JP2002239341A - Method for treating gas containing nh3 and device for the same - Google Patents

Method for treating gas containing nh3 and device for the same

Info

Publication number
JP2002239341A
JP2002239341A JP2001041206A JP2001041206A JP2002239341A JP 2002239341 A JP2002239341 A JP 2002239341A JP 2001041206 A JP2001041206 A JP 2001041206A JP 2001041206 A JP2001041206 A JP 2001041206A JP 2002239341 A JP2002239341 A JP 2002239341A
Authority
JP
Japan
Prior art keywords
gas
oxygen
tank
adsorbent
gas containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001041206A
Other languages
Japanese (ja)
Other versions
JP3999941B2 (en
Inventor
Yoichi Mori
洋一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001041206A priority Critical patent/JP3999941B2/en
Publication of JP2002239341A publication Critical patent/JP2002239341A/en
Application granted granted Critical
Publication of JP3999941B2 publication Critical patent/JP3999941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing a large amount of NH3 effectively, which suppresses the generation of harmful by-products at a relatively low running cost, and to provide a device for the same. SOLUTION: This method for treating gas containing NH3 is characterized in that the gas containing NH3 is heated at 500 deg.C or higher in an oxygen-free atmosphere to be made to decompose NH3 by heat and that the gas containing undecomposed residual NH3 is adsorbed by an adsorbent at a normal temperature, or is cooled at 200 deg.C or lower and mixed with oxygen to be brought into contact with a NH3 decomposing catalyst heated at 170-200 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、NH3を含有する
ガスの処理方法及び処理装置に関し、特に、半導体工業
におけるCVD(化学気相成長法)工程から排出される
NH3を無害化処理する方法及び装置に関する。
The present invention relates to relates to a method and apparatus for treating gas containing NH 3, in particular, detoxifies NH 3 discharged from CVD (chemical vapor deposition) process in the semiconductor industry Method and apparatus.

【0002】[0002]

【従来の技術】半導体工業においては、半導体製造工程
の中で多種類の有害ガスが使用されており、環境汚染が
懸念されている。特に、CVD(化学気相成長法)工程
からの排ガス中には、人体に有害なNH3(許容濃度:A
CGIH(American Conference ofGovernmental Industrial
Hygienists:米国産業衛生政府専門官会議)が勧告するT
LV-TWA(Threshold Limit Value-Time Weighted Average
Concentration:時間荷重平均許容濃度)=25ppm)が含ま
れており、NH3を除去して排ガスを無害化するシステ
ムの確立が急務とされている。
2. Description of the Related Art In the semiconductor industry, various kinds of harmful gases are used in a semiconductor manufacturing process, and there is a concern about environmental pollution. In particular, the exhaust gas from the CVD (Chemical Vapor Deposition) process contains NH 3 (tolerable concentration: A
CGIH (American Conference of Governmental Industrial)
Hygienists)
LV-TWA (Threshold Limit Value-Time Weighted Average
Concentration (time load average allowable concentration) = 25 ppm), and there is an urgent need to establish a system that removes NH 3 and makes the exhaust gas harmless.

【0003】従来から、NH3の除去方法として種々の
方法が提案されている。例えば、水や酸性液による湿
式処理法、硫酸鉄、ゼオライトなどの吸着剤を用いる
乾式処理法及び触媒を用いる加熱分解処理法などが一
般的に知られている。
Conventionally, various methods have been proposed for removing NH 3 . For example, a wet treatment method using water or an acid solution, a dry treatment method using an adsorbent such as iron sulfate or zeolite, and a thermal decomposition treatment method using a catalyst are generally known.

【0004】しかし、上記の湿式処理法では、処理に
よって発生する排水中にNH3が含まれているため、こ
のNH3をN2とH2Oとに分解処理するために大規模設
備が必要でコストがかかってしまう、という問題があ
る。また上記の乾式処理法では、多量のNH3を処理
するためには、多量の吸着剤及び吸着剤の交換作業が必
要となり、ランニングコストが高くなる、という問題が
ある。さらに上記の触媒加熱分解処理法では、NH3
が高濃度で流入すると、触媒の反応熱で温度が上昇し、
NH3は分解されるものの、NOxやN2Oなどの副生成
物が多量に発生し、これらが環境雰囲気中に許容濃度を
越えて排出されてしまう、という問題がある。
However, in the wet processing method described above, because it contains NH 3 in the wastewater generated by the processing, require extensive equipment for decomposing the NH 3 into N 2 and H 2 O Costly. Further, in the above-mentioned dry treatment method, in order to treat a large amount of NH 3 , a large amount of an adsorbent and an exchanging operation of the adsorbent are required, and there is a problem that a running cost is increased. Furthermore, in the above-mentioned catalyst thermal decomposition treatment method, NH 3
Flows in at a high concentration, the temperature rises due to the heat of reaction of the catalyst,
Although NH 3 is decomposed, there is a problem in that a large amount of by-products such as NO x and N 2 O are generated, and these are discharged into an environmental atmosphere in excess of an allowable concentration.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明は、上
述の従来技術の問題を解消し、比較的低廉なランニング
コストで、有害な副生成物の発生を抑制し、効率的に多
量のNH3を除去する処理方法及び処理装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention solves the above-mentioned problems of the prior art, suppresses the generation of harmful by-products at a relatively low running cost, and efficiently removes a large amount of NH4. It is an object of the present invention to provide a processing method and a processing apparatus for removing ( 3) .

【0006】[0006]

【課題を解決するための手段】前述の課題を解決するた
めに、本発明者らは鋭意研究を重ねた結果、無酸素雰囲
気下でNH3を熱分解させ、冷却し、次いで、未分解の
NH3を吸着剤に吸着させるか又は酸素存在下でNH3
解触媒と接触させることによって、低コストで有効に多
量のNH3を除去することができることを見いだした。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, thermally decomposed NH 3 under an oxygen-free atmosphere, cooled, and then undecomposed NH 3 . It has been found that a large amount of NH 3 can be effectively removed at low cost by adsorbing NH 3 on an adsorbent or contacting the NH 3 with a NH 3 decomposition catalyst in the presence of oxygen.

【0007】すなわち、本発明によれば、無酸素雰囲気
下で、NH3を含むガスを500℃以上に加温して、NH3
を熱分解させ、次いで、未分解の残存NH3を含むガス
を常温で吸着剤に吸着させる、各工程を備えることを特
徴とするNH3を含むガスを処理する方法が提供され
る。
That is, according to the present invention, a gas containing NH 3 is heated to 500 ° C. or more in an oxygen-free atmosphere to obtain NH 3.
, And then adsorbing the gas containing undecomposed residual NH 3 onto the adsorbent at room temperature. A method for treating a gas containing NH 3 is provided.

【0008】NH3は、大気圧下では450℃〜500℃から
分解し始め、500℃〜600℃でほぼ完全分解することが知
られている。このときのNH3の分解反応は、下記反応
式(1)
It is known that NH 3 starts to decompose at 450 ° C. to 500 ° C. under atmospheric pressure and almost completely decomposes at 500 ° C. to 600 ° C. The decomposition reaction of NH 3 at this time is represented by the following reaction formula (1)

【0009】[0009]

【化1】 Embedded image

【0010】に従う。しかしながら、NH3の熱分解時
に、雰囲気中に酸素が存在すると、下記反応式(2)
[0010] However, when oxygen is present in the atmosphere during the thermal decomposition of NH 3 , the following reaction formula (2)

【0011】[0011]

