The optical unit scans the electrophotographic photosensitive member with a laser beam modulated by each image data (information) to form an electrostatic latent image.

画像形成装置の動作を以下説明する。コロトロン、スコロトロン等の帯電器を用いて電子写真感光体表面略均一に帯電するコロナ帯電方式、或いは電圧を印可した導電性の物体を直接感光体表面に接触させ導電性物体の表面から電子或いはイオンを感光体表面に与える接触帯電方式等により電子写真感光体を帯電させる。上位コンピューターは、画像、文字等の情報に基づき印刷指令を送る。上位コンピューターからの印刷指令時に、印刷準備が整っていれば、データ要求を行い、各データーが送られてくると、画像形成装置の光学ユニットで各データに対応して変調されたレーザー光で電子写真感光体上を走査する。これにより、レーザー光が照射された電子写真感光体上の部分は、電荷が除去され、電子写真感光体上に静電潜像が形成される。その後、現像ユニットで電子写真感光体に形成された静電潜像にトナー等の現像剤を与えて、電子写真感光体上に可視像を形成する。次に、記録媒体(用紙)をこの可視像に重ね、記録媒体(用紙)の裏から帯電器で現像剤とは逆の電荷を記録媒体(用紙)に与え、静電力により可視像を記録媒体(用紙)に転写する。転写された可視像は、熱又は圧力により、記録媒体(用紙)に融着されて永久像とする。   The operation of the image forming apparatus will be described below. A corona charging system in which the surface of the electrophotographic photosensitive member is charged almost uniformly using a charger such as corotron or scorotron, or a conductive object to which a voltage is applied is brought into direct contact with the surface of the photosensitive body, and electrons or ions are emitted from the surface of the conductive object. The electrophotographic photosensitive member is charged by, for example, a contact charging method for imparting to the surface of the photosensitive member. The host computer sends a print command based on information such as images and characters. If printing is ready at the time of a print command from the host computer, a data request is made, and when each data is sent, it is electronically emitted by a laser beam modulated in accordance with each data by the optical unit of the image forming apparatus. Scan over the photographic photoreceptor. Thereby, the electric charge is removed from the portion on the electrophotographic photosensitive member irradiated with the laser beam, and an electrostatic latent image is formed on the electrophotographic photosensitive member. Thereafter, a developer such as toner is applied to the electrostatic latent image formed on the electrophotographic photosensitive member by the developing unit to form a visible image on the electrophotographic photosensitive member. Next, the recording medium (paper) is superimposed on the visible image, and a charge opposite to the developer is applied to the recording medium (paper) from the back of the recording medium (paper) with a charger, and the visible image is formed by electrostatic force. Transfer to a recording medium (paper). The transferred visible image is fused to a recording medium (paper) by heat or pressure to form a permanent image.

一方、転写後の電子写真感光体上の潜像電荷は光により除電される。また、転写されずに残った残留トナー等の現像剤は、クリーナーにより除去する。このようなプロセスを繰り返すことにより連続的に画像形成を行う。また、フルカラー印刷を行う場合には、上述した画像形成プロセスを各色毎に行いカラー画像を得る。   On the other hand, the latent image charge on the electrophotographic photosensitive member after transfer is neutralized by light. Further, the developer such as residual toner remaining without being transferred is removed by a cleaner. Image formation is continuously performed by repeating such a process. When full-color printing is performed, the above-described image forming process is performed for each color to obtain a color image.

また、記録媒体(用紙)がホッパーで一枚ずつ搬送路に送られ、ベルト状の搬送手段で記録媒体(用紙)が搬送される間に電子写真感光体に形成された可視像を順次記録媒体(用紙)に転写していき、定着ユニットで用紙に転写された像を定着し、最後にスタッカーで印刷済みの記録媒体(用紙)を積み重ねて保管する。   In addition, the recording medium (paper) is sent to the conveyance path one by one by the hopper, and the visible image formed on the electrophotographic photosensitive member is sequentially recorded while the recording medium (paper) is conveyed by the belt-shaped conveyance means. The image is transferred to the medium (paper), the image transferred onto the paper is fixed by the fixing unit, and finally the printed recording medium (paper) is stacked and stored by the stacker.

