JP2004351312A - Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated - Google Patents

Method and apparatus for regenerating activated carbon and air purifying system with the activated carbon incorporated Download PDF

Info

Publication number
JP2004351312A
JP2004351312A JP2003151794A JP2003151794A JP2004351312A JP 2004351312 A JP2004351312 A JP 2004351312A JP 2003151794 A JP2003151794 A JP 2003151794A JP 2003151794 A JP2003151794 A JP 2003151794A JP 2004351312 A JP2004351312 A JP 2004351312A
Authority
JP
Japan
Prior art keywords
activated carbon
superheated steam
regenerating
regeneration
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151794A
Other languages
Japanese (ja)
Other versions
JP4234496B2 (en
Inventor
Kaiho To
懐鵬 湯
Kazuya Tajima
和也 田島
Yoichi Kato
陽一 加藤
Fumio Kimura
文夫 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinryo Corp
Original Assignee
Shinryo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinryo Corp filed Critical Shinryo Corp
Priority to JP2003151794A priority Critical patent/JP4234496B2/en
Publication of JP2004351312A publication Critical patent/JP2004351312A/en
Application granted granted Critical
Publication of JP4234496B2 publication Critical patent/JP4234496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for regenerating activated carbon, by which the activated carbon on that a harmful gas is adsorbed fully and through that the harmful gas breaks can be regenerated efficiently in safe without wasting the activated carbon and to provide an air purifying system in which the activated carbon is incorporated and regenerated. <P>SOLUTION: This method for regenerating the activated carbon comprises the first step to regenerate the activated carbon by jetting superheated steam of 150-250°C toward the activated carbon when a low-boiling point substance is desorbed and the second step to regenerate the activated carbon by jetting superheated steam of 300-350°C toward the activated carbon when a high-boiling point substance is desorbed. This apparatus for regenerating the activated carbon is provided with a superheated steam supplying part, an adsorbent-packed part and an exhaust gas treating part. The superheated steam supplied from the superheated steam supplying part is jetted toward an activated carbon filter in the adsorbent-packed part. A temperature sensor is arranged on the downstream side of the adsorbent-packed part. A unit for decomposing the gas desorbed and separated from the activated carbon is arranged in the exhaust gas treating part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
室内空気汚染については、従来から粉塵、微生物や無機系ガス状汚染物質(NOx,SOx,オゾン)などが挙げられている。近年、有機系化学物質による汚染問題が新たに浮上して社会問題となっている。特に新築住宅や教室のような室内では、揮発性有機化合物(Volitile Organic Compounds、以下VOCと略す)やホルムアルデヒド(以下HCHOと略す)の室内濃度が異常に高く、それが原因で化学物質過敏症やシックビルディング(病気発症建物),シックスクール症候群に発展してしまうケースも多く見られ、現状調査や対策などについて多くの研究報告がなされている。
【0002】
この問題を解決するために、厚生労働省はVOCやHCHOなど13物質に関して室内濃度の指針値を発表し、国土交通省は住宅の性能表示制度において、化学物質室内濃度の一部表示を平成13年8月に追加し、また文部科学省では、学校施設に関する「学校環境衛生の基準」に化学物質の基準値を設定し、新築や改築を行った時の引き渡し条件に化学物質測定や濃度超過時の改善対策を取り入れ、2002年4月から実施している。
さらに建築基準法及び建築物における衛生的環境確保に関する法律は2002年に改正され、HCHOなどの室内空気化学物質汚染が法的に規制されるようになった。
本発明は、上記の有害ガスの濃度を低減するために空調や換気システムにおいて使用される活性炭フィルターの再生方法と再生装置、及びそれを組み込んだ空気浄化システムに係るものである。
【0003】
【従来の技術】
ライフタイムが終了して破過した吸着剤を再生する従来の方法としては、
A 温風再生(特許第3395077号)
B ジュール熱再生
C 大気圧下での噴射蒸気による再生(特開平7−275636)
D 活性炭再生プラントでの高温加圧過熱蒸気再生、などが知られている。
【0004】
これらの方法の問題点として、
(1)温風再生(通常は150〜200℃)については、トルエンのような低沸点物質(沸点110℃以下)には有効だが、室内空気中には脂肪族飽和炭化水素のドデカン,ヘキサデカン,フタル酸エステル類などの高沸点物質も大量に存在し、そのような吸着物質には再生効率が低い。そのため複数回再生後、活性炭の吸着性能が低下する。
(2)温風再生やジュール熱再生の場合、空気中に酸素の存在する雰囲気で、可燃物である活性炭に熱を直接加えることは、活性炭の酸化による消耗が大きいほか、安全上も問題があり、無人自動では運転できない。大型ビル施設の場合、空調システムが数十、数百もあり、人が監視しながら活性炭の再生を行うことは実用上困難である。
【0005】
(3)大気圧飽和蒸気再生の場合、処理対象はNOxやSOxを吸着した活性炭であり、再生温度が低いことや、再生後の室内からの排気による乾燥工程におけるVOCの再吸着によって、効果的な再生システムとならない。
(4)活性炭再生プラントでの高温過熱蒸気再生は加圧状態での再生であり、空調系などに組み込むには適さない。また、1回の再生につき、活性炭が2〜9%減量する。また、耐圧や耐熱(再生温度800〜1000℃)等の問題で空調システムには応用できない。再生による活性炭のロスが1回あたり2〜9%と大きく、コストもかかる。
【0006】
(5)再生時の排気による大気汚染問題がある。
(6)従来の空調用活性炭フィルターは、再生頻度を少なくするために、厚さが大きくなり、SV値{通過風量(m /h)/吸着剤充填部容積(m )}が3万/h前後と低くても圧力損失が400Pa前後と大きい。
(7)再生効率が低い。特に複数回再生後、吸着剤の吸着性能が低下する。
(8)従来の再生方法では、再生時の排気に対して分解処理を行っておらず、高濃度の再生排気ガスによる大気汚染問題があり、結果的に有害な化学物質のトータル的な低減ではなく、室内から室外(大気)へ排出するだけである。
【0007】
【発明が解決しようとする課題】
本発明の主たる目的は、有害ガスを吸着し破過した活性炭を、安全に効率良くかつ活性炭を消耗させずに再生させる方法と装置を提供することにある。
本発明の他の目的は、有害ガスを吸着し破過した活性炭を空気浄化装置内に組み込んだまま再生させるような空気浄化システムを提供することにある。
本発明のさらに他の目的は、再生時の排気中の脱着ガスを分解処理し、大気を汚染しないようにすることにある。
【0008】
【課題を解決するための手段】
前述した課題を達成するため、本発明はその第1の態様において、有害ガスを吸着した活性炭を再生する方法であって、低沸点物質に対して150〜250℃の過熱蒸気を噴射して再生する第1段階と、高沸点物質に対して必要に応じて300〜350℃の過熱蒸気を噴射して再生する第2段階とを組み合わせて行う活性炭再生方法を提供する。
【0009】
【作用】
かかる再生方法によれば、低沸点物質(沸点110℃以下)に対する150〜250℃の過熱蒸気による通常再生(第1段階)と、高沸点物質(沸点110℃を超える)に対する300〜350℃の過熱蒸気による完全再生(第2段階)の二つの再生条件を組み合わせて、通常再生を数回行った後に完全再生を1回行うことにより、破過した活性炭を再生させ、かつ吸着性能の低下を防ぐことができる。