【化2】 Embedded image

【0012】に従って、環境汚染源となるNOxやN2
が副産物として多量に発生する。したがって、本発明に
係るガス処理方法の第1段階工程であるNH3の熱分解
は、無酸素雰囲気下で行うことが好ましい。例えば、本
発明の処理方法によってLP−CVDプロセス排ガスを
処理する場合においては、このプロセスはNH3とSi
2Cl2或いはSi2Cl6ガスを用い、O2は使用して
いないので、その排ガス中には酸素は含まれていない。
したがって、このような場合には、NH3の熱分解の際
の無酸素雰囲気を形成するために、排ガス中から酸素を
除去する工程を設ける必要はない。しかしながら、処理
対象のガス中に酸素が含まれている場合には、NH3
含むガスを脱酸素剤で処理するなどの酸素除去工程を行
うことによってガス中の酸素を除去することが必要であ
る。また、NH3熱分解反応の温度は、500℃以上である
ことが好ましく、高温になるほどNH3の分解率が高く
なるが、発生するH2の自然発火温度(571℃)以下であ
ることが好ましい。
Accordingly, NO x and N 2 O, which are environmental pollutants,
Are generated in large quantities as by-products. Therefore, the thermal decomposition of NH 3 , which is the first step of the gas processing method according to the present invention, is preferably performed in an oxygen-free atmosphere. For example, in the case of treating the LP-CVD process exhaust gas by the treatment method of the present invention, this process is performed using NH 3 and Si.
Since H 2 Cl 2 or Si 2 Cl 6 gas is used and O 2 is not used, oxygen is not contained in the exhaust gas.
Therefore, in such a case, it is not necessary to provide a step of removing oxygen from the exhaust gas in order to form an oxygen-free atmosphere during the thermal decomposition of NH 3 . However, when oxygen is contained in the gas to be treated, it is necessary to remove oxygen from the gas by performing an oxygen removing step such as treating the gas containing NH 3 with a deoxidizer. is there. Further, the temperature of the NH 3 thermal decomposition reaction is preferably 500 ° C. or higher. The higher the temperature, the higher the decomposition rate of NH 3 , but the temperature is lower than the spontaneous ignition temperature of H 2 generated (571 ° C.). preferable.

【0013】本発明の処理方法において、上記熱分解工
程では、NH3の約80〜90%が熱分解してN2とH2にな
るが、約10〜20%のNH3が未分解のまま残存する。本
発明の処理方法においては、次いで、この未分解の残存
NH3を含むガスを常温まで冷却し、残存NH3を吸着剤
によって吸着させて除去する。このとき、NH3を含む
ガスの温度が高いと、吸着剤からのNH3の脱着が促進
されて処理性能が低下するので、好ましくない。NH3
を含むガスの温度は、常温、特に20℃〜30℃であること
が好ましい。
In the treatment method of the present invention, in the thermal decomposition step, about 80 to 90% of NH 3 is thermally decomposed into N 2 and H 2 , but about 10 to 20% of NH 3 is undecomposed. It remains as it is. In the treatment method of the present invention, the gas containing the undecomposed residual NH 3 is then cooled to room temperature, and the residual NH 3 is adsorbed and removed by an adsorbent. At this time, if the temperature of the gas containing NH 3 is high, the desorption of NH 3 from the adsorbent is promoted and the processing performance is lowered, which is not preferable. NH 3
Is preferably room temperature, particularly preferably 20 ° C to 30 ° C.

【0014】本処理方法において用いる吸着剤として
は、NH3を吸着できるものであれば特に制限なく用い
ることができ、当該技術において吸着剤として公知の無
機系粒状固形物を用いることができる。具体的には、工
業用途用に市販されており廉価に入手可能な合成ゼオラ
イト、硫酸鉄、添着活性炭、及びこれらの組み合わせか
らなる群より選択される吸着剤が特に好ましい。この目
的のために本発明において用いることのできる具体的な
吸着剤としては、水澤化学製NH3吸着用合成ゼオライ
ト、商品名ミズカシーブス4A-812B、日産ズードヘミー
触媒製硫酸鉄吸着剤、商品名N-500、武田薬品製のNH3
吸着用添着活性炭、商品名粒状白鷺GTSxなどを挙げるこ
とができる。
As the adsorbent used in the present treatment method, any adsorbent capable of adsorbing NH 3 can be used without any particular limitation, and an inorganic particulate solid known as an adsorbent in the art can be used. Specifically, adsorbents selected from the group consisting of synthetic zeolites, iron sulfate, impregnated activated carbon, and combinations thereof, which are commercially available and inexpensively available for industrial use, are particularly preferred. Specific adsorbents that can be used in the present invention for this purpose, Mizusawa Kagaku NH 3 adsorbing synthetic zeolite, trade name Mizukashibusu 4A-812B, Nissan Zudohemi catalyst made of iron sulfate adsorbent, trade name N- 500, NH manufactured by Takeda 3
Adsorbed impregnated activated carbon, trade name Granular Shirasagi GTSx, and the like can be given.

【0015】また、熱分解処理後の未分解の残存NH3
を含むガスの処理方法として、上記に示すような吸着剤
を用いる方法に代えて、ガスを200℃以下まで冷却し
て、酸素を加えた後にNH3分解触媒と接触させる方法
を採用することもできる。即ち、本発明の他の態様によ
れば、NH3を含むガスを処理する方法であって、無酸
素雰囲気下で、NH3を含むガスを500℃以上に加温し
て、NH3を熱分解させ、次いで、未分解の残存NH3
含むガスを200℃以下まで冷却し、200℃以下に冷却され
たガス中に、酸素を添加し、酸素が添加されたガスを、
170℃〜200℃に加温されたNH3分解触媒と接触させ
る、各工程を備えることを特徴とする処理方法が提供さ
れる。
Further, undecomposed residual NH 3 after the thermal decomposition treatment
As a method for treating a gas containing, instead of the method using an adsorbent as described above, it is also possible to adopt a method in which the gas is cooled to 200 ° C. or lower, and oxygen is added thereto, followed by contact with an NH 3 decomposition catalyst. it can. That is, according to another aspect of the present invention, there is provided a method of treating a gas containing NH 3, in an oxygen-free atmosphere, warmed gas containing NH 3 over 500 ° C., the NH 3 thermal Is decomposed, and then the gas containing undecomposed residual NH 3 is cooled to 200 ° C. or less, and oxygen is added to the gas cooled to 200 ° C. or less, and the gas to which oxygen is added is added.
There is provided a treatment method comprising the steps of contacting with an NH 3 decomposition catalyst heated to 170 ° C. to 200 ° C.

【0016】かかる態様の処理方法においては、上記に
説明した熱分解工程によって得られる未分解の残存NH
3を含むガスを約200℃以下まで冷却させた後、酸素を添
加する。このとき、ガスの温度が200℃よりも高いと、
上記式(2)のNH3とO2との反応が進行してNOx
2Oが多量に発生し、環境雰囲気中に排出される処理
後のガス中に有害な窒素酸化物が環境基準許容濃度(N
O:25ppm、NO2:3ppm、N2O:50ppm)を越えて含ま
れることになるので好ましくない。また、添加する酸素
の量は、酸素を添加した後のガス中のO2濃度が約5%以
上、より好ましくは6%以上となるような量であること
が好ましい。
In the treatment method of this aspect, the undecomposed residual NH obtained by the above-described pyrolysis step
After the gas containing 3 is cooled to about 200 ° C. or less, oxygen is added. At this time, if the gas temperature is higher than 200 ° C,
The reaction between NH 3 and O 2 in the above formula (2) proceeds to generate a large amount of NO x and N 2 O, and harmful nitrogen oxides are generated in the treated gas discharged into the environmental atmosphere. Reference allowable concentration (N
O: 25 ppm, NO 2 : 3 ppm, N 2 O: 50 ppm). Further, the amount of oxygen to be added is preferably such that the O 2 concentration in the gas after adding oxygen becomes about 5% or more, more preferably 6% or more.

【0017】次に、酸素を添加したガスを170℃〜200℃
に加温されたNH3分解触媒と接触させる。ここで、N
3分解触媒の温度が230℃を越えて加温されていると、
上記式(2)の反応が進行してNOxやN2Oが上記の環
境基準許容濃度を越えて生成するので好ましくない。ま
た、NH3分解触媒で処理されるガスは、残存NH3濃度
が1%以下とされていることが好ましい。残存NH3
度が1%を越えていると、NH3分解時の反応熱により
NH3分解触媒の温度が上昇して、NOxやN2Oが上記
の環境基準許容濃度を越えて生成しやすくなるので好ま
しくない。
Next, the oxygen-added gas is heated to 170 ° C. to 200 ° C.
The catalyst is brought into contact with the NH 3 decomposition catalyst which has been heated. Where N
If the temperature of the H 3 decomposition catalyst is over 230 ° C.,
Since the reaction of the above formula (2) proceeds and NO x and N 2 O are generated in excess of the above environmental standard allowable concentration, it is not preferable. Further, the gas treated with the NH 3 decomposition catalyst preferably has a residual NH 3 concentration of 1% or less. When the residual NH 3 concentration is over 1%, NH 3 temperature of the NH 3 decomposing catalyst by reaction heat during decomposition is increased, NO x and N 2 O is produced beyond the environmental standard allowable concentrations of the It is not preferable because it becomes easier.

【0018】かかる態様の処理方法において用いるNH
3分解触媒は、当該技術においてNH3分解触媒として公
知の任意の粒状の固形触媒を用いることができる。具体
的には、酸化鉄、酸化マンガン、酸化バナジウム、酸化
アルミニウム、酸化クロム、酸化タングステン、酸化銅
及びこれらの組み合わせからなる群より選択される1種
以上の触媒を好ましく用いることができる。この目的の
ために本発明において用いることのできる具体的なNH
3分解触媒としては、例えば、日産ズードヘミー触媒製
の処理剤(商品名Imp2-N150;主成分Fe23:50wt
%、MnO:25wt%、V25:5.0wt%)、東洋シーシ
ーアイ製のNH3分解剤(商品名TNH3-2000)などを挙げ
ることができる。
NH used in the processing method of this embodiment
As the 3 cracking catalyst, any granular solid catalyst known in the art as an NH 3 cracking catalyst can be used. Specifically, one or more catalysts selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof can be preferably used. Specific NH that can be used in the present invention for this purpose
3 As the decomposition catalyst, for example, a treating agent manufactured by Nissan Sudehemie Catalyst (trade name: Imp2-N150; main component Fe 2 O 3 : 50 wt.
%, MnO: 25 wt%, V 2 O 5 : 5.0 wt%), and an NH 3 decomposer (trade name: TNH 3 -2000) manufactured by Toyo CCI.

【0019】また、本発明によれば、NH3を含むガス
を処理するための装置が提供される。この装置は、無酸
素雰囲気下で上記ガスを通気可能とする中空内部、上記
中空内部の温度を500℃以上に加熱可能な加熱手段、ガ
ス導入口、及び処理後のガスを排出するガス排出口を備
える熱分解槽と、上記熱分解槽と流体連通可能状態に配
置されていて、熱分解後のガスを冷却する冷却管と、上
記冷却管と流体連通可能状態に配置されていて、冷却さ
れた熱分解後のガス中の未分解NH3を吸着させる吸着
剤が充填されている吸着剤槽と、を備えることを特徴と
する。
Further, according to the present invention, there is provided an apparatus for processing a gas containing NH 3 . The apparatus includes a hollow interior through which the gas can be passed under an oxygen-free atmosphere, a heating means capable of heating the temperature of the hollow interior to 500 ° C. or more, a gas inlet, and a gas outlet for discharging the gas after the treatment. And a cooling pipe arranged in fluid communication with the pyrolysis tank and cooling the gas after pyrolysis; and a cooling pipe arranged in fluid communication with the cooling pipe and cooled. And an adsorbent tank filled with an adsorbent for adsorbing undecomposed NH 3 in the thermally decomposed gas.

【0020】本発明の処理装置の熱分解槽は、熱分解雰
囲気を無酸素雰囲気とするための手段として、必要に応
じてN2パージラインを具備していることが好ましい。
本発明の熱分解槽に設けられている加熱手段としては、
熱分解槽の中空内部に形成される気相部の温度を500℃
以上に加熱できるものであれば特に制限されず、セラミ
ック電気管状炉などのセラミックヒーター、棒状ヒータ
ーなどを好ましく挙げることができる。
The thermal decomposition tank of the processing apparatus of the present invention is preferably provided with an N 2 purge line, if necessary, as a means for changing the thermal decomposition atmosphere to an oxygen-free atmosphere.
As the heating means provided in the pyrolysis tank of the present invention,
The temperature of the gas phase formed inside the hollow of the pyrolysis tank is 500 ℃
There is no particular limitation as long as it can be heated as described above, and preferred examples include a ceramic heater such as a ceramic electric tubular furnace, a rod-shaped heater, and the like.

【0021】本発明の処理装置の冷却管は、熱分解槽で
熱分解されたガスを所定温度まで冷却できるものであれ
ば特に制限されず、冷却媒体としては空気、水その他の
公知の冷媒を用いることができる。
The cooling pipe of the processing apparatus of the present invention is not particularly limited as long as it can cool the gas pyrolyzed in the pyrolysis tank to a predetermined temperature. The cooling medium may be air, water or other known refrigerant. Can be used.

【0022】本発明の処理装置の吸着剤槽には、NH3
を吸着する上述の吸着剤が充填されている。吸着剤の充
填量は、処理すべきNH3の量及び吸着剤槽の寸法によ
って変動するが、例えば、直径170mm×高さ750mmの吸着
剤槽に、3.6%のNH3を含むガスを流速80L/minで30分
間通気させて処理する場合には、約17Lとすることがで
きる。
The adsorbent tank of the treatment apparatus of the present invention contains NH 3
Is filled with the above-mentioned adsorbent. The amount of adsorbent charged varies depending on the amount of NH 3 to be treated and the dimensions of the adsorbent tank. For example, a gas containing 3.6% NH 3 is supplied to an adsorbent tank 170 mm in diameter × 750 mm in height at a flow rate of 80 L. In the case where the treatment is carried out by aeration at / min for 30 minutes, the volume can be about 17 L.

【0023】また、本発明の他の態様によれば、無酸素
雰囲気下で上記ガスを通気可能とする中空内部、上記中
空内部の温度を500℃以上に加熱可能な加熱手段、ガス
導入口、及び処理後のガスを排出するガス排出口を備え
る熱分解槽と、上記熱分解槽と流体連通可能状態に配置
されていて、熱分解後のガスを冷却する冷却管と、上記
冷却管と流体連通可能状態に配置されていて、冷却され
た熱分解後のガスに酸素を添加する酸素添加手段と、冷
却され酸素が添加されたガスをNH3分解触媒に接触さ
せる触媒分解槽と、を備えることを特徴とする処理装置
が提供される。
According to another aspect of the present invention, there is provided a hollow interior through which the gas can be passed in an oxygen-free atmosphere, heating means capable of heating the temperature of the hollow interior to 500 ° C. or more, a gas inlet, A pyrolysis tank provided with a gas outlet for discharging the gas after the treatment, a cooling pipe arranged in fluid communication with the pyrolysis tank and cooling the pyrolyzed gas, and the cooling pipe and the fluid An oxygen addition unit that is arranged in a communicable state and adds oxygen to the cooled gas after the thermal decomposition, and a catalyst decomposition tank that brings the cooled and oxygen-added gas into contact with the NH 3 decomposition catalyst is provided. A processing device is provided.

【0024】かかる態様の処理装置において、熱分解
槽、加熱手段及び冷却管は、上述の吸着剤槽を備える処
理装置における熱分解槽、加熱手段及び冷却管と同様の
構成でよい。
In the processing apparatus of this aspect, the thermal decomposition tank, the heating means, and the cooling pipe may have the same configuration as the thermal decomposition tank, the heating means, and the cooling pipe in the processing apparatus having the above-mentioned adsorbent tank.

【0025】かかる態様の処理装置においては、冷却後
のガスに酸素を添加するために、冷却管の下流側又は触
媒分解槽に酸素添加手段が設けられている。酸素添加手
段としては、例えば、適宜の酸素供給源に連結された酸
素導管と、酸素導管から冷却管及び触媒分解槽の間を連
結する配管への酸素供給を調節するバルブとによって構
成することができる。
In the processing apparatus of this aspect, an oxygen adding means is provided downstream of the cooling pipe or in the catalytic cracking tank in order to add oxygen to the cooled gas. As the oxygen adding means, for example, it may be constituted by an oxygen conduit connected to an appropriate oxygen supply source, and a valve for adjusting the supply of oxygen from the oxygen conduit to a pipe connecting between the cooling pipe and the catalytic cracking tank. it can.

【0026】かかる態様の処理装置において、触媒分解
槽には、上述のNH3分解触媒が充填されている。ま
た、触媒分解槽には、内部に充填されている触媒を加温
するための加熱手段が設けられている。加熱手段として
は、触媒分解槽に充填されている触媒の温度を170〜200
℃の好ましい温度に加温できるものであれば特に制限さ
れるものではなく、熱分解槽において用いられるものと
同様のセラミック電気管状炉などのセラミックヒータ
ー、棒状ヒーターなどを好ましく挙げることができる。
In the processing apparatus of this embodiment, the catalyst decomposition tank is filled with the above-mentioned NH 3 decomposition catalyst. Further, the catalyst decomposition tank is provided with heating means for heating the catalyst filled therein. As the heating means, the temperature of the catalyst filled in the catalyst decomposition tank is 170 to 200
There is no particular limitation as long as it can be heated to a preferable temperature of ° C, and a ceramic heater such as a ceramic electric tubular furnace and a bar-shaped heater similar to those used in a pyrolysis tank can be preferably mentioned.

【0027】[0027]

【発明の好ましい実施形態】以下、添付図面を参照しな
がら、本発明をさらに詳細に説明するが、本発明はこれ
らに限定されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings, but the present invention is not limited thereto.

【0028】図1は、本発明に係るNH3を含むガスを
処理する処理装置の好ましい一実施形態を示す概略模式
図である。処理装置1は、無酸素雰囲気下でNH3を含む
ガスを通気可能とする中空内部10a及び上記中空内部10a
の温度を500℃以上に加熱可能な加熱手段11を備える熱
分解槽10と、上記熱分解槽10と流体連通可能状態に配置
されていて、熱分解後のガスを冷却する冷却管20と、上
記冷却管20と流体連通可能状態に配置されていて、冷却
されたガス中の未分解NH3を吸着させる吸着剤30aが
充填されている吸着剤槽30とを備え、熱分解槽10及び冷
却管20の間は第1の導管13によって、冷却管20及び吸着
剤槽30の間は第2の導管32によって流体連通可能状態に
連結されている。
FIG. 1 is a schematic diagram showing a preferred embodiment of a processing apparatus for processing a gas containing NH 3 according to the present invention. The processing apparatus 1 includes a hollow interior 10a and a hollow interior 10a that allow a gas containing NH 3 to pass therethrough under an oxygen-free atmosphere.
A pyrolysis tank 10 provided with a heating means 11 capable of heating the temperature of the pyrolysis tank to 500 ° C. or higher, and a cooling pipe 20 that is disposed in fluid communication with the pyrolysis tank 10 and cools the gas after pyrolysis, An adsorbent tank 30 which is arranged in a fluid communication state with the cooling pipe 20 and is filled with an adsorbent 30a for adsorbing undecomposed NH 3 in the cooled gas; A first conduit 13 connects the pipes 20 and a second conduit 32 connects the cooling pipe 20 and the adsorbent tank 30 so as to be in fluid communication.

【0029】より詳細には、本実施形態においては、熱
分解槽10はSUS製中空カラムからなり、熱分解槽10の外
周には、加熱手段としてのセラミックヒーター11が配置
されていて、NH3を含むガス源(図示せず)からガス
を導入するガス入口側導管12と、中空内部10aに形成さ
れた気相部の温度を測温する熱電対(図示せず)を備え
る。必要な場合には、熱分解槽10に導入されるガスを無
酸素状態にするために、ガス入口導管12又は熱分解槽10
に、脱酸素剤などのような酸素除去手段14をさらに設け
ることができる。
More specifically, in the present embodiment, the thermal decomposition tank 10 is formed of a hollow column made of SUS, and a ceramic heater 11 as a heating means is disposed on the outer periphery of the thermal decomposition tank 10 so that NH 3 And a thermocouple (not shown) for measuring the temperature of the gas phase formed in the hollow interior 10a. If necessary, in order to make the gas introduced into the pyrolysis tank 10 oxygen-free, the gas inlet conduit 12 or the pyrolysis tank 10
Further, oxygen removing means 14 such as an oxygen scavenger can be further provided.

【0030】冷却管20としては、例えば空冷管として、
金属製の配管を折り曲げて湾曲した流路を形成させたも
のなどを用いることができる。吸着剤槽30は、SUS製中
空カラムからなり、吸着処置後のガスを環境雰囲気中又
は必要に応じてその後の処理槽(図示せず)に排出する
出口導管33を備える。吸着剤槽30内部には、上記吸着剤
30aが充填されている。
As the cooling pipe 20, for example, as an air cooling pipe,
A pipe formed by bending a metal pipe to form a curved flow path can be used. The adsorbent tank 30 is formed of a SUS hollow column, and includes an outlet conduit 33 for discharging the gas after the adsorption treatment into an environmental atmosphere or a subsequent processing tank (not shown) as necessary. The above adsorbent is placed inside the adsorbent tank 30.
30a is filled.

【0031】処理装置1を用いて、NH3を含むガスを
処理する際には、例えばCVD装置などからのNH3
含む排ガスを、必要な場合には脱酸素剤などの酸素除去
手段14によってガス中の酸素を除去した後に、ガス入口
導管12を介して熱分解槽10内部に導入する。セラミック
ヒーター11によって、熱分解槽10の中空内部10a内に導
入されたガスの温度を500℃以上に加温して、ガス中の
NH3を熱分解させる。この温度は中空内部10a内に配置
された熱電対(図示せず)でモニターする。
When the processing apparatus 1 is used to process a gas containing NH 3 , for example, exhaust gas containing NH 3 from a CVD apparatus or the like is removed by an oxygen removing means 14 such as an oxygen scavenger if necessary. After removing oxygen in the gas, the gas is introduced into the pyrolysis tank 10 through the gas inlet conduit 12. The temperature of the gas introduced into the hollow interior 10a of the thermal decomposition tank 10 is heated to 500 ° C. or higher by the ceramic heater 11 to thermally decompose NH 3 in the gas. This temperature is monitored by a thermocouple (not shown) located in the hollow interior 10a.

【0032】次いで、熱分解処理後のガスを熱分解槽10
から第1の導管13を介して冷却管20に流通させ、熱分解
処理後のガスを室温まで空冷する。その後、冷却された
ガスを冷却管20から第2の導管32を介して吸着剤槽30に
導入する。吸着剤槽30内において、吸着剤30aによって
未分解NH3を吸着させ、処理ガスを出口導管33を介し
て環境雰囲気中または必要に応じてその後の処理装置に
排出する。
Next, the gas after the thermal decomposition treatment is supplied to the thermal decomposition tank 10.
Through the first conduit 13 to the cooling pipe 20, and the gas after the thermal decomposition treatment is air-cooled to room temperature. Thereafter, the cooled gas is introduced from the cooling pipe 20 into the adsorbent tank 30 via the second conduit 32. In the adsorbent tank 30, undecomposed NH 3 is adsorbed by the adsorbent 30a, and the processing gas is discharged into the environmental atmosphere via the outlet conduit 33 or to a subsequent processing device as required.

【0033】図2は、本発明のガス処理装置の他の実施
形態を示す概略模式図である。処理装置100は、無酸素
雰囲気下でNH3を含むガスを通気可能とする中空内部1
10a及び上記中空内部110aの温度を500℃以上に加熱可能
な加熱手段111を備える熱分解槽110と、上記熱分解槽11
0と流体連通可能状態に配置されていて、熱分解後のガ
スを冷却する冷却管120と、上記冷却管120と流体連通可
能状態に配置されていて、冷却された熱分解処理後のガ
スに酸素を添加する酸素添加手段135と、冷却され酸素
が添加されたガスをNH3分解触媒に接触させる触媒分
解槽130とを備え、熱分解槽110及び冷却管120の間は第
1の導管113によって、また冷却管120及び触媒分解槽13
0の間は第2の導管133によって、それぞれ流体連通可能
状態に連結されている。熱分解槽110及び冷却管120の構
成は、図1に示す処理装置1の熱分解槽10及び冷却管20
の構成と同様である。
FIG. 2 is a schematic diagram showing another embodiment of the gas processing apparatus of the present invention. The processing apparatus 100 has a hollow interior 1 capable of passing a gas containing NH 3 under an oxygen-free atmosphere.
10a and a pyrolysis tank 110 provided with a heating means 111 capable of heating the temperature of the hollow interior 110a to 500 ° C. or higher, and the pyrolysis tank 11
The cooling pipe 120 is arranged in a fluid communication state with the cooling pipe 120 for cooling the gas after the thermal decomposition, and the cooling pipe 120 is arranged in the fluid communication state with the cooling pipe 120 and is cooled to the gas after the thermal decomposition processing. An oxygen addition means 135 for adding oxygen, and a catalyst decomposition tank 130 for bringing a cooled and oxygen-added gas into contact with the NH 3 decomposition catalyst are provided. A first conduit 113 is provided between the thermal decomposition tank 110 and the cooling pipe 120. Depending on the cooling pipe 120 and the catalyst decomposition tank 13
Between 0, each is connected by a second conduit 133 in a fluid-communicable state. The configuration of the thermal decomposition tank 110 and the cooling pipe 120 is the same as that of the thermal decomposition tank 10 and the cooling pipe 20 of the processing apparatus 1 shown in FIG.
The configuration is the same as that described above.

【0034】本処理装置100においては、吸着剤槽30に
代えて、冷却管の下流側に、冷却された熱分解後のガス
に酸素を添加する酸素添加手段135と、冷却され酸素が
添加されたガスをNH3分解触媒に接触させる触媒分解
槽130とを備える。
In the processing apparatus 100, instead of the adsorbent tank 30, downstream of the cooling pipe, oxygen adding means 135 for adding oxygen to the cooled pyrolyzed gas, and cooled oxygen is added. And a catalyst decomposition tank 130 for bringing the gas into contact with the NH 3 decomposition catalyst.

【0035】酸素添加手段135は、図示しないが、酸素
ガス供給源及び酸素ガス供給を調節するバルブを備える
適宜の添加手段でよく、第2の導管132に接続されてい
る。触媒分解槽130は、例えばSUS製中空カラムからな
り、触媒分解処理後のガスを環境雰囲気中又は必要に応
じてその後の処理槽(図示せず)に排出する出口導管13
3を備える。触媒分解槽130内部には、NH3分解触媒130
aが充填されており、内部温度を測温するための熱電対
(図示せず)が配置されている。触媒分解槽130の外周
には、加熱手段としてのセラミックヒーター131が配置
されていて、触媒分解槽130内部に充填されている触媒1
30aを加温する。
Although not shown, the oxygen adding means 135 may be an appropriate adding means having an oxygen gas supply source and a valve for controlling the supply of oxygen gas, and is connected to the second conduit 132. The catalyst decomposition tank 130 is formed of, for example, a hollow column made of SUS, and is an outlet conduit 13 for discharging the gas after the catalyst decomposition processing into an environmental atmosphere or a subsequent processing tank (not shown) as necessary.
3 is provided. Inside the catalyst decomposition tank 130, an NH 3 decomposition catalyst 130
a is filled, and a thermocouple (not shown) for measuring the internal temperature is arranged. A ceramic heater 131 as a heating means is disposed on the outer periphery of the catalyst decomposition tank 130, and the catalyst 1 filled in the catalyst decomposition tank 130 is disposed.
Heat 30a.

【0036】本処理装置110を用いて、NH3を含むガス
を処理する際には、例えばCVD装置などからのNH3
を含む排ガスを、必要な場合には脱酸素剤などの酸素除
去手段114によってガス中の酸素を除去した後に、ガス
入口導管112を介して熱分解槽110内部に導入して熱分解
反応させる。熱分解槽110の操作は、図1の熱分解槽10
に関して上記に説明したものと同様である。熱分解槽11
0でガス中のNH3を熱分解した後、第1の導管113を介
して冷却管120に流通させ、熱分解処理後のガスを200℃
以下まで冷却する。
When processing a gas containing NH 3 using the processing apparatus 110, for example, NH 3 from a CVD apparatus or the like is used.
After the oxygen in the gas is removed by an oxygen removing means 114 such as an oxygen scavenger, if necessary, the exhaust gas is introduced into the pyrolysis tank 110 through a gas inlet conduit 112 to cause a thermal decomposition reaction. The operation of the pyrolysis tank 110 is the same as that of the pyrolysis tank 10 shown in FIG.
Is similar to that described above. Pyrolysis tank 11
After the thermal decomposition of NH 3 in the gas at 0, the gas is passed through the cooling pipe 120 through the first conduit 113, and the gas after the thermal decomposition is heated to 200 ° C.
Cool to below.

【0037】その後、冷却されたガスを第2の導管132
を介して触媒分解槽130に導入する。このとき、第2の
導管132には、酸素添加手段135を介して所要量の酸素を
導入する。こうして、所要量の酸素が添加されたガスを
第2の導管132を介して触媒分解槽130に導入する。触媒
分解槽130内で、ガスをNH3分解触媒130aと接触させ、
未分解NH3を分解する。この際、セラミックヒーター1
31によって触媒の温度を170〜200℃に加温する。その
後、処理ガスを出口導管133を介して環境雰囲気中また
は必要に応じてその後の処理装置に排出する。
Thereafter, the cooled gas is passed through the second conduit 132
And is introduced into the catalyst decomposition tank 130. At this time, a required amount of oxygen is introduced into the second conduit 132 via the oxygen adding means 135. Thus, the gas to which the required amount of oxygen has been added is introduced into the catalytic cracking tank 130 via the second conduit 132. In the catalyst decomposition tank 130, the gas is brought into contact with the NH 3 decomposition catalyst 130a,
Decomposes undecomposed NH 3 . At this time, ceramic heater 1
The temperature of the catalyst is raised to 170-200 ° C by 31. Thereafter, the processing gas is discharged into the environmental atmosphere via the outlet conduit 133 or to a subsequent processing device as needed.

【0038】[0038]

【実施例】以下、本発明の処理方法及び処理装置の実施
例を説明するが、本発明はこれらに限定されるものでは
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the processing method and the processing apparatus of the present invention will be described below, but the present invention is not limited to these embodiments.

【0039】実施例1:無酸素雰囲気下でのガスの熱分
解における気相温度の影響 無酸素雰囲気下でのNH3の熱分解率と気相温度との関
係を調べる実験を行った。熱分解槽として、内径110m
m、長さ400mmのSUS製中空カラムを用い、加熱手段とし
て、中空カラムの外部にセラミックヒーターを取りつ
け、中空カラム内の気相部の温度は、中空カラム内に配
置した熱電対を用いて測定した。
Example 1 Influence of Gas Phase Temperature on Thermal Decomposition of Gas in Oxygen-Free Atmosphere An experiment was conducted to examine the relationship between the thermal decomposition rate of NH 3 and the gas phase temperature under an oxygen-free atmosphere. 110m inside diameter as thermal decomposition tank
m, using a SUS hollow column with a length of 400 mm, as a heating means, a ceramic heater attached to the outside of the hollow column, the temperature of the gas phase in the hollow column is measured using a thermocouple arranged in the hollow column did.

【0040】試験ガスとして、NH3の含有率を3.6%と
なるように調整したN2ガスを用いて、80L/minの流速で
熱分解槽に通気し、気相部の温度を加熱手段(セラミッ
クヒーター)によって段階的に変化させて、出口ガスの
成分を分析した。分析対象成分はNH3、NO、NO2
2Oであり、NH3は検知管法(ガステック製NH 3
知管)、NO及びNO2は化学発光法(島津製作所製化
学発光分析器、型式NOA-7000)、N2Oはガスクロマト
グラフ質量分析法(アネルバ製ガスクロマトグラフ質量
分析器、型式AGS-7000U)を用いて分析した。出口ガス
中のNOx及びN 2Oは、常時、検出限界(1ppm)以下で
あり、上記の4種類の分析対象ガスのうち、NH3のみ
が検出された。
As a test gas, NHThreeContent of 3.6%
N adjusted to beTwoUsing gas at a flow rate of 80 L / min
Vent the pyrolysis tank and adjust the temperature of
Heater) to gradually change the outlet gas
The components were analyzed. Analyte is NHThree, NO, NOTwo,
NTwoO and NHThreeIs the detection tube method (NH ThreeInspection
Shiretou), NO and NOTwoIs a chemiluminescence method (manufactured by Shimadzu Corporation)
Chemiluminescence analyzer, model NOA-7000), NTwoO is gas chromatograph
Graph mass spectrometry (mass chromatography by Anelva
The analysis was performed using an analyzer (model AGS-7000U). Outlet gas
NO inxAnd N TwoO is always below the detection limit (1 ppm)
Yes, among the above four types of gases to be analyzed, NHThreeonly
Was detected.

【0041】出口ガス中のNH3の濃度、濃度値から算
出したNH3の分解率、及び熱分解槽の気相部の温度を
表1に示す。
Table 1 shows the concentration of NH 3 in the outlet gas, the decomposition rate of NH 3 calculated from the concentration value, and the temperature of the gas phase of the pyrolysis tank.