なお、画像形成装置としては、フルカラー印刷を行う場合には、電子写真感光体上に付着したトナー等の現像剤を、一旦一つの中間転写ベルトに転写し、中間転写ベルト上で各色のトナーを合わせ、カラー可視像とした後、転写手段を用いて記録媒体(用紙)にカラー画像を形成するものであってもよい。   As for the image forming apparatus, when full color printing is performed, a developer such as toner attached on the electrophotographic photosensitive member is once transferred to one intermediate transfer belt, and each color toner is transferred onto the intermediate transfer belt. In addition, after forming a color visible image, a color image may be formed on a recording medium (paper) using a transfer unit.

(実施例1)
6000系アルミニウム合金の鋳造を行い、4ポートのダイスを使用して熱間押出し加工により押出管を得た(ポートホール法)。押出管で偏肉0.2mm以下の押出管を得るため、アルミニウムのビレット、及びダイス、コンテナ内を処理前に十分に加熱し、さらにダイスの形状については押出し時にメタルフローがスムーズになるような形状を採用した。押出し後、押出管は押出管の前後の400mm程度を切断し、切断した部分の偏肉を測定して偏肉が0.2mm以下であることを確認した。本実施例においては、該偏肉は0.17mmであった。
Example 1
A 6000 series aluminum alloy was cast, and an extruded tube was obtained by hot extrusion using a 4-port die (porthole method). In order to obtain an extruded tube with an uneven thickness of 0.2 mm or less with an extruded tube, the aluminum billet, die, and container are heated sufficiently before processing, and the metal flow is smooth during extrusion for the shape of the die. Adopted the shape. After extrusion, the extruded tube was cut about 400 mm before and after the extruded tube, and the uneven thickness of the cut portion was measured to confirm that the uneven thickness was 0.2 mm or less. In this example, the uneven thickness was 0.17 mm.

この押出管にさらに冷間引抜き加工(1回抽伸)を行い、外径φ30.3mm、内径φ28.5mmの引抜管を得た。この引抜管を丸鋸やレーザーなどで切断を行い、矯正加工をせずに、最終的に外径φ30.3mm、内径φ28.5mm、長さ342mmの引抜管を得た。こうして作られた引抜管を外径基準のコロ振れ測定器(レーザ変位計LS-5040,LS-5500:(株)キーエンス)で中央部の振れを0.08mm以下、管端の振れを0.02mm以下で選別し、さらに内径φ28.5mmをセンター値として幅10μmで層別したものを準備した。   This extruded tube was further subjected to cold drawing (single drawing) to obtain a drawn tube having an outer diameter of 30.3 mm and an inner diameter of 28.5 mm. The drawn tube was cut with a circular saw or a laser, and finally a drawn tube having an outer diameter of 30.3 mm, an inner diameter of 28.5 mm, and a length of 342 mm was obtained without correction. The drawn tube thus produced was subjected to a runout measuring device (Laser Displacement Meter LS-5040, LS-5500: Keyence Co., Ltd.) based on the outer diameter, and the center deflection was 0.08 mm or less, and the tube end deflection was 0. Screening was performed with a diameter of 02 mm or less, and a layer with an inner diameter of 28.5 mm as a center value and a width of 10 μm was prepared.

この引抜管を昌運工作所製精密旋盤SPA−5に、外径がφ28.53mmの大きさの内径受けチャック治具を旋盤の軸に対する外径の振れを5μmとして取り付けた。該内径受けチャック治具のしめしろは、引抜管の内径層別幅のセンター値に対して20μmであった。引抜管内径部を該治具の外径部に装着して切削加工を行い、電子写真感光体用基体を得た。該基体の外径はφ30mm、ビッカース硬度は53Hvであった。   This drawn tube was attached to a precision lathe SPA-5 manufactured by Changun Kogakusho with an inner diameter receiving chuck jig having an outer diameter of φ28.53 mm with an outer diameter runout of 5 μm with respect to the lathe axis. The interference of the inner diameter receiving chuck jig was 20 μm with respect to the center value of the inner diameter layer width of the drawn tube. The drawing tube inner diameter portion was attached to the outer diameter portion of the jig and cut to obtain an electrophotographic photosensitive member substrate. The outer diameter of the substrate was 30 mm, and the Vickers hardness was 53 Hv.

