JP4876644B2 - Exhaust gas purification method - Google Patents
Exhaust gas purification method Download PDFInfo
- Publication number
- JP4876644B2 JP4876644B2 JP2006066877A JP2006066877A JP4876644B2 JP 4876644 B2 JP4876644 B2 JP 4876644B2 JP 2006066877 A JP2006066877 A JP 2006066877A JP 2006066877 A JP2006066877 A JP 2006066877A JP 4876644 B2 JP4876644 B2 JP 4876644B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- nox
- exhaust gas
- hydrocarbon
- purification method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Exhaust Gas After Treatment (AREA)
- Treating Waste Gases (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Description
本発明は、自動車等の内燃機関から排出される排ガス、特にNOxを触媒で効率良く浄化する方法に係る。 The present invention relates to a method for efficiently purifying exhaust gas discharged from an internal combustion engine such as an automobile, particularly NOx, with a catalyst.
NOxは酸性雨の原因となる環境破壊物質の一つである。NOxは自動車等の排ガスに含まれており様々な処理技術が検討されている。自動車業界では、年々厳しくなる排ガス規制に伴い、高除去率を示す触媒やNOx発生を抑制する制御技術などの開発を進めている。従来のガソリン触媒の場合は、三元触媒でNOxの還元,HCの燃焼,COの酸化反応を行っていた。しかし、燃費向上の目的で燃料の少ない希薄燃焼で運転される車が年々増加してきている。 NOx is one of environmentally harmful substances that cause acid rain. NOx is contained in exhaust gas from automobiles and the like, and various treatment technologies are being studied. In the automobile industry, in accordance with exhaust gas regulations that are becoming stricter year by year, development of a catalyst that exhibits a high removal rate and a control technology that suppresses the generation of NOx are being promoted. In the case of a conventional gasoline catalyst, a three-way catalyst performs NOx reduction, HC combustion, and CO oxidation reaction. However, the number of vehicles driven by lean combustion with less fuel for the purpose of improving fuel consumption has been increasing year by year.
リーンバーンガソリンエンジン,ディーゼルエンジン、及び希薄燃焼で運転されるDI(Direct-Injection)エンジンなどは理論空燃比以上運転されるため、エンジンからの排ガスはO2 を多く含むことになり、従来の三元触媒性能では特にNOxの還元性能が不十分となった。つまり、従来のガソリンエンジン用の三元触媒では上述の排ガス中のHC及びCOは除去できるが、希薄燃焼雰囲気ではNOxの浄化が困難となった。 Since lean-burn gasoline engines, diesel engines, DI-direct-injection (DI) engines operated with lean combustion, etc. are operated above the stoichiometric air-fuel ratio, the exhaust gas from the engine will contain a lot of O 2 , In terms of the original catalyst performance, NOx reduction performance was particularly insufficient. That is, the conventional three-way catalyst for a gasoline engine can remove HC and CO in the exhaust gas described above, but it has become difficult to purify NOx in a lean combustion atmosphere.
高酸素濃度雰囲気下でNOxを還元できる触媒はいまだ実用化されていないため、エンジン作動制御を工夫することでNO放出を抑制している。即ち、希薄燃焼側から通常燃焼側になるように空燃比をパルス状に制御し、希薄燃焼時に収着材に捕獲したNOxを通常燃焼側時にHCやCO等の還元材で浄化している。このため、エンジンの制御が複雑化している。ここでの収着材は吸収材,吸着材、及び吸収と吸着を同時に行う材料のいずれかである。 Since a catalyst capable of reducing NOx in a high oxygen concentration atmosphere has not yet been put into practical use, NO release is suppressed by devising engine operation control. That is, the air-fuel ratio is controlled in a pulse shape so as to change from the lean combustion side to the normal combustion side, and NOx trapped in the sorbent during lean combustion is purified by a reducing material such as HC and CO at the normal combustion side. This complicates engine control. The sorbent material here is one of an absorbent material, an adsorbent material, and a material that simultaneously absorbs and adsorbs.
また、自動車以外の発電所、ボイラ等の内燃機関からの排ガスにおいても比較的O2が多い状態でのNOx除去が望まれている。これまでの例としては炭化水素の不完全燃焼で生成する炭化水素ガスを還元材としてNOxを還元浄化する方法がある(特開平6−319953号公報(特許文献1)〔0021〕)。また、その不完全燃焼状態をCO生成量からモニタリングできると記載されている。COが還元材として用いられるとすると、NO+CO→1/2N2+CO2となるため、COはNOと当量以上で含まれる必要があるが、実施例2では、COを450ppm上で存在させると、NO浄化率85%以上が得られるとしており、不完全燃焼で生成する炭化水素による還元反応を示唆している。 Further, NOx removal with a relatively large amount of O 2 is desired in exhaust gas from internal combustion engines such as power plants other than automobiles and boilers. As an example so far, there is a method of reducing and purifying NOx using a hydrocarbon gas generated by incomplete combustion of hydrocarbons as a reducing material (Japanese Patent Laid-Open No. 6-319953 (Patent Document 1) [0021]). In addition, it is described that the incomplete combustion state can be monitored from the CO generation amount. If CO is used as a reducing material , it becomes NO + CO → 1 / 2N 2 + CO 2 , so CO needs to be contained in an amount equal to or more than NO, but in Example 2, when CO is present on 450 ppm, An NO purification rate of 85% or more is obtained, suggesting a reduction reaction by hydrocarbons generated by incomplete combustion.
