JP3999941B2 - Method and apparatus for processing gas containing NH3 - Google Patents

Method and apparatus for processing gas containing NH3 Download PDF

Info

Publication number
JP3999941B2
JP3999941B2 JP2001041206A JP2001041206A JP3999941B2 JP 3999941 B2 JP3999941 B2 JP 3999941B2 JP 2001041206 A JP2001041206 A JP 2001041206A JP 2001041206 A JP2001041206 A JP 2001041206A JP 3999941 B2 JP3999941 B2 JP 3999941B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
catalyst
tank
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001041206A
Other languages
Japanese (ja)
Other versions
JP2002239341A (en
Inventor
洋一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001041206A priority Critical patent/JP3999941B2/en
Publication of JP2002239341A publication Critical patent/JP2002239341A/en
Application granted granted Critical
Publication of JP3999941B2 publication Critical patent/JP3999941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、NH3を含有するガスの処理方法及び処理装置に関し、特に、半導体工業におけるCVD(化学気相成長法)工程から排出されるNH3を無害化処理する方法及び装置に関する。
【0002】
【従来の技術】
半導体工業においては、半導体製造工程の中で多種類の有害ガスが使用されており、環境汚染が懸念されている。特に、CVD(化学気相成長法)工程からの排ガス中には、人体に有害なNH3(許容濃度:ACGIH(American Conference of Governmental Industrial Hygienists:米国産業衛生政府専門官会議)が勧告するTLV-TWA(Threshold Limit Value-Time Weighted Average Concentration:時間荷重平均許容濃度)=25ppm)が含まれており、NH3を除去して排ガスを無害化するシステムの確立が急務とされている。
【0003】
従来から、NH3の除去方法として種々の方法が提案されている。例えば、▲1▼水や酸性液による湿式処理法、▲2▼硫酸鉄、ゼオライトなどの吸着剤を用いる乾式処理法及び▲3▼触媒を用いる加熱分解処理法などが一般的に知られている。
【0004】
しかし、上記▲1▼の湿式処理法では、処理によって発生する排水中にNH3が含まれているため、このNH3をN2とH2Oとに分解処理するために大規模設備が必要でコストがかかってしまう、という問題がある。また上記▲2▼の乾式処理法では、多量のNH3を処理するためには、多量の吸着剤及び吸着剤の交換作業が必要となり、ランニングコストが高くなる、という問題がある。さらに上記▲3▼の触媒加熱分解処理法では、NH3が高濃度で流入すると、触媒の反応熱で温度が上昇し、NH3は分解されるものの、NOxやN2Oなどの副生成物が多量に発生し、これらが環境雰囲気中に許容濃度を越えて排出されてしまう、という問題がある。
【0005】
【発明が解決しようとする課題】
そこで、本発明は、上述の従来技術の問題を解消し、比較的低廉なランニングコストで、有害な副生成物の発生を抑制し、効率的に多量のNH3を除去する処理方法及び処理装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
前述の課題を解決するために、本発明者らは鋭意研究を重ねた結果、無酸素雰囲気下でNH3を熱分解させ、冷却し、次いで、未分解のNH3を吸着剤に吸着させるか又は酸素存在下でNH3分解触媒と接触させることによって、低コストで有効に多量のNH3を除去することができることを見いだした。
【0007】
すなわち、本発明によれば、無酸素雰囲気下で、NH3を含むガスを500℃以上に加温して、NH3を熱分解させ、次いで、未分解の残存NH3を含むガスを常温で吸着剤に吸着させる、各工程を備えることを特徴とするNH3を含むガスを処理する方法が提供される。
【0008】
NH3は、大気圧下では450℃〜500℃から分解し始め、500℃〜600℃でほぼ完全分解することが知られている。このときのNH3の分解反応は、下記反応式(1)
【0009】
【化1】

Figure 0003999941
【0010】
に従う。しかしながら、NH3の熱分解時に、雰囲気中に酸素が存在すると、下記反応式(2)
【0011】
【化2】
Figure 0003999941
【0012】
に従って、環境汚染源となるNOxやN2Oが副産物として多量に発生する。したがって、本発明に係るガス処理方法の第1段階工程であるNH3の熱分解は、無酸素雰囲気下で行うことが好ましい。例えば、本発明の処理方法によってLP−CVDプロセス排ガスを処理する場合においては、このプロセスはNH3とSiH2Cl2或いはSi2Cl6ガスを用い、O2は使用していないので、その排ガス中には酸素は含まれていない。したがって、このような場合には、NH3の熱分解の際の無酸素雰囲気を形成するために、排ガス中から酸素を除去する工程を設ける必要はない。しかしながら、処理対象のガス中に酸素が含まれている場合には、NH3を含むガスを脱酸素剤で処理するなどの酸素除去工程を行うことによってガス中の酸素を除去することが必要である。また、NH3熱分解反応の温度は、500℃以上であることが好ましく、高温になるほどNH3の分解率が高くなるが、発生するH2の自然発火温度(571℃)以下であることが好ましい。
【0013】
本発明の処理方法において、上記熱分解工程では、NH3の約80〜90%が熱分解してN2とH2になるが、約10〜20%のNH3が未分解のまま残存する。本発明の処理方法においては、次いで、この未分解の残存NH3を含むガスを常温まで冷却し、残存NH3を吸着剤によって吸着させて除去する。このとき、NH3を含むガスの温度が高いと、吸着剤からのNH3の脱着が促進されて処理性能が低下するので、好ましくない。NH3を含むガスの温度は、常温、特に20℃〜30℃であることが好ましい。
【0014】
本処理方法において用いる吸着剤としては、NH3を吸着できるものであれば特に制限なく用いることができ、当該技術において吸着剤として公知の無機系粒状固形物を用いることができる。具体的には、工業用途用に市販されており廉価に入手可能な合成ゼオライト、硫酸鉄、添着活性炭、及びこれらの組み合わせからなる群より選択される吸着剤が特に好ましい。この目的のために本発明において用いることのできる具体的な吸着剤としては、水澤化学製NH3吸着用合成ゼオライト、商品名ミズカシーブス4A-812B、日産ズードヘミー触媒製硫酸鉄吸着剤、商品名N-500、武田薬品製のNH3吸着用添着活性炭、商品名粒状白鷺GTSxなどを挙げることができる。
【0015】
また、熱分解処理後の未分解の残存NH3を含むガスの処理方法として、上記に示すような吸着剤を用いる方法に代えて、ガスを200℃以下まで冷却して、酸素を加えた後にNH3分解触媒と接触させる方法を採用することもできる。即ち、本発明の他の態様によれば、NH3を含むガスを処理する方法であって、
無酸素雰囲気下で、NH3を含むガスを500℃以上に加温して、NH3を熱分解させ、
次いで、未分解の残存NH3を含むガスを200℃以下まで冷却し、
200℃以下に冷却されたガス中に、酸素を添加し、
酸素が添加されたガスを、170℃〜200℃に加温されたNH3分解触媒と接触させる、
各工程を備えることを特徴とする処理方法が提供される。
【0016】
かかる態様の処理方法においては、上記に説明した熱分解工程によって得られる未分解の残存NH3を含むガスを約200℃以下まで冷却させた後、酸素を添加する。このとき、ガスの温度が200℃よりも高いと、上記式(2)のNH3とO2との反応が進行してNOxやN2Oが多量に発生し、環境雰囲気中に排出される処理後のガス中に有害な窒素酸化物が環境基準許容濃度(NO:25ppm、NO2:3ppm、N2O:50ppm)を越えて含まれることになるので好ましくない。また、添加する酸素の量は、酸素を添加した後のガス中のO2濃度が約5%以上、より好ましくは6%以上となるような量であることが好ましい。
【0017】
次に、酸素を添加したガスを170℃〜200℃に加温されたNH3分解触媒と接触させる。ここで、NH3分解触媒の温度が230℃を越えて加温されていると、上記式(2)の反応が進行してNOxやN2Oが上記の環境基準許容濃度を越えて生成するので好ましくない。また、NH3分解触媒で処理されるガスは、残存NH3濃度が1%以下とされていることが好ましい。残存NH3濃度が1%を越えていると、NH3分解時の反応熱によりNH3分解触媒の温度が上昇して、NOxやN2Oが上記の環境基準許容濃度を越えて生成しやすくなるので好ましくない。
【0018】
かかる態様の処理方法において用いるNH3分解触媒は、当該技術においてNH3分解触媒として公知の任意の粒状の固形触媒を用いることができる。具体的には、酸化鉄、酸化マンガン、酸化バナジウム、酸化アルミニウム、酸化クロム、酸化タングステン、酸化銅及びこれらの組み合わせからなる群より選択される1種以上の触媒を好ましく用いることができる。この目的のために本発明において用いることのできる具体的なNH3分解触媒としては、例えば、日産ズードヘミー触媒製の処理剤(商品名Imp2-N150;主成分Fe23:50wt%、MnO:25wt%、V25:5.0wt%)、東洋シーシーアイ製のNH3分解剤(商品名TNH3-2000)などを挙げることができる。
【0019】