【0010】
本発明はその第2の態様において、有害ガスを吸着した活性炭を再生する装置であって、活性炭に含まれる有害物質をその沸点以上に加熱する過熱蒸気供給部と、大気圧の状態に保持され活性炭フィルターを装着可能な吸着剤設置部と、排気処理部とを備え、前記過熱蒸気供給部は蒸気発生器と過熱用ヒーターとを包含し、過熱蒸気を前記吸着剤設置部内の活性炭フィルターに供給して活性炭に噴射するようになっており、前記吸着剤設置部の下流側には温度センサーが設けられ、前記排気処理部には活性炭から分離した脱着ガスを分解するユニットが設けられており、過熱蒸気を活性炭に噴射して活性炭を再生すると共に脱着ガスを分解して大気中へと排出するようになっている活性炭再生装置を提供する。
【0011】
かかる装置では、活性炭の再生には大気圧の過熱蒸気を使用する。可燃物である活性炭に過熱蒸気を導入し充満させることで、燃焼に必要な酸素を遮断でき、活性炭の消耗がほとんどなく、安全性も確保される。過熱蒸気による再生の圧力が大気圧とほぼ同じなので、装置に耐圧性が不要である。
過熱蒸気を用いるので、飽和蒸気再生の場合の吸着剤への水分の吸着がなく、再生後の吸着剤の乾燥工程は不要であり、乾燥工程における吸着剤の汚染物質再吸着がない。
【0012】
温風再生の空気分子(N ,O )よりも過熱蒸気の水分子(HO )の方が吸着物質を脱着させるエネルギが大きく、過熱蒸気による再生では同温度の温風再生よりも高い再生効率が得られる。
再生後の過熱蒸気排気を直接脱着ガス分解ユニットに導入し、排気中の化学物質を分解処理する。分解処理によって95%以上の有害ガス(VOC)を浄化した後に大気に排出する。
【0013】
さらに、本発明の装置によれば次のような作用効果が得られる。
(1)過熱蒸気の水熱反応及び、低沸点・高沸点の2段階再生で再生効率が良く、吸着剤が半永久的に使える
(2)大気圧下での過熱蒸気による再生なので、耐圧構造の必要がなく、空調系においても適用できる
(3)再生時に過熱蒸気を装置内に充満することで酸素供給を遮断するので、活性炭の消耗による減量がほとんどなく、また安全に再生ができる
(4)再生時の排気中の脱着ガスを分解処理した後に大気中に放出するため、大気をほとんど汚染しない
(5)再生機能付き空気浄化装置として空調系に組み込んだ場合、高SV値で運転できるので、吸着剤使用量が従来の1/3〜1/15にでき、省資源、省スペースになる
(6)再生機能付き空気浄化装置として空調系に組み込んだ場合、低圧力損失で省エネルギーである。ブースタファンの追加が必要なく、AHUの機外静圧で対応できる。
【0014】
本発明はその第3の態様として、有害ガスを吸着した活性炭を再生する機構を有する空気浄化システムであって、空調対象室から空気を誘引するファン又はブロアと、除塵フィルターを包含するフィルターユニットと、活性炭再生機構を包含する空気浄化部分と、空調機と、それらを接続する配管とを備え、前記活性炭再生機構は、活性炭に含まれる有害物質をその沸点以上に加熱する過熱蒸気供給部と、大気圧の状態に保持され活性炭フィルターを装着可能な吸着剤設置部と、排気処理部とを包含しており、前記過熱蒸気供給部は蒸気発生器と過熱用ヒーターとを有し、過熱蒸気を前記吸着剤設置部内の活性炭フィルターに供給して活性炭に噴射するようになっており、前記吸着剤設置部の下流側には温度センサーが設けられ、前記排気処理部には活性炭から分離した脱着ガスを分解するユニットが設けられており、過熱蒸気を活性炭に噴射して活性炭を再生すると共に脱着ガスを分解して大気中へと排出するようになっている空気浄化システムを提供する。
【0015】
かかる空気浄化システムによれば、空気浄化装置(活性炭フィルター)と組み合わされた再生機能付きVOC除去装置を備えた空調システムが構築される。再生用蒸気は過熱状態だか、大気圧なので耐圧容器などが不要で、空調系にも応用できる。
【0016】
従来の空気浄化システムに組み込まれたVOC除去用活性炭フィルターは活性炭のライフタイムが短いので、破過したフィルターの頻繁な交換を避けるためにSV値が1〜5万/hと低く設定されている。その場合は活性炭の使用量が多いのでフィルターの圧力損失も400Pa(SV値3万/hの場合)と大きい。
今回の活性炭空気浄化システムでは、活性炭フィルターが破過しても安全で有効な再生ができるようにしたので、15万/hのSV値を可能にし、使用吸着剤量は従来の1/15〜1/3となり、省スペース、省資源、省コストになる。また、活性炭の使用量を減らしたことでフィルターの低圧力損失を実現し、ブースタファンを増設せずに空調機の機外静圧でも運転できるようになるので、省エネルギ、省コストになる。
【0017】
【発明の実施の形態】
図1は本発明の好適な実施態様による活性炭再生装置を表している。この再生装置を温度条件を変えて繰り返し使用することで、活性炭に第1段階の通常再生と第2段階の完全再生とを実施することができる。
図1の再生装置10は、有害ガスの沸点以上に加熱するための過熱蒸気供給部12、大気圧の状態に保持された吸着剤設置部14、及び排気処理部16から構成され、それぞれは配管で接続されている。過熱蒸気供給部12は蒸気発生器18と過熱用ヒーター20で構成され、配管で吸着剤設置部14と接続されている。吸着剤設置部14には、有害ガスを吸着し破過した活性炭フィルター22が装着され、その下流側に温度センサー24が設けられている。排気処理部16は、開閉ダンパーVD1、開閉ダンパーVD2、脱着ガス分解ユニット26、空気取入口27及びブロア28で構成され、配管で接続されている。
【0018】
図1の再生装置10では、過熱蒸気供給部12から大気圧の状態に保持された吸着剤設置部14に過熱蒸気を供給し、有害ガスを吸着し破過した活性炭フィルター22を再生して、排気処理部16の脱着ガス分解ユニット26で排気中の有害ガス(VOC)を浄化した後、大気に排出する。温度センサー24は吸着剤設置部14の温度を検出し、再生温度が設定温度に保持されるように、過熱用ヒーター20の出力を調節する。
【0019】
脱着ガス分解ユニット26による分解方法は、触媒による分解方法とプラズマ式分解方法とがあり、どちらの方法も採用できる。触媒による分解方法に使用される触媒は、貴金属の白金,パラジウム,卑金属のコバルト,クロム,マンガン,酸化バナジウム,二酸化チタン等を使用できる。再生後の過熱蒸気排気を直接脱着ガス分解ユニットに導入し、再生排気の余熱も有効に利用して排気中の化学物質を分解処理できる。特に白金を触媒として脱着ガス分解ユニットに使用する場合は、排気処理部16の開閉ダンパーVD1と脱着ガス分解ユニット26の間に補助ヒーター(図示せず)が、触媒ユニットの反応速度を維持するために設けられる。開閉ダンパーVD1及びVD2の操作によって、脱着ガス分解ユニット26からの排気と空気取入口27から吸入される空気の量を調節し、ブロア28の入口温度をブロアの耐熱温度以下に保つとともに、活性炭フィルター22の圧力損失に応じて適正な再生蒸気量を確保する。
【0020】
図2は、本発明の他の実施例による活性炭再生装置を表しており、この再生装置30では、大気圧の状態に保持された吸着剤設置部34に循環ライン32を設けた点に特徴を有する。循環ライン32は、配管36、ブロア38、過熱ヒーター40、温度センサー42を包含し、吸着剤設置部34に設けられた第1の温度センサー24の下流側と、有害ガスを吸着し破過した活性炭フィルター22の上流側とにそれぞれ配管36を介して接続されている。
この循環ライン32は、排気の一部をブロア38により循環させ、過熱ヒーター40により再過熱した後、過熱蒸気供給部12から供給される過熱蒸気と混合し、吸着剤設置部34に設けられた活性炭フィルター22の再生に利用する方式の例である。この実施例は、図1の例に比べて過熱に要するエネルギを少なくできるという利点がある。
【0021】
図3は、本発明のさらに他の実施例による活性炭再生装置を表しており、この再生装置50では、大気圧の状態に保持された吸着剤設置部54にパージライン52を設けた点に特徴を有する。パージライン52は、空気入口55、配管56と開閉ダンパーMV1とで構成され、吸着剤設置部54において有害ガスを吸着し破過した活性炭フィルター22の上流側に接続されている。
再生過程終了後、ブロア28を運転した状態で開閉ダンパーMV1を開くと、パージ用空気が流入し活性炭を速やかに冷却できる。図2の例の場合には、パージ空気取入口55を循環ライン32の途中に設けることもできる。
【0022】
図4は、上述した活性炭再生装置を組み込んだ空気浄化システムの実施例を表している。この空気浄化システム60は、空調対象室62、各機器を接続する配管63、空調対象室62からRA(戻り空気)を取り出すための取出口64、排気ファン66、除塵フィルター69を内蔵し外気取入口68から外気を導入するフィルターユニット70、モーター73で回転する回転式活性炭フィルター74を包含する空気浄化装置72、空調機(AHU)76及び空調対象室62へとSA(供給空気)を供給する給気口78を包含している。
【0023】
回転式活性炭フィルター74は、前述した特開平7−275636に記載したようなタイプで、フィルター部分を回転させながら再生させる機能を有している。通常の空調時は、冷却空気取入口75の開閉ダンパーMV1が閉じている。再生時には、蒸気発生器18と過熱用ヒーター20からの再生用の過熱蒸気が導入されるようになっており、同時に冷却空気取入口75から開閉ダンパーMV1を介して冷却空気が導入される。
【0024】
空調対象室62では、通常の空調運転時は、RA取出口64から室内空気を取り出し、その一部の空気を排気ファン66で排気する。残りの空気と外気取入口68から取り入れた外気を、フィルターユニット70内に設置された除塵フィルター69で除塵し、空気浄化装置72内に設置された回転式活性炭フィルター74で有害ガスを吸着除去し、清浄な空気を空調機76に送る。空調機76により所望の空気状態(温度・湿度)にしてSA給気口78から空調対象室62へ給気する。
【0025】
活性炭フィルター74は吸着部→脱着部→冷却部の順に回転する。この際、VOC濃度モニター80で回転式活性炭フィルター74の上流側と下流側から空気をサンプリングし、回転式活性炭フィルターの再生が必要か否かを判断する。活性炭フィルター74の再生運転は、通常の空調運転時又は空調停止時に行う。再生運転は、脱着部・冷却部・吸着部と順に活性炭フィルター74が回転して行われる。間欠空調の場合には、空調運転が停止しているときに再生運転を行ってもよい。
なおこの実施例では回転式活性炭フィルター74を用いているが、静止型活性炭フィルターを用いることもできる。
【0026】
図5は、本発明による大気圧過熱蒸気再生と温風再生との効果比較を表している。本発明による再生方法の方が従来の温風再生よりもはるかに再生効率が高いことが立証された。
【0027】
表1は、同じハニカム成形活性炭を使用して、本発明と従来の活性炭フィルターとを比較した結果を表している。
【表1】