【0042】[0042]

【表1】 [Table 1]

【0043】これらの結果から、熱分解槽の気相部の温
度を500℃以上まで加温することで、NH3が70%以上分
解することがわかる。 比較例1 酸素ガスを添加した以外は、実施例1と同様に実験を行
って、出口ガス組成と気相温度との関係を調べた。
[0043] From these results, the temperature of the gas phase of the thermal decomposition tank by warming to 500 ° C. or higher, it can be seen that the NH 3 is decomposed more than 70%. Comparative Example 1 An experiment was performed in the same manner as in Example 1 except that oxygen gas was added, and the relationship between the outlet gas composition and the gas phase temperature was examined.

【0044】試験ガスとして、NH3の含有率を3.6%、
2の含有率を5.5%となるように調整したN2ガスを、
流速80L/minで熱分解槽に通気した。結果を表2に示
す。
As the test gas, the content of NH 3 was 3.6%,
N 2 gas adjusted to have an O 2 content of 5.5%
Air was passed through the pyrolysis tank at a flow rate of 80 L / min. Table 2 shows the results.

【0045】[0045]

【表2】 [Table 2]

【0046】これらの結果から、O2存在下では、NH3
を良好に分解するために気相部温度は380℃以上である
ことが望ましいが、気相部温度が200℃を越えると、N2
Oが発生し始め、300℃以上では、NO及びNO2も発生
し、NO、NO2及びN2Oのすべてが環境許容濃度(N
O:25ppm、NO2:3ppm、N2O:50ppm)を超えること
がわかる。
From these results, in the presence of O 2 , NH 3
It is desirable gas phase temperature in order to satisfactorily decompose is 380 ° C. or higher, the gas phase temperature exceeds 200 ° C., N 2
O starts to be generated, and at 300 ° C. or higher, NO and NO 2 are also generated, and all of NO, NO 2 and N 2 O are in the environmentally acceptable concentration (N
O: 25 ppm, NO 2 : 3 ppm, N 2 O: 50 ppm).

【0047】実施例2:NH3分解触媒によるNH3の分
解処理 NH3分解触媒の処理性能の温度依存性を評価するため
に、処理温度と出口ガス成分との関係を調べた。
[0047] Example 2: In order to evaluate the temperature dependency of the performance of decomposing NH 3 decomposition catalyst of NH 3 by NH 3 decomposition catalyst was investigated the relationship between the treatment temperature and the outlet gas components.

【0048】触媒分解槽として、内径110mm、高さ1600m
mのSUS製中空カラムを用いて、NH 3分解触媒として、
Fe23:50wt%、MnO:25wt%、V25:5.0wt%
を主成分とする日産ズードヘミー触媒製の処理剤(商品
名:Imp2-N150)15Lを充填した。加熱手段としてセラ
ミックヒーターを用いて、触媒分解槽外部から加温し
た。触媒分解槽内部の温度は、内部に配置した熱電対で
測温した。
As a catalyst decomposition tank, inner diameter 110 mm, height 1600 m
m SUS hollow column, NH ThreeAs a decomposition catalyst,
FeTwoOThree: 50wt%, MnO: 25wt%, VTwoOFive: 5.0wt%
Nissan Sudehemie Catalyst Treatment Agent (Product
Name: Imp2-N150) 15L was charged. Sera as heating means
Using a mic heater, heat from outside the catalytic decomposition tank
Was. The temperature inside the catalytic cracking tank is controlled by a thermocouple placed inside.
The temperature was measured.

【0049】試験ガスとして、NH3の含有率を1.0%、
2の含有率を5.8%となるように調整したN2ガスを用
い、流速80L/minで触媒分解槽に通気させた。処理温度
を段階的に変動させて出口ガス中の成分を分析した。結
果を表3に示す。
As a test gas, the content of NH 3 was 1.0%,
Using a N 2 gas whose O 2 content was adjusted to be 5.8%, the gas was passed through the catalyst decomposition tank at a flow rate of 80 L / min. The components in the outlet gas were analyzed by varying the processing temperature stepwise. Table 3 shows the results.

【0050】[0050]

【表3】 [Table 3]

【0051】実験結果から、処理温度が170℃未満で
は、NH3の分解処理が良好でなく、処理温度が230℃以
上ではNO2及びN2Oが許容濃度を超えてしまうことが
わかった。この実験結果から、170℃〜200℃の温度範囲
で処理する場合に、NH3を良好に分解し、NO、NO2
及びN2Oの排出濃度が許容濃度を越えないことがわか
る。
From the experimental results, it was found that when the processing temperature was lower than 170 ° C., the decomposition treatment of NH 3 was not good, and when the processing temperature was 230 ° C. or higher, the concentrations of NO 2 and N 2 O exceeded the allowable concentrations. From the results of this experiment, it was found that when treated in a temperature range of 170 ° C. to 200 ° C., NH 3 was well decomposed and NO, NO 2
And N 2 O emission concentration is seen that does not exceed the allowable concentration.

【0052】実施例3 NH3分解触媒の処理性能のNH3濃度依存性を評価する
ために、NH3流入濃度と出口ガス中の成分との関係を
調べた。
Example 3 In order to evaluate the dependency of the treatment performance of the NH 3 decomposition catalyst on the NH 3 concentration, the relationship between the NH 3 inflow concentration and the components in the outlet gas was examined.

【0053】実施例2と同様の分解触媒槽を用いて、試
験ガスとしてNH3濃度を1.0%、1.5%、2.5%と変動さ
せた以外は実施例2と同様の試験ガスを用いて、分解触
媒槽通ガス開始時の処理温度を約170℃に設定し、通ガ
ス開始時と30分運転後の出口ガス中の成分を分析した。
結果を表4に示す。
Using the same decomposition catalyst tank as in Example 2, the same decomposition gas was used as the test gas except that the NH 3 concentration was varied to 1.0%, 1.5% and 2.5%. The processing temperature at the start of gas passage in the catalyst tank was set at about 170 ° C., and the components in the outlet gas at the start of gas passage and after 30 minutes of operation were analyzed.
Table 4 shows the results.

【0054】[0054]

【表4】 [Table 4]

【0055】実験結果から、NH3濃度の工程に拘わら
ずNH3は良好に分解されるが、流入NH3濃度が高くな
ると、触媒の温度が上昇して、出口ガス中のN2O濃度
が高くなり、NH3の流入濃度が1.5%でも許容濃度を超
えてしまうことがわかる。
From the experimental results, it can be seen that NH 3 is decomposed satisfactorily regardless of the NH 3 concentration step, but when the inflowing NH 3 concentration increases, the temperature of the catalyst rises and the N 2 O concentration in the outlet gas decreases. It can be seen that the concentration becomes higher, and even if the inflow concentration of NH 3 is 1.5%, it exceeds the allowable concentration.

【0056】実施例4及び5:無酸素条件での熱分解及
び吸着の組み合わせによるNH3分解処理 本発明の処理方法に従い、無酸素雰囲気下でNH3を含
むガスを熱分解した後、未分解のNH3を吸着剤に吸着
させて処理した。
Examples 4 and 5: NH 3 Decomposition Treatment by Combination of Thermal Decomposition and Adsorption under Oxygen-Free Conditions According to the treatment method of the present invention, after a gas containing NH 3 was thermally decomposed under an oxygen-free atmosphere, it was not decomposed. Was treated by adsorbing NH 3 on an adsorbent.

【0057】熱分解槽として、内径110mm、高さ1600mm
のSUS製中空カラムを用い、加熱手段としてセラミック
ヒーターを用いた。冷却管として、管径25mmφのSUS製
配管を長さ約730mmずつ4つ折りしたものを用い、冷媒
として空気を使用した。吸着剤槽として、内径170mm、
高さ750mmのSUS製中空カラムを用い、内部に合成ゼオラ
イト(水澤化学製NH3用合成ゼオライト、商品名ミズ
カシーブス4A-812B)(実施例4)又は硫酸鉄(日産ズ
ードヘミー触媒製硫酸鉄吸着剤、商品名N-500)(実施
例5)を合わせて17L充填した。
As a pyrolysis tank, inner diameter 110 mm, height 1600 mm
Was used, and a ceramic heater was used as a heating means. As the cooling pipe, a pipe made of SUS having a pipe diameter of 25 mmφ and folded into four pieces each having a length of about 730 mm was used, and air was used as a refrigerant. 170mm inside diameter as adsorbent tank,
A 750 mm high SUS hollow column was used, and a synthetic zeolite (synthetic zeolite for NH 3 manufactured by Mizusawa Chemicals, trade name: Mizuka Sieves 4A-812B) (Example 4) or iron sulfate (iron sulfate adsorbent manufactured by Nissan Sued Hemy Catalyst, A total of 17 L was charged together with N-500 (trade name) (Example 5).