該基体を振れ測定器((株)スィンクス)で測定を実施したところ、中央の振れが全て20μm以下となり、良好な結果が得られた。   When the substrate was measured with a shake measuring instrument (Sinx Co., Ltd.), the center deflection was all 20 μm or less, and good results were obtained.

(実施例2)
引抜管の外径をφ20.3mm、内径をφ18.5mmとしたこと以外、実施例1と同様にして電子写真感光体用基体を得た。該基体を振れ測定器にて測定を実施したところ、中央の振れが全て20μm以下となり、良好な結果が得られた。
(Example 2)
An electrophotographic photoreceptor substrate was obtained in the same manner as in Example 1 except that the outer diameter of the drawn tube was 20.3 mm and the inner diameter was 18.5 mm. When the substrate was measured with a shake measuring instrument, all of the central shakes were 20 μm or less, and good results were obtained.

(比較例1)
押出管の偏肉を0.4mmとしたこと以外、実施例1と同様にして電子写真感光体用基体を得た。該基体を振れ測定器にて測定を実施したところ、中央の振れが20μmを超えるものが発生し、最大で27μmとなり、実施例よりも切削後精度のバラツキが大きくなった。
(Comparative Example 1)
A substrate for an electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the thickness deviation of the extruded tube was 0.4 mm. When the substrate was measured with a run-out measuring instrument, the center run-out exceeded 20 μm, and the maximum was 27 μm, and the variation in accuracy after cutting was greater than in the examples.

(比較例2)
押出管の偏肉を0.4mmとし、引抜管の中央部の外周基準振れが0.15mm、管端の振れが0.05mmであったこと以外、実施例1と同様にして電子写真感光体用基体を得た。該基体を振れ測定器にて測定を実施したところ、中央の振れが20μmを超えるものが発生し、最大で32μmとなり、実施例よりも切削後精度のバラツキが大きくなった。
(Comparative Example 2)
The electrophotographic photoreceptor in the same manner as in Example 1 except that the thickness deviation of the extruded tube was 0.4 mm, the outer peripheral reference deflection at the center of the drawn tube was 0.15 mm, and the tube end deflection was 0.05 mm. A substrate for use was obtained. When the substrate was measured with a run-out measuring instrument, the center run-out exceeded 20 μm, and the maximum was 32 μm. The variation in post-cutting accuracy was greater than in the examples.

(比較例3)
押出管の偏肉を0.4mm、内径受けチャック治具外径の大きさをφ28.47mmとしたこと以外、実施例1と同様にして電子写真感光体用基体を得た。該基体を振れ測定器にて測定を実施したところ、中央の振れが20μmを超えるものが発生し、最大で33μmとなり、実施例よりも切削後精度のバラツキが大きくなった。
(Comparative Example 3)
An electrophotographic photosensitive member substrate was obtained in the same manner as in Example 1 except that the uneven thickness of the extruded tube was 0.4 mm and the outer diameter of the inner diameter receiving chuck jig was φ28.47 mm. When the substrate was measured with a shake measuring instrument, the center runout exceeded 20 μm, which was 33 μm at the maximum, and the variation in accuracy after cutting was greater than in the examples.

(比較例4)
押出管の偏肉を0.4mm、内径受けチャック治具の旋盤の軸に対する外径の振れが20μmであったこと以外、実施例1と同様にして電子写真感光体用基体を得た。該基体を振れ測定器にて測定を実施したところ、中央の振れが20μmを超えるものが発生し、最大で41μmとなり、実施例よりも切削後精度のバラツキが大きくなった。
(Comparative Example 4)
A substrate for an electrophotographic photosensitive member was obtained in the same manner as in Example 1 except that the thickness deviation of the extruded tube was 0.4 mm and the deflection of the outer diameter with respect to the lathe axis of the inner diameter receiving chuck jig was 20 μm. When the substrate was measured with a run-out measuring instrument, the center run-out exceeded 20 μm, and the maximum was 41 μm. The variation in accuracy after cutting was greater than in the examples.

