JP2012030199A - Method for treating gas containing nitrogen oxide - Google Patents

Method for treating gas containing nitrogen oxide Download PDF

Info

Publication number
JP2012030199A
JP2012030199A JP2010174116A JP2010174116A JP2012030199A JP 2012030199 A JP2012030199 A JP 2012030199A JP 2010174116 A JP2010174116 A JP 2010174116A JP 2010174116 A JP2010174116 A JP 2010174116A JP 2012030199 A JP2012030199 A JP 2012030199A
Authority
JP
Japan
Prior art keywords
gas
nitrogen
nitrogen dioxide
treatment
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010174116A
Other languages
Japanese (ja)
Inventor
Kenji Otsuka
健二 大塚
Noboru Takemasa
登 武政
Takeo Komori
丈雄 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2010174116A priority Critical patent/JP2012030199A/en
Publication of JP2012030199A publication Critical patent/JP2012030199A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PROBLEM TO BE SOLVED: To provide a treatment method for efficiently removing nitrogen oxide from gas to be treated, such as air containing nitrogen monoxide and nitrogen dioxide, with high treatment performance.SOLUTION: After the gas to be treated, such as air containing nitrogen monoxide and nitrogen dioxide, is treated so that a relative humidity is 20% or less, inorganic carrier is brought into contact with conversion agent formed by carrying potassium permanganate to convert nitrogen monoxide contained in the gas into nitrogen dioxide, which is then brought into contact with nitrogen dioxide removing agent to remove nitrogen dioxide from the gas.

Description

本発明は、一酸化窒素及び二酸化窒素を含むガスの処理方法に関する。さらに詳細には、空気等のガス中に水分とともに含まれる一酸化窒素及び二酸化窒素を、効率よく除去するための処理方法に関する。   The present invention relates to a method for treating a gas containing nitrogen monoxide and nitrogen dioxide. More specifically, the present invention relates to a treatment method for efficiently removing nitrogen monoxide and nitrogen dioxide contained in a gas such as air together with moisture.

ディーゼル自動車等から排出される窒素酸化物等の排出量の低減を図るため、平成4年に自動車NOx法が制定され、さらに平成13年に自動車NOx・PM法が制定されている。自動車NOx・PM法は、自動車から排出される窒素酸化物及び粒子状物質に関する総量削減基本方針、総量削減計画であり、目標数値に適合しない自動車(車種)は、将来規制されることが盛り込まれている。このような規制に対して、運転状況に応じて最適な空燃比にフィードバック抑制可能な内燃機関、あるいは窒素酸化物等を効率よく分解可能なパラジウム等の貴金属触媒の開発が行われてきた。   In order to reduce emissions of nitrogen oxides and the like emitted from diesel automobiles, the automobile NOx law was enacted in 1992, and the automobile NOx / PM law was enacted in 2001. The Automobile NOx / PM Law is a basic policy for reducing the total amount of nitrogen oxides and particulate matter emitted from automobiles, and a plan for reducing the total amount. It is included that automobiles (models) that do not meet the target figures will be regulated in the future. ing. In response to such regulations, the development of an internal combustion engine that can be feedback-controlled to an optimal air-fuel ratio according to the operating conditions, or a noble metal catalyst such as palladium that can efficiently decompose nitrogen oxides has been developed.

前記に関連して、従来からシャシダイナモメータを用いて、各種走行モードで自動車を運転した際に排出される排ガスを、ガス測定装置に供給して、排ガスに含まれる窒素酸化物等の有害成分を分析することが行なわれている。窒素酸化物の濃度を測定する際には、窒素酸化物を全く含まないゼロガスが必要であり、このようなゼロガスを供給する手段としては、ゼロガスが充填された高圧ガスボンベを使用することができるが、使用量が多く高価なボンベを使用することは不経済であるという不都合があった。そのため、空気を原料とし、吸着剤、触媒、あるいは除去剤を利用して空気中の窒素酸化物を除去する各種の処理方法等が開発されてきた。   In relation to the above, by using a chassis dynamometer conventionally, exhaust gas discharged when driving an automobile in various driving modes is supplied to the gas measuring device, and harmful components such as nitrogen oxides contained in the exhaust gas Is being analyzed. When measuring the concentration of nitrogen oxides, a zero gas containing no nitrogen oxides is required, and as a means for supplying such a zero gas, a high-pressure gas cylinder filled with zero gas can be used. However, it is inconvenient to use an expensive cylinder with a large amount of use. Therefore, various treatment methods have been developed in which air is used as a raw material and nitrogen oxides in the air are removed using an adsorbent, a catalyst, or a remover.

このような窒素酸化物の除去処理方法としては、例えば特許文献1の明細書中に記載されているように、窒素酸化物を含むガスを、常温で、アルミナ、シリカ、ゼオライト等の高比表面積の無機質担体に、過マンガン酸カリウム、塩素酸ナトリウム、亜塩素酸ナトリウム等を担持させた酸化剤と接触させた後、活性炭、ゼオライト等の吸着剤と接触させて、該ガスに含まれる窒素酸化物を除去する方法がある。また、特許文献2に記載されているように、無機質担体に金属硫酸塩のアンミン錯体を担持させた浄化剤と接触させて該ガスに含まれる窒素酸化物を除去する方法がある。
特開平6−106030号公報 特開2004−305949号公報
As such a method for removing nitrogen oxides, for example, as described in the specification of Patent Document 1, a gas containing nitrogen oxides is used at room temperature at a high specific surface area such as alumina, silica, zeolite, etc. After contacting with an oxidant supporting potassium permanganate, sodium chlorate, sodium chlorite, etc. on an inorganic carrier, contact with an adsorbent such as activated carbon, zeolite, etc., and oxidizing nitrogen contained in the gas There is a way to remove things. Further, as described in Patent Document 2, there is a method of removing nitrogen oxides contained in the gas by bringing it into contact with a purifier having an inorganic carrier carrying an ammine complex of a metal sulfate.
JP-A-6-106030 JP 2004-305949 A

特許文献1に記載された処理方法は、吸着除去し難い一酸化窒素を二酸化窒素に転化した後、吸着剤と接触させて窒素酸化物を除去する方法であるが、窒素酸化物の処理能力(処理剤単位量当りの窒素酸化物の除去量)が小さいという問題点があった。また、特許文献2に記載された処理方法も、窒素酸化物の処理能力が比較的に小さかった。
従って、本発明が解決しようとする課題は、空気等の処理対象ガスに含まれる窒素酸化物を、優れた処理能力で効率よく該ガスから除去できる処理方法を提供することである。
The treatment method described in Patent Document 1 is a method of removing nitrogen oxides by converting nitrogen monoxide, which is difficult to be adsorbed and removed, into nitrogen dioxide, and then contacting with an adsorbent. There was a problem that the nitrogen oxide removal amount per unit amount of the processing agent was small. Further, the treatment method described in Patent Document 2 also has a relatively low nitrogen oxide treatment capacity.
Therefore, the problem to be solved by the present invention is to provide a treatment method capable of efficiently removing nitrogen oxide contained in a gas to be treated such as air from the gas with an excellent treatment capacity.