【0058】熱分解槽気相部の温度を528℃まで加温し
て、この気相部に、試験ガスとしてNH3の含有率を3.6
%に調整したN2ガスを流速80L/minで通気させた。熱分
解後の試験ガスを冷却管を介して室温(30℃程度)まで
空冷し、次いで冷却された試験ガスを吸着剤槽に導入し
て、吸着剤にNH3を吸着させた。吸着剤槽からの出口
ガス中のNH3の濃度を継続的に測定した。一方、ガス
を熱分解槽を通さずに、直接、室温で吸着剤槽に通す以
外は上記と同様の実験を行い、出口ガス中のNH3の濃
度を測定した。結果を表5に示す。なお、出口ガス中の
NO、NO2及びN2Oは全て検出限界以下であった。
The temperature of the gas phase of the pyrolysis tank was heated to 528 ° C., and the content of NH 3 as a test gas was adjusted to 3.6 in this gas phase.
% N 2 gas was passed at a flow rate of 80 L / min. The test gas after pyrolysis was air-cooled to room temperature (about 30 ° C.) via a cooling pipe, and then the cooled test gas was introduced into an adsorbent tank to adsorb NH 3 on the adsorbent. The NH 3 concentration in the outlet gas from the adsorbent tank was continuously measured. On the other hand, the same experiment as above was performed except that the gas was passed directly through the adsorbent tank at room temperature without passing through the pyrolysis tank, and the concentration of NH 3 in the outlet gas was measured. Table 5 shows the results. Note that NO, NO 2 and N 2 O in the outlet gas were all below the detection limit.

【0059】[0059]

【表5】 [Table 5]

【0060】表5から、熱分解と吸着とを組み合わせる
本発明の処理方法によれば、熱分解を行わずに吸着のみ
させる場合と比較して、吸着剤槽からの出口ガス中のN
3が許容濃度を超えるようになるまでの所要時間が約
6倍長かった。これは、吸着剤の有効運転寿命が大幅に
増大したことを示す。
From Table 5, it can be seen that according to the treatment method of the present invention in which the thermal decomposition and the adsorption are combined, the N in the outlet gas from the adsorbent tank is compared with the case where only the adsorption is performed without performing the thermal decomposition.
The time required for H 3 to exceed the allowable concentration was about six times longer. This indicates that the effective operating life of the adsorbent has been greatly increased.

【0061】実施例6 本発明の処理方法に従い、無酸素雰囲気下でNH3を含
むガスを熱分解し、未分解のNH3をNH3分解触媒を用
いて処理した。
Example 6 According to the treatment method of the present invention, a gas containing NH 3 was thermally decomposed in an oxygen-free atmosphere, and undecomposed NH 3 was treated using an NH 3 decomposition catalyst.

【0062】熱分解槽、加熱手段、冷却管、冷媒は、上
記実施例4/5と同様のものを用いた。冷却管の後段
に、分解触媒層として、内径110mm、高さ1600mmのSUS製
中空カラムを用いて、内部に実施例2と同様のNH3
解触媒15Lを充填した。
The same pyrolysis tank, heating means, cooling pipe and refrigerant as in Example 4/5 were used. After the cooling pipe, a SUS hollow column having an inner diameter of 110 mm and a height of 1600 mm was used as a decomposition catalyst layer, and 15 L of the same NH 3 decomposition catalyst as in Example 2 was filled therein.

【0063】試験ガスとして、NH3の含有率を3.6%と
なるように調整したN2ガスを用い、流速80L/minで熱分
解槽に通気させた。熱分解槽の気相部温度は、約528℃
に設定した。次いで、熱分解後の試験ガスを冷却管に通
気させて、試験ガス温度を約190℃まで空冷し、ガス中
のO2濃度が5.5%となるようにO2を添加した後、予め内
部温度が約200℃になるように加温しておいた分解触媒
槽に通気させた。通気開始から30分後の分解触媒槽から
の出口ガスの成分を分析したところ、ガス中のNH3
NO、NO2及びN2Oはすべて検出限界(1ppm)以下で
あり、NOxやN 2Oを排出することなく、NH3が良好
に分解されたことがわかる。
As a test gas, NHThreeContent of 3.6%
N adjusted to beTwoUsing gas, heat component at flow rate 80L / min
The tank was ventilated. The gas phase temperature of the pyrolysis tank is about 528 ° C
Set to. Next, the pyrolyzed test gas is passed through a cooling pipe.
And air-cool the test gas temperature to about 190 ° C.
OTwoO so that the concentration is 5.5%TwoAfter adding
Decomposition catalyst heated so that the internal temperature is about 200 ° C
The tank was aerated. From the decomposition catalyst tank 30 minutes after the start of ventilation
Analysis of the components of the outlet gas ofThree,
NO, NOTwoAnd NTwoO is below the detection limit (1ppm)
Yes, NOxAnd N TwoWithout releasing O, NHThreeIs good
It can be seen that it was decomposed into.

【0064】[0064]

【発明の効果】本発明の処理方法及び処理装置によれ
ば、ランニングコストの増大や、NOxやN2Oなどの副
生成物の発生という問題を生じることなく、低コストで
有効に且つ長時間に亘って多量のNH3を除去すること
ができる。
According to the processing method and the processing apparatus of the present invention, the problems of increased running costs and generation of by-products such as NO x and N 2 O do not occur, and they are effective and effective at low cost. Large amounts of NH 3 can be removed over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の処理装置の好ましい実施形態
を示す概略図である。
FIG. 1 is a schematic diagram showing a preferred embodiment of a processing apparatus of the present invention.

【図2】図2は、本発明の処理装置の別の好ましい実施
形態を示す概略図である。
FIG. 2 is a schematic diagram showing another preferred embodiment of the processing apparatus of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D002 AA13 AC10 BA04 CA07 DA14 DA22 DA45 EA02 EA05 GA01 GB03 4D048 AA08 AB03 BA03Y BA23X BA25Y BA27Y BA28X BA35Y BA36X BB01 CA01 CD01 EA07 4G066 AA47B AA61B CA29 DA02 4K030 AA13 CA04 CA12 EA12 5F045 AC12 BB08 EC09 EG08 EJ01 EK01 EK09  ──────────────────────────────────────────────────続 き Continuing on the front page F-term (reference) 4D002 AA13 AC10 BA04 CA07 DA14 DA22 DA45 EA02 EA05 GA01 GB03 4D048 AA08 AB03 BA03Y BA23X BA25Y BA27Y BA28X BA35Y BA36X BB01 CA01 CD01 EA07 4G066 AA47B AA61A12 CA4 BB08 EC09 EG08 EJ01 EK01 EK09