本願の課題は、高濃度のO2 が存在する雰囲気下で、排ガス中のNOxをさらに高効率でN2 に還元する方法及び浄化装置を提供することにある。また、そのような浄化装置を備えた自動車,発電所,ボイラ等の内燃機関にある。 Challenge of the present application, in an atmosphere of high concentrations of O 2 is present is to provide a method and cleaning apparatus for reducing the N 2 at a higher efficiency of NOx in the exhaust gas. Moreover, it exists in internal combustion engines, such as a motor vehicle, a power plant, and a boiler provided with such a purification apparatus.
本発明の特徴は、内燃機関からの排ガスに含まれるCOを還元材としてNOxを除去する触媒を用い、炭化水素(HC)をそのNOx除去触媒の前段で除去する方法にある。また、炭化水素の除去手段を、NOx除去手段の上流側に配置した装置にある。 A feature of the present invention resides in a method of using a catalyst that removes NOx using CO contained in exhaust gas from an internal combustion engine as a reducing material , and removing hydrocarbons (HC) before the NOx removing catalyst. Further, the hydrocarbon removing means is in an apparatus arranged upstream of the NOx removing means.
上記課題を解決するため、我々は内燃機関から排出されるNOxを、COを還元材として浄化する触媒を開発してきた。詳細な検討を進めた結果、高濃度のO2共存下でもCOを還元材として高効率でNOxを還元する触媒は、HCが排ガス中に共存すると触媒性能が低下することが判った。これは、HCの燃焼反応が同時に起こり、触媒の活性点をNOx除去反応と競争的に使用するため、またHCの燃焼で生成するH2Oが触媒を劣化させるため、と考えている。 In order to solve the above problems, we have developed a catalyst for purifying NOx discharged from an internal combustion engine using CO as a reducing material. As a result of detailed investigations, it has been found that a catalyst that reduces NOx with high efficiency using CO as a reducing material even in the presence of high concentration of O 2 has reduced catalytic performance when HC coexists in exhaust gas. This is because HC combustion reaction occurs at the same time, and the active point of the catalyst is used competitively with the NOx removal reaction, and H 2 O generated by HC combustion deteriorates the catalyst.
本発明により、高いNOx還元性能を示すことを見出し、かつ、N2 への選択性を向上する触媒を使用する際に、その触媒性能が低下するのを抑制することを見出した。高濃度のO2 存在下で高いNOx除去率、N2 選択性が得られる触媒の性能を長期間維持することができる。 According to the present invention, it has been found that high NOx reduction performance is exhibited, and when using a catalyst that improves selectivity to N 2 , it is found that the catalyst performance is prevented from being lowered. In the presence of high concentration of O 2, it is possible to maintain the performance of the catalyst for obtaining a high NOx removal rate and N 2 selectivity for a long period of time.
また、NOx還元のための反応条件制御等が不要となる。また低濃度のO2 存在下で使用する触媒のプロセスにおいても、活性の低下を抑制することができる。 Further, reaction condition control for NOx reduction becomes unnecessary. In addition, a decrease in activity can be suppressed even in a catalyst process used in the presence of a low concentration of O 2 .
上述のとおり、本発明の特徴は、内燃機関とNOxをCOを還元材として浄化する触媒との間に、内燃機関からの排ガス中の炭化水素を除去する炭化水素除去工程を有することである。炭化水素を除去する方法としては、炭化水素燃焼触媒,炭化水素収着材などを使用する方法が挙げられる。 As described above, a feature of the present invention is that it has a hydrocarbon removal step for removing hydrocarbons in exhaust gas from an internal combustion engine between the internal combustion engine and a catalyst that purifies NOx using CO as a reducing material . Examples of the method for removing hydrocarbons include a method using a hydrocarbon combustion catalyst, a hydrocarbon sorbent, and the like.
本発明者らは、NOx除去触媒の性能向上を試み、新規な方法,触媒及び装置を詳細に検討した結果、本発明に至った。 The inventors of the present invention have attempted to improve the performance of the NOx removal catalyst, and have studied the novel method, catalyst and apparatus in detail, and have reached the present invention.