尚、半導体製造装置から排出されるような高濃度の窒素酸化物を含む排ガスの処理方法に関しては、アンモニア等の還元性ガスを添加し、加熱下で金属または金属化合物からなる触媒と接触させて、窒素酸化物を窒素及び水に還元分解することにより除去する処理方法がある。この方法は、優れた処理能力を有するが、還元性ガスの添加量が多くなってしまった場合は、アンモニア等の有害ガスが下流側に排出されるので、還元性ガスの流量のコントロールが難しいという問題点がある。   In addition, regarding the processing method of the exhaust gas containing high concentration nitrogen oxides discharged from the semiconductor manufacturing apparatus, a reducing gas such as ammonia is added and brought into contact with a catalyst made of a metal or a metal compound under heating. There is a treatment method for removing nitrogen oxides by reductive decomposition into nitrogen and water. This method has excellent processing capability, but when the amount of reducing gas added increases, harmful gases such as ammonia are discharged downstream, making it difficult to control the flow rate of reducing gas. There is a problem.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、一酸化窒素及び二酸化窒素を含む処理対象ガスを、予め相対湿度が20%以下となるように処理することにより、無機質担体に過マンガン酸カリウムを担持させた転化剤による一酸化窒素から二酸化窒素への転化反応速度が向上し、処理対象ガスに含まれる窒素酸化物を、優れた処理能力及び除去率で効率よく除去できることを見出し、本発明の窒素酸化物を含むガスの処理方法に到達した。   As a result of intensive studies to solve these problems, the present inventors have processed the gas to be treated containing nitrogen monoxide and nitrogen dioxide in advance so that the relative humidity becomes 20% or less, thereby providing an inorganic carrier. The conversion reaction rate from nitrogen monoxide to nitrogen dioxide by the conversion agent supporting potassium permanganate is improved, and nitrogen oxides contained in the gas to be treated can be efficiently removed with excellent treatment capacity and removal rate. The present inventors have reached a method for treating a gas containing nitrogen oxide according to the present invention.

すなわち本発明は、一酸化窒素及び二酸化窒素を含むガスを、相対湿度が20%以下となるように処理した後、無機質担体に過マンガン酸カリウムを担持させた転化剤と接触させて、該ガスに含まれる一酸化窒素を二酸化窒素に転化し、さらに二酸化窒素除去剤と接触させて、該ガスから二酸化窒素を除去することを特徴とする窒素酸化物を含むガスの処理方法である。   That is, the present invention treats a gas containing nitrogen monoxide and nitrogen dioxide so as to have a relative humidity of 20% or less, and then contacts with a conversion agent in which potassium permanganate is supported on an inorganic carrier. Is a method for treating a gas containing nitrogen oxide, which comprises converting nitrogen monoxide contained in the gas to nitrogen dioxide, and further contacting the nitrogen dioxide removing agent to remove nitrogen dioxide from the gas.

本発明の窒素酸化物を含むガスの処理方法は、該ガスの相対湿度が20%以下の条件で、無機質担体に過マンガン酸カリウムを担持させた転化剤と接触させるので、一酸化窒素から二酸化窒素への転化反応速度が向上する。その結果、窒素酸化物の濃度が比較的に低い空気等のガスであっても、優れた除去能力及び除去率で効率よく処理対象ガスから窒素酸化物を除去することが可能である。また、一酸化窒素を二酸化窒素に転化する反応速度が向上するので、転化剤と二酸化窒素除去剤を混合して充填することも可能となり、これらの充填装置を簡素化することができる。   In the method for treating a gas containing nitrogen oxide according to the present invention, since the relative humidity of the gas is 20% or less, it is brought into contact with a conversion agent in which potassium permanganate is supported on an inorganic carrier. The conversion reaction rate to nitrogen is improved. As a result, even if the concentration of nitrogen oxides is a gas such as air, the nitrogen oxides can be efficiently removed from the processing target gas with an excellent removal capability and removal rate. In addition, since the reaction rate for converting nitrogen monoxide to nitrogen dioxide is improved, it is possible to mix and charge the conversion agent and the nitrogen dioxide removing agent, thereby simplifying these filling devices.

本発明は、例えば、自動車から排出される排ガスをガス測定装置に供給して、排ガスに含まれる窒素酸化物等の有害成分を分析する際に用いられる、窒素酸化物を全く含まない基準用あるいは比較用のゼロガスの調製に適用される。本発明における処理対象ガスは、半導体製造装置あるいは自動車から直接排出されるような高濃度の窒素酸化物を含むガスではなく、空気、あるいは自動車の排ガス測定場所の近辺から採取される窒素酸化物が多少多く含まれている空気等であり、通常は一酸化窒素及び二酸化窒素窒が含まれ、これらの合計の濃度が2ppm以下のガス(空気)である。   The present invention is, for example, used for supplying exhaust gas discharged from an automobile to a gas measuring device and analyzing harmful components such as nitrogen oxides contained in the exhaust gas. Applies to preparation of comparative zero gas. The gas to be treated in the present invention is not a gas containing high-concentration nitrogen oxides that is directly discharged from a semiconductor manufacturing apparatus or automobile, but nitrogen or nitrogen oxides collected from the vicinity of an exhaust gas measurement place of an automobile. It is air or the like that is contained in a somewhat large amount, usually nitrogen monoxide and nitrogen dioxide, and is a gas (air) having a total concentration of 2 ppm or less.