Claims (6)

表面に感光層が形成されて電子写真感光体が製造される電子写真感光体用基体の製造方法において、
基体用金属材料を押出加工処理し、偏肉が0.2mm以下である押出管を、
引抜加工処理し、所定の長さに切断して得られた引抜管の中央部の外周基準振れを0.1mm以下、管端の外周基準振れを0.03mm以下で選別し
次いで内径受けチャック治具を有する旋盤を用いた切削加工処理を施す
ことを特徴とする、電子写真感光体用基体の製造方法。
In the method for producing a substrate for an electrophotographic photosensitive member in which a photosensitive layer is formed on the surface to produce an electrophotographic photosensitive member,
Extrusion processing of the metal material for the base, and an extruded tube having an uneven thickness of 0.2 mm or less,
The outer peripheral reference runout at the center of the drawn tube obtained by drawing and cutting to a predetermined length is selected at 0.1 mm or less, and the outer peripheral reference runout at the pipe end is selected at 0.03 mm or less,
Next, a method for producing a substrate for an electrophotographic photosensitive member, comprising performing a cutting process using a lathe having an inner diameter receiving chuck jig.
前記引抜管の内径を測定し、該測定された引抜管の内径を幅20μmで層別して、層別幅の中央値に対して0〜50μmのしめしろを有する前記内径受けチャック治具を用いて、該層別された引抜管に対して切削加工処理を施すことを特徴とする請求項に記載の電子写真感光体用基体の製造方法。 Measuring the inner diameter of the drawn pipe , stratifying the measured inner diameter of the drawn pipe by a width of 20 μm, and providing the inner diameter receiving chuck jig having an interference of 0 to 50 μm with respect to the median value of the layered width. The method for producing a substrate for an electrophotographic photoreceptor according to claim 1 , wherein the layered drawn tube is subjected to a cutting process. 前記引抜管の内径を測定し、該測定された引抜管の内径を幅10μmで層別して、層別幅の中央値に対して0〜50μmのしめしろを有する前記内径受けチャック治具を用いて、該層別された引抜管に対して切削加工処理を施すことを特徴とする請求項に記載の電子写真感光体用基体の製造方法。 Measuring the inner diameter of the drawn pipe , stratifying the measured inner diameter of the drawn pipe by a width of 10 μm, and providing the inner diameter receiving chuck jig having an interference of 0 to 50 μm with respect to the median value of the layered width The method for producing a substrate for an electrophotographic photoreceptor according to claim 1 , wherein the layered drawn tube is subjected to a cutting process . 前記内径受けチャック治具の旋盤の軸に対する振れを10μm以下として切削加工処理を行うことを特徴とする、請求項2または3に記載の電子写真感光体用基体の製造方法。 4. The method of manufacturing a substrate for an electrophotographic photosensitive member according to claim 2 , wherein the inner diameter receiving chuck jig is subjected to a cutting process with a deflection with respect to a lathe axis of 10 [mu] m or less. 前記電子写真感光体用基体の外径がφ40mm未満であることを特徴とする、請求項1〜4のいずれか1項に記載の電子写真感光体用基体の製造方法 The method for producing a base for an electrophotographic photosensitive member according to any one of claims 1 to 4, wherein an outer diameter of the base for the electrophotographic photosensitive member is less than 40 mm. 前記金属材料がアルミニウム製材料であり、その材料硬度がビッカース硬度で40Hv以上であることを特徴とする、請求項1〜5のいずれか1項に記載の電子写真感光体用基体の製造方法6. The method for producing a base for an electrophotographic photoreceptor according to claim 1, wherein the metal material is an aluminum material, and the material hardness is 40 Hv or more in terms of Vickers hardness.
JP2008101435A 2008-04-09 2008-04-09 Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus Expired - Fee Related JP4821795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008101435A JP4821795B2 (en) 2008-04-09 2008-04-09 Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008101435A JP4821795B2 (en) 2008-04-09 2008-04-09 Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001387747A Division JP2003186211A (en) 2001-12-20 2001-12-20 Electrophotographic photoreceptor substrate production method, electrophotographic photoreceptor, and image forming device