Figure 2004351312
【0028】
表2は、本発明の再生方法による活性炭ロス率を表している。ここで、活性炭ロス率=(新品活性炭重量−再生後活性炭重量)/(新品活性炭重量)×100と定義する。
【表2】
Figure 2004351312
【0029】
【発明の効果】
以上詳細に説明した如く、本発明の活性炭再生方法・再生装置によれば、長期間にわたり活性炭の減量が少なく、安全で再生効率の高い再生運転ができ、かつ大気汚染の問題も解決される。それを備えた空気浄化システムでは活性炭フィルターが半永久的に使用でき、省資源とともに、活性炭フィルターの圧力損失を大幅に削減でき、省エネルギ効果が極めて大きいなど、その技術的効果には極めて顕著なものがある。
【図面の簡単な説明】
【図1】本発明による活性炭再生装置の概略回路図。
【図2】他の実施例による活性炭再生装置の概略回路図。
【図3】他の実施例による活性炭再生装置の概略回路図。
【図4】活性炭再生装置を含む空気浄化システムの概略回路図。
【図5】大気圧過熱蒸気再生と温風再生との効果を比較したグラフ。
【符号の説明】
10,30,50 活性炭再生装置
12 過熱蒸気供給部
14 吸着剤設置部
16 排気処理部
18 蒸気発生器
20 過熱用ヒーター
22,74 活性炭フィルター
24 温度センサー
26 脱着ガス分解ユニット
28 ブロア
60 空気浄化システム
62 空調対象室
63 配管
66 排気ファン
69 除塵フィルター
70 フィルターユニット
72 空気浄化装置
76 空調機[0001]
TECHNICAL FIELD OF THE INVENTION
As for indoor air pollution, dust, microorganisms, inorganic gaseous pollutants (NOx, SOx, ozone), and the like have been conventionally mentioned. In recent years, the problem of contamination by organic chemicals has newly emerged and has become a social problem. In particular, indoors such as new houses and classrooms have abnormally high indoor concentrations of volatile organic compounds (hereinafter abbreviated as VOC) and formaldehyde (hereinafter abbreviated as HCHO), which may cause chemical sensitivity and In many cases, it has developed into a sick building (sick building) and sick school syndrome, and many research reports have been made on the current status surveys and countermeasures.
[0002]
In order to solve this problem, the Ministry of Health, Labor and Welfare has announced guidelines for indoor concentrations of 13 substances such as VOCs and HCHOs, and the Ministry of Land, Infrastructure, Transport and Tourism has stated in the House Performance Labeling System that some of the indoor concentrations of chemical substances have been indicated in 2001. Added in August, and the Ministry of Education, Culture, Sports, Science and Technology has set standard values for chemical substances in the “School Environmental Sanitation Standards” for school facilities, The measures have been implemented since April 2002.
In addition, the Building Standards Law and the Law Concerning Sanitary Environment in Buildings were revised in 2002, and legal regulations on indoor air chemical contamination such as HCHO have been made.
The present invention relates to a method and apparatus for regenerating an activated carbon filter used in an air conditioning or ventilation system to reduce the concentration of the harmful gas, and an air purification system incorporating the same.
[0003]
[Prior art]
Conventional methods for regenerating a broken-through adsorbent at the end of its lifetime include:
A Hot air regeneration (Patent No. 3395077)
B Joule heat regeneration C Regeneration by jet steam under atmospheric pressure (JP-A-7-275636)
D. High-temperature pressurized superheated steam regeneration in an activated carbon regeneration plant is known.
[0004]
The problem with these methods is that
(1) For hot air regeneration (usually 150 to 200 ° C.), it is effective for low-boiling substances such as toluene (boiling point 110 ° C. or less), but in indoor air, aliphatic saturated hydrocarbons such as dodecane, hexadecane, High-boiling substances such as phthalates also exist in large amounts, and such adsorbed substances have low regeneration efficiency. Therefore, after a plurality of regenerations, the adsorption performance of activated carbon decreases.
(2) In the case of hot air regeneration or Joule heat regeneration, applying heat directly to combustible activated carbon in an atmosphere where oxygen is present in the air causes a great deal of consumption due to oxidation of the activated carbon and also poses a safety problem. Yes, unmanned automatic driving is not possible. In the case of large building facilities, there are tens or hundreds of air conditioning systems, and it is practically difficult for a person to monitor and regenerate activated carbon while monitoring.
[0005]
(3) In the case of the atmospheric pressure saturated steam regeneration, the object to be treated is activated carbon to which NOx and SOx are adsorbed, which is effective due to the low regeneration temperature and the re-adsorption of VOCs in the drying step by exhaustion from the room after the regeneration. It does not become a simple playback system.
(4) The high-temperature superheated steam regeneration in the activated carbon regeneration plant is a regeneration in a pressurized state, and is not suitable for being incorporated in an air conditioning system or the like. In addition, activated carbon is reduced by 2 to 9% per regeneration. Further, it cannot be applied to an air conditioning system due to problems such as pressure resistance and heat resistance (regeneration temperature of 800 to 1000 ° C.). Loss of activated carbon due to regeneration is as large as 2 to 9% per operation, and costs are high.
[0006]
(5) There is a problem of air pollution due to exhaust during regeneration.
(6) In order to reduce the frequency of regeneration, the conventional activated carbon filter for air conditioning has a large thickness, and the SV value {the amount of passing air (m 3 / h) / the volume of the adsorbent filled portion (m 3 )} is 30,000. Even though the pressure loss is as low as about / h, the pressure loss is as large as about 400 Pa.
(7) The regeneration efficiency is low. In particular, after a plurality of regenerations, the adsorption performance of the adsorbent decreases.
(8) In the conventional regeneration method, the exhaust gas at the time of regeneration is not decomposed, and there is a problem of air pollution due to the high concentration of the exhaust gas. As a result, the total reduction of harmful chemical substances cannot be achieved. Instead, it only discharges from the room to the outside (atmosphere).
[0007]
[Problems to be solved by the invention]
A main object of the present invention is to provide a method and an apparatus for safely and efficiently regenerating activated carbon that has absorbed and passed through a harmful gas without depleting the activated carbon.
Another object of the present invention is to provide an air purification system that regenerates activated carbon that has absorbed and passed through a harmful gas while being incorporated in an air purification device.
Still another object of the present invention is to decompose desorbed gas in exhaust gas during regeneration so as not to pollute the atmosphere.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention, in its first aspect, is a method for regenerating activated carbon adsorbing a harmful gas, the method comprising injecting superheated steam at 150 to 250 ° C to a low-boiling substance to regenerate the activated carbon. An activated carbon regeneration method is provided in which the first step of regenerating activated carbon is combined with the second step of regenerating by injecting superheated steam at 300 to 350 ° C. as needed for a high boiling substance.
[0009]
[Action]
According to such a regeneration method, normal regeneration (first stage) using superheated steam of 150 to 250 ° C for low boiling substances (boiling point of 110 ° C or lower) and 300 to 350 ° C for high boiling substances (boiling point of more than 110 ° C) are performed. By combining the two regeneration conditions of complete regeneration (second stage) with superheated steam, performing normal regeneration several times and then performing complete regeneration once, the activated carbon that has broken through can be regenerated and the adsorption performance can be reduced. Can be prevented.
[0010]
According to a second aspect of the present invention, there is provided an apparatus for regenerating activated carbon to which a harmful gas is adsorbed, comprising a superheated steam supply unit for heating a harmful substance contained in the activated carbon to a temperature higher than its boiling point; An adsorbent installation section to which an activated carbon filter can be attached, and an exhaust treatment section, wherein the superheated steam supply section includes a steam generator and a heater for superheating, and supplies superheated steam to an activated carbon filter in the adsorbent installation section. In addition, a temperature sensor is provided on the downstream side of the adsorbent installation section, and a unit for decomposing desorbed gas separated from the activated carbon is provided in the exhaust treatment section, Provided is an activated carbon regenerating apparatus configured to regenerate activated carbon by injecting superheated steam into activated carbon, decompose desorbed gas, and discharge the decomposed gas to the atmosphere.