本発明の窒素酸化物を含むガスの処理方法は、一酸化窒素及び二酸化窒素を含む処理対象ガスを、相対湿度が20%以下、好ましくは相対湿度が15%以下となるように処理した後、無機質担体に過マンガン酸カリウムを担持させた転化剤と接触させて、該ガスに含まれる一酸化窒素を二酸化窒素に転化し、さらに二酸化窒素除去剤と接触させて、該ガスから二酸化窒素を除去する方法である。
尚、日本における各地の相対湿度(月別平均)は、図5に示す通りであり、年間を通して通常は50%以上で、20%以下となるようなことはない。
In the method for treating a gas containing nitrogen oxide according to the present invention, the gas to be treated containing nitrogen monoxide and nitrogen dioxide is treated so that the relative humidity is 20% or less, preferably 15% or less, Contact with a conversion agent in which potassium permanganate is supported on an inorganic carrier to convert nitrogen monoxide contained in the gas into nitrogen dioxide, and contact with a nitrogen dioxide removing agent to remove nitrogen dioxide from the gas. It is a method to do.
Note that the relative humidity (monthly average) in each place in Japan is as shown in FIG. 5 and is usually 50% or more and never 20% or less throughout the year.

本発明において、処理対象ガスを相対湿度が20%以下となるように処理する方法としては、処理対象ガスを加熱する処理方法(通常は50〜120℃、好ましくは55〜110℃、さらに好ましくは60〜100℃)、または処理対象ガスを水分吸着剤(ゼオライト、活性炭等)と接触させて水分を除去する処理方法がある。通常はどちらか一方の処理方法が行なわれるが、これらの両方の処理方法を行なってもよい。   In the present invention, the method for treating the gas to be treated so that the relative humidity is 20% or less is a treatment method for heating the gas to be treated (usually 50 to 120 ° C., preferably 55 to 110 ° C., more preferably There is a processing method in which moisture is removed by bringing a gas to be treated into contact with a moisture adsorbent (zeolite, activated carbon, etc.). Normally, either one of the processing methods is performed, but both of these processing methods may be performed.

本発明に用いられる転化剤は、無機質担体に過マンガン酸カリウムを担持させた剤であり、前記の無機質担体としては、ゼオライト、アルミナ、またはシリカ等のセラミックスを例示することができる。前記の転化剤は、例えば無機質担体に過マンガン酸カリウムを含む水溶液を添加し、乾燥することにより調製される。転化剤に含まれる過マンガン酸カリウムの含有率は、通常は5wt%以上かつ30wt%以下、好ましくは8wt%以上かつ20wt%以下である。過マンガン酸カリウムの含有率が5wt%未満の場合または30wt%を超える場合は、転化剤の能力(転化剤単位量当りの酸化能力)が低下する虞がある。尚、転化剤に含まれる水の含有率は、通常は10wt%以下である。   The conversion agent used in the present invention is an agent in which potassium permanganate is supported on an inorganic carrier, and examples of the inorganic carrier include ceramics such as zeolite, alumina, and silica. The conversion agent is prepared, for example, by adding an aqueous solution containing potassium permanganate to an inorganic carrier and drying. The content of potassium permanganate contained in the conversion agent is usually 5 wt% or more and 30 wt% or less, preferably 8 wt% or more and 20 wt% or less. When the content of potassium permanganate is less than 5 wt% or exceeds 30 wt%, the capacity of the conversion agent (oxidation capacity per unit amount of conversion agent) may be reduced. In addition, the content rate of the water contained in a conversion agent is 10 wt% or less normally.

本発明に用いられる二酸化窒素除去剤は、二酸化窒素を効率よく除去できれば特に制限されることはないが、処理能力が優れた除去剤としては、例えば、酸化マンガンを含む金属酸化物にアルカリ金属化合物の水酸化物またはアルカリ土類金属化合物の水酸化物を担持させた除去剤、またはアルカリ活性炭等を挙げることができる。本発明においては、通常はこれらの除去剤のうち1種類の除去剤が用いられるが、2種類以上の除去剤を用いてもよい。   The nitrogen dioxide removing agent used in the present invention is not particularly limited as long as nitrogen dioxide can be efficiently removed. Examples of the removing agent having excellent processing ability include alkali metal compounds and metal oxides containing manganese oxide. The removal agent which supported the hydroxide of this, or the hydroxide of an alkaline-earth metal compound, or alkaline activated carbon can be mentioned. In the present invention, one kind of removing agent is usually used among these removing agents, but two or more kinds of removing agents may be used.

前述の酸化マンガンを含む金属酸化物にアルカリ金属化合物の水酸化物またはアルカリ土類金属化合物の水酸化物を担持させた除去剤には、金属酸化物として酸化マンガンのほか酸化銅を含むことが好ましい。酸化マンガンと酸化銅の含有比率は、重量比で酸化マンガン:酸化銅が、通常は1:0〜5.0程度である。尚、酸化マンガンは通常は酸化マンガン(IV)であり、酸化銅は通常は酸化銅(II)である。さらに不純物として金属あるいは他の金属酸化物が含まれていてもよいが、金属及び金属酸化物全量に対する酸化銅及び酸化マンガンの含有率の合計は、通常は70wt%以上、好ましくは90wt%以上である。   The removal agent in which a hydroxide of an alkali metal compound or an alkaline earth metal compound is supported on the metal oxide containing manganese oxide may contain copper oxide in addition to manganese oxide as the metal oxide. preferable. The content ratio of manganese oxide to copper oxide is usually about 1: 0 to 5.0 in terms of weight ratio of manganese oxide: copper oxide. Note that manganese oxide is usually manganese oxide (IV), and copper oxide is usually copper oxide (II). Furthermore, metals or other metal oxides may be contained as impurities, but the total content of copper oxide and manganese oxide with respect to the total amount of metal and metal oxide is usually 70 wt% or more, preferably 90 wt% or more. is there.