また、本発明によれば、NH3を含むガスを処理するための装置が提供される。この装置は、無酸素雰囲気下で上記ガスを通気可能とする中空内部、上記中空内部の温度を500℃以上に加熱可能な加熱手段、ガス導入口、及び処理後のガスを排出するガス排出口を備える熱分解槽と、上記熱分解槽と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管と、上記冷却管と流体連通可能状態に配置されていて、冷却された熱分解後のガス中の未分解NH3を吸着させる吸着剤が充填されている吸着剤槽と、を備えることを特徴とする。
【0020】
本発明の処理装置の熱分解槽は、熱分解雰囲気を無酸素雰囲気とするための手段として、必要に応じてN2パージラインを具備していることが好ましい。
本発明の熱分解槽に設けられている加熱手段としては、熱分解槽の中空内部に形成される気相部の温度を500℃以上に加熱できるものであれば特に制限されず、セラミック電気管状炉などのセラミックヒーター、棒状ヒーターなどを好ましく挙げることができる。
【0021】
本発明の処理装置の冷却管は、熱分解槽で熱分解されたガスを所定温度まで冷却できるものであれば特に制限されず、冷却媒体としては空気、水その他の公知の冷媒を用いることができる。
【0022】
本発明の処理装置の吸着剤槽には、NH3を吸着する上述の吸着剤が充填されている。吸着剤の充填量は、処理すべきNH3の量及び吸着剤槽の寸法によって変動するが、例えば、直径170mm×高さ750mmの吸着剤槽に、3.6%のNH3を含むガスを流速80L/minで30分間通気させて処理する場合には、約17Lとすることができる。
【0023】
また、本発明の他の態様によれば、無酸素雰囲気下で上記ガスを通気可能とする中空内部、上記中空内部の温度を500℃以上に加熱可能な加熱手段、ガス導入口、及び処理後のガスを排出するガス排出口を備える熱分解槽と、上記熱分解槽と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管と、上記冷却管と流体連通可能状態に配置されていて、冷却された熱分解後のガスに酸素を添加する酸素添加手段と、冷却され酸素が添加されたガスをNH3分解触媒に接触させる触媒分解槽と、を備えることを特徴とする処理装置が提供される。
【0024】
かかる態様の処理装置において、熱分解槽、加熱手段及び冷却管は、上述の吸着剤槽を備える処理装置における熱分解槽、加熱手段及び冷却管と同様の構成でよい。
【0025】
かかる態様の処理装置においては、冷却後のガスに酸素を添加するために、冷却管の下流側又は触媒分解槽に酸素添加手段が設けられている。酸素添加手段としては、例えば、適宜の酸素供給源に連結された酸素導管と、酸素導管から冷却管及び触媒分解槽の間を連結する配管への酸素供給を調節するバルブとによって構成することができる。
【0026】
かかる態様の処理装置において、触媒分解槽には、上述のNH3分解触媒が充填されている。また、触媒分解槽には、内部に充填されている触媒を加温するための加熱手段が設けられている。加熱手段としては、触媒分解槽に充填されている触媒の温度を170〜200℃の好ましい温度に加温できるものであれば特に制限されるものではなく、熱分解槽において用いられるものと同様のセラミック電気管状炉などのセラミックヒーター、棒状ヒーターなどを好ましく挙げることができる。
【0027】
【発明の好ましい実施形態】
以下、添付図面を参照しながら、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
【0028】
図1は、本発明に係るNH3を含むガスを処理する処理装置の好ましい一実施形態を示す概略模式図である。
処理装置1は、無酸素雰囲気下でNH3を含むガスを通気可能とする中空内部10a及び上記中空内部10aの温度を500℃以上に加熱可能な加熱手段11を備える熱分解槽10と、上記熱分解槽10と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管20と、上記冷却管20と流体連通可能状態に配置されていて、冷却されたガス中の未分解NH3を吸着させる吸着剤30aが充填されている吸着剤槽30とを備え、熱分解槽10及び冷却管20の間は第1の導管13によって、冷却管20及び吸着剤槽30の間は第2の導管32によって流体連通可能状態に連結されている。
【0029】
より詳細には、本実施形態においては、熱分解槽10はSUS製中空カラムからなり、熱分解槽10の外周には、加熱手段としてのセラミックヒーター11が配置されていて、NH3を含むガス源(図示せず)からガスを導入するガス入口側導管12と、中空内部10aに形成された気相部の温度を測温する熱電対(図示せず)を備える。必要な場合には、熱分解槽10に導入されるガスを無酸素状態にするために、ガス入口導管12又は熱分解槽10に、脱酸素剤などのような酸素除去手段14をさらに設けることができる。
【0030】
冷却管20としては、例えば空冷管として、金属製の配管を折り曲げて湾曲した流路を形成させたものなどを用いることができる。
吸着剤槽30は、SUS製中空カラムからなり、吸着処置後のガスを環境雰囲気中又は必要に応じてその後の処理槽(図示せず)に排出する出口導管33を備える。吸着剤槽30内部には、上記吸着剤30aが充填されている。
【0031】
処理装置1を用いて、NH3を含むガスを処理する際には、例えばCVD装置などからのNH3を含む排ガスを、必要な場合には脱酸素剤などの酸素除去手段14によってガス中の酸素を除去した後に、ガス入口導管12を介して熱分解槽10内部に導入する。セラミックヒーター11によって、熱分解槽10の中空内部10a内に導入されたガスの温度を500℃以上に加温して、ガス中のNH3を熱分解させる。この温度は中空内部10a内に配置された熱電対(図示せず)でモニターする。
【0032】
次いで、熱分解処理後のガスを熱分解槽10から第1の導管13を介して冷却管20に流通させ、熱分解処理後のガスを室温まで空冷する。
その後、冷却されたガスを冷却管20から第2の導管32を介して吸着剤槽30に導入する。吸着剤槽30内において、吸着剤30aによって未分解NH3を吸着させ、処理ガスを出口導管33を介して環境雰囲気中または必要に応じてその後の処理装置に排出する。
【0033】
図2は、本発明のガス処理装置の他の実施形態を示す概略模式図である。
処理装置100は、無酸素雰囲気下でNH3を含むガスを通気可能とする中空内部110a及び上記中空内部110aの温度を500℃以上に加熱可能な加熱手段111を備える熱分解槽110と、上記熱分解槽110と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管120と、上記冷却管120と流体連通可能状態に配置されていて、冷却された熱分解処理後のガスに酸素を添加する酸素添加手段135と、冷却され酸素が添加されたガスをNH3分解触媒に接触させる触媒分解槽130とを備え、熱分解槽110及び冷却管120の間は第1の導管113によって、また冷却管120及び触媒分解槽130の間は第2の導管133によって、それぞれ流体連通可能状態に連結されている。熱分解槽110及び冷却管120の構成は、図1に示す処理装置1の熱分解槽10及び冷却管20の構成と同様である。
【0034】
本処理装置100においては、吸着剤槽30に代えて、冷却管の下流側に、冷却された熱分解後のガスに酸素を添加する酸素添加手段135と、冷却され酸素が添加されたガスをNH3分解触媒に接触させる触媒分解槽130とを備える。
【0035】
酸素添加手段135は、図示しないが、酸素ガス供給源及び酸素ガス供給を調節するバルブを備える適宜の添加手段でよく、第2の導管132に接続されている。
触媒分解槽130は、例えばSUS製中空カラムからなり、触媒分解処理後のガスを環境雰囲気中又は必要に応じてその後の処理槽(図示せず)に排出する出口導管133を備える。触媒分解槽130内部には、NH3分解触媒130aが充填されており、内部温度を測温するための熱電対(図示せず)が配置されている。触媒分解槽130の外周には、加熱手段としてのセラミックヒーター131が配置されていて、触媒分解槽130内部に充填されている触媒130aを加温する。
【0036】
本処理装置110を用いて、NH3を含むガスを処理する際には、例えばCVD装置などからのNH3を含む排ガスを、必要な場合には脱酸素剤などの酸素除去手段114によってガス中の酸素を除去した後に、ガス入口導管112を介して熱分解槽110内部に導入して熱分解反応させる。熱分解槽110の操作は、図1の熱分解槽10に関して上記に説明したものと同様である。熱分解槽110でガス中のNH3を熱分解した後、第1の導管113を介して冷却管120に流通させ、熱分解処理後のガスを200℃以下まで冷却する。
【0037】
その後、冷却されたガスを第2の導管132を介して触媒分解槽130に導入する。このとき、第2の導管132には、酸素添加手段135を介して所要量の酸素を導入する。こうして、所要量の酸素が添加されたガスを第2の導管132を介して触媒分解槽130に導入する。触媒分解槽130内で、ガスをNH3分解触媒130aと接触させ、未分解NH3を分解する。この際、セラミックヒーター131によって触媒の温度を170〜200℃に加温する。その後、処理ガスを出口導管133を介して環境雰囲気中または必要に応じてその後の処理装置に排出する。
【0038】
【実施例】
以下、本発明の処理方法及び処理装置の実施例を説明するが、本発明はこれらに限定されるものではない。
【0039】
実施例1:無酸素雰囲気下でのガスの熱分解における気相温度の影響
無酸素雰囲気下でのNH3の熱分解率と気相温度との関係を調べる実験を行った。熱分解槽として、内径110mm、長さ400mmのSUS製中空カラムを用い、加熱手段として、中空カラムの外部にセラミックヒーターを取りつけ、中空カラム内の気相部の温度は、中空カラム内に配置した熱電対を用いて測定した。
【0040】
試験ガスとして、NH3の含有率を3.6%となるように調整したN2ガスを用いて、80L/minの流速で熱分解槽に通気し、気相部の温度を加熱手段(セラミックヒーター)によって段階的に変化させて、出口ガスの成分を分析した。分析対象成分はNH3、NO、NO2、N2Oであり、NH3は検知管法(ガステック製NH3検知管)、NO及びNO2は化学発光法(島津製作所製化学発光分析器、型式NOA-7000)、N2Oはガスクロマトグラフ質量分析法(アネルバ製ガスクロマトグラフ質量分析器、型式AGS-7000U)を用いて分析した。出口ガス中のNOx及びN2Oは、常時、検出限界(1ppm)以下であり、上記の4種類の分析対象ガスのうち、NH3のみが検出された。
【0041】