活性成分の性能そのものが低い場合、高濃度O2 存在下でのNOx除去、N2 への選択的還元反応が起こりにくい。一方、高濃度O2 存在下でも高いNOx除去性能を有する触媒は、活性成分の性能が非常に高い。これはNOx以外のガス種についても同様の効果を示す。このため、高活性な触媒を使用する場合は特に、行うべき反応の対象物質以外は極力除去することが望ましい。 When the performance of the active ingredient itself is low, NOx removal and selective reduction reaction to N 2 are not likely to occur in the presence of high concentration O 2 . On the other hand, a catalyst having high NOx removal performance even in the presence of high concentration O 2 has very high performance of the active component. This also shows the same effect for gas types other than NOx. For this reason, when using a highly active catalyst, it is desirable to remove as much as possible other than the target substance of the reaction which should be performed.
また、低濃度のO2 存在下で活性を示すNOxを浄化する触媒を使用する場合に、炭化水素や水蒸気により性能が低下することを回避できる。 In addition, when using a catalyst that purifies NOx that exhibits activity in the presence of a low concentration of O 2, it is possible to avoid performance degradation due to hydrocarbons or water vapor.
炭化水素燃焼触媒を使用すると、低温で燃焼させることができるため装置機器、特に後流側の触媒等への影響が小さいという効果がある。通常、炭化水素を燃焼するとCO2及び水分が生成するので、不完全燃焼をさせることで、還元材であるCOをガス流れ下流側の触媒反応に供給することもできる。 When the hydrocarbon combustion catalyst is used, since it can be burned at a low temperature, there is an effect that the influence on the apparatus equipment, particularly the catalyst on the downstream side is small. Normally, when hydrocarbons are burned, CO 2 and moisture are generated, so that CO, which is a reducing material , can be supplied to the catalytic reaction on the downstream side of the gas flow by incomplete combustion.
<CH燃焼触媒>
炭化水素燃焼触媒としては一般的な燃焼触媒を使用することができる。例えば、CeO2,ZrO2,CeO2−ZrO2 複合酸化物等の担体に、遷移金属(Mg,La,Cs,
Al,Ni等)または貴金属(Pt,Pd,Rh)を担持した触媒である。特に、金属酸化物生成エンタルピーがFeより負に小さいもの、例えばCo,Ni、貴金属が好ましい。これらはOを保有しやすく燃焼性が高いからである。金属酸化物生成エンタルピーは、MOx-1+1/2O2=MOxでM−O結合一本あたりに換算した値、また、M+xO2=
MOyでM−O結合一本あたりに換算した値を使用することができる。
<CH combustion catalyst>
A general combustion catalyst can be used as the hydrocarbon combustion catalyst. For example, a support such as CeO 2 , ZrO 2 , CeO 2 —ZrO 2 composite oxide is used as a transition metal (Mg, La, Cs,
Al, Ni, etc.) or noble metal (Pt, Pd, Rh) supported catalyst. In particular, those having a metal oxide formation enthalpy that is negatively smaller than Fe, such as Co, Ni, and noble metals, are preferred. This is because they easily hold O and have high combustibility. Metal oxide formation enthalpy is a value converted per MO bond with MO x-1 + 1 / 2O 2 = MO x , and M + xO 2 =
A value converted per MO bond by MOy can be used.
燃焼を制御する方法としては、O2 量を制御する方法、燃料量を制御する方法が好ましい。例えばO2 利用率(ex:70〜80%)を想定してO2 量を制御したり、炭化水素量が20%以下、可能であればほぼ0%となるよう燃料を制御すればよい。その結果、炭素析出等によるNOx浄化触媒の性能低下が起こらず、NOx浄化率は向上する。 As a method for controlling combustion, a method for controlling the amount of O 2 and a method for controlling the amount of fuel are preferable. For example, the amount of O 2 may be controlled assuming an O 2 utilization rate (ex: 70 to 80%), or the fuel may be controlled so that the amount of hydrocarbons is 20% or less, and if possible, approximately 0%. As a result, the NOx purification catalyst does not deteriorate in performance due to carbon deposition and the NOx purification rate is improved.
また、炭化水素の燃焼により、水分が発生して触媒活性が低下する場合には、燃焼触媒の後段に水分を除去する手段を配置してもよい。 In addition, when moisture is generated due to combustion of hydrocarbons and the catalytic activity is reduced, a means for removing water may be disposed at the subsequent stage of the combustion catalyst.
<CH収着材の使用>
炭化水素収着材としては、多孔質担体にAg,Cu,Zn,Ba,Mg等を担持したものが良い。担体としては、ゼオライト等のSi/Al化合物、メソポーラス体等が望ましい。特に、メソポーラス体は高比表面積であり、添加金属成分が凝集しにくいので好ましい。
<Use of CH sorbent>
As the hydrocarbon sorbent , a porous carrier carrying Ag, Cu, Zn, Ba, Mg or the like is preferable. As the carrier, Si / Al compounds such as zeolite, mesoporous bodies and the like are desirable. In particular, a mesoporous body is preferred because it has a high specific surface area and the added metal component is less likely to aggregate.