また、アルカリ金属の水酸化物としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム等を、アルカリ土類金属化合物の水酸化物としては、水酸化カルシウム、水酸化マグネシウム、水酸化ストロンチウム等を例示することができるが、これらの中では窒素酸化物の除去処理能力が優れている点で水酸化カリウムを用いることが好ましい。このような除去剤は、例えば前記の金属酸化物に、アルカリ金属の水酸化物またはアルカリ土類金属化合物の水酸化物を含む水溶液を添加し、乾燥することにより調製される。除去剤に含まれる水酸化物の含有率は、通常は除去剤全量に対して5wt%以上かつ50wt%以下、好ましくは10wt%以上かつ40wt%以下である。尚、調製された除去剤に含まれる水の含有率は、通常は10wt%以下である。   Examples of the alkali metal hydroxide include lithium hydroxide, potassium hydroxide, and sodium hydroxide, and examples of the alkaline earth metal compound hydroxide include calcium hydroxide, magnesium hydroxide, and strontium hydroxide. Of these, potassium hydroxide is preferably used because of its excellent ability to remove nitrogen oxides. Such a removing agent is prepared, for example, by adding an aqueous solution containing an alkali metal hydroxide or an alkaline earth metal compound hydroxide to the metal oxide and drying the solution. The content of the hydroxide contained in the remover is usually 5 wt% or more and 50 wt% or less, preferably 10 wt% or more and 40 wt% or less with respect to the total amount of the remover. In addition, the content rate of the water contained in the prepared removal agent is 10 wt% or less normally.

前述のアルカリ活性炭は、BET比表面積700〜3000m/gのアルカリ性の活性炭である。このような活性炭は、例えばヤシ殻等の炭素原料を、600〜800℃程度の温度で、重量比で前記炭素原料の数倍のKOH等のアルカリを用いて賦活した後、アルカリが少量残存する程度に洗浄し、これを乾燥することにより容易に得ることができる。また、水蒸気を用いて賦活した前記BET比表面積を有する活性炭に、アルカリ性水溶液を添着させたり、活性炭をアルカリ性水溶液に浸漬させた後、乾燥することによっても得ることができる。 The aforementioned alkaline activated carbon is alkaline activated carbon having a BET specific surface area of 700 to 3000 m 2 / g. Such activated carbon, for example, activates a carbon raw material such as coconut shell using an alkali such as KOH several times the weight of the carbon raw material at a temperature of about 600 to 800 ° C., and then a small amount of alkali remains. It can be easily obtained by washing to the extent and drying it. It can also be obtained by attaching an alkaline aqueous solution to the activated carbon having the BET specific surface area activated with water vapor, or immersing the activated carbon in the alkaline aqueous solution and then drying.

本発明の窒素酸化物を含むガスの処理は、例えば、図1に示すような、ヒータ1と、無機質担体に過マンガン酸カリウムを担持させた転化剤3及び二酸化窒素除去剤4を充填した処理筒を備えた処理装置、あるいは、図2に示すような、水分吸着剤2を充填した吸着筒と、無機質担体に過マンガン酸カリウムを担持させた転化剤3及び二酸化窒素除去剤4を充填した処理筒を備えた処理装置を用いて行なわれる。また、本発明においては、一酸化窒素を二酸化窒素に転化する反応速度が速いので、図3に示すように、無機質担体に過マンガン酸カリウムを担持させた転化剤及び二酸化窒素除去剤の混合剤5を用いることも可能である。   The treatment of the gas containing nitrogen oxides of the present invention is, for example, a treatment in which a heater 1, a conversion agent 3 in which an inorganic carrier is loaded with potassium permanganate, and a nitrogen dioxide removal agent 4 are filled as shown in FIG. A treatment apparatus provided with a cylinder, or an adsorption cylinder filled with a moisture adsorbent 2 as shown in FIG. 2, and a conversion agent 3 and a nitrogen dioxide removing agent 4 in which potassium permanganate is supported on an inorganic carrier are filled. This is performed using a processing apparatus provided with a processing cylinder. In the present invention, since the reaction rate for converting nitric oxide to nitrogen dioxide is high, as shown in FIG. 3, a mixture of a conversion agent in which potassium permanganate is supported on an inorganic carrier and a nitrogen dioxide removal agent. It is also possible to use 5.

窒素酸化物を含むガスを図1、図2の処理装置により処理する際、転化剤とガスの接触温度は、通常は50〜120℃となるようにコントロールされる。また、転化剤、除去剤が充填された処理筒内の圧力は、いずれの装置であっても通常は常圧であるが、10KPa(絶対圧力)のような減圧下あるいは1MPa(絶対圧力)のような加圧下で操作することも可能である。尚、転化剤による一酸化窒素から二酸化窒素への転化率、除去剤による二酸化窒素の除去率は、いずれも通常は99.9%以上である。   When the gas containing nitrogen oxides is processed by the processing apparatus of FIGS. 1 and 2, the contact temperature between the conversion agent and the gas is usually controlled to be 50 to 120 ° C. Further, the pressure in the processing cylinder filled with the conversion agent and the removal agent is usually normal pressure in any apparatus, but under a reduced pressure such as 10 KPa (absolute pressure) or 1 MPa (absolute pressure). It is also possible to operate under such pressure. In addition, the conversion rate from nitrogen monoxide to nitrogen dioxide by the conversion agent and the removal rate of nitrogen dioxide by the removal agent are both usually 99.9% or more.

尚、窒素酸化物を含むガスが前記よりも高い温度で供給される場合が考えられる。例えば、処理対象ガスが窒素酸化物のほかメタンを含み、メタンを除去する必要があるときは、加熱下(120℃以上の温度)で触媒と接触させてメタンを分解する方法がある。このようにガスを他の処理(窒素酸化物の除去以外の処理)のために加熱する場合には、処理対象ガスを転化剤と接触させる前に冷却して50〜120℃の温度範囲となるようにコントロールする必要があるが、転化剤と接触する際の相対湿度が20%以下であれば本願発明の範囲に含まれるものである。処理装置としては、例えば図4に示すような装置を用いることができる。   In addition, the case where the gas containing nitrogen oxide is supplied at a temperature higher than the above is considered. For example, when the gas to be treated contains methane in addition to nitrogen oxides and it is necessary to remove methane, there is a method of decomposing methane by contacting it with a catalyst under heating (at a temperature of 120 ° C. or higher). Thus, when heating gas for other processes (processes other than the removal of nitrogen oxides), it cools before making process object gas contact with a conversion agent, and it becomes the temperature range of 50-120 degreeC. However, if the relative humidity at the time of contact with the conversion agent is 20% or less, it is included in the scope of the present invention. As the processing device, for example, a device as shown in FIG. 4 can be used.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1〜5]
(転化剤及び除去剤の調製)
市販の合成ゼオライト(細孔径10Å相当)に、過マンガン酸カリウム水溶液を添加した後、約80℃の温度で乾燥して表1に示すような数種類(過マンガン酸カリウムの重量含有率が、各々5%、10%、20%)の転化剤を調製した。また、市販のホプカライト(直径1.5mm、長さ3〜10mmの押し出し成型品)に、水酸化カリウム水溶液を添加した後、約60℃の温度で乾燥して表2に示すような数種類(酸化マンガンと酸化銅の含有比率が、各々重量比で1:1、1:0.5、0.5:1)の除去剤を調製した。また、市販のアルカリ活性炭を用意した。
[Examples 1 to 5]
(Preparation of conversion agent and removal agent)
After adding a potassium permanganate aqueous solution to a commercially available synthetic zeolite (corresponding to a pore diameter of 10 mm), it was dried at a temperature of about 80 ° C., and several types as shown in Table 1 (the weight content of potassium permanganate was 5%, 10%, 20%) conversion agents were prepared. Moreover, after adding an aqueous potassium hydroxide solution to commercially available hopcalite (extruded molded product having a diameter of 1.5 mm and a length of 3 to 10 mm), it is dried at a temperature of about 60 ° C. A removal agent having a content ratio of manganese and copper oxide of 1: 1, 1: 0.5, and 0.5: 1 by weight was prepared. Moreover, the commercially available alkaline activated carbon was prepared.

(転化試験)
予熱ヒータとステンレス製の処理筒(内径28.4mm、長さ400mm、ヒータ内蔵)からなる処理装置を製作し、前記のように調製した転化剤80gを処理筒に充填した。次に、30ppmの一酸化窒素含む、温度20℃、相対湿度70%の空気を14.7L/minの流量で処理筒に導入して、一酸化窒素を二酸化窒素に転化する試験を行なった。(試験時間の短縮のため、窒素酸化物の濃度を高く設定した。)この間、空気と転化剤との接触温度が、各々70℃(相対湿度5.2%)、60℃(相対湿度8.2%)、50℃(相対湿度13.3%)となるようにヒータの温度を調節した。また、処理装置の出口ガスをサンプリングして、NOx計(NO、NOを別々に検知可能、検知下限:0.2ppb)により、転化剤が破過し一酸化窒素が検出されるまでの時間を測定し、転化剤の処理能力及び転化率を求めた。その結果を表1に示す。
(Conversion test)
A processing apparatus comprising a preheating heater and a stainless steel processing cylinder (inner diameter 28.4 mm, length 400 mm, with built-in heater) was manufactured, and 80 g of the conversion agent prepared as described above was filled in the processing cylinder. Next, a test for converting nitrogen monoxide to nitrogen dioxide was performed by introducing air containing 30 ppm of nitric oxide at a temperature of 20 ° C. and a relative humidity of 70% into the treatment cylinder at a flow rate of 14.7 L / min. (In order to shorten the test time, the concentration of nitrogen oxide was set high.) During this time, the contact temperatures of air and the conversion agent were 70 ° C. (relative humidity 5.2%) and 60 ° C. (relative humidity 8. 2%) and the temperature of the heater was adjusted to 50 ° C. (relative humidity 13.3%). In addition, the time from sampling the outlet gas of the processing apparatus and NOx meter (NO and NO 2 can be detected separately, detection lower limit: 0.2 ppb) until the conversion agent breaks through and nitric oxide is detected. Was measured to determine the processing capacity and conversion rate of the conversion agent. The results are shown in Table 1.

[実施例6、7]
実施例1の転化剤の調製において、合成ゼオライトの替わりにアルミナ(粒子状)及びシリカ(粒子状)を用いたほかは実施例1と同様にして転化剤(過マンガン酸カリウムの重量含有率は10%)を調製した。次に、この転化剤を用いたほかは実施例1と同様にして転化試験を行なった。その結果を表1に示す。
[Examples 6 and 7]
In the preparation of the conversion agent in Example 1, the weight content of the conversion agent (potassium permanganate is the same as in Example 1 except that alumina (particulate) and silica (particulate) are used instead of synthetic zeolite. 10%) was prepared. Next, a conversion test was conducted in the same manner as in Example 1 except that this conversion agent was used. The results are shown in Table 1.

[実施例8〜10]
上流側に吸着筒(内径28.4mm、長さ400mm)と下流側にステンレス製の処理筒(内径28.4mm、長さ400mm)を有する処理装置を製作した。充分な量の市販の合成ゼオライトを吸着筒に充填し、転化剤80gを処理筒に充填した。次に、30ppmの一酸化窒素含む、温度20℃、相対湿度70%の空気を14.7L/minの流量で処理筒に導入して、一酸化窒素を二酸化窒素に転化する試験を行なった。この間、処理装置の出口ガスをサンプリングして、NOx計(NO、NOを別々に検知可能、検知下限:0.2ppb)により、転化剤が破過し一酸化窒素が検出されるまでの時間を測定し、転化剤の処理能力及び転化率を求めた。その結果を表1に示す。
[Examples 8 to 10]
A processing apparatus having an adsorption cylinder (inner diameter 28.4 mm, length 400 mm) on the upstream side and a stainless steel processing cylinder (inner diameter 28.4 mm, length 400 mm) on the downstream side was manufactured. A sufficient amount of commercially available synthetic zeolite was filled into the adsorption cylinder, and 80 g of the conversion agent was filled into the treatment cylinder. Next, a test for converting nitrogen monoxide to nitrogen dioxide was performed by introducing air containing 30 ppm of nitric oxide at a temperature of 20 ° C. and a relative humidity of 70% into the treatment cylinder at a flow rate of 14.7 L / min. During this time, sampling the outlet gas of the processing apparatus, and the time from the NOx meter (NO and NO 2 can be detected separately, detection lower limit: 0.2 ppb) until the conversion agent breaks through and nitric oxide is detected Was measured to determine the processing capacity and conversion rate of the conversion agent. The results are shown in Table 1.