出口ガス中のNH3の濃度、濃度値から算出したNH3の分解率、及び熱分解槽の気相部の温度を表1に示す。
【0042】
【表1】
Figure 0003999941
【0043】
これらの結果から、熱分解槽の気相部の温度を500℃以上まで加温することで、NH3が70%以上分解することがわかる。
比較例1
酸素ガスを添加した以外は、実施例1と同様に実験を行って、出口ガス組成と気相温度との関係を調べた。
【0044】
試験ガスとして、NH3の含有率を3.6%、O2の含有率を5.5%となるように調整したN2ガスを、流速80L/minで熱分解槽に通気した。結果を表2に示す。
【0045】
【表2】
Figure 0003999941
【0046】
これらの結果から、O2存在下では、NH3を良好に分解するために気相部温度は380℃以上であることが望ましいが、気相部温度が200℃を越えると、N2Oが発生し始め、300℃以上では、NO及びNO2も発生し、NO、NO2及びN2Oのすべてが環境許容濃度(NO:25ppm、NO2:3ppm、N2O:50ppm)を超えることがわかる。
【0047】
実施例2:NH3分解触媒によるNH3の分解処理
NH3分解触媒の処理性能の温度依存性を評価するために、処理温度と出口ガス成分との関係を調べた。
【0048】
触媒分解槽として、内径110mm、高さ1600mmのSUS製中空カラムを用いて、NH3分解触媒として、Fe23:50wt%、MnO:25wt%、V25:5.0wt%を主成分とする日産ズードヘミー触媒製の処理剤(商品名:Imp2-N150)15Lを充填した。加熱手段としてセラミックヒーターを用いて、触媒分解槽外部から加温した。触媒分解槽内部の温度は、内部に配置した熱電対で測温した。
【0049】
試験ガスとして、NH3の含有率を1.0%、O2の含有率を5.8%となるように調整したN2ガスを用い、流速80L/minで触媒分解槽に通気させた。処理温度を段階的に変動させて出口ガス中の成分を分析した。結果を表3に示す。
【0050】
【表3】
Figure 0003999941
【0051】
実験結果から、処理温度が170℃未満では、NH3の分解処理が良好でなく、処理温度が230℃以上ではNO2及びN2Oが許容濃度を超えてしまうことがわかった。この実験結果から、170℃〜200℃の温度範囲で処理する場合に、NH3を良好に分解し、NO、NO2及びN2Oの排出濃度が許容濃度を越えないことがわかる。
【0052】
実施例3
NH3分解触媒の処理性能のNH3濃度依存性を評価するために、NH3流入濃度と出口ガス中の成分との関係を調べた。
【0053】
実施例2と同様の分解触媒槽を用いて、試験ガスとしてNH3濃度を1.0%、1.5%、2.5%と変動させた以外は実施例2と同様の試験ガスを用いて、分解触媒槽通ガス開始時の処理温度を約170℃に設定し、通ガス開始時と30分運転後の出口ガス中の成分を分析した。結果を表4に示す。
【0054】
【表4】
Figure 0003999941
【0055】
実験結果から、NH3濃度の高低に拘わらずNH3は良好に分解されるが、流入NH3濃度が高くなると、触媒の温度が上昇して、出口ガス中のN2O濃度が高くなり、NH3の流入濃度が1.5%でも許容濃度を超えてしまうことがわかる。
【0056】
実施例4及び5:無酸素条件での熱分解及び吸着の組み合わせによるNH3分解処理
本発明の処理方法に従い、無酸素雰囲気下でNH3を含むガスを熱分解した後、未分解のNH3を吸着剤に吸着させて処理した。
【0057】
熱分解槽として、内径110mm、高さ1600mmのSUS製中空カラムを用い、加熱手段としてセラミックヒーターを用いた。冷却管として、管径25mmφのSUS製配管を長さ約730mmずつ4つ折りしたものを用い、冷媒として空気を使用した。吸着剤槽として、内径170mm、高さ750mmのSUS製中空カラムを用い、内部に合成ゼオライト(水澤化学製NH3用合成ゼオライト、商品名ミズカシーブス4A-812B)(実施例4)又は硫酸鉄(日産ズードヘミー触媒製硫酸鉄吸着剤、商品名N-500)(実施例5)を合わせて17L充填した。
【0058】
熱分解槽気相部の温度を528℃まで加温して、この気相部に、試験ガスとしてNH3の含有率を3.6%に調整したN2ガスを流速80L/minで通気させた。熱分解後の試験ガスを冷却管を介して室温(30℃程度)まで空冷し、次いで冷却された試験ガスを吸着剤槽に導入して、吸着剤にNH3を吸着させた。吸着剤槽からの出口ガス中のNH3の濃度を継続的に測定した。一方、ガスを熱分解槽を通さずに、直接、室温で吸着剤槽に通す以外は上記と同様の実験を行い、出口ガス中のNH3の濃度を測定した。結果を表5に示す。なお、出口ガス中のNO、NO2及びN2Oは全て検出限界以下であった。
【0059】
【表5】
Figure 0003999941
【0060】
表5から、熱分解と吸着とを組み合わせる本発明の処理方法によれば、熱分解を行わずに吸着のみさせる場合と比較して、吸着剤槽からの出口ガス中のNH3が許容濃度を超えるようになるまでの所要時間が約6倍長かった。これは、吸着剤の有効運転寿命が大幅に増大したことを示す。
【0061】
実施例6
本発明の処理方法に従い、無酸素雰囲気下でNH3を含むガスを熱分解し、未分解のNH3をNH3分解触媒を用いて処理した。
【0062】
熱分解槽、加熱手段、冷却管、冷媒は、上記実施例4/5と同様のものを用いた。冷却管の後段に、分解触媒層として、内径110mm、高さ1600mmのSUS製中空カラムを用いて、内部に実施例2と同様のNH3分解触媒15Lを充填した。
【0063】
試験ガスとして、NH3の含有率を3.6%となるように調整したN2ガスを用い、流速80L/minで熱分解槽に通気させた。熱分解槽の気相部温度は、約528℃に設定した。次いで、熱分解後の試験ガスを冷却管に通気させて、試験ガス温度を約190℃まで空冷し、ガス中のO2濃度が5.5%となるようにO2を添加した後、予め内部温度が約200℃になるように加温しておいた分解触媒槽に通気させた。通気開始から30分後の分解触媒槽からの出口ガスの成分を分析したところ、ガス中のNH3、NO、NO2及びN2Oはすべて検出限界(1ppm)以下であり、NOxやN2Oを排出することなく、NH3が良好に分解されたことがわかる。
【0064】
【発明の効果】
本発明の処理方法及び処理装置によれば、ランニングコストの増大や、NOxやN2Oなどの副生成物の発生という問題を生じることなく、低コストで有効に且つ長時間に亘って多量のNH3を除去することができる。
【図面の簡単な説明】
【図1】図1は、本発明の処理装置の好ましい実施形態を示す概略図である。
【図2】図2は、本発明の処理装置の別の好ましい実施形態を示す概略図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for processing a gas containing NH 3 , and more particularly, to a method and apparatus for detoxifying NH 3 discharged from a CVD (Chemical Vapor Deposition) process in the semiconductor industry.
[0002]
[Prior art]
In the semiconductor industry, many kinds of harmful gases are used in the semiconductor manufacturing process, and environmental pollution is a concern. In particular, NH 3 (allowable concentration: ACGIH (American Conference of Governmental Industrial Hygienists) recommended by the American Industrial Health Government Experts Council) is present in exhaust gases from CVD (chemical vapor deposition) processes. TWA (Threshold Limit Value-Time Weighted Average Concentration) = 25 ppm) is included, and there is an urgent need to establish a system that removes NH 3 and renders exhaust gas harmless.
[0003]
Conventionally, various methods for removing NH 3 have been proposed. For example, (1) a wet treatment method using water or an acidic liquid, (2) a dry treatment method using an adsorbent such as iron sulfate or zeolite, and (3) a thermal decomposition treatment method using a catalyst are generally known. .
[0004]
However, in the above wet processing method (1), since NH 3 is contained in the waste water generated by the processing, a large-scale facility is required to decompose NH 3 into N 2 and H 2 O. There is a problem that it is expensive. In addition, the dry processing method (2) has a problem that a large amount of adsorbent and an adsorbent exchange operation are required to treat a large amount of NH 3 , resulting in an increase in running cost. Furthermore, in the catalyst thermal decomposition method of (3) above, when NH 3 flows in at a high concentration, the temperature rises due to the reaction heat of the catalyst, and NH 3 is decomposed, but by-products such as NO x and N 2 O are produced. There is a problem that a large amount of substances are generated and these are discharged in an environmental atmosphere exceeding an allowable concentration.
[0005]
[Problems to be solved by the invention]
Accordingly, the present invention solves the above-mentioned problems of the prior art, suppresses the generation of harmful by-products at a relatively low running cost, and efficiently removes a large amount of NH 3. The purpose is to provide.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, the NH 3 is thermally decomposed and cooled in an oxygen-free atmosphere, and then the undecomposed NH 3 is adsorbed on the adsorbent. Alternatively, it has been found that a large amount of NH 3 can be effectively removed at low cost by contacting with an NH 3 decomposition catalyst in the presence of oxygen.
[0007]
That is, according to the present invention, in an oxygen-free atmosphere, a gas containing NH 3 is heated to 500 ° C. or more to thermally decompose NH 3 , and then a gas containing undecomposed residual NH 3 is heated at room temperature. Provided is a method for treating a gas containing NH 3, which comprises each step of adsorbing to an adsorbent.
[0008]
It is known that NH 3 starts to decompose from 450 ° C. to 500 ° C. under atmospheric pressure, and almost completely decomposes at 500 ° C. to 600 ° C. The NH 3 decomposition reaction at this time is represented by the following reaction formula (1):
[0009]
[Chemical 1]
Figure 0003999941
[0010]
Follow. However, when oxygen is present in the atmosphere during the thermal decomposition of NH 3 , the following reaction formula (2)
[0011]
[Chemical 2]
Figure 0003999941
[0012]
Accordingly, a large amount of NO x and N 2 O, which are environmental pollution sources, are generated as by-products. Therefore, it is preferable that the thermal decomposition of NH 3 which is the first step of the gas treatment method according to the present invention is performed in an oxygen-free atmosphere. For example, when the LP-CVD process exhaust gas is treated by the treatment method of the present invention, this process uses NH 3 and SiH 2 Cl 2 or Si 2 Cl 6 gas, and O 2 is not used. It does not contain oxygen. Therefore, in such a case, it is not necessary to provide a step of removing oxygen from the exhaust gas in order to form an oxygen-free atmosphere during the thermal decomposition of NH 3 . However, in the case where oxygen is contained in the gas to be treated, it is necessary to remove oxygen in the gas by performing an oxygen removal step such as treating the gas containing NH 3 with an oxygen scavenger. is there. Further, the temperature of the NH 3 thermal decomposition reaction is preferably 500 ° C. or higher, and the higher the temperature, the higher the NH 3 decomposition rate, but it is lower than the spontaneous ignition temperature (571 ° C.) of the generated H 2. preferable.
[0013]
In the treatment method of the present invention, in the thermal decomposition step, about 80 to 90% of NH 3 is thermally decomposed into N 2 and H 2 , but about 10 to 20% NH 3 remains undecomposed. . In the treatment method of the present invention, the gas containing the undecomposed residual NH 3 is then cooled to room temperature, and the residual NH 3 is adsorbed and removed by an adsorbent. At this time, if the temperature of the gas containing NH 3 is high, desorption of NH 3 from the adsorbent is promoted and the processing performance is lowered, which is not preferable. The temperature of the gas containing NH 3 is preferably room temperature, particularly 20 ° C. to 30 ° C.
[0014]
The adsorbent used in the present treatment method can be used without particular limitation as long as it can adsorb NH 3, and known inorganic particulate solids can be used as the adsorbent in the art. Specifically, an adsorbent selected from the group consisting of synthetic zeolite, iron sulfate, impregnated activated carbon, and combinations thereof that are commercially available for industrial use and are available at a low price is particularly preferable. Specific adsorbents that can be used in the present invention for this purpose include synthetic zeolite for adsorption of NH 3 manufactured by Mizusawa Chemical, trade name Mizuka Sieves 4A-812B, iron sulfate adsorbent produced by Nissan Zudhemy Catalyst, trade name N- 500, impregnated activated carbon for NH 3 adsorption manufactured by Takeda Pharmaceutical Co., Ltd. and trade name granular white birch GTSx.