Publications (2)

Publication Number Publication Date
JP2008186028A JP2008186028A (en) 2008-08-14
JP4821795B2 true JP4821795B2 (en) 2011-11-24

Family

ID=39729069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008101435A Expired - Fee Related JP4821795B2 (en) 2008-04-09 2008-04-09 Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4821795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658169B2 (en) * 2016-03-18 2020-03-04 富士ゼロックス株式会社 Electroconductive support for electrophotographic photosensitive member, electrophotographic photosensitive member, process cartridge, image forming apparatus, and method of manufacturing conductive support for electrophotographic photosensitive member

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708468B2 (en) * 1988-03-14 1998-02-04 株式会社リコー Electrophotographic photoreceptor
JPH06118679A (en) * 1992-07-29 1994-04-28 Mitsubishi Alum Co Ltd Cylindrical base body for electrophotographic sensitive body and its production
JP2000075531A (en) * 1998-08-27 2000-03-14 Furukawa Electric Co Ltd:The Aluminum drawn pipe for photosensitive drum and its production

Also Published As

Publication number Publication date
JP2008186028A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP2007086522A (en) Electrophotographic photoreceptor, and process cartridge and electrophotographic apparatus having the electrophotographic photoreceptor
JP2016038577A (en) Electrophotographic photoreceptor, process cartridge and electrophotographing device
JP6333629B2 (en) Electrophotographic photoreceptor and image forming apparatus having the same
JP5318204B2 (en) Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus
WO2004104711A1 (en) Light-sensitive body drum, method and device for assembling the drum, and image forming device using the drum
JP2009150958A (en) Method of manufacturing support for electrophotographic photoreceptor
JP4821795B2 (en) Method for manufacturing substrate for electrophotographic photosensitive member, electrophotographic photosensitive member, and image forming apparatus
JP5719886B2 (en) Electrophotographic photosensitive member and image forming apparatus using the same
US20150160572A1 (en) Coating solution for forming charge transport layer, electrophotographic photoreceptor prepared therewith and image forming apparatus comprising the same
JP2016126047A (en) Photoreceptor, image forming apparatus, and cartridge
US20090097881A1 (en) Electrophotographic photoreceptor containing triamine compound and image forming apparatus having the same, as well as triamine compound and method for producing the same
JP2009186672A (en) Electrophotographic photoreceptor and image forming apparatus equipped with the same
JP2017142336A (en) Electrophotographic photoreceptor, method for producing the same, process cartridge, and electrophotographic device
JP2003186211A (en) Electrophotographic photoreceptor substrate production method, electrophotographic photoreceptor, and image forming device
JP4196552B2 (en) Image forming method and image forming apparatus
JP4142916B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus
JP4375363B2 (en) Anti-vibration damper and method for producing substrate for electrophotographic photosensitive member
JP6454988B2 (en) Photoconductor, image forming apparatus, and cartridge
JP3894023B2 (en) Image forming method and image forming apparatus
JP2003255658A (en) Photoreceptor drum for tandem type color image forming apparatus, method for disposing it, and tandem type color image forming apparatus
JP2003195533A (en) Holder for drum base dipping, holding method for drum base, photoreceptor drum, and image forming device
JP6307708B2 (en) Image forming apparatus
JP2003316032A (en) Substrate for electrophotographic photoreceptor, method for manufacturing the same, electrophotographic photoreceptor and image forming apparatus
JP2015230406A (en) Electrophotographic photoreceptor and image forming apparatus using the same
JP3894022B2 (en) Electrophotographic photosensitive member support, electrophotographic photosensitive member, and image forming apparatus

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees