JP2009108764A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009108764A
JP2009108764A JP2007281845A JP2007281845A JP2009108764A JP 2009108764 A JP2009108764 A JP 2009108764A JP 2007281845 A JP2007281845 A JP 2007281845A JP 2007281845 A JP2007281845 A JP 2007281845A JP 2009108764 A JP2009108764 A JP 2009108764A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
flow path
temperature
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007281845A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kawajiri
和彦 川尻
Minoru Sato
稔 佐藤
Akira Shiragami
昭 白神
Masato Kurahashi
正人 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007281845A priority Critical patent/JP2009108764A/en
Publication of JP2009108764A publication Critical patent/JP2009108764A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of efficiently purifying hazardous constituents in an exhaust gas containing water vapor without incurring deterioration in catalytic activity. <P>SOLUTION: A countercurrent heat exchanger 3 is arranged in an exhaust gas flow path 2 of an engine 1. In the heat exchanger 3, a partitioning wall 3c separates high-and low-temperature-side flow paths 3a, 3b. Heat exchange is performed between the high-and low-temperature-side flow paths 3a, 3b. Fluid passing the high-temperature-side flow path 3a is cooled while fluid passing the low-temperature-side flow path 3b is reheated. Further, a condensed water removal device 4 is arranged in the exhaust gas flow path 2 of the engine 1, and a silver alumina catalyst 8 acting as an NO<SB>x</SB>selective reduction catalyst is arranged at the downstream side of the condensed water removal device 4. The upstream side of the condensed water removal device 4 and the high-temperature-side flow path 3a of the heat exchanger 3 communicate with each other while the downstream side of the condensed water removal device 4 and the upstream side of the catalyst 8 communicate with each other via the low-temperature-side flow path 3b of the heat exchanger 3. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関等から排出される燃焼排気ガス中の有害成分を清浄化する排気ガス浄化装置に関するものである。   The present invention relates to an exhaust gas purification device that purifies harmful components in combustion exhaust gas discharged from an internal combustion engine or the like.

ガソリンリーンバーンエンジンやディーゼルエンジンの排気ガスには多くの酸素が含まれ、この排気ガス中の窒素酸化物(NO)を選択的に還元して浄化する選択還元触媒として例えば銅イオン交換ゼオライト触媒が用いられる。この触媒はわずかな水分によって還元浄化能力が低下するために、上流側に水分除去装置を備えた、エンジン排気ガス中のNOを低減させる装置があり、水分除去装置の水分除去剤として塩化カルシウムを用いている。このNO低減装置において、排気ガスの水分を除去した後に触媒を通すので効率良く排気ガス中のNOをNに転化することができる(例えば、特許文献1参照)。
また、燃焼機関からの排気ガス導入管に、排気ガス中の水蒸気を冷却・凝縮して水滴とする冷却手段と水滴を排気ガスから分離する分離手段とを備えた煤除去部を備えた煤、窒素酸化物、HC除去および騒音低減装置がある。煤除去部において、排気ガス導入管を外側から冷却して排気ガス導入管の中を通る排気ガスを冷却し、排気ガス中の水蒸気を凝縮して水滴とし、この水滴は煤とともに受水槽に集収され排気ガスから分離される(例えば、特許文献2参照)。
また、内燃機関の排気ガスが通過する排気流路に熱交換器と吸着材とが配置され、さらに吸着材の下流側に触媒が配置され、熱交換器が吸着材の上流側と、吸着材の下流側であってかつ触媒の上流側との間で熱交換できるようにした排気ガス浄化装置がある。この排気ガス浄化装置において、エンジンの始動直後には、エンジンから排出された有害成分を含有する排気ガスは熱交換器を通過して低温となって流出し、有害成分が吸着材により吸着されやすくなる。吸着材により有害成分が除去された排気ガスは、熱交換器により高温となって触媒に導入され、触媒を早期に活性温度まで昇温する。これによりエンジンの始動直後における排気ガスの温度上昇時に、触媒が排気ガス中の有害成分を浄化できる活性温度に達するまで、吸着材で有害成分を一旦吸着することができ、エンジンの始動時に有害成分が大気に放出することを防止できる(例えば、特許文献3参照)。
Exhaust gas from gasoline lean burn engines and diesel engines contains a large amount of oxygen. For example, a copper ion exchange zeolite catalyst is used as a selective reduction catalyst that selectively reduces and purifies nitrogen oxides (NO x ) in the exhaust gas. Is used. Since this catalyst has a reduction and purification capability due to a slight amount of water, there is a device for reducing NO x in the engine exhaust gas, equipped with a water removal device on the upstream side, and calcium chloride as a water removal agent for the water removal device. Is used. In this NO x reducing device, since passing the catalyst after removing the moisture of the exhaust gas NO x in efficiently exhaust gas can be converted to N 2 (e.g., see Patent Document 1).
Further, the exhaust gas introduction pipe from the combustion engine is provided with a soot removing portion provided with a cooling means for cooling and condensing water vapor in the exhaust gas to form water droplets and a separating means for separating the water droplets from the exhaust gas, There are nitrogen oxide, HC removal and noise reduction devices. In the soot removal section, the exhaust gas introduction pipe is cooled from the outside, the exhaust gas passing through the exhaust gas introduction pipe is cooled, the water vapor in the exhaust gas is condensed into water droplets, and these water droplets are collected together with the soot in the water receiving tank. And separated from the exhaust gas (see, for example, Patent Document 2).
In addition, a heat exchanger and an adsorbent are disposed in an exhaust passage through which exhaust gas of the internal combustion engine passes, and a catalyst is disposed downstream of the adsorbent, and the heat exchanger is disposed upstream of the adsorbent, and the adsorbent. There is an exhaust gas purification device that can exchange heat with the upstream side of the catalyst and the upstream side of the catalyst. In this exhaust gas purification device, immediately after the engine is started, exhaust gas containing harmful components discharged from the engine passes through the heat exchanger and flows out at a low temperature, and the harmful components are easily adsorbed by the adsorbent. Become. The exhaust gas from which harmful components have been removed by the adsorbent is heated to a high temperature by a heat exchanger and introduced into the catalyst, and the temperature of the catalyst is quickly raised to the activation temperature. As a result, when the exhaust gas temperature rises immediately after starting the engine, the adsorbent can once adsorb the harmful component until the catalyst reaches an activation temperature at which the harmful component in the exhaust gas can be purified. Can be prevented from being released into the atmosphere (see, for example, Patent Document 3).

特開平7−102952号公報(第1頁)JP 7-102952 A (first page) 特開平8−093443号公報(第1頁)JP-A-8-093443 (first page) 特開平2001−295643号公報(第1頁)Japanese Patent Laid-Open No. 2001-295543 (first page)

特許文献1のNO低減装置においては、水分除去剤に水分を吸着する吸着材を用いているので、吸着した水分を放出させる再生動作が必要であり、連続的に水分を除去することができないという課題があった。
特許文献2の、煤、NO、HC除去および騒音低減装置における煤除去部においては、排気ガスを冷却し、水蒸気を凝縮させて水分除去するので、排気ガスが100℃以下に低下し、触媒の活性温度に到達することができず、ヒータなどによるエネルギーを付与することなしには、触媒でNO、CO、HCを浄化処理できないという課題があった。
特許文献3の排気ガス浄化装置においては、エンジン始動時には、熱交換器で冷却されて出てきた排気ガス中の水蒸気も吸着材により一時的に吸着除去することが可能である。しかし、排気ガス浄化装置の吸着材は、エンジンの始動直後における排気ガスの温度上昇時に、触媒が排気ガス中の有害成分を浄化できる活性温度に達するまで、有害成分を一旦吸着するためのもので、エンジン始動後時間経過に伴い吸着材は熱交換器とほぼ同じ温度となり、水分も吸着しなくなるという課題があった。また、特許文献3の排気ガス浄化装置においては、触媒が排気ガス中の有害成分を浄化できる活性温度に到達すれば、吸着材は不要となるものであるので、熱交換器と触媒の間に、排気ガスを冷却する機能を持たせる必然性はない。
In NO x reducing device of Patent Document 1, because of the use of adsorbent which adsorbs moisture in the moisture removing agent, it is necessary reproducing operation of releasing the adsorbed moisture can not be removed continuously water There was a problem.
In the soot removal unit in the soot, NO x , HC removal and noise reduction device of Patent Document 2, the exhaust gas is cooled, the water vapor is condensed and water is removed, so that the exhaust gas is reduced to 100 ° C. or less, and the catalyst Thus, there is a problem that the catalyst cannot purify NO x , CO, and HC without applying energy by a heater or the like.
In the exhaust gas purification device of Patent Document 3, when the engine is started, water vapor in the exhaust gas cooled and output by the heat exchanger can also be temporarily adsorbed and removed by the adsorbent. However, the adsorbent of the exhaust gas purification device is for temporarily adsorbing harmful components until the catalyst reaches an activation temperature that can purify the harmful components in the exhaust gas when the temperature of the exhaust gas rises immediately after the engine starts. As the time elapses after the engine is started, the adsorbent becomes almost the same temperature as the heat exchanger, and there is a problem that moisture is not adsorbed. Further, in the exhaust gas purifying apparatus of Patent Document 3, if the catalyst reaches an activation temperature at which harmful components in the exhaust gas can be purified, the adsorbent is not necessary, so that the adsorbent is not required between the heat exchanger and the catalyst. There is no necessity to provide a function of cooling the exhaust gas.