[実施例11〜13]
予熱ヒータとステンレス製の処理筒(内径28.4mm、長さ400mm、ヒータ内蔵)からなる図1に示すような処理装置を製作し、充分な量の実施例1と同じ転化剤と、酸化マンガンと酸化銅からなる除去剤80gを処理筒に充填した。次に、30ppmの一酸化窒素及び30ppmの二酸化窒素含む、温度20℃、相対湿度70%の空気を14.7L/minの流量で処理筒に導入して、これらの窒素酸化物を除去する試験を行なった。この間、空気と転化剤との接触温度が、70℃(相対湿度5.2%)となるようにヒータの温度を調節した。また、処理装置の出口ガスをサンプリングして、NOx計(NO、NOを別々に検知可能、検知下限:0.2ppb)により、除去剤が破過し二酸化窒素が検出されるまでの時間を測定し、除去剤の処理能力を求めた。その結果を表2に示す。
[Examples 11 to 13]
A processing apparatus as shown in FIG. 1 consisting of a preheating heater and a stainless steel processing cylinder (inner diameter: 28.4 mm, length: 400 mm, with built-in heater) is manufactured, and a sufficient amount of the same conversion agent as in Example 1 and manganese oxide are produced. And 80 g of a removal agent made of copper oxide were filled in the treatment cylinder. Next, a test for removing these nitrogen oxides by introducing air containing 30 ppm of nitric oxide and 30 ppm of nitrogen dioxide at a temperature of 20 ° C. and a relative humidity of 70% into the treatment cylinder at a flow rate of 14.7 L / min. Was done. During this time, the heater temperature was adjusted so that the contact temperature between the air and the conversion agent was 70 ° C. (relative humidity 5.2%). In addition, sampling the outlet gas of the processing apparatus, the NOx meter (NO, NO 2 can be detected separately, detection lower limit: 0.2 ppb), the time until the removal agent breaks through and nitrogen dioxide is detected Measured and determined the removal agent throughput. The results are shown in Table 2.

[実施例14〜16]
吸着筒(内径28.4mm、長さ400mm)とステンレス製の処理筒(内径28.4mm、長さ400mm、ヒータ内蔵)からなる図2に示すような処理装置を製作した。充分な量の市販の合成ゼオライトを吸着筒に充填し、充分な量の実施例1と同じ転化剤と除去剤80gを処理筒に充填した。次に、30ppmの一酸化窒素及び30ppmの二酸化窒素含む、温度20℃、相対湿度70%の空気を14.7L/minの流量で処理筒に導入して、これらの窒素酸化物を除去する試験を行なった。この間、処理装置の出口ガスをサンプリングして、NOx計(NO、NOを別々に検知可能、検知下限:0.2ppb)により、除去剤が破過し二酸化窒素が検出されるまでの時間を測定し、除去剤の処理能力を求めた。その結果を表2に示す。
[Examples 14 to 16]
A processing apparatus as shown in FIG. 2 comprising an adsorption cylinder (inner diameter 28.4 mm, length 400 mm) and a stainless steel processing cylinder (inner diameter 28.4 mm, length 400 mm, with built-in heater) was manufactured. A sufficient amount of commercially available synthetic zeolite was filled in the adsorption cylinder, and a sufficient amount of the same conversion agent and removal agent 80 g as in Example 1 were filled in the treatment cylinder. Next, a test for removing these nitrogen oxides by introducing air containing 30 ppm of nitric oxide and 30 ppm of nitrogen dioxide at a temperature of 20 ° C. and a relative humidity of 70% into the treatment cylinder at a flow rate of 14.7 L / min. Was done. During this time, the outlet gas of the processing apparatus is sampled, and the time until the removal agent breaks through and nitrogen dioxide is detected by a NOx meter (NO and NO 2 can be detected separately, detection lower limit: 0.2 ppb) is measured. Measured and determined the removal agent throughput. The results are shown in Table 2.

[実施例17]
実施例11の除去試験において、酸化マンガンと酸化銅からなる除去剤の替わりにアルカリ活性炭からなる除去剤を用いたほかは実施例11と同様にして除去試験を行なった。その結果を表3に示す。
[Example 17]
In the removal test of Example 11, the removal test was conducted in the same manner as in Example 11 except that a remover made of alkaline activated carbon was used instead of the remover made of manganese oxide and copper oxide. The results are shown in Table 3.

[実施例18]
実施例14の除去試験において、酸化マンガンと酸化銅からなる除去剤の替わりにアルカリ活性炭からなる除去剤を用いたほかは実施例14と同様にして除去試験を行なった。その結果を表3に示す。
[Example 18]
In the removal test of Example 14, the removal test was conducted in the same manner as in Example 14 except that a remover made of alkaline activated carbon was used instead of the remover made of manganese oxide and copper oxide. The results are shown in Table 3.

[実施例19]
実施例11の除去試験において、転化剤と除去剤を混合して用いた(図3の処理装置に対応する)ほかは実施例11と同様にして除去試験を行なった。その結果、除去剤の処理能力は10.5L/Lであった。
[Example 19]
In the removal test of Example 11, the removal test was conducted in the same manner as in Example 11 except that the conversion agent and the removal agent were mixed and used (corresponding to the treatment apparatus of FIG. 3). As a result, the treatment capacity of the remover was 10.5 L / L.

[実施例20]
実施例14の除去試験において、転化剤と除去剤を混合して用いたほかは実施例14と同様にして除去試験を行なった。その結果、除去剤の処理能力は15.3L/Lであった。
[Example 20]
In the removal test of Example 14, the removal test was conducted in the same manner as in Example 14 except that the conversion agent and the removal agent were mixed and used. As a result, the treatment capacity of the remover was 15.3 L / L.

[実施例21]
実施例1の転化試験において、温度20℃、相対湿度70%の一酸化窒素を含む空気を150℃に加熱した後、70℃まで冷却して転化剤と接触させたほかは実施例1と同様にして転化試験を行なった。その結果、転化剤の処理能力は14.3L/L、転化率は99.9%以上であった。
[Example 21]
In the conversion test of Example 1, air containing nitrogen monoxide at a temperature of 20 ° C. and a relative humidity of 70% was heated to 150 ° C., then cooled to 70 ° C. and contacted with a conversion agent, as in Example 1. A conversion test was conducted. As a result, the processing capacity of the conversion agent was 14.3 L / L, and the conversion rate was 99.9% or more.