[0011]
In such an apparatus, activated carbon at atmospheric pressure is used for the regeneration of activated carbon. By introducing and filling superheated steam into activated carbon, which is a combustible material, oxygen required for combustion can be cut off, and the consumption of activated carbon is almost eliminated, and safety is secured. Since the pressure of the regeneration by the superheated steam is almost the same as the atmospheric pressure, the device does not need to have pressure resistance.
Since the superheated steam is used, there is no adsorption of moisture to the adsorbent in the case of the regeneration of the saturated steam, the drying step of the adsorbent after the regeneration is unnecessary, and the adsorbent does not re-adsorb contaminants in the drying step.
[0012]
Water molecules (H 2 O) of superheated steam have larger energy for desorbing adsorbed substances than air molecules (N 2 , O 2 ) of hot air regeneration. High regeneration efficiency can be obtained.
The superheated steam exhaust gas after regeneration is directly introduced into the desorption gas decomposition unit to decompose chemical substances in the exhaust gas. After 95% or more of harmful gas (VOC) is purified by the decomposition treatment, it is discharged to the atmosphere.
[0013]
Further, according to the device of the present invention, the following operational effects can be obtained.
(1) Regeneration efficiency is good due to hydrothermal reaction of superheated steam and two-stage regeneration of low boiling point and high boiling point, and the adsorbent can be used semi-permanently. (2) Regeneration by superheated steam under atmospheric pressure, pressure-resistant structure It is not necessary and can be applied to an air conditioning system. (3) Since oxygen supply is shut off by filling the apparatus with superheated steam during regeneration, there is almost no loss due to consumption of activated carbon, and safe regeneration is possible (4). Since the desorbed gas in the exhaust gas at the time of regeneration is released into the atmosphere after being decomposed, it hardly pollutes the air. (5) When incorporated into an air conditioning system as an air purification device with a regeneration function, it can be operated at a high SV value. The amount of adsorbent used can be reduced to 1/3 to 1/15 of that of the conventional one, which saves resources and space. (6) When incorporated into an air conditioning system as an air purification device with a regeneration function, low pressure loss and energy saving are achieved. No additional booster fan is required, and it can be handled by the AHU's external static pressure.
[0014]
As a third aspect of the present invention, there is provided an air purification system having a mechanism for regenerating activated carbon adsorbing a harmful gas, comprising a fan or a blower for drawing air from a room to be air-conditioned and a filter unit including a dust filter. An air purification section including an activated carbon regeneration mechanism, an air conditioner, and a pipe connecting the same, the activated carbon regeneration mechanism includes a superheated steam supply section that heats a harmful substance contained in the activated carbon to a boiling point or higher, An adsorbent installation section that is held at atmospheric pressure and can be equipped with an activated carbon filter, and an exhaust treatment section are included.The superheated steam supply section has a steam generator and a heater for superheating, and supplies superheated steam. The activated carbon is supplied to an activated carbon filter in the adsorbent installation section and is injected into the activated carbon. A temperature sensor is provided downstream of the adsorbent installation section, The unit is provided with a unit that decomposes desorbed gas separated from activated carbon, injects superheated steam into activated carbon to regenerate activated carbon, and decomposes desorbed gas and discharges it to the atmosphere. Provide a purification system.
[0015]
According to such an air purification system, an air conditioning system including a VOC removal device with a regeneration function combined with an air purification device (activated carbon filter) is constructed. Since the regeneration steam is in a superheated state or at atmospheric pressure, a pressure-resistant container or the like is not required, and can be applied to an air conditioning system.
[0016]
The activated carbon filter for removing VOCs incorporated in the conventional air purification system has a short lifetime of activated carbon, so the SV value is set as low as 10,000 to 50,000 / h in order to avoid frequent replacement of the broken filter. . In that case, since the amount of activated carbon used is large, the pressure loss of the filter is as large as 400 Pa (when the SV value is 30,000 / h).
This activated carbon air purification system enables safe and effective regeneration even if the activated carbon filter breaks through, enabling an SV value of 150,000 / h. It is reduced to 1/3, resulting in space saving, resource saving, and cost saving. Further, by reducing the amount of activated carbon used, a low pressure loss of the filter is realized, and the air conditioner can be operated with an external static pressure without adding a booster fan, thereby saving energy and cost.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an activated carbon regenerating apparatus according to a preferred embodiment of the present invention. By repeatedly using this regenerating device while changing the temperature conditions, the activated carbon can be subjected to the first-stage normal regeneration and the second-stage complete regeneration.
The regenerating apparatus 10 shown in FIG. 1 includes a superheated steam supply unit 12 for heating to a temperature higher than the boiling point of a harmful gas, an adsorbent installation unit 14 maintained at an atmospheric pressure, and an exhaust processing unit 16, each of which is connected to a pipe. Connected. The superheated steam supply section 12 includes a steam generator 18 and a superheater heater 20, and is connected to the adsorbent installation section 14 by piping. The adsorbent installation section 14 is provided with an activated carbon filter 22 that has adsorbed harmful gases and has passed therethrough, and a temperature sensor 24 is provided downstream of the activated carbon filter 22. The exhaust processing unit 16 includes an opening / closing damper VD1, an opening / closing damper VD2, a desorption gas decomposition unit 26, an air inlet 27, and a blower 28, and is connected by piping.
[0018]
In the regeneration device 10 of FIG. 1, the superheated steam is supplied from the superheated steam supply unit 12 to the adsorbent installation unit 14 maintained at the atmospheric pressure, and the activated carbon filter 22 that adsorbs harmful gas and breaks through is regenerated. The harmful gas (VOC) in the exhaust gas is purified by the desorption gas decomposition unit 26 of the exhaust processing unit 16 and then discharged to the atmosphere. The temperature sensor 24 detects the temperature of the adsorbent installation section 14 and adjusts the output of the overheating heater 20 so that the regeneration temperature is maintained at the set temperature.
[0019]
The decomposition method by the desorption gas decomposition unit 26 includes a decomposition method using a catalyst and a plasma decomposition method, and both methods can be adopted. As the catalyst used in the catalytic decomposition method, noble metals such as platinum and palladium, and base metals such as cobalt, chromium, manganese, vanadium oxide, and titanium dioxide can be used. The superheated steam exhaust gas after regeneration is directly introduced into the desorption gas decomposition unit, and the chemical substances in the exhaust gas can be decomposed by effectively using the residual heat of the regeneration exhaust gas. In particular, when platinum is used as a catalyst in the desorption gas decomposition unit, an auxiliary heater (not shown) is provided between the opening / closing damper VD1 of the exhaust processing unit 16 and the desorption gas decomposition unit 26 to maintain the reaction speed of the catalyst unit. Is provided. By operating the opening / closing dampers VD1 and VD2, the amount of air exhausted from the desorbing gas decomposing unit 26 and the amount of air taken in from the air inlet 27 is adjusted, and the inlet temperature of the blower 28 is kept below the heat resistant temperature of the blower. An appropriate amount of regenerated steam is secured in accordance with the pressure loss of 22.
[0020]
FIG. 2 shows an activated carbon regenerating apparatus according to another embodiment of the present invention. This regenerating apparatus 30 is characterized in that a circulating line 32 is provided in an adsorbent installation section 34 maintained at an atmospheric pressure. Have. The circulation line 32 includes a pipe 36, a blower 38, a superheater 40, and a temperature sensor 42. The circulation line 32 adsorbs harmful gas and breaks through with the downstream side of the first temperature sensor 24 provided in the adsorbent installation section 34. Each of them is connected to the upstream side of the activated carbon filter 22 via a pipe 36.
In the circulation line 32, a part of the exhaust gas is circulated by a blower 38, reheated by a superheater 40, mixed with superheated steam supplied from a superheated steam supply unit 12, and provided in an adsorbent installation unit 34. This is an example of a method used for regeneration of the activated carbon filter 22. This embodiment has an advantage that the energy required for overheating can be reduced as compared with the embodiment of FIG.
[0021]
FIG. 3 shows an activated carbon regenerating apparatus according to still another embodiment of the present invention. This regenerating apparatus 50 is characterized in that a purge line 52 is provided in an adsorbent installation section 54 maintained at an atmospheric pressure. Having. The purge line 52 includes an air inlet 55, a pipe 56, and an opening / closing damper MV <b> 1, and is connected to an upstream side of the activated carbon filter 22 that has adsorbed harmful gas and passed through the adsorbent installation section 54.
After the regeneration process, if the opening / closing damper MV1 is opened while the blower 28 is operating, purge air flows in and the activated carbon can be cooled quickly. In the case of the example of FIG. 2, the purge air intake 55 may be provided in the middle of the circulation line 32.
[0022]
FIG. 4 shows an embodiment of an air purification system incorporating the activated carbon regeneration device described above. The air purification system 60 includes a room 62 to be air-conditioned, a pipe 63 for connecting each device, an outlet 64 for taking out RA (return air) from the room 62 to be air-conditioned, an exhaust fan 66, and a dust filter 69. SA (supply air) is supplied to a filter unit 70 for introducing outside air from an inlet 68, an air purification device 72 including a rotary activated carbon filter 74 rotated by a motor 73, an air conditioner (AHU) 76, and a room 62 to be air-conditioned. An air supply port 78 is included.
[0023]
The rotary activated carbon filter 74 is of the type described in the above-mentioned JP-A-7-275636, and has a function of rotating and regenerating the filter portion. During normal air conditioning, the opening / closing damper MV1 of the cooling air inlet 75 is closed. During regeneration, superheated steam for regeneration from the steam generator 18 and the heater for superheating 20 is introduced, and at the same time, cooling air is introduced from the cooling air inlet 75 via the opening / closing damper MV1.
[0024]
In the room 62 to be air-conditioned, during normal air-conditioning operation, room air is taken out from the RA outlet 64 and a part of the air is exhausted by the exhaust fan 66. The remaining air and the outside air taken in from the outside air intake 68 are removed by a dust filter 69 installed in a filter unit 70, and harmful gases are adsorbed and removed by a rotary activated carbon filter 74 installed in an air purification device 72. , And sends clean air to the air conditioner 76. A desired air state (temperature / humidity) is set by the air conditioner 76, and air is supplied from the SA air supply port 78 to the room 62 to be air-conditioned.
[0025]
The activated carbon filter 74 rotates in the order of the adsorption section → the desorption section → the cooling section. At this time, the VOC concentration monitor 80 samples air from the upstream side and the downstream side of the rotary activated carbon filter 74 to determine whether or not the rotary activated carbon filter needs to be regenerated. The regeneration operation of the activated carbon filter 74 is performed during normal air conditioning operation or when air conditioning is stopped. The regeneration operation is performed by rotating the activated carbon filter 74 in the order of the desorption section, the cooling section, and the adsorption section. In the case of intermittent air conditioning, the regeneration operation may be performed when the air conditioning operation is stopped.
Although the rotary activated carbon filter 74 is used in this embodiment, a stationary activated carbon filter can be used.
[0026]
FIG. 5 shows a comparison between the effects of the atmospheric pressure superheated steam regeneration and the hot air regeneration according to the present invention. It has been proved that the regeneration method according to the present invention has much higher regeneration efficiency than the conventional hot air regeneration.
[0027]
Table 1 shows the results of comparing the present invention with a conventional activated carbon filter using the same honeycomb formed activated carbon.
[Table 1]
Figure 2004351312
[0028]
Table 2 shows the activated carbon loss rate by the regeneration method of the present invention. Here, the activated carbon loss rate is defined as: (weight of new activated carbon−weight of activated carbon after regeneration) / (weight of new activated carbon) × 100.
[Table 2]
Figure 2004351312
[0029]
【The invention's effect】
As described in detail above, according to the activated carbon regeneration method / regeneration apparatus of the present invention, the amount of activated carbon is reduced for a long time, the regeneration operation can be performed safely and with high regeneration efficiency, and the problem of air pollution can be solved. In the air purification system equipped with it, the activated carbon filter can be used semi-permanently, and the technical effect is extremely remarkable, such as the resource saving, the pressure loss of the activated carbon filter can be greatly reduced, and the energy saving effect is extremely large. There is.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram of an activated carbon regeneration device according to the present invention.
FIG. 2 is a schematic circuit diagram of an activated carbon regeneration device according to another embodiment.
FIG. 3 is a schematic circuit diagram of an activated carbon regeneration device according to another embodiment.
FIG. 4 is a schematic circuit diagram of an air purification system including an activated carbon regeneration device.
FIG. 5 is a graph comparing the effects of atmospheric pressure superheated steam regeneration and hot air regeneration.
[Explanation of symbols]
10, 30, 50 Activated carbon regeneration device 12 Superheated steam supply unit 14 Adsorbent installation unit 16 Exhaust treatment unit 18 Steam generator 20 Heater for superheating 22, 74 Activated carbon filter 24 Temperature sensor 26 Desorption gas decomposition unit 28 Blower 60 Air purification system 62 Air-conditioned room 63 Pipe 66 Exhaust fan 69 Dust filter 70 Filter unit 72 Air purification device 76 Air conditioner

Claims (3)

有害ガスを吸着した活性炭を再生する方法であって、
低沸点物質に対して150〜250℃の過熱蒸気を噴射して再生する第1段階と、
高沸点物質に対して300〜350℃の過熱蒸気を噴射して再生する第2段階とを組み合わせて行うことを特徴とする活性炭再生方法。
A method for regenerating activated carbon adsorbing harmful gas,
A first stage of regenerating by injecting superheated steam of 150 to 250 ° C. to the low boiling substance;
A method for regenerating activated carbon, characterized in that it is performed in combination with a second step of regenerating by injecting superheated steam at 300 to 350 ° C. to a high boiling substance.
有害ガスを吸着した活性炭を再生する装置であって、
活性炭に含まれる有害物質をその沸点以上に加熱する過熱蒸気供給部と、
大気圧の状態に保持され活性炭フィルターを装着可能な吸着剤設置部と、
排気処理部とを備え、
前記過熱蒸気供給部は蒸気発生器と過熱用ヒーターとを包含し、過熱蒸気を前記吸着剤設置部内の活性炭フィルターに供給して活性炭に噴射するようになっており、
前記吸着剤設置部の下流側には温度センサーが設けられ、
前記排気処理部には活性炭から分離した脱着ガスを分解するユニットが設けられており、
過熱蒸気を活性炭に噴射して活性炭を再生すると共に脱着ガスを分解して大気中へと排出するようになっていることを特徴とする活性炭再生装置。
A device for regenerating activated carbon adsorbing harmful gas,
A superheated steam supply unit for heating harmful substances contained in the activated carbon above its boiling point,
An adsorbent installation section that is maintained at atmospheric pressure and can be fitted with an activated carbon filter,
An exhaust processing unit,
The superheated steam supply unit includes a steam generator and a heater for superheating, and supplies the superheated steam to an activated carbon filter in the adsorbent installation unit and injects the activated carbon into activated carbon.
A temperature sensor is provided downstream of the adsorbent installation section,
The exhaust treatment unit is provided with a unit for decomposing the desorbed gas separated from the activated carbon,
An activated carbon regenerating apparatus characterized in that activated carbon is regenerated by injecting superheated steam into activated carbon and decomposed gas is decomposed and discharged into the atmosphere.
有害ガスを吸着した活性炭を再生する機構を有する空気浄化システムであって、
空調対象室から空気を誘引するファン又はブロアと、除塵フィルターを包含するフィルターユニットと、活性炭再生機構を包含する空気浄化部分と、空調機と、それらを接続する配管とを備え、
前記活性炭再生機構は、活性炭に含まれる有害物質をその沸点以上に加熱する過熱蒸気供給部と、大気圧の状態に保持され活性炭フィルターを装着可能な吸着剤設置部と、排気処理部とを包含しており、
前記過熱蒸気供給部は蒸気発生器と過熱用ヒーターとを有し、過熱蒸気を前記吸着剤設置部内の活性炭フィルターに供給して活性炭に噴射するようになっており、
前記吸着剤設置部の下流側には温度センサーが設けられ、
前記排気処理部には活性炭から分離した脱着ガスを分解するユニットが設けられており、
過熱蒸気を活性炭に噴射して活性炭を再生すると共に脱着ガスを分解して大気中へと排出するようになっていることを特徴とする空気浄化システム。
An air purification system having a mechanism for regenerating activated carbon adsorbing harmful gas,
A fan or blower that draws air from the room to be air-conditioned, a filter unit including a dust filter, an air purification section including an activated carbon regeneration mechanism, an air conditioner, and a pipe connecting them,
The activated carbon regeneration mechanism includes a superheated steam supply unit that heats a harmful substance contained in activated carbon to a temperature equal to or higher than its boiling point, an adsorbent installation unit that is maintained at atmospheric pressure and can be equipped with an activated carbon filter, and an exhaust treatment unit. And
The superheated steam supply unit has a steam generator and a heater for superheating, and supplies the superheated steam to an activated carbon filter in the adsorbent installation unit to inject the activated carbon,
A temperature sensor is provided downstream of the adsorbent installation section,
The exhaust treatment unit is provided with a unit for decomposing the desorbed gas separated from the activated carbon,
An air purification system characterized in that superheated steam is injected into activated carbon to regenerate activated carbon and decompose gas to decompose and discharge to the atmosphere.
JP2003151794A 2003-05-29 2003-05-29 Method and apparatus for regenerating activated carbon and air purification system incorporating the same Expired - Lifetime JP4234496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151794A JP4234496B2 (en) 2003-05-29 2003-05-29 Method and apparatus for regenerating activated carbon and air purification system incorporating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151794A JP4234496B2 (en) 2003-05-29 2003-05-29 Method and apparatus for regenerating activated carbon and air purification system incorporating the same