本発明は、かかる課題を解決するためになされたものであり、水蒸気を含む排気ガス中の有害成分を、触媒活性の低下を招くことなく効率良く浄化することができる排気ガス浄化装置を提供することを目的とする。   The present invention has been made to solve such a problem, and provides an exhaust gas purification apparatus capable of efficiently purifying harmful components in exhaust gas containing water vapor without causing a decrease in catalytic activity. For the purpose.

本発明に係る排気ガス浄化装置は、エンジンの排気ガス流路に設けられた凝縮水除去器、上記排気ガス流路における上記凝縮水除去器の下流側に設けられた触媒、並びに上記排気ガス流路における上記凝縮水除去器の上流側に設けられた高温側流路と、上記排気ガス流路における上記凝縮水除去器の下流側でかつ上記触媒の上流側に設けられ低温側流路とが隔壁により隔てられた熱交換器を備えたものである。   An exhaust gas purification apparatus according to the present invention includes a condensate water remover provided in an exhaust gas flow path of an engine, a catalyst provided downstream of the condensate water remover in the exhaust gas flow path, and the exhaust gas flow A high temperature side channel provided upstream of the condensed water remover in the passage, and a low temperature side channel provided downstream of the condensed water remover and upstream of the catalyst in the exhaust gas channel. A heat exchanger separated by a partition is provided.

熱交換器によりエンジンの排気ガスが低温化され、低温化された排気ガス中の水蒸気は凝縮水除去器により冷却され凝縮されて除去される。その後、水分が除去された排気ガスが、熱交換器により再加熱されて昇温し触媒の活性温度にまで到達して触媒に導かれる。これにより、長期間、安定して排気ガス中の有害成分を浄化することができる。   The engine exhaust gas is lowered in temperature by the heat exchanger, and the water vapor in the lowered exhaust gas is cooled, condensed, and removed by the condensed water remover. Thereafter, the exhaust gas from which the moisture has been removed is reheated by the heat exchanger to increase the temperature, reach the activation temperature of the catalyst, and is led to the catalyst. Thereby, it is possible to purify harmful components in the exhaust gas stably for a long period of time.

実施の形態1.
自動車エンジンから排出される排気ガス中には、有害成分として窒素酸化物(NO)、一酸化炭素(CO)、炭化水素(HC)が含まれ、ガソリンリーンバーンエンジンやディーゼルエンジンの排気ガス中には酸素が多く含まれ、NOの浄化が特に問題となる。ガソリンリーンバーンエンジンやディーゼルエンジンの排気ガス中のNOを選択的に還元し浄化する触媒(NO選択還元触媒)は、触媒上で、排気ガス中に存在する一酸化炭素(CO)や炭化水素(HC)を還元剤としてNOを還元し浄化する際、わずかな水分の存在により結晶構造の変化をきたし窒素酸化物の除去性能が低下する。
Embodiment 1 FIG.
Exhaust gas emitted from automobile engines contains nitrogen oxides (NO x ), carbon monoxide (CO), and hydrocarbons (HC) as harmful components, and is contained in exhaust gases from gasoline lean burn engines and diesel engines. Contains a large amount of oxygen, and NO x purification is particularly problematic. A catalyst that selectively reduces and purifies NO x in the exhaust gas of a gasoline lean burn engine or diesel engine (NO x selective reduction catalyst) is carbon monoxide (CO) or carbonization present in the exhaust gas on the catalyst. when reducing purify NO x hydrogen (HC) as a reducing agent, removing performance of nitrogen oxides Kitaichi a change in crystal structure is reduced by the presence of slight moisture.

図1は、本発明の実施の形態1の排気ガス浄化装置の構成図である。図2は図1において、排気ガス浄化装置内の各地点における排気ガスの温度を示す、排気ガス浄化装置内における排気ガスの温度履歴を示す模式図であり、縦軸は温度、横軸は排気ガス浄化装置内の各地点を示す。
図1に示すように、本発明の実施の形態1の排気ガス浄化装置は、エンジン1の排気ガス流路2に、対向流型の熱交換器3が配置され、熱交換器3は高温側流路3aと低温側流路3bとが隔壁3cにより隔てられ、高温側流路3aと低温側流路3bとで熱交換し、高温側流路3aを通過する流体は冷却され、低温側流路3bを通過する流体は再加熱される。
さらに、エンジン1の排気ガス流路2に、凝縮水除去器4と、この凝縮水除去器4の下流側に触媒8とが配置され、凝縮水除去器4の上流側と熱交換器3の高温側流路3aとが流通し、凝縮水除去器4の下流側と触媒8の上流側とが熱交換器3の低温側流路3bを介して流通する。なお、本実施の形態においては、触媒8として、NO選択還元触媒である銀アルミナ触媒を用いる。
凝縮水除去器4は排気ガス流路2を外側からファン5等により空冷して100℃以下に冷却して排気ガス中の水蒸気を凝縮して分離し、凝縮水7をドレイン管6から排出して除去する。
FIG. 1 is a configuration diagram of an exhaust gas purifying apparatus according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing the temperature history of the exhaust gas in the exhaust gas purification device, showing the temperature of the exhaust gas at each point in the exhaust gas purification device in FIG. 1, the vertical axis is the temperature, and the horizontal axis is the exhaust gas. Each point in the gas purifier is shown.
As shown in FIG. 1, in the exhaust gas purification apparatus according to Embodiment 1 of the present invention, a counter flow type heat exchanger 3 is disposed in the exhaust gas flow path 2 of the engine 1, and the heat exchanger 3 is on the high temperature side. The flow path 3a and the low temperature side flow path 3b are separated by a partition wall 3c, heat exchange is performed between the high temperature side flow path 3a and the low temperature side flow path 3b, the fluid passing through the high temperature side flow path 3a is cooled, and the low temperature side flow The fluid passing through the path 3b is reheated.
Further, a condensed water remover 4 and a catalyst 8 are disposed downstream of the condensed water remover 4 in the exhaust gas flow path 2 of the engine 1, and the upstream side of the condensed water remover 4 and the heat exchanger 3. The high temperature side flow path 3a flows, and the downstream side of the condensed water remover 4 and the upstream side of the catalyst 8 flow through the low temperature side flow path 3b of the heat exchanger 3. In the present embodiment, a silver alumina catalyst that is a NO x selective reduction catalyst is used as the catalyst 8.
The condensed water remover 4 cools the exhaust gas flow path 2 from the outside with a fan 5 or the like and cools it to 100 ° C. or lower to condense and separate water vapor in the exhaust gas, and discharges the condensed water 7 from the drain pipe 6. To remove.

図1、図2に示されるように、エンジン1から排出された約500℃の排気ガスは、排気ガス流路2を通って熱交換器3の高温側流路3aに導かれ、熱交換器3の高温側流路3aの入口3dから出口3eまでの間に、凝縮水除去器4により低温になった排気ガスと隔壁3cを介して熱交換して150℃程度まで冷却される。この冷却された排気ガスは凝縮水除去器4に導かれ、冷却されて排気ガス中の水蒸気は凝縮され除去される。水分が除去された排気ガスは、熱交換器3の低温側流路3bに導かれ、低温側流路3bの入口3fから出口3gまでの間に、熱交換器3の高温側流路3aの排気ガスと熱交換し、約400℃まで再加熱される。水分が除去され、かつ再加熱された排気ガスは、NO選択還元触媒8に導入され、排気ガス中のNOは選択的に還元され浄化される。 As shown in FIG. 1 and FIG. 2, the exhaust gas at about 500 ° C. discharged from the engine 1 is led to the high temperature side channel 3a of the heat exchanger 3 through the exhaust gas channel 2, and the heat exchanger 3 between the inlet 3d and the outlet 3e of the high temperature side flow path 3a, heat is exchanged through the partition wall 3c with the exhaust gas having a low temperature by the condensed water remover 4, and is cooled to about 150 ° C. The cooled exhaust gas is guided to the condensed water remover 4 and cooled to condense and remove water vapor in the exhaust gas. The exhaust gas from which the moisture has been removed is guided to the low temperature side flow path 3b of the heat exchanger 3, and between the inlet 3f and the outlet 3g of the low temperature side flow path 3b, It exchanges heat with the exhaust gas and is reheated to about 400 ° C. Water is removed, and re-heated exhaust gas is introduced into the NO x selective reduction catalyst 8, NO x in the exhaust gas is selectively reduced and purified.

表1は、本実施の形態において、NO選択還元触媒8として銀アルミナ触媒を用いた場合に、排気ガス中の水蒸気濃度とNO還元浄化効率の関係を示す。一般的にエンジン排気ガスには10数%以上の水蒸気が含まれる。表1に示すように、本実施の形態において、水蒸気濃度は14%から4%に低下し、これによりNO還元浄化効率は20%も高く、70%の高効率でNOを浄化できる。なお、NO還元浄化効率は下式で表される値である。
NO還元浄化効率=(触媒入口NO濃度−触媒出口NO濃度)/触媒入口NO濃度
Table 1 shows the relationship between the water vapor concentration in the exhaust gas and the NO x reduction purification efficiency when a silver alumina catalyst is used as the NO x selective reduction catalyst 8 in the present embodiment. Generally, the engine exhaust gas contains 10% or more of water vapor. As shown in Table 1, in this embodiment, the water vapor concentration was decreased to 4% from 14%, thereby the the NO x reduction purification efficiency higher than 20% can purify NO x with 70% efficiency. Note that the NO x reduction purification efficiency is a value represented by the following equation.
NO x reduction purification efficiency = (catalyst inlet NO x concentration−catalyst outlet NO x concentration) / catalyst inlet NO x concentration

Figure 2009108764
Figure 2009108764

図3は、本実施の形態に係る銀アルミナ触媒8の温度とNO還元浄化効率との関係を示す特性図である。
図3に示すように、銀アルミナ触媒8の温度とNO還元浄化効率との関係においては、NO還元浄化効率が最も高くなる触媒温度が存在し、銀アルミナ触媒では約400℃で最も高いNO還元浄化効率が得られる。
Figure 3 is a characteristic diagram showing the relationship between the temperature and the NO x reduction purification efficiency of the silver-alumina catalyst 8 according to this embodiment.
As shown in FIG. 3, in the relationship between the temperature of the silver alumina catalyst 8 and the NO x reduction purification efficiency, there is a catalyst temperature at which the NO x reduction purification efficiency is highest, and the silver alumina catalyst has the highest at about 400 ° C. NO x reduction purification efficiency is obtained.

以上のことから、本実施の形態の排気ガス浄化装置によれば、多量の水分を含んだエンジン排気ガスから水分を除去し、さらに、最も高いNO還元浄化率が得られる温度にNO選択還元触媒である銀アルミナ触媒を保つことができるため、効率よく排気ガス中のNOを選択的に還元して浄化することができるので、ガソリンリーンバーンエンジンやディーゼルエンジンの排気ガスの浄化にも好適に用いられる。 From the above, according to the exhaust gas purification apparatus of the present embodiment, moisture is removed from the engine exhaust gas containing a large amount of moisture, and NO x is selected to a temperature at which the highest NO x reduction purification rate is obtained. Since the silver-alumina catalyst, which is a reduction catalyst, can be maintained, it is possible to efficiently reduce and purify NO x in the exhaust gas efficiently, so it is also effective in purifying exhaust gas from gasoline lean burn engines and diesel engines. Preferably used.

また、本実施の形態では、NO選択還元触媒8に銀アルミナ触媒を用いた場合を示したが、NO選択還元触媒としてゼオライト系触媒を使用しても同様の効果を得ることができる。さらに、触媒8として、NO選択還元触媒だけでなく、水分の存在により触媒能力が低下する他の触媒に適用しても、触媒能力の低下が防止される。
また、本実施の形態では、凝縮水除去器4は冷却を空冷により行ったが、水冷によっても行うことができる。
また、本実施の形態では熱交換器3として対向流型の熱交換器を用いた場合を示したが、デシカント空調や除湿などで用いられるような回転式のユングストローム型の熱交換器を用いても同様の効果を得ることができる。
Further, in the present embodiment, the case where a silver alumina catalyst is used as the NO x selective reduction catalyst 8 is shown, but the same effect can be obtained even if a zeolite catalyst is used as the NO x selective reduction catalyst. Furthermore, when the catalyst 8 is applied not only to the NO x selective reduction catalyst but also to other catalysts whose catalytic ability is reduced due to the presence of moisture, the reduction of the catalytic ability is prevented.
Moreover, in this Embodiment, although the condensed water removal device 4 performed cooling by air cooling, it can also perform by water cooling.
In the present embodiment, a counter flow type heat exchanger is used as the heat exchanger 3. However, a rotary Jungstrom heat exchanger used for desiccant air conditioning or dehumidification is used. However, the same effect can be obtained.

さらに、本発明の実施の形態1において、NO選択還元触媒8の下流側にCOとHCを浄化する酸化触媒を設置しても良い。この場合、NO選択還元触媒8からの排気ガスの温度は約400℃と高温であるため、一般的な酸化触媒を高活性な状態で使用でき、十分な浄化を得ることができる。 Furthermore, in Embodiment 1 of the present invention, an oxidation catalyst for purifying CO and HC may be installed on the downstream side of the NO x selective reduction catalyst 8. In this case, since the temperature of the exhaust gas from the NO x selective reduction catalyst 8 is as high as about 400 ° C., a general oxidation catalyst can be used in a highly active state, and sufficient purification can be obtained.

本発明の実施の形態1の排気ガス浄化装置の構成図である。It is a block diagram of the exhaust gas purification apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の排気ガス浄化装置内における排気ガスの温度履歴を示す模式図である。It is a schematic diagram which shows the temperature history of the exhaust gas in the exhaust-gas purification apparatus of Embodiment 1 of this invention. 本発明の実施の形態1に係るNO選択還元触媒の温度とNO還元浄化効率との関係を示す特性図である。The relationship between the temperature and the NO x reduction purification efficiency of the NO x selective reduction catalyst according to the first embodiment of the present invention is a characteristic diagram showing.

符号の説明Explanation of symbols

1 エンジン、2 排気ガス流路、3 熱交換器、3a 高温側流路、3b 低温側流路、3c 隔壁、4 凝縮水除去器、8 触媒。   1 engine, 2 exhaust gas flow path, 3 heat exchanger, 3a high temperature side flow path, 3b low temperature side flow path, 3c partition, 4 condensed water remover, 8 catalyst.

Claims (4)

エンジンの排気ガス流路に設けられた凝縮水除去器、上記排気ガス流路における上記凝縮水除去器の下流側に設けられた触媒、並びに上記排気ガス流路における上記凝縮水除去器の上流側に設けられた高温側流路と、上記排気ガス流路における上記凝縮水除去器の下流側でかつ上記触媒の上流側に設けられた低温側流路とが隔壁により隔てられた熱交換器を備えたことを特徴とする排気ガス浄化装置。   A condensed water remover provided in the exhaust gas flow path of the engine, a catalyst provided downstream of the condensed water remover in the exhaust gas flow path, and an upstream side of the condensed water remover in the exhaust gas flow path A heat exchanger in which a high temperature side flow path provided in the exhaust gas flow path and a low temperature side flow path provided on the downstream side of the condensed water remover and on the upstream side of the catalyst are separated by a partition wall. An exhaust gas purification device comprising the exhaust gas purification device. 触媒が、NO選択還元触媒であることを特徴とする請求項1に記載の排気ガス浄化装置。 Catalyst, an exhaust gas purifying apparatus according to claim 1, characterized in that the the NO x selective reduction catalyst. NO選択還元触媒が銀アルミナ触媒またはゼオライト系触媒であることを特徴とする請求項2に記載の排気ガス浄化装置。 The exhaust gas purification device according to claim 2, wherein the NO x selective reduction catalyst is a silver alumina catalyst or a zeolite catalyst. 排気ガス流路におけるNO選択還元触媒の下流側に酸化触媒を設けたことを特徴とする請求項2に記載の排気ガス浄化装置。 The exhaust gas purification apparatus according to claim 2, wherein an oxidation catalyst is provided downstream of the NO x selective reduction catalyst in the exhaust gas flow path.
JP2007281845A 2007-10-30 2007-10-30 Exhaust emission control device Pending JP2009108764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281845A JP2009108764A (en) 2007-10-30 2007-10-30 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281845A JP2009108764A (en) 2007-10-30 2007-10-30 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009108764A true JP2009108764A (en) 2009-05-21