[実施例22]
実施例11の除去試験において、温度20℃、相対湿度70%の窒素酸化物を含む空気を150℃に加熱した後、70℃まで冷却して転化剤と接触させたほかは実施例11と同様にして除去試験を行なった。その結果、除去剤の処理能力は11.2L/Lであった。
[Example 22]
In the removal test of Example 11, the air containing nitrogen oxides having a temperature of 20 ° C. and a relative humidity of 70% was heated to 150 ° C., then cooled to 70 ° C. and contacted with the conversion agent. A removal test was conducted. As a result, the removal agent treatment capacity was 11.2 L / L.

[比較例1]
実施例1の転化試験において、空気と転化剤との接触温度が40℃(相対湿度22%)となるようにヒータの温度を調節したほかは実施例1と同様にして転化試験を行なった。その結果を表4に示す。
[Comparative Example 1]
In the conversion test of Example 1, the conversion test was performed in the same manner as in Example 1 except that the temperature of the heater was adjusted so that the contact temperature between air and the conversion agent was 40 ° C. (relative humidity 22%). The results are shown in Table 4.

[比較例2]
実施例1の転化試験において、空気を加熱しなかった(相対湿度70%)ほかは実施例1と同様にして転化試験を行なった。その結果を表4に示す。
[Comparative Example 2]
In the conversion test of Example 1, the conversion test was performed in the same manner as in Example 1 except that the air was not heated (relative humidity 70%). The results are shown in Table 4.

Figure 2012030199
Figure 2012030199

Figure 2012030199
Figure 2012030199

Figure 2012030199
Figure 2012030199

Figure 2012030199
Figure 2012030199

以上のように、本発明の窒素酸化物を含むガスの処理方法は、転化剤による一酸化窒素から二酸化窒素への転化反応速度が向上し、優れた除去能力及び除去率で効率よく処理対象ガスから窒素酸化物を除去することが可能である。   As described above, the method for treating a gas containing nitrogen oxide according to the present invention improves the conversion reaction rate of nitrogen monoxide to nitrogen dioxide by the conversion agent, and efficiently treats the gas with excellent removal capability and removal rate. It is possible to remove nitrogen oxides from

本発明を実施するための処理装置の例を示す構成図The block diagram which shows the example of the processing apparatus for implementing this invention 本発明を実施するための図1以外の処理装置の例を示す構成図The block diagram which shows the example of processing apparatuses other than FIG. 1 for implementing this invention 本発明を実施するための図1、図2以外の処理装置の例を示す構成図The block diagram which shows the example of processing apparatuses other than FIG. 1, FIG. 2 for implementing this invention 本発明を実施するための図1〜図3以外の処理装置の例を示す構成図The block diagram which shows the example of processing apparatuses other than FIGS. 1-3 for implementing this invention 日本の各地における相対湿度(月別平均)を示すグラフGraph showing relative humidity (monthly average) in various parts of Japan

1 ヒータ
2 水分吸着剤
3 転化剤
4 除去剤
5 転化剤と除去剤の混合剤
6 熱交換器
7 冷却器
8 一酸化窒素及び二酸化窒素を含むガスの導入口
9 処理されたガスの排出口
DESCRIPTION OF SYMBOLS 1 Heater 2 Moisture adsorption agent 3 Conversion agent 4 Removal agent 5 Mixture of conversion agent and removal agent 6 Heat exchanger 7 Cooler 8 Gas inlet containing nitrogen monoxide and nitrogen dioxide 9 Outlet of treated gas

Claims (7)

一酸化窒素及び二酸化窒素を含むガスを、相対湿度が20%以下となるように処理した後、無機質担体に過マンガン酸カリウムを担持させた転化剤と接触させて、該ガスに含まれる一酸化窒素を二酸化窒素に転化し、さらに二酸化窒素除去剤と接触させて、該ガスから二酸化窒素を除去することを特徴とする窒素酸化物を含むガスの処理方法。   A gas containing nitrogen monoxide and nitrogen dioxide is treated so as to have a relative humidity of 20% or less, and then contacted with a conversion agent in which potassium permanganate is supported on an inorganic carrier, so that the monoxide contained in the gas A method for treating a gas containing nitrogen oxides, wherein nitrogen is converted into nitrogen dioxide and further contacted with a nitrogen dioxide removing agent to remove nitrogen dioxide from the gas. 一酸化窒素及び二酸化窒素を含むガスが空気である請求項1に記載のガスの処理方法。   The gas treatment method according to claim 1, wherein the gas containing nitrogen monoxide and nitrogen dioxide is air. ガスの相対湿度を20%以下となるように行なう処理が、ガスを加熱する処理である請求項1に記載のガスの処理方法。   The gas treatment method according to claim 1, wherein the treatment performed so that the relative humidity of the gas is 20% or less is a treatment of heating the gas. ガスの相対湿度を20%以下となるように行なう処理が、ガスを水分吸着剤と接触させる処理である請求項1に記載のガスの処理方法。   The gas treatment method according to claim 1, wherein the treatment performed so that the relative humidity of the gas is 20% or less is a treatment of bringing the gas into contact with a moisture adsorbent. ガスの相対湿度を20%以下となるように行なう処理が、ガスを他の処理のために加熱した後、50〜120℃の温度まで冷却する処理である請求項1に記載のガスの処理方法。   The gas treatment method according to claim 1, wherein the treatment performed so that the relative humidity of the gas is 20% or less is a treatment in which the gas is heated for another treatment and then cooled to a temperature of 50 to 120 ° C. . 無機質担体が、ゼオライト、アルミナ、またはシリカである請求項1に記載のガスの処理方法。   The gas treatment method according to claim 1, wherein the inorganic carrier is zeolite, alumina, or silica. 二酸化窒素除去剤が、酸化マンガンを含む金属酸化物にアルカリ金属化合物の水酸化物またはアルカリ土類金属化合物の水酸化物を担持させた除去剤、またはアルカリ活性炭である請求項1に記載のガスの処理方法。   The gas according to claim 1, wherein the nitrogen dioxide removing agent is a removing agent in which a hydroxide of an alkali metal compound or an alkaline earth metal compound is supported on a metal oxide containing manganese oxide, or an alkaline activated carbon. Processing method.
JP2010174116A 2010-08-03 2010-08-03 Method for treating gas containing nitrogen oxide Pending JP2012030199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010174116A JP2012030199A (en) 2010-08-03 2010-08-03 Method for treating gas containing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010174116A JP2012030199A (en) 2010-08-03 2010-08-03 Method for treating gas containing nitrogen oxide