また、炭化水素収着材を使用する場合は、NOxの除外が必要な場合は排ガス中の炭化水素を収着させ、NOxの除外が不要になった際に、別ラインに炭化水素を放出するものが好ましい。また、複数の収着材を用意し、流路を切り替えて使用することが好ましい。 Also, when using hydrocarbon sorbents, if NOx exclusion is required, the hydrocarbons in the exhaust gas are sorbed, and when NOx exclusion is no longer necessary, the hydrocarbons are released to another line. Those are preferred. Further, it is preferable to prepare a plurality of sorbent materials and use them by switching the flow path.
また、収着材中の炭化水素量をモニタする必要がある。炭化水素量が多くなると可燃性が高くなるため、流入する炭化水素量を測定し、特定期間で炭化水素の脱離放出を行うことが望ましいからである。 It is also necessary to monitor the amount of hydrocarbons in the sorbent. This is because flammability increases as the amount of hydrocarbon increases, so it is desirable to measure the amount of inflowing hydrocarbons and desorb and release hydrocarbons in a specific period.
HC収着材の位置や成分はNOx浄化反応温度に応じて適宜調整することができる。炭化水素収着材はNOx浄化触媒より上流側となり、収着材を流通する排ガスはNOx浄化反応温度より高温である。NOx浄化反応は150〜350℃で進行しやすいため、NOx浄化触媒は排ガス温度がそれらの温度になる位置に設置される。これにより加熱のための余計なエネルギーを投入することが不要となるからである。従って、炭化水素収着材は150℃以上でHCを多く収着させるものが好ましい。特に、前述の金属酸化物生成エンタルピーがFeより負に大きく、貴金属より負に小さいものが望ましい。 The position and components of the HC sorbent can be appropriately adjusted according to the NOx purification reaction temperature. The hydrocarbon sorbent is upstream from the NOx purification catalyst, and the exhaust gas flowing through the sorbent is higher than the NOx purification reaction temperature. Since the NOx purification reaction easily proceeds at 150 to 350 ° C., the NOx purification catalyst is installed at a position where the exhaust gas temperature becomes such a temperature. This is because it is not necessary to input extra energy for heating. Accordingly, it is preferable that the hydrocarbon sorbent sorbs a large amount of HC at 150 ° C. or higher. In particular, it is desirable that the enthalpy of formation of the metal oxide is larger than that of Fe and smaller than that of a noble metal.
<還元材>
本発明は、NOをNOx浄化触媒表面で還元材と反応させてNOを還元する。還元のための還元材としては一般的な還元材を使用することができるが、触媒反応時にガスであることが望ましく、特にCOが望ましい。COが処理対象とする排ガスに大量に含まれている場合には、還元材を添加する手段を設ける必要がない。CO量がNO量に対して不十分な(NO数がCO数より多い)場合は、排ガスがNOx還元触媒に接触する前に所定量のCOを添加する必要がある。例えば、炭化水素除去工程の後で、NOx還元触媒と排ガスが接触する反応器の前段の排ガスが流通する配管内にCOを供給したり、触媒層や反応器に排ガス供給口とは別に直接のCO供給口を設けることができる。
<Reducing material>
In the present invention, NO is reacted with a reducing material on the surface of the NOx purification catalyst to reduce NO. As the reducing material for the reduction, a general reducing material can be used, but it is preferably a gas during the catalytic reaction, and CO is particularly desirable. When CO is contained in a large amount in the exhaust gas to be treated, it is not necessary to provide means for adding a reducing material . When the CO amount is insufficient with respect to the NO amount (the NO number is larger than the CO number), it is necessary to add a predetermined amount of CO before the exhaust gas contacts the NOx reduction catalyst. For example, after the hydrocarbon removal step, CO is supplied into a pipe through which the exhaust gas in front of the reactor in contact with the NOx reduction catalyst and the exhaust gas flows, or directly to the catalyst layer and the reactor separately from the exhaust gas supply port. A CO supply port can be provided.
当然だが、炭化水素除去工程が不要な場合も同様の添加方法を用いることができる。 Of course, the same addition method can be used when the hydrocarbon removal step is unnecessary.
<NOx浄化触媒>
NOxを還元する触媒の例としては、リーンNOx触媒や三元触媒などが使用でき、それらを使用するために排ガス組成を制御してもよい。本発明における触媒は、粒状,柱状,ペレット状などに成形して使用することができる。成形法としては、押し出し成形法,打錠成形法,転動造粒法など目的に応じ任意の方法を採用できる。
<NOx purification catalyst>
As an example of the catalyst for reducing NOx, a lean NOx catalyst, a three-way catalyst, or the like can be used, and the exhaust gas composition may be controlled in order to use them. The catalyst in the present invention can be used after being formed into a granular shape, a columnar shape, a pellet shape or the like. As the molding method, any method such as an extrusion molding method, a tableting molding method, and a rolling granulation method can be adopted depending on the purpose.
触媒活性成分としては、遷移金属や貴金属を使用することができる。触媒活性成分を分散させるための担体としては、SiO2,TiO2,ZrO2、及びAl2O3等がよい。 A transition metal or a noble metal can be used as the catalytically active component. As the carrier for dispersing the catalytically active component, SiO 2 , TiO 2 , ZrO 2 , Al 2 O 3 and the like are preferable.
〔実施例〕
以下、実施例にて本発明を説明するが、これらに限定されるものではない。
〔Example〕
EXAMPLES Hereinafter, although an Example demonstrates this invention, it is not limited to these.
(触媒の調整)
本実施例では、Co3O4及びCo原子数が4のCoクラスタをメソポーラスシリカに担持したNOx浄化触媒(参考触媒1,触媒2)を調製した。
<参考触媒1>Co3O4/MCM−41
担体として、メソポーラスシリカであるMCM−41(市販品,ズードケミー製)を使用したMCM−41は使用前に120℃で1時間乾燥した。0.260gの硝酸コバルト6水和物(和光純薬製)を3.236gの純水に溶解し、乾燥後の0.5gのMCM−41に含浸した。この粉末を、200kgf/cm2でプレス成型し、乳鉢で破砕し、0.5〜1mmに整粒した。
(Catalyst adjustment)
In this example, a NOx purification catalyst ( reference catalyst 1, catalyst 2) in which Co 3 O 4 and a Co cluster having 4 Co atoms were supported on mesoporous silica was prepared.
< Reference catalyst 1> Co 3 O 4 / MCM-41
MCM-41 using MCM-41 (commercial product, manufactured by Zude Chemie), which is mesoporous silica, was dried at 120 ° C. for 1 hour before use. 0.260 g of cobalt nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 3.236 g of pure water, and impregnated in 0.5 g of MCM-41 after drying. This powder was press-molded at 200 kgf / cm 2 , crushed in a mortar, and sized to 0.5 to 1 mm.
なお、メソポーラスシリカは高比表面積を有するために、触媒を高分散させることができる。上記のMCM−41(Mobil Catalytic Material)は、均一な六角型メソポーラスの積層構造を有する。六角型以外にもキュービック型,平面型などの骨格を有するメソポーラスシリカがあり、高比表面積を有するそれらを使用することができる。 In addition, since mesoporous silica has a high specific surface area, the catalyst can be highly dispersed. The above MCM-41 (Mobil Catalytic Material) has a uniform hexagonal mesoporous laminated structure. In addition to the hexagonal type, there are mesoporous silicas having skeletons such as cubic type and planar type, and those having a high specific surface area can be used.
<触媒2>Co4クラスタ/MCM−41
MCM−41はD. Dasらの方法を参考にした(Chem.Commun., (1999)473−474)。セチルトリメチルアンモニウムブロマイド(CTMABr)とテトラプロピルアンモニウムブロマイド(TPABr)とをH2Oに添加し、約40℃に加熱しながら攪拌した。この水溶液に、約3.7%のNaOHと約7.0%のSiO2を含むナトリウムシリケート溶液(Sodium silicate sol.)を添加した。このSiO2含有ゲルを室温で約10分間攪拌した後、1.1M H2SO4溶液の添加によりpHを9.5〜10に調節した。このゲルを室温で約2時間攪拌した。攪拌後、ゲルをポリプロピレンの容器に移し、100℃で4日間、常圧で加熱した。加熱中はポリプロピレン容器の蓋を緩め、溶媒を蒸発させた。加熱後のゲルをポリプロピレン容器のまま水道水流中に静置して冷却した。固体物質をろ紙上に移し、水道水流で減圧ろ過しながらBr- イオンがなくなるまで水洗した。その後、固体を乾燥し、最後に550℃で焼成した。
<
MCM-41 was based on the method of D. Das et al. (Chem. Commun., (1999) 473-474). Cetyltrimethylammonium bromide (CTMABr) and tetrapropylammonium bromide (TPABr) were added to H 2 O and stirred while heating to about 40 ° C. To this aqueous solution was added a sodium silicate sol. Containing about 3.7% NaOH and about 7.0% SiO 2 . The SiO 2 -containing gel was stirred at room temperature for about 10 minutes, and then the pH was adjusted to 9.5 to 10 by adding a 1.1 MH 2 SO 4 solution. The gel was stirred at room temperature for about 2 hours. After stirring, the gel was transferred to a polypropylene container and heated at 100 ° C. for 4 days at normal pressure. During the heating, the lid of the polypropylene container was loosened to evaporate the solvent. The heated gel was allowed to cool in a tap water stream as it was in a polypropylene container. The solid material was transferred onto a filter paper and washed with water until it was free of Br - ions while filtering under reduced pressure with a tap water stream. The solid was then dried and finally calcined at 550 ° C.
次に、Co4クラスタであるCo4(CO)12を調製した。Co4(CO)12はCo 2 (CO) 8 の熱重合で調製した。1.00gのCo 2 (CO) 8 を二口フラスコに入れ、N2下で攪拌しながらオイルバス中で60℃に加熱した。加熱は20時間行った。加熱後、フラスコを室温まで徐冷し、固体のCo4(CO)12を得た。 Next, Co 4 (CO) 12 which is a Co 4 cluster was prepared. Co 4 (CO) 12 was prepared by thermal polymerization of Co 2 (CO) 8 . 1.00 g of Co 2 (CO) 8 was placed in a two-necked flask and heated to 60 ° C. in an oil bath with stirring under N 2 . Heating was performed for 20 hours. After the heating, the flask was gradually cooled to room temperature to obtain solid Co 4 (CO) 12 .
最後にCo4クラスタ/MCM−41を以下の方法で調製した。シュレンク管に入れた200mgのMCM−41を、攪拌しながら真空下で195℃で2時間乾燥した。乾燥後、N2 グローブボックス内でシュレンク管にCoクラスタを添加した。Coクラスタの添加量はMCM−41重量に対してCo量として10wt%とした。CoクラスタとMCM−41粉末をよく攪拌し、約20mlの無水エーテルを添加した。クラスタが無水エーテルに溶解しない場合は、クラスタを溶かす溶媒を20滴滴下した。混合物はN2 下で室温で48時間攪拌した。攪拌後、エーテルを真空吸引し、触媒粉末を得た。 Finally, Co4 cluster / MCM-41 was prepared by the following method. 200 mg of MCM-41 placed in a Schlenk tube was dried for 2 hours at 195 ° C. under vacuum with stirring. After drying, Co clusters were added to the Schlenk tube in an N 2 glove box. The amount of Co cluster added was 10 wt% as the amount of Co with respect to the weight of MCM-41. The Co cluster and MCM-41 powder were stirred well and about 20 ml of anhydrous ether was added. When the cluster did not dissolve in anhydrous ether, 20 drops of a solvent for dissolving the cluster was added dropwise. The mixture was stirred at room temperature under N 2 for 48 hours. After stirring, ether was sucked in vacuum to obtain catalyst powder.
触媒粉末は200kgf/cm2でプレス成型し、乳鉢で破砕し、0.5〜1mm 粒径に整粒した。クラスタは5nm以下の小さな凝集体として分散していた。 The catalyst powder was press-molded at 200 kgf / cm 2 , crushed in a mortar, and sized to a particle size of 0.5 to 1 mm. The clusters were dispersed as small aggregates of 5 nm or less.
原子数を制御した金属原子を金属または金属酸化物または配位子を有する金属クラスタを担体に担持した触媒は、高濃度のO2 存在下でも高いNOx浄化活性を示す。金属原子の例としてはコバルトがある。本来、触媒活性成分の特に活性な表面は相互に反応しやすく、安定な原子数の凝集体が形成されやすい。しかし、その原子数を制御することで、反応の選択性が生じやすい反応面がより多く存在していると考えている。 A catalyst in which a metal cluster having a controlled number of atoms, a metal, a metal oxide, or a metal cluster having a ligand is supported on a carrier exhibits high NOx purification activity even in the presence of a high concentration of O 2 . An example of a metal atom is cobalt. Originally, particularly active surfaces of the catalytically active component are likely to react with each other, and aggregates having a stable number of atoms are likely to be formed. However, by controlling the number of atoms, we believe that there are more reaction surfaces where reaction selectivity tends to occur.
コバルトの原子数を制御する方法として、配位子を有するコバルトクラスタを使用する。配位子としては、一般的な配位子を使用することができる。特にCOの場合はコバルトと配位結合をしており、容易に脱離することができ、活性な表面が出易いと考えられる。 As a method for controlling the number of cobalt atoms, a cobalt cluster having a ligand is used. As the ligand, a general ligand can be used. In particular, in the case of CO, it is coordinated with cobalt and can be easily detached, and an active surface is likely to appear.
この配位子を有するクラスタを担体上に分散させることで、コバルトクラスタの凝集を数nm以下に抑制することができる。前述の担体としては、メソポーラスを有するMCM−41(メソポーラスシリカ)等が好ましい。MCM−41は高比表面積を有するために、クラスタが高分散することができる。MCM−41(Mobil Catalytic Material)は、均一な六角型メソポーラスの積層構造を有する。六角型以外にもキュービック型,平面型などの骨格を有するメソポーラスシリカがあり、高比表面積を有するそれらを使用することができる。 By dispersing the cluster having the ligand on the support, the aggregation of the cobalt cluster can be suppressed to several nm or less. As the carrier, MCM-41 (mesoporous silica) having mesoporous is preferable. Since MCM-41 has a high specific surface area, clusters can be highly dispersed. MCM-41 (Mobil Catalytic Material) has a uniform hexagonal mesoporous laminate structure. In addition to the hexagonal type, there are mesoporous silicas having skeletons such as cubic type and planar type, and those having a high specific surface area can be used.
本発明で用いられる反応温度は、約150〜400℃が好ましいが、特に、150〜
350℃では長時間Coクラスタの形態を保持するので望ましい。より好ましくは、150〜275℃である。400℃以上では、Coクラスタが分解して従来の酸化触媒と類似の凝集構造となりやすく、性能低下が早い。また、150℃以下での使用は、排ガス中に水蒸気を多量に含む場合等は、水の凝縮などが起こりやすくなるため、不適である。
The reaction temperature used in the present invention is preferably about 150 to 400 ° C.
A temperature of 350 ° C. is desirable because it keeps the Co cluster form for a long time. More preferably, it is 150-275 degreeC. Above 400 ° C., the Co cluster decomposes and tends to form an agglomerated structure similar to that of a conventional oxidation catalyst, resulting in a rapid decrease in performance. Use at 150 ° C. or lower is unsuitable when the exhaust gas contains a large amount of water vapor because water condenses easily.
担体に担持するコバルトクラスタの量は、担体の比表面積,細孔径により調節してよい。担持量が多すぎると、クラスタ同士の凝集が起こりやすくなる。逆に少ないと、効果が少ない。今回使用した細孔径2−3nmのMCM−41では、Co原子として5〜15
wt%となるよう添加することが好ましい。特に8〜12wt%が望ましい。
The amount of cobalt clusters supported on the support may be adjusted by the specific surface area and pore diameter of the support. If the amount is too large, the clusters tend to aggregate. Conversely, if it is small, the effect is small. In MCM-41 having a pore diameter of 2-3 nm used this time, 5 to 15 as Co atoms.
It is preferable to add so that it may become wt%. 8 to 12 wt% is particularly desirable.
本発明の触媒担体であるMCM−41を調製するためには、通常のミセルを用いる方法を使用することができる。例えば、ナトリウムシリケート溶液に、セチルメチルアンモニウム塩とテトラアルキルアンモニウム塩を含む溶液を使用してミセルを形成することができる。 In order to prepare MCM-41 which is the catalyst carrier of the present invention, a method using a normal micelle can be used. For example, micelles can be formed using a solution containing cetylmethylammonium salt and tetraalkylammonium salt in a sodium silicate solution.
<参考触媒3>FeO/MCM−41
担体として、メソポーラスシリカであるMCM−41(市販品,ズードケミー製)を使用した。MCM−41は使用前に120℃で1時間乾燥した。0.408gの硝酸鉄9水和物(和光純薬製)を1.176gの純水に溶解し、乾燥後の0.6gのMCM−41に含浸した。この粉末を200kgf/cm2でプレス成型し、乳鉢で破砕し、0.5〜1mmに整粒した。
< Reference Catalyst 3> FeO / MCM-41
As the carrier, MCM-41 (commercial product, manufactured by Zude Chemie), which is mesoporous silica, was used. MCM-41 was dried at 120 ° C. for 1 hour before use. 0.408 g of iron nitrate nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1.176 g of pure water and impregnated with 0.6 g of MCM-41 after drying. This powder was press-molded at 200 kgf / cm 2 , crushed in a mortar, and sized to 0.5 to 1 mm.
<参考触媒4>NiO/MCM−41
担体として、メソポーラスシリカであるMCM−41(市販品,ズードケミー製)を使用した。MCM−41は使用前に120℃で1時間乾燥した。0.294gの硝酸ニッケル6水和物(和光純薬製)を1.227gの純水に溶解し、乾燥後の0.6gのMCM−41に含浸した。この粉末を200kgf/cm2でプレス成型し、乳鉢で破砕し、0.5〜1mmに整粒した。
< Reference Catalyst 4> NiO / MCM-41
As the carrier, MCM-41 (commercial product, manufactured by Zude Chemie), which is mesoporous silica, was used. MCM-41 was dried at 120 ° C. for 1 hour before use. 0.294 g of nickel nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 1.227 g of pure water and impregnated in 0.6 g of MCM-41 after drying. This powder was press-molded at 200 kgf / cm 2 , crushed in a mortar, and sized to 0.5 to 1 mm.
<参考触媒5>SrO/MCM−41
担体として、メソポーラスシリカであるMCM−41(市販品、ズードケミー製)を使用した。MCM−41は使用前に120℃で1時間乾燥した。0.214gの硝酸ストロンチウム(和光純薬製)を1.339gの純水に溶解し、乾燥後の0.6gのMCM−41に含浸した。この粉末を200kgf/cm2でプレス成型し、乳鉢で破砕し、0.5〜1mmに整粒した。
<
As the carrier, MCM-41 (commercial product, manufactured by Zude Chemie), which is mesoporous silica, was used. MCM-41 was dried at 120 ° C. for 1 hour before use. 0.214 g of strontium nitrate (manufactured by Wako Pure Chemical Industries) was dissolved in 1.339 g of pure water and impregnated in 0.6 g of MCM-41 after drying. This powder was press-molded at 200 kgf / cm 2 , crushed in a mortar, and sized to 0.5 to 1 mm.
本参考実施例では、参考触媒1を用いてHC共存の有無でNO除去率を調べた。反応ガス組成は下記とし、空間速度が20,000h-1となるよう設定した。HCとしてC3H6を用いた。 In this reference example, the NO removal rate was examined using the reference catalyst 1 in the presence or absence of HC. The reaction gas composition was set as follows, and the space velocity was set to 20,000 h −1 . C 3 H 6 was used as HC.