[0015]
Further, as a method of treating the gas containing undecomposed residual NH 3 after the thermal decomposition treatment, instead of using the adsorbent as shown above, after cooling the gas to 200 ° C. or less and adding oxygen A method of contacting with an NH 3 decomposition catalyst can also be employed. That is, according to another aspect of the present invention, a method for treating a gas containing NH 3 comprising:
In an oxygen-free atmosphere, a gas containing NH 3 is heated to 500 ° C. or more to thermally decompose NH 3 ,
Next, the gas containing undecomposed residual NH 3 is cooled to 200 ° C. or less,
Add oxygen to the gas cooled to below 200 ℃,
Bringing the oxygen-added gas into contact with an NH 3 decomposition catalyst heated to 170 ° C. to 200 ° C .;
A processing method comprising the steps is provided.
[0016]
In the treatment method of this aspect, oxygen is added after cooling the gas containing undecomposed residual NH 3 obtained by the thermal decomposition step described above to about 200 ° C. or less. At this time, if the temperature of the gas is higher than 200 ° C., the reaction between NH 3 and O 2 in the above formula (2) proceeds, and a large amount of NO x and N 2 O are generated and discharged into the environmental atmosphere. This is not preferable because harmful nitrogen oxides are contained in the gas after treatment exceeding the permissible environmental standards (NO: 25 ppm, NO 2 : 3 ppm, N 2 O: 50 ppm). The amount of oxygen to be added is preferably such that the O 2 concentration in the gas after adding oxygen is about 5% or more, more preferably 6% or more.
[0017]
Next, the gas added with oxygen is brought into contact with an NH 3 decomposition catalyst heated to 170 ° C. to 200 ° C. Here, if the temperature of the NH 3 decomposition catalyst is heated above 230 ° C., the reaction of the above formula (2) proceeds and NO x and N 2 O are generated exceeding the environmental standard allowable concentration. This is not preferable. Further, the gas treated with the NH 3 decomposition catalyst preferably has a residual NH 3 concentration of 1% or less. When the residual NH 3 concentration is over 1%, NH 3 temperature of the NH 3 decomposing catalyst by reaction heat during decomposition is increased, NO x and N 2 O is produced beyond the environmental standard allowable concentrations of the Since it becomes easy, it is not preferable.
[0018]
As the NH 3 decomposition catalyst used in the treatment method of this embodiment, any granular solid catalyst known in the art as an NH 3 decomposition catalyst can be used. Specifically, one or more catalysts selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof can be preferably used. Specific NH 3 decomposition catalysts that can be used in the present invention for this purpose include, for example, a treatment agent (trade name Imp2-N150; main component Fe 2 O 3 : 50 wt%, MnO: 25 wt%, V 2 O 5 : 5.0 wt%), NH 3 decomposing agent (trade name TNH 3 -2000) manufactured by Toyo CCI.
[0019]
Further, according to the present invention, an apparatus for treating a gas containing NH 3 is provided. This device includes a hollow interior that allows the gas to pass under an oxygen-free atmosphere, a heating means that can heat the temperature of the hollow interior to 500 ° C. or higher, a gas inlet, and a gas outlet that discharges the processed gas. A pyrolysis tank comprising: a cooling pipe disposed in fluid communication with the pyrolysis tank; a cooling pipe for cooling the pyrolyzed gas; and a cooling pipe arranged in fluid communication with the cooling pipe to be cooled. And an adsorbent tank filled with an adsorbent that adsorbs undecomposed NH 3 in the pyrolyzed gas.
[0020]
The thermal decomposition tank of the processing apparatus of the present invention preferably includes an N 2 purge line as necessary for making the thermal decomposition atmosphere an oxygen-free atmosphere.
The heating means provided in the pyrolysis tank of the present invention is not particularly limited as long as it can heat the temperature of the gas phase portion formed in the hollow interior of the pyrolysis tank to 500 ° C. or higher, and is a ceramic electric tube. Preferred examples include ceramic heaters such as furnaces, rod heaters, and the like.
[0021]
The cooling pipe of the treatment apparatus of the present invention is not particularly limited as long as the gas pyrolyzed in the pyrolysis tank can be cooled to a predetermined temperature, and air, water or other known refrigerants may be used as the cooling medium. it can.
[0022]
The adsorbent tank of the processing apparatus of the present invention is filled with the above-described adsorbent that adsorbs NH 3 . The filling amount of the adsorbent varies depending on the amount of NH 3 to be treated and the size of the adsorbent tank. For example, a gas containing 3.6% NH 3 is flowed at a flow rate of 80 L in an adsorbent tank having a diameter of 170 mm and a height of 750 mm. When processing with aeration for 30 minutes at / min, the pressure can be about 17L.
[0023]
Further, according to another aspect of the present invention, a hollow interior that allows the gas to pass under an oxygen-free atmosphere, a heating means that can heat the temperature of the hollow interior to 500 ° C. or more, a gas inlet, and a post-treatment A pyrolysis tank having a gas discharge port for discharging the gas, a cooling pipe that is arranged in fluid communication with the pyrolysis tank, and that cools the gas after pyrolysis, and is in fluid communication with the cooling pipe And an oxygen addition means for adding oxygen to the cooled gas after pyrolysis, and a catalyst decomposition tank for bringing the cooled and oxygen-added gas into contact with the NH 3 decomposition catalyst. Is provided.
[0024]
In the processing apparatus of this aspect, the pyrolysis tank, the heating means, and the cooling pipe may have the same configuration as the thermal decomposition tank, the heating means, and the cooling pipe in the processing apparatus including the adsorbent tank described above.
[0025]
In the processing apparatus of this mode, in order to add oxygen to the cooled gas, oxygen adding means is provided on the downstream side of the cooling pipe or in the catalyst decomposition tank. The oxygen addition means may be constituted by, for example, an oxygen conduit connected to an appropriate oxygen supply source and a valve for adjusting oxygen supply from the oxygen conduit to a pipe connecting the cooling pipe and the catalyst decomposition tank. it can.
[0026]
In the processing apparatus of this aspect, the catalyst decomposition tank is filled with the NH 3 decomposition catalyst described above. The catalyst decomposition tank is provided with heating means for heating the catalyst filled therein. The heating means is not particularly limited as long as the temperature of the catalyst charged in the catalyst decomposition tank can be heated to a preferable temperature of 170 to 200 ° C., and is the same as that used in the thermal decomposition tank. Preferred examples include a ceramic heater such as a ceramic electric tubular furnace, and a rod heater.
[0027]
Preferred Embodiment of the Invention
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the present invention is not limited thereto.
[0028]
FIG. 1 is a schematic diagram showing a preferred embodiment of a processing apparatus for processing a gas containing NH 3 according to the present invention.
The processing apparatus 1 includes a hollow interior 10a capable of passing a gas containing NH 3 in an oxygen-free atmosphere, and a pyrolysis tank 10 including heating means 11 capable of heating the temperature of the hollow interior 10a to 500 ° C. or higher, and the above The cooling pipe 20 is arranged in a fluid communication state with the pyrolysis tank 10 and cools the pyrolyzed gas. The cooling pipe 20 is arranged in a fluid communication state with the cooling pipe 20 and is not yet in the cooled gas. An adsorbent tank 30 filled with an adsorbent 30a for adsorbing decomposed NH 3 , and between the thermal decomposition tank 10 and the cooling pipe 20 by the first conduit 13 and between the cooling pipe 20 and the adsorbent tank 30. Are connected in fluid communication by a second conduit 32.