Publications (1)

Publication Number Publication Date
JP2012030199A true JP2012030199A (en) 2012-02-16

Family

ID=45844278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010174116A Pending JP2012030199A (en) 2010-08-03 2010-08-03 Method for treating gas containing nitrogen oxide

Country Status (1)

Country Link
JP (1) JP2012030199A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024405A (en) * 2013-06-18 2015-02-05 東洋紡株式会社 Acidic gas adsorbent and remover and adsorption and removing filter using the same
CN105664700A (en) * 2016-03-30 2016-06-15 广州绿华环保科技有限公司 Method and device for treating industrial waste gas containing nitric oxide
CN114158273A (en) * 2019-08-22 2022-03-08 三浦工业株式会社 Process for the purification of oils

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108048A (en) * 1983-11-17 1985-06-13 日本化学工業株式会社 Air purifying agent
JPH01296000A (en) * 1988-05-20 1989-11-29 Shimizu Corp Treatment of tunnel waste gas
JPH06106030A (en) * 1992-09-25 1994-04-19 Nissan Gaadoraa Shokubai Kk Air purifying method
JPH07178317A (en) * 1993-12-22 1995-07-18 Osaka Gas Co Ltd Removing method of nitrogen dioxide
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JPH11147038A (en) * 1997-09-11 1999-06-02 Hitachi Zosen Corp Regenerating process for nitrogen dioxide adsorbent
JP2000167394A (en) * 1998-11-30 2000-06-20 Nippon Shokubai Co Ltd Regeneration of adsorbent for nitrogen oxide and the like
JP2002001056A (en) * 2000-06-21 2002-01-08 Eco Keikaku:Kk Method and apparatus for extinguishing offensive odor by organic substance
JP2002153719A (en) * 2000-09-08 2002-05-28 Nippon Pure Tec Kk Filter apparatus and environment control unit
JP2006132923A (en) * 2005-10-07 2006-05-25 Ebara Corp Method and device for preventing contamination from occurring on surfaces of base material or substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108048A (en) * 1983-11-17 1985-06-13 日本化学工業株式会社 Air purifying agent
JPH01296000A (en) * 1988-05-20 1989-11-29 Shimizu Corp Treatment of tunnel waste gas
JPH06106030A (en) * 1992-09-25 1994-04-19 Nissan Gaadoraa Shokubai Kk Air purifying method
JPH07178317A (en) * 1993-12-22 1995-07-18 Osaka Gas Co Ltd Removing method of nitrogen dioxide
JPH08229345A (en) * 1995-02-28 1996-09-10 Mitsubishi Electric Corp Gas treating device
JPH11147038A (en) * 1997-09-11 1999-06-02 Hitachi Zosen Corp Regenerating process for nitrogen dioxide adsorbent
JP2000167394A (en) * 1998-11-30 2000-06-20 Nippon Shokubai Co Ltd Regeneration of adsorbent for nitrogen oxide and the like
JP2002001056A (en) * 2000-06-21 2002-01-08 Eco Keikaku:Kk Method and apparatus for extinguishing offensive odor by organic substance
JP2002153719A (en) * 2000-09-08 2002-05-28 Nippon Pure Tec Kk Filter apparatus and environment control unit
JP2006132923A (en) * 2005-10-07 2006-05-25 Ebara Corp Method and device for preventing contamination from occurring on surfaces of base material or substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015024405A (en) * 2013-06-18 2015-02-05 東洋紡株式会社 Acidic gas adsorbent and remover and adsorption and removing filter using the same
CN105664700A (en) * 2016-03-30 2016-06-15 广州绿华环保科技有限公司 Method and device for treating industrial waste gas containing nitric oxide
CN114158273A (en) * 2019-08-22 2022-03-08 三浦工业株式会社 Process for the purification of oils

Similar Documents

Publication Publication Date Title
Lee et al. Investigation of the active sites and optimum Pd/Al of Pd/ZSM–5 passive NO adsorbers for the cold-start application: Evidence of isolated-Pd species obtained after a high-temperature thermal treatment
JP4153483B2 (en) Method for purifying hydride gas
CN104785302B (en) Denitrifying catalyst with selective catalytic reduction and its preparation method and application
Xie et al. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia
RU2010143439A (en) OXIDATION CATALYSTS FOR DIESEL ENGINES BASED ON NON-NOBLE METALS AND MODIFIED BY NON-NOBLE METALS
Wang et al. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon
US20130224090A1 (en) Catalyst for selective oxidation of nh3 to n2 and method for preparing the same
Yu et al. Activation of passive NOx adsorbers by pretreatment with reaction gas mixture
Levasseur et al. Mesoporous silica SBA-15 modified with copper as an efficient NO2 adsorbent at ambient conditions
JP4508964B2 (en) Method for measuring nitrogen oxide adsorption capacity of catalysts
TWI543813B (en) Catalyst for oxidizing ammonia and method for removing ammonia
JP5313504B2 (en) Microwave-assisted desulfurization of nitrogen oxide storage reduction catalyst
CN110352090A (en) The restoration methods of carbon dioxide removing device and the carbon dioxide adsorption capacity of adsorbent
JP2012030199A (en) Method for treating gas containing nitrogen oxide
Guo et al. Oxidizing, trapping and releasing NOx over model manganese oxides in alternative lean-burn/fuel-rich atmospheres at low temperatures
Feng et al. The filtration and degradation mechanism of toluene via microwave thermo-catalysis ceramic membrane
US3872213A (en) Method for removing harmful components from exhaust gases
JP4210750B2 (en) Inorganic compound containing active oxygen and process for producing the same
Birgersson et al. Deactivation and regeneration of spent three-way automotive exhaust gas catalysts (TWC)
Balle et al. A novel laboratory bench for practical evaluation of catalysts useful for simultaneous conversion of NOx and soot in diesel exhaust
CN100431689C (en) Preparation method of compound absorbent for removing nitrogen oxide
JP5345441B2 (en) Method and apparatus for treating gas containing nitrogen oxides
US20130004395A1 (en) Processes and apparatuses for oxidizing elemental mercury in flue gas using oxychlorination catalysts
CN208106532U (en) A kind of processing unit of vehicle exhaust
JP2008136932A (en) Selective removing method of fluorocarbon having unsaturated bond, treatment unit and sample treatment system using treatment unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140625