Publications (2)

Publication Number Publication Date
JP2004351312A true JP2004351312A (en) 2004-12-16
JP4234496B2 JP4234496B2 (en) 2009-03-04

Family

ID=34047182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151794A Expired - Lifetime JP4234496B2 (en) 2003-05-29 2003-05-29 Method and apparatus for regenerating activated carbon and air purification system incorporating the same

Country Status (1)

Country Link
JP (1) JP4234496B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167359A (en) * 2004-12-20 2006-06-29 Sharp Corp Harmful gas removing filter and air conditioning machine
JP2006167693A (en) * 2004-12-20 2006-06-29 Sharp Corp Filter for removing water-soluble harmful chemical substance, method for regenerating removal filter and air conditioner
JP2007125458A (en) * 2005-11-01 2007-05-24 Sharp Corp Toxic chemical gas removal method of air conditioning machine, air conditioning machine, and toxic chemical gas removal filter
WO2009089679A1 (en) * 2007-12-19 2009-07-23 Dawei Zhang Method and apparatus for regenerating activated coke used for treating wastewater or sewage
CN102989434A (en) * 2011-09-19 2013-03-27 成都易生玄科技有限公司 Method for regenerating bamboo and charcoal by light polycondensation and transmission
JP2016129862A (en) * 2015-01-13 2016-07-21 東洋紡株式会社 Water treatment apparatus
CN106492771A (en) * 2016-11-10 2017-03-15 中南大学 A kind of method of nickel series compounds catalytic regeneration activated carbon
CN106512973A (en) * 2016-11-10 2017-03-22 中南大学 Regeneration method of low-carbon-loss activated carbon
JP2017131859A (en) * 2016-01-29 2017-08-03 東洋紡株式会社 Organic solvent treatment apparatus
CN107597085A (en) * 2017-10-16 2018-01-19 广州宝狮无线供电技术有限公司 A kind of renovation process of activated carbon and the device for realizing this method
CN108970597A (en) * 2018-08-16 2018-12-11 无锡四方集团有限公司 Adsorb the desorption and regeneration technique in situ of the adsorbent of organic exhaust gas
CN108970596A (en) * 2018-08-16 2018-12-11 无锡四方集团有限公司 The desorption and regeneration technique in situ of the adsorbent of organic matter in adsorbed water body
CN109331609A (en) * 2018-11-12 2019-02-15 张家港绿色三星净化科技股份有限公司 Molecular Adsorption separator
CN109482165A (en) * 2018-11-06 2019-03-19 无锡四方集团有限公司 The desorption and regeneration and its tail gas treatment process of the adsorbent of organic matter in adsorbed water body
CN110339671A (en) * 2019-05-29 2019-10-18 张家港市艾尔环保工程有限公司 With fool proof active carbon case
CN111185144A (en) * 2020-02-28 2020-05-22 无锡四方集团有限公司 Activated carbon thermal regeneration device and process
KR102201983B1 (en) * 2019-11-06 2021-01-12 (주)윈텍글로비스 Equipment for regeneration activated carbon with superheated steam and low temperature air
CN112479845A (en) * 2020-11-09 2021-03-12 潍坊惠丰化工有限公司 High-concentration formaldehyde production device and production process
CN112691652A (en) * 2020-11-26 2021-04-23 德清县联新环保科技有限公司 Regenerated activated carbon waste gas treatment equipment
CN112892508A (en) * 2021-01-13 2021-06-04 北京日新达能技术有限公司 Green regeneration and quality improvement system and method for hazardous waste activated carbon
CN114162912A (en) * 2021-11-04 2022-03-11 泉州南京大学环保产业研究院 Preparation method of titanium dioxide particle electrode loaded with high {001} crystal face
KR102380500B1 (en) * 2021-08-20 2022-04-01 주식회사 엔바이온 Air purification apparatus
CN115076833A (en) * 2022-06-22 2022-09-20 杭州佳碧家环保科技有限公司 Intelligent robot is got rid of to formaldehyde of environmental protection
CN115920583A (en) * 2023-02-17 2023-04-07 安徽北乾智能科技有限公司 Active carbon exhaust treatment device
WO2023130712A1 (en) * 2022-01-10 2023-07-13 广东美的制冷设备有限公司 Air treatment apparatus, air conditioner indoor unit and air conditioner