[0029]
More specifically, in the present embodiment, the pyrolysis tank 10 is composed of a SUS hollow column, and a ceramic heater 11 as a heating means is disposed on the outer periphery of the pyrolysis tank 10, and includes a gas containing NH 3. A gas inlet side conduit 12 for introducing gas from a source (not shown) and a thermocouple (not shown) for measuring the temperature of the gas phase formed in the hollow interior 10a are provided. If necessary, an oxygen removing means 14 such as an oxygen scavenger may be further provided in the gas inlet conduit 12 or the pyrolysis tank 10 in order to make the gas introduced into the pyrolysis tank 10 oxygen-free. Can do.
[0030]
As the cooling pipe 20, for example, an air cooling pipe having a curved flow path formed by bending a metal pipe can be used.
The adsorbent tank 30 is formed of a SUS hollow column, and includes an outlet conduit 33 that discharges the gas after the adsorbing treatment in an environmental atmosphere or a subsequent processing tank (not shown) as necessary. The adsorbent tank 30 is filled with the adsorbent 30a.
[0031]
When a gas containing NH 3 is processed using the processing apparatus 1, for example, exhaust gas containing NH 3 from a CVD apparatus or the like is contained in the gas by an oxygen removing means 14 such as an oxygen scavenger if necessary. After the oxygen is removed, the oxygen is introduced into the pyrolysis tank 10 through the gas inlet conduit 12. The temperature of the gas introduced into the hollow interior 10a of the thermal decomposition tank 10 is heated to 500 ° C. or higher by the ceramic heater 11 to thermally decompose NH 3 in the gas. This temperature is monitored by a thermocouple (not shown) placed in the hollow interior 10a.
[0032]
Next, the pyrolyzed gas is circulated from the pyrolysis tank 10 to the cooling pipe 20 via the first conduit 13, and the pyrolyzed gas is cooled to room temperature.
Thereafter, the cooled gas is introduced from the cooling pipe 20 into the adsorbent tank 30 through the second conduit 32. In the adsorbent tank 30, undecomposed NH 3 is adsorbed by the adsorbent 30a, and the processing gas is discharged through the outlet conduit 33 in the environmental atmosphere or to a subsequent processing apparatus as necessary.
[0033]
FIG. 2 is a schematic diagram showing another embodiment of the gas processing apparatus of the present invention.
The treatment apparatus 100 includes a hollow interior 110a capable of passing a gas containing NH 3 in an oxygen-free atmosphere, and a pyrolysis tank 110 including heating means 111 capable of heating the temperature of the hollow interior 110a to 500 ° C. or higher, and the above A cooling pipe 120 that is disposed in a fluid communicable state with the pyrolysis tank 110 and cools the pyrolyzed gas, and is disposed in a fluid communicable state with the cooling pipe 120 and after the cooled pyrolysis treatment An oxygen addition means 135 for adding oxygen to the gas, and a catalyst decomposition tank 130 for bringing the cooled and oxygen-added gas into contact with the NH 3 decomposition catalyst, and the first between the thermal decomposition tank 110 and the cooling pipe 120. The pipe 113 and the cooling pipe 120 and the catalyst decomposition tank 130 are connected to each other by a second pipe 133 so as to be in fluid communication. The configurations of the thermal decomposition tank 110 and the cooling pipe 120 are the same as the configurations of the thermal decomposition tank 10 and the cooling pipe 20 of the processing apparatus 1 shown in FIG.
[0034]
In the present processing apparatus 100, instead of the adsorbent tank 30, on the downstream side of the cooling pipe, oxygen adding means 135 for adding oxygen to the cooled pyrolyzed gas, and the cooled and added oxygen gas are provided. And a catalytic cracking tank 130 in contact with the NH 3 cracking catalyst.
[0035]
Although not shown, the oxygen adding means 135 may be an appropriate adding means having an oxygen gas supply source and a valve for adjusting the oxygen gas supply, and is connected to the second conduit 132.
The catalyst decomposition tank 130 is made of, for example, a hollow column made of SUS, and includes an outlet conduit 133 that discharges the gas after the catalyst decomposition process to the subsequent treatment tank (not shown) in the environmental atmosphere or as necessary. The catalyst decomposition tank 130 is filled with NH 3 decomposition catalyst 130a, and a thermocouple (not shown) for measuring the internal temperature is disposed. A ceramic heater 131 as a heating means is arranged on the outer periphery of the catalyst decomposition tank 130, and heats the catalyst 130a filled in the catalyst decomposition tank 130.
[0036]
When processing a gas containing NH 3 using the present processing apparatus 110, for example, exhaust gas containing NH 3 from a CVD apparatus or the like is contained in the gas by an oxygen removing means 114 such as a deoxidizer if necessary. After the oxygen is removed, the oxygen is introduced into the pyrolysis tank 110 through the gas inlet conduit 112 to cause a pyrolysis reaction. The operation of the pyrolysis tank 110 is similar to that described above with respect to the pyrolysis tank 10 of FIG. After pyrolyzing NH 3 in the gas in the pyrolysis tank 110, it is circulated through the cooling pipe 120 via the first conduit 113, and the pyrolyzed gas is cooled to 200 ° C. or lower.
[0037]
Thereafter, the cooled gas is introduced into the catalytic cracking tank 130 via the second conduit 132. At this time, a required amount of oxygen is introduced into the second conduit 132 via the oxygen addition means 135. In this way, the gas to which the required amount of oxygen is added is introduced into the catalytic cracking tank 130 via the second conduit 132. In the catalyst decomposition tank 130, the gas is brought into contact with the NH 3 decomposition catalyst 130a to decompose undecomposed NH 3 . At this time, the temperature of the catalyst is heated to 170 to 200 ° C. by the ceramic heater 131. Thereafter, the processing gas is discharged to the subsequent processing apparatus through the outlet conduit 133 in the environmental atmosphere or as required.
[0038]
【Example】
Examples of the processing method and processing apparatus of the present invention will be described below, but the present invention is not limited to these.
[0039]
Example 1: Influence of gas phase temperature in thermal decomposition of gas under oxygen-free atmosphere An experiment was conducted to investigate the relationship between the thermal decomposition rate of NH 3 and gas phase temperature under an oxygen-free atmosphere. A SUS hollow column having an inner diameter of 110 mm and a length of 400 mm was used as the pyrolysis tank, and a ceramic heater was attached to the outside of the hollow column as a heating means, and the temperature of the gas phase portion in the hollow column was arranged in the hollow column. Measurement was performed using a thermocouple.
[0040]
Using N 2 gas with NH 3 content adjusted to 3.6% as the test gas, the gas was passed through the pyrolysis tank at a flow rate of 80 L / min, and the temperature of the gas phase was heated (ceramic heater). The composition of the outlet gas was analyzed step by step. The analysis target components are NH 3 , NO, NO 2 , and N 2 O, NH 3 is a detector tube method (NH 3 detector tube manufactured by Gastec), and NO and NO 2 are chemiluminescent methods (chemiluminescence analyzer manufactured by Shimadzu Corporation) , Model NOA-7000) and N 2 O were analyzed using gas chromatograph mass spectrometry (Anelva gas chromatograph mass spectrometer, model AGS-7000U). NO x and N 2 O in the outlet gas were always below the detection limit (1 ppm), and only NH 3 was detected from the above four types of analysis target gases.
[0041]
Table 1 shows the concentration of NH 3 in the outlet gas, the decomposition rate of NH 3 calculated from the concentration value, and the temperature of the gas phase portion of the thermal decomposition tank.
[0042]
[Table 1]
Figure 0003999941
[0043]
From these results, it is understood that NH 3 is decomposed by 70% or more by heating the temperature of the gas phase part of the thermal decomposition tank to 500 ° C. or more.
Comparative Example 1
An experiment was conducted in the same manner as in Example 1 except that oxygen gas was added, and the relationship between the outlet gas composition and the gas phase temperature was examined.
[0044]
As a test gas, N 2 gas adjusted to have a NH 3 content of 3.6% and an O 2 content of 5.5% was passed through the thermal decomposition tank at a flow rate of 80 L / min. The results are shown in Table 2.
[0045]
[Table 2]
Figure 0003999941
[0046]
From these results, in the presence of O 2 , it is desirable that the gas phase temperature is 380 ° C. or higher in order to decompose NH 3 satisfactorily, but when the gas phase temperature exceeds 200 ° C., N 2 O Beginning to occur, at 300 ° C or higher, NO and NO 2 are also generated, and all of NO, NO 2 and N 2 O exceed the permissible environmental concentration (NO: 25 ppm, NO 2 : 3 ppm, N 2 O: 50 ppm) I understand.
[0047]
Example 2: In order to evaluate the temperature dependency of the performance of decomposing NH 3 decomposition catalyst of NH 3 by NH 3 decomposition catalyst was investigated the relationship between the treatment temperature and the outlet gas components.
[0048]
As catalyst degradation tank, an inner diameter of 110 mm, using a SUS-made hollow column height 1600 mm, as NH 3 decomposing catalyst, Fe 2 O 3: 50wt% , MnO: 25wt%, V 2 O 5: main components 5.0 wt% The product was filled with 15 L of a processing agent (trade name: Imp2-N150) made by Nissan Zudohemy Catalyst. A ceramic heater was used as a heating means and heated from the outside of the catalyst decomposition tank. The temperature inside the catalyst decomposition tank was measured with a thermocouple arranged inside.
[0049]
As a test gas, N 2 gas adjusted to have a NH 3 content of 1.0% and an O 2 content of 5.8% was passed through the catalyst decomposition tank at a flow rate of 80 L / min. The components in the outlet gas were analyzed by changing the treatment temperature stepwise. The results are shown in Table 3.
[0050]
[Table 3]
Figure 0003999941
[0051]
From the experimental results, it was found that when the treatment temperature is less than 170 ° C., the NH 3 decomposition treatment is not good, and when the treatment temperature is 230 ° C. or more, NO 2 and N 2 O exceed the allowable concentration. From this experimental result, it can be seen that when the treatment is performed in a temperature range of 170 ° C. to 200 ° C., NH 3 is decomposed well and the exhaust concentrations of NO, NO 2 and N 2 O do not exceed the allowable concentration.
[0052]
Example 3
In order to evaluate the NH 3 concentration dependency of the treatment performance of the NH 3 decomposition catalyst, the relationship between the NH 3 inflow concentration and the components in the outlet gas was examined.
[0053]
Using the same cracking catalyst tank as in Example 2 and changing the NH 3 concentration to 1.0%, 1.5% and 2.5% as the test gas, using the same test gas as in Example 2 and passing through the cracking catalyst tank The processing temperature at the start of gas was set to about 170 ° C., and the components in the outlet gas at the start of gas flow and after 30 minutes of operation were analyzed. The results are shown in Table 4.
[0054]
[Table 4]
Figure 0003999941
[0055]
Experimental results, although NH 3 regardless of the level of NH 3 concentration is satisfactorily resolved, the inflow NH 3 concentration is high, the temperature of the catalyst is increased, the higher the N 2 O concentration in the outlet gas, It can be seen that even if the inflow concentration of NH 3 is 1.5%, the allowable concentration is exceeded.
[0056]
Examples 4 and 5: NH 3 decomposition treatment by a combination of thermal decomposition and adsorption under oxygen-free conditions According to the treatment method of the present invention, a gas containing NH 3 is thermally decomposed in an oxygen-free atmosphere, and then undecomposed NH 3 Was adsorbed on an adsorbent and processed.
[0057]
A SUS hollow column having an inner diameter of 110 mm and a height of 1600 mm was used as the pyrolysis tank, and a ceramic heater was used as the heating means. As the cooling pipe, a SUS pipe having a pipe diameter of 25 mmφ folded into four pieces of about 730 mm in length was used, and air was used as a refrigerant. As an adsorbent tank, a SUS hollow column with an inner diameter of 170 mm and a height of 750 mm was used, and a synthetic zeolite (synthetic zeolite for NH 3 manufactured by Mizusawa Chemical, trade name: Mizuka Sieves 4A-812B) (Example 4) or iron sulfate (Nissan) An iron sulfate adsorbent manufactured by Zudehemy Catalyst, trade name N-500) (Example 5) was combined and 17 L was packed.
[0058]
The temperature of the pyrolysis tank gas phase was heated to 528 ° C., and N 2 gas with NH 3 content adjusted to 3.6% as a test gas was vented to the gas phase at a flow rate of 80 L / min. The test gas after pyrolysis was air-cooled to room temperature (about 30 ° C.) through a cooling pipe, and then the cooled test gas was introduced into an adsorbent tank to adsorb NH 3 on the adsorbent. The concentration of NH 3 in the outlet gas from the adsorbent tank was continuously measured. On the other hand, the same experiment as described above was conducted except that the gas was passed directly through the adsorbent tank at room temperature without passing through the pyrolysis tank, and the concentration of NH 3 in the outlet gas was measured. The results are shown in Table 5. Note that NO, NO 2 and N 2 O in the outlet gas were all below the detection limit.
[0059]
[Table 5]
Figure 0003999941
[0060]
From Table 5, according to the treatment method of the present invention that combines thermal decomposition and adsorption, NH 3 in the outlet gas from the adsorbent tank has an allowable concentration compared to the case of performing only adsorption without performing thermal decomposition. The time required to exceed it was about 6 times longer. This indicates that the effective operating life of the adsorbent has increased significantly.
[0061]
Example 6
According to the treatment method of the present invention, a gas containing NH 3 was thermally decomposed in an oxygen-free atmosphere, and undecomposed NH 3 was treated using an NH 3 decomposition catalyst.
[0062]
The same pyrolysis tank, heating means, cooling pipe, and refrigerant as those in Example 4/5 were used. A SUS hollow column having an inner diameter of 110 mm and a height of 1600 mm was used as the cracking catalyst layer at the rear stage of the cooling pipe, and the same NH 3 cracking catalyst 15 L as in Example 2 was filled inside.
[0063]
As a test gas, N 2 gas adjusted to have a NH 3 content of 3.6% was used and aerated at a flow rate of 80 L / min. The gas phase temperature of the pyrolysis tank was set to about 528 ° C. Next, the test gas after pyrolysis is passed through a cooling pipe, the test gas temperature is air-cooled to about 190 ° C., and O 2 is added so that the O 2 concentration in the gas becomes 5.5%. Was passed through a cracking catalyst tank that had been heated to about 200 ° C. Analysis of the components of the outlet gas from the cracking catalyst tank 30 minutes after the start of aeration revealed that NH 3 , NO, NO 2 and N 2 O in the gas are all below the detection limit (1 ppm), and NO x and N It can be seen that NH 3 was decomposed well without exhausting 2 O.
[0064]
【The invention's effect】
According to the treatment method and the treatment apparatus of the present invention, a large amount can be effectively produced at low cost without causing problems such as increase in running cost and generation of by-products such as NO x and N 2 O over a long period of time. Of NH 3 can be removed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a preferred embodiment of the processing apparatus of the present invention.
FIG. 2 is a schematic diagram showing another preferred embodiment of the processing apparatus of the present invention.

Claims (8)

NH3を含むガスを処理する方法であって、
熱分解槽の前段で酸素を除去し、
触媒を含まず中空である熱分解槽で、無酸素雰囲気下で、NH3を含むガスを500℃〜600℃に加温して、NH3を熱分解させ、
次いで、未分解の残存NH3を含むガスを、常温で吸着剤に吸着させる、各工程を備えることを特徴とする処理方法。
A method for treating a gas containing NH 3 , comprising:
Oxygen is removed before the pyrolysis tank,
In a pyrolysis tank that does not contain a catalyst and is hollow, in a non-oxygen atmosphere, a gas containing NH 3 is heated to 500 ° C. to 600 ° C. to thermally decompose NH 3 ,
Next, a processing method comprising each step of adsorbing a gas containing undecomposed residual NH 3 to an adsorbent at room temperature.