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 NH3を含むガスを処理する方法であっ
て、 無酸素雰囲気下で、NH3を含むガスを500℃以上に加温
して、NH3を熱分解させ、 次いで、未分解の残存NH3を含むガスを、常温で吸着
剤に吸着させる、各工程を備えることを特徴とする処理
方法。
1. A method for treating a gas containing NH 3 , wherein the gas containing NH 3 is heated to 500 ° C. or more in an oxygen-free atmosphere to thermally decompose NH 3 , A process comprising adsorbing a gas containing residual NH 3 to an adsorbent at room temperature.
【請求項2】 前記吸着剤が、合成ゼオライト、硫酸鉄
及びこれらの組み合わせからなる群より選択される吸着
剤であることを特徴とする請求項1記載の処理方法。
2. The method according to claim 1, wherein the adsorbent is an adsorbent selected from the group consisting of synthetic zeolite, iron sulfate, and combinations thereof.
【請求項3】 NH3を含むガスを処理する方法であっ
て、 無酸素雰囲気下で、NH3を含むガスを500℃以上に加温
して、NH3を熱分解させ、 次いで、未分解の残存NH3を含むガスを200℃以下まで
冷却し、 200℃以下に冷却されたガス中に、酸素を添加し、 酸素が添加されたガスを、170℃〜200℃に加温されたN
3分解触媒と接触させる、各工程を備えることを特徴
とする処理方法。
3. A method for treating a gas containing NH 3 , wherein the gas containing NH 3 is heated to 500 ° C. or more in an oxygen-free atmosphere to thermally decompose NH 3 , cooling the residual NH 3 gas containing up to 200 ° C. or less, in 200 ° C. is cooled below the gas, oxygen is added, the oxygen is added gas, which is heated to 170 ° C. to 200 DEG ° C. N
A treatment method comprising the steps of contacting with an H 3 decomposition catalyst.
【請求項4】 前記NH3分解触媒が、酸化鉄、酸化マ
ンガン、酸化バナジウム、酸化アルミニウム、酸化クロ
ム、酸化タングステン、酸化銅及びこれらの組み合わせ
からなる群より選択される1種以上の触媒を含むことを
特徴とする請求項4記載の処理方法。
4. The NH 3 decomposition catalyst includes one or more catalysts selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof. 5. The processing method according to claim 4, wherein:
【請求項5】 NH3を含むガスを処理する装置であっ
て、 無酸素雰囲気下で上記ガスを通気可能とする中空内部及
び上記中空内部の温度を500℃以上に加熱可能な加熱手
段を備える熱分解槽と、 上記熱分解槽と流体連通可能状態に配置されていて、熱
分解後のガスを冷却する冷却管と、 上記冷却管と流体連通可能状態に配置されていて、冷却
された熱分解後のガス中の未分解NH3を吸着させる吸
着剤が充填されている吸着剤槽と、を備えることを特徴
とする処理装置。
5. An apparatus for treating a gas containing NH 3 , comprising: a hollow interior through which the gas can be passed in an oxygen-free atmosphere; and heating means capable of heating the temperature of the hollow interior to 500 ° C. or more. A pyrolysis tank, a cooling pipe arranged in fluid communication with the pyrolysis tank and cooling the gas after pyrolysis, and a cooling pipe arranged in fluid communication with the cooling pipe and cooled. A processing apparatus, comprising: an adsorbent tank filled with an adsorbent for adsorbing undecomposed NH 3 in decomposed gas.
【請求項6】 前記吸着剤が、合成ゼオライト、硫酸鉄
及びこれらの組み合わせからなる群より選択される吸着
剤であることを特徴とする請求項5記載の処理装置。
6. The treatment apparatus according to claim 5, wherein the adsorbent is an adsorbent selected from the group consisting of synthetic zeolite, iron sulfate, and a combination thereof.
【請求項7】 NH3を含むガスを処理する装置であっ
て、 無酸素雰囲気下で上記ガスを通気可能とする中空内部及
び上記中空内部の温度を500℃以上に加熱可能な加熱手
段を備える熱分解槽と、 上記熱分解槽と流体連通可能状態に配置されていて、熱
分解後のガスを冷却する冷却管と、 上記冷却管と流体連通可能状態に配置されていて、冷却
された熱分解後のガスに酸素を添加する酸素添加手段
と、 冷却され酸素が添加されたガスをNH3分解触媒に接触
させる触媒分解槽と、を備えることを特徴とする処理装
置。
7. An apparatus for treating a gas containing NH 3 , comprising: a hollow interior through which the gas can pass under an oxygen-free atmosphere; and heating means capable of heating the temperature of the hollow interior to 500 ° C. or more. A pyrolysis tank, a cooling pipe arranged in fluid communication with the pyrolysis tank and cooling the gas after pyrolysis, and a cooling pipe arranged in fluid communication with the cooling pipe and cooled. A processing apparatus comprising: oxygen adding means for adding oxygen to a gas after decomposition; and a catalyst decomposition tank for bringing a cooled gas, to which oxygen is added, into contact with an NH 3 decomposition catalyst.
【請求項8】 前記NH3分解触媒が、酸化鉄、酸化マ
ンガン、酸化バナジウム、酸化アルミニウム、酸化クロ
ム、酸化タングステン、酸化銅及びこれらの組み合わせ
からなる群より選択される1種以上の触媒を含むことを
特徴とする請求項7記載の処理装置。
8. The NH 3 decomposition catalyst includes one or more catalysts selected from the group consisting of iron oxide, manganese oxide, vanadium oxide, aluminum oxide, chromium oxide, tungsten oxide, copper oxide, and combinations thereof. The processing device according to claim 7, wherein:
JP2001041206A 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3 Expired - Lifetime JP3999941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001041206A JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001041206A JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Publications (2)

Publication Number Publication Date
JP2002239341A true JP2002239341A (en) 2002-08-27
JP3999941B2 JP3999941B2 (en) 2007-10-31

Family

ID=18903684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001041206A Expired - Lifetime JP3999941B2 (en) 2001-02-19 2001-02-19 Method and apparatus for processing gas containing NH3

Country Status (1)

Country Link
JP (1) JP3999941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166957A (en) * 2014-04-24 2014-09-11 Sumitomo Electric Ind Ltd Silicon carbide semiconductor, and method and device for manufacturing the same
US10557180B2 (en) 2015-05-01 2020-02-11 Ihi Corporation Heat treating device
CN117942697A (en) * 2024-03-20 2024-04-30 新乡市万和过滤技术股份公司 Freon-containing air catalytic decomposition equipment and process
CN117942697B (en) * 2024-03-20 2024-06-04 新乡市万和过滤技术股份公司 Freon-containing air catalytic decomposition equipment and process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233117A (en) * 1998-12-14 2000-08-29 Japan Pionics Co Ltd Method and apparatus for purification of exhaust gas
JP2000288341A (en) * 1999-04-01 2000-10-17 Nippon Sanso Corp Removing of ammonia in ammonia-containing exhaust gas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000233117A (en) * 1998-12-14 2000-08-29 Japan Pionics Co Ltd Method and apparatus for purification of exhaust gas
JP2000288341A (en) * 1999-04-01 2000-10-17 Nippon Sanso Corp Removing of ammonia in ammonia-containing exhaust gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166957A (en) * 2014-04-24 2014-09-11 Sumitomo Electric Ind Ltd Silicon carbide semiconductor, and method and device for manufacturing the same
US10557180B2 (en) 2015-05-01 2020-02-11 Ihi Corporation Heat treating device
CN117942697A (en) * 2024-03-20 2024-04-30 新乡市万和过滤技术股份公司 Freon-containing air catalytic decomposition equipment and process
CN117942697B (en) * 2024-03-20 2024-06-04 新乡市万和过滤技术股份公司 Freon-containing air catalytic decomposition equipment and process

Also Published As

Publication number Publication date
JP3999941B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
US7521031B2 (en) Method and apparatus for treating exhaust gas
KR100962695B1 (en) Method and apparatus for treating exhaust gas
JP2004351312A (en) Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated
JP2006075832A (en) Treating method and device of exhaust gas
US11266949B2 (en) Device for testing performance of photocatalytic ozonation in degradation of volatile organic compounds and method of operating same
JP2018013316A (en) Exhaust gas treatment facility and exhaust gas treatment method
KR101097240B1 (en) Method and apparatus for treating exhaust gas
JP2002239341A (en) Method for treating gas containing nh3 and device for the same
JP2009108764A (en) Exhaust emission control device
JP3246641B2 (en) Treatment of exhaust gas containing methyl bromide
KR101890165B1 (en) Scrubber for removing N2O contained in the waste gas
JP2012030199A (en) Method for treating gas containing nitrogen oxide
CN115803103A (en) Exhaust gas treatment system
JP5345441B2 (en) Method and apparatus for treating gas containing nitrogen oxides
JP2002370014A (en) Exhaust gas treatment system
JP2004098014A (en) Method for treating gas containing volatile organic compound
JP6812612B2 (en) Ethylene oxide removal method
Srinivasan et al. Pulsed plasma treatment for NOx reduction from filtered/unfiltered stationary diesel engine exhaust
KR102392961B1 (en) Exhaust gas treatment apparatus and method
KR102382524B1 (en) Exhaust gas treatment apparatus and method
JPH0975668A (en) Exhaust gas treatment apparatus
CN215570512U (en) High-efficient waste gas catalytic combustion processing apparatus
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
JP4256216B2 (en) Gas processing apparatus and gas processing method
JPH04122419A (en) Organic halide compound decomposing method and decomposing catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Ref document number: 3999941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term