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167359A (en) * 2004-12-20 2006-06-29 Sharp Corp Harmful gas removing filter and air conditioning machine
JP2006167693A (en) * 2004-12-20 2006-06-29 Sharp Corp Filter for removing water-soluble harmful chemical substance, method for regenerating removal filter and air conditioner
JP2007125458A (en) * 2005-11-01 2007-05-24 Sharp Corp Toxic chemical gas removal method of air conditioning machine, air conditioning machine, and toxic chemical gas removal filter
WO2009089679A1 (en) * 2007-12-19 2009-07-23 Dawei Zhang Method and apparatus for regenerating activated coke used for treating wastewater or sewage
US8388902B2 (en) 2007-12-19 2013-03-05 Dawei Zhang Method and apparatus for regenerating activated coke used for treating wastewater or sewage
CN102989434A (en) * 2011-09-19 2013-03-27 成都易生玄科技有限公司 Method for regenerating bamboo and charcoal by light polycondensation and transmission
JP2016129862A (en) * 2015-01-13 2016-07-21 東洋紡株式会社 Water treatment apparatus
JP2017131859A (en) * 2016-01-29 2017-08-03 東洋紡株式会社 Organic solvent treatment apparatus
CN106492771A (en) * 2016-11-10 2017-03-15 中南大学 A kind of method of nickel series compounds catalytic regeneration activated carbon
CN106512973A (en) * 2016-11-10 2017-03-22 中南大学 Regeneration method of low-carbon-loss activated carbon
CN107597085A (en) * 2017-10-16 2018-01-19 广州宝狮无线供电技术有限公司 A kind of renovation process of activated carbon and the device for realizing this method
CN107597085B (en) * 2017-10-16 2023-11-17 广州宝狮无线供电技术有限公司 Device for realizing regeneration method of activated carbon
CN108970597A (en) * 2018-08-16 2018-12-11 无锡四方集团有限公司 Adsorb the desorption and regeneration technique in situ of the adsorbent of organic exhaust gas
CN108970596A (en) * 2018-08-16 2018-12-11 无锡四方集团有限公司 The desorption and regeneration technique in situ of the adsorbent of organic matter in adsorbed water body
WO2020034279A1 (en) * 2018-08-16 2020-02-20 无锡四方集团有限公司 In-situ desorption regeneration process of adsorbent for adsorbing organic matters in water body
CN109482165A (en) * 2018-11-06 2019-03-19 无锡四方集团有限公司 The desorption and regeneration and its tail gas treatment process of the adsorbent of organic matter in adsorbed water body
CN109331609A (en) * 2018-11-12 2019-02-15 张家港绿色三星净化科技股份有限公司 Molecular Adsorption separator
CN110339671A (en) * 2019-05-29 2019-10-18 张家港市艾尔环保工程有限公司 With fool proof active carbon case
KR102201983B1 (en) * 2019-11-06 2021-01-12 (주)윈텍글로비스 Equipment for regeneration activated carbon with superheated steam and low temperature air
CN111185144A (en) * 2020-02-28 2020-05-22 无锡四方集团有限公司 Activated carbon thermal regeneration device and process
CN112479845A (en) * 2020-11-09 2021-03-12 潍坊惠丰化工有限公司 High-concentration formaldehyde production device and production process
CN112691652A (en) * 2020-11-26 2021-04-23 德清县联新环保科技有限公司 Regenerated activated carbon waste gas treatment equipment
CN112691652B (en) * 2020-11-26 2024-06-25 湖南北清中宇环保科技有限公司 Regenerated active carbon waste gas treatment equipment
CN112892508A (en) * 2021-01-13 2021-06-04 北京日新达能技术有限公司 Green regeneration and quality improvement system and method for hazardous waste activated carbon
KR102380500B1 (en) * 2021-08-20 2022-04-01 주식회사 엔바이온 Air purification apparatus
CN114162912A (en) * 2021-11-04 2022-03-11 泉州南京大学环保产业研究院 Preparation method of titanium dioxide particle electrode loaded with high {001} crystal face
CN114162912B (en) * 2021-11-04 2023-09-26 泉州南京大学环保产业研究院 Preparation method of high {001} crystal face-loaded titanium dioxide particle electrode
WO2023130712A1 (en) * 2022-01-10 2023-07-13 广东美的制冷设备有限公司 Air treatment apparatus, air conditioner indoor unit and air conditioner
CN115076833B (en) * 2022-06-22 2023-11-10 北京赛图雷机器人科技有限公司 Environment-friendly formaldehyde removal intelligent robot
CN115076833A (en) * 2022-06-22 2022-09-20 杭州佳碧家环保科技有限公司 Intelligent robot is got rid of to formaldehyde of environmental protection
CN115920583A (en) * 2023-02-17 2023-04-07 安徽北乾智能科技有限公司 Active carbon exhaust treatment device

Also Published As

Publication number Publication date
JP4234496B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4234496B2 (en) Method and apparatus for regenerating activated carbon and air purification system incorporating the same
KR101143278B1 (en) Air cleaner having regenerative filter, and method for regenerative of air cleaner filter
CN104848443B (en) A kind of regenerative air cleaning system
EP1499836B1 (en) Air cleaner filter system capable of nano-confined catalytic oxidation
US20100254868A1 (en) Purification of a fluid using ozone with an adsorbent and/or a particle filter
CN103920362A (en) Exhaust gas treatment device and method by virtue of online desorption and degradation
CN108079780A (en) A kind of device and method of molecular sieve-ozone combination processing organic exhaust gas
CN109477649B (en) Air treatment system for managing air conditions in an enclosed environment
JP6615542B2 (en) Low concentration VOC contaminated air purification device using catalyst rotor
CN210786762U (en) Hot air concentration desorption catalytic combustion waste gas treatment device
JP2008073642A (en) Multi-purpose gas treatment device and its operation method
EP0745419A2 (en) Method and systems for fluid purification using a catalyst and a sorbent
JP3246641B2 (en) Treatment of exhaust gas containing methyl bromide
US12011690B2 (en) Exhaust gas treatment system
CN109529530A (en) Low concentration VOCs gas purge system and method
CN108579330A (en) One kind being directed to Wind Volume high concentration polluted air from paint booth governing system and method
JPH09155152A (en) Method and device for removal of nitrogen oxide
TW202206169A (en) Exhaust gas treatment system
CN209596862U (en) Low concentration VOCs gas purge system
TWI843430B (en) Exhaust gas treatment system for an ammonia-containing exhaust gas
CN110960972A (en) Environment-friendly exhaust treatment device
JP2006288689A (en) Voc eliminating device, regeneration method for it and industrial exhaust device
CN218794958U (en) Standardized processing apparatus of volatility organic waste gas
CN208824268U (en) A kind of industrial organic waste-gas purification processing unit
Wolstenholme The Latest Odor Control Issues and Solutions for Wastewater Systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4234496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term