Family

ID=40777499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281845A Pending JP2009108764A (en) 2007-10-30 2007-10-30 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2009108764A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226434A (en) * 2010-04-22 2011-11-10 Isuzu Motors Ltd System for supplying ammonia to scr device
JP2013136994A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd Ammonia supply system to scr converter
KR101482654B1 (en) 2014-08-07 2015-01-16 주식회사 지스코 Exhaust gas treating device and waste heat recovery system
KR101563678B1 (en) * 2012-11-22 2015-10-28 삼성중공업 주식회사 Device for Purifying Exhaust and Vessel having the Same
KR101903406B1 (en) * 2015-02-16 2018-11-07 삼성중공업 주식회사 Device for Purifying Exhaust and Vessel having the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226434A (en) * 2010-04-22 2011-11-10 Isuzu Motors Ltd System for supplying ammonia to scr device
JP2013136994A (en) * 2011-12-28 2013-07-11 Isuzu Motors Ltd Ammonia supply system to scr converter
KR101563678B1 (en) * 2012-11-22 2015-10-28 삼성중공업 주식회사 Device for Purifying Exhaust and Vessel having the Same
KR101482654B1 (en) 2014-08-07 2015-01-16 주식회사 지스코 Exhaust gas treating device and waste heat recovery system
KR101903406B1 (en) * 2015-02-16 2018-11-07 삼성중공업 주식회사 Device for Purifying Exhaust and Vessel having the Same

Similar Documents

Publication Publication Date Title
JP2010120008A (en) Diesel oxidation catalyst and exhaust system provided with the same
RU2557056C2 (en) Trap-type catalyst for cleaning nox-depleted exhaust gases and exhaust gas cleaning system
RU2012122525A (en) SELECTIVE CATALYTIC NEUTRALIZATION SYSTEM FOR ABSORPTION OF VOLATILE COMPOUNDS
RU2016150492A (en) ENGINE EXHAUST GAS RECIRCULATION SYSTEM WITH AT LEAST ONE DEVICE FOR CLEANING RECYCLED GASES AND WAY OF OPERATION OF SUCH SYSTEM
JP2009108764A (en) Exhaust emission control device
CN108744866A (en) A kind of combined type oil gas purifier and purification technique
JP2017170427A (en) Volatile organic compound removal device and volatile organic compound removal method
JP2019536932A (en) Method and system for exhaust gas purification
JP2008086942A (en) Apparatus and method for cleaning air
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP6642590B2 (en) Carbon dioxide separation and capture device, combustion system and thermal power generation system using the same, and carbon dioxide separation and capture method
JP2006291873A (en) Exhaust emission control device of internal combustion engine
JP5387766B2 (en) Air purification equipment for vehicles
RU2161567C1 (en) Method of air cleaning from harmful impurities and device for its embodiment
JP2016094894A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
JP2013245606A (en) Exhaust gas purification system
RU2172641C1 (en) Method of cleaning air to remove toxic components, and filter modulus for cleaning air to remove toxic components
JP2010101303A (en) Exhaust emission control device of internal combustion engine
JP6540104B2 (en) Exhaust purification system for internal combustion engine
JP2007330866A (en) Adsorbent for treating exhaust
JP2004232904A (en) Air cleaner
JP2016211829A (en) System capable of concurrently performing harmless formation of exhaust gas generated at drying furnace or heating furnace, and heat recovery
JP2016094897A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
JP4876644B2 (en) Exhaust gas purification method
JP2009216021A (en) Exhaust emission control device