前記吸着剤が、合成ゼオライト、硫酸鉄及びこれらの組み合わせからなる群より選択される吸着剤であることを特徴とする請求項1記載の処理方法。  The processing method according to claim 1, wherein the adsorbent is an adsorbent selected from the group consisting of synthetic zeolite, iron sulfate, and combinations thereof. NH3を含むガスを処理する方法であって、
熱分解槽の前段で酸素を除去し、
触媒を含まず中空である熱分解槽で、無酸素雰囲気下で、NH3を含むガスを500℃〜600℃に加温して、NH3を熱分解させ、
次いで、未分解の残存NH3を含むガスを200℃以下まで冷却し、
200℃以下に冷却されたガス中に、酸素を添加し、
酸素が添加されたガスを、170℃〜200℃に加温されたNH3分解触媒と接触させる、各工程を備えることを特徴とする処理方法。
A method for treating a gas containing NH 3 , comprising:
Oxygen is removed before the pyrolysis tank,
In a pyrolysis tank that does not contain a catalyst and is hollow, in a non-oxygen atmosphere, a gas containing NH 3 is heated to 500 ° C. to 600 ° C. to thermally decompose NH 3 ,
Next, the gas containing undecomposed residual NH 3 is cooled to 200 ° C. or less,
Add oxygen to the gas cooled to below 200 ℃,
A treatment method comprising the steps of bringing a gas to which oxygen has been added into contact with an NH 3 decomposition catalyst heated to 170 ° C to 200 ° C.
前記NH3分解触媒が、酸化鉄、酸化マンガン、酸化バナジウム、酸化アルミニウム、酸化クロム、酸化タングステン、酸化銅及びこれらの組み合わせからなる群より選択される1種以上の触媒を含むことを特徴とする請求項記載の処理方法。The NH 3 decomposition catalyst includes at least one catalyst selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof. The processing method according to claim 3 . NH3を含むガスを処理する装置であって、
熱分解槽の前段で酸素を除去するための酸素除去手段と、
触媒を含まない無酸素雰囲気下で上記ガスを通気可能とする中空内部及び上記中空内部の温度を500℃〜600℃に加熱可能な加熱手段を備える熱分解槽と、
上記熱分解槽と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管と、
上記冷却管と流体連通可能状態に配置されていて、冷却された熱分解後のガス中の未分解NH3を吸着させる吸着剤が充填されている吸着剤槽と、
を備えることを特徴とする処理装置。
An apparatus for processing a gas containing NH 3 ,
An oxygen removing means for removing oxygen at the front stage of the pyrolysis tank;
A pyrolysis tank comprising a hollow interior that allows the gas to pass under an oxygen-free atmosphere containing no catalyst, and heating means capable of heating the temperature of the hollow interior to 500 ° C. to 600 ° C .;
A cooling pipe that is arranged in fluid communication with the pyrolysis tank and cools the pyrolyzed gas;
An adsorbent tank that is arranged in a fluid communicable state with the cooling pipe and is filled with an adsorbent that adsorbs undecomposed NH 3 in the cooled pyrolyzed gas;
A processing apparatus comprising:
前記吸着剤が、合成ゼオライト、硫酸鉄及びこれらの組み合わせからなる群より選択される吸着剤であることを特徴とする請求項5記載の処理装置。  The processing apparatus according to claim 5, wherein the adsorbent is an adsorbent selected from the group consisting of synthetic zeolite, iron sulfate, and combinations thereof. NH3を含むガスを処理する装置であって、
熱分解槽の前段で酸素を除去するための酸素除去手段と、
触媒を含まない無酸素雰囲気下で上記ガスを通気可能とする中空内部及び上記中空内部の温度を500℃〜600℃に加熱可能な加熱手段を備える熱分解槽と、
上記熱分解槽と流体連通可能状態に配置されていて、熱分解後のガスを冷却する冷却管と、
上記冷却管と流体連通可能状態に配置されていて、冷却された熱分解後のガスに酸素を添加する酸素添加手段と、
冷却され酸素が添加されたガスをNH3分解触媒に接触させる触媒分解槽と、を備えることを特徴とする処理装置。
An apparatus for processing a gas containing NH 3 ,
An oxygen removing means for removing oxygen at the front stage of the pyrolysis tank;
A pyrolysis tank comprising a hollow interior that allows the gas to pass under an oxygen-free atmosphere containing no catalyst, and heating means capable of heating the temperature of the hollow interior to 500 ° C. to 600 ° C .;
A cooling pipe that is arranged in fluid communication with the pyrolysis tank and cools the pyrolyzed gas;
An oxygen addition means that is arranged in fluid communication with the cooling pipe and adds oxygen to the cooled pyrolyzed gas;
And a catalytic decomposition tank for bringing the cooled and oxygen-added gas into contact with the NH 3 decomposition catalyst.
前記NH3分解触媒が、酸化鉄、酸化マンガン、酸化バナジウム、酸化アルミニウム、酸化クロム、酸化タングステン、酸化銅及びこれらの組み合わせからなる群より選択される1種以上の触媒を含むことを特徴とする請求項7記載の処理装置。The NH 3 decomposition catalyst includes at least one catalyst selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof. The processing apparatus according to claim 7.
JP2001041206A 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3 Expired - Lifetime JP3999941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041206A JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041206A JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Publications (2)

Publication Number Publication Date
JP2002239341A JP2002239341A (en) 2002-08-27
JP3999941B2 true JP3999941B2 (en) 2007-10-31

Family

ID=18903684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041206A Expired - Lifetime JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Country Status (1)

Country Link
JP (1) JP3999941B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166957A (en) * 2014-04-24 2014-09-11 Sumitomo Electric Ind Ltd Silicon carbide semiconductor, and method and device for manufacturing the same
CN107532853B (en) 2015-05-01 2020-06-30 株式会社Ihi Heat treatment apparatus
CN117942697B (en) * 2024-03-20 2024-06-04 新乡市万和过滤技术股份公司 Freon-containing air catalytic decomposition equipment and process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233117A (en) * 1998-12-14 2000-08-29 Japan Pionics Co Ltd Method and apparatus for purification of exhaust gas
JP3143792B2 (en) * 1999-04-01 2001-03-07 日本酸素株式会社 Method of removing ammonia-containing exhaust gas

Also Published As

Publication number Publication date
JP2002239341A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
US7521031B2 (en) Method and apparatus for treating exhaust gas
JP2003311148A (en) Adsorbent, and method and apparatus for purifying gas
CN1256961A (en) Process and apparatus for purefying waste gas
JP5133688B2 (en) Cu-ZSM5 zeolite shaped adsorbent, its activation method, temperature fluctuation type adsorption device, and gas purification method
JP2007105657A (en) Gas treatment apparatus
TWI282748B (en) Gas purification method and apparatus thereof
KR950003733B1 (en) Activated carbon production thereof & its use for adsorption
JP3999941B2 (en) Method and apparatus for processing gas containing NH3
JP2002321912A (en) Zeolite for absorption and device for removing gas using the same
KR100939307B1 (en) Method and apparatus for treating exhaust gases containing fluorine-containing compounds
CN102895865A (en) Method for removing contaminant in gas stream
JP2012030199A (en) Method for treating gas containing nitrogen oxide
JP2007014919A (en) Exhaust gas treatment device and exhaust gas treatment system
JP4512994B2 (en) Water treatment system
JP6812612B2 (en) Ethylene oxide removal method
JP5345441B2 (en) Method and apparatus for treating gas containing nitrogen oxides
JP2004098014A (en) Method for treating gas containing volatile organic compound
CN210291918U (en) Novel adsorption and desorption catalytic combustion device
JP2002370014A (en) Exhaust gas treatment system
JPH10128063A (en) Treatment of volatile organic halogen compound-containing gas and device therefor
KR20070018238A (en) Method for the abatement of waste gas comprising fluorine and its adsorption column device
KR102392961B1 (en) Exhaust gas treatment apparatus and method
JP4256216B2 (en) Gas processing apparatus and gas processing method
JP3908818B2 (en) Exhaust gas treatment method
JP2007175595A (en) Exhaust gas treatment facility and exhaust gas treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Ref document number: 3999941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term