[NO] =0.10(vol%)
[CO] =0.10(vol%)
[O2] =5.00(vol%)
[C3H6]=0.10(vol%)
Balance;He
NO除去率は次式で算出した。
[NO] = 0.10 (vol%)
[CO] = 0.10 (vol%)
[O 2 ] = 5.00 (vol%)
[C 3 H 6 ] = 0.10 (vol%)
Balance; He
The NO removal rate was calculated by the following formula.
NO除去率(%)=(1−出口NO濃度/入口NO濃度)×100
空間速度は、次式で算出した。
NO removal rate (%) = (1−outlet NO concentration / inlet NO concentration) × 100
The space velocity was calculated by the following formula.
空間速度(h-1)=反応ガス量(ml/h-1)/触媒量(ml)
なお、HC無しの試験は、参考触媒1の前段にAg担持βゼオライトを使用し、試験の間C3H6を収着させた。
Space velocity (h −1 ) = reaction gas amount (ml / h −1 ) / catalyst amount (ml)
In the test without HC, Ag-supported β zeolite was used before the reference catalyst 1, and C 3 H 6 was sorbed during the test.
図1に200〜275℃でのNO除去率を示す。HCが共存する場合は、200,250℃ではNO除去率が7、8%とほぼ同じであったが、275℃に上げるとほぼゼロとなった。一方、HCを前段で収着させた場合は、250℃で17.4% 、275℃で31%とNO浄化率が向上した。共存する炭化水素を除去することで、NO除去率が向上した。即ち、HC共存時のNO除去率低下は、HC燃焼反応が同時に進行することによる反応阻害が原因と考えている。 FIG. 1 shows the NO removal rate at 200 to 275 ° C. When HC coexists, the NO removal rate was almost the same as 7 and 8% at 200 and 250 ° C., but became almost zero when the temperature was raised to 275 ° C. On the other hand, when HC was sorbed in the previous stage, the NO purification rate improved to 17.4% at 250 ° C and 31% at 275 ° C. By removing the coexisting hydrocarbons, the NO removal rate was improved. That is, the NO removal rate reduction when HC coexists is considered to be caused by reaction inhibition due to simultaneous progress of HC combustion reaction.
本実施例では、触媒2を用いてHC共存の有無でNO除去率を調べた。反応ガス組成,
条件は実施例2(参考触媒1)と同じである。
In this example, the NO removal rate was examined using the
The conditions are the same as in Example 2 ( Reference catalyst 1).
図2に200〜275℃でのNO除去率を示す。HCが共存する場合は、200℃ではNO除去率が29%と参考触媒1に比べて高い値を示した。しかし、250℃では12%、275℃では8%と低下した。一方、HCを前段で収着させた場合は、200℃で51%、250℃で84%、275℃で98%とNO浄化率は向上した。 FIG. 2 shows the NO removal rate at 200 to 275 ° C. When HC coexists, the NO removal rate is 29% at 200 ° C., which is higher than that of the reference catalyst 1. However, it decreased to 12% at 250 ° C and 8% at 275 ° C. On the other hand, when HC was sorbed in the previous stage, the NO purification rate improved to 51% at 200 ° C, 84% at 250 ° C, and 98% at 275 ° C.
本参考実施例では、参考触媒1を用いてNO除去率のHC濃度依存性を調べた。実施例2に記載の反応ガス組成のうち、C3H6濃度を変化させた。全反応ガス量は同じとなるようHeで調節した。 In this reference example, the reference catalyst 1 was used to examine the dependency of the NO removal rate on the HC concentration. In the reaction gas composition described in Example 2, the C 3 H 6 concentration was changed. The total reaction gas amount was adjusted with He so as to be the same.
図3に250℃でのNO除去率を示す。HCが共存しない場合は25%であるのに対し、HCが共存すると、NO除去率が大きく変化した。100ppm では37.1% に向上し、250ppm では22.8% となり、HCを添加しない場合より除去率が低下した。さらに増やすと750ppm では17.1%となり、1000ppm で添加すると14.0ppm まで低下した。 FIG. 3 shows the NO removal rate at 250 ° C. When HC does not coexist, it is 25%, but when HC coexists, the NO removal rate changes greatly. At 100 ppm, it improved to 37.1%, and at 250 ppm, it reached 22.8%. The removal rate was lower than when HC was not added. Further increase to 17.1% at 750 ppm, and to 14.0 ppm when added at 1000 ppm.
本参考実施例では、メソポーラス体に担持する金属成分を変えてNO除去率を調べた。反応ガス組成,条件は実施例2と同じである。 In this reference example, the NO removal rate was examined by changing the metal component supported on the mesoporous body. The reaction gas composition and conditions are the same as in Example 2.
図4に150℃でのNO除去率を示す。参考触媒1では7.1%なのに対して、参考触媒3では11.9%、参考触媒4では28.4%とNO除去率が向上した。しかし、塩基性金属であるSrを添加した参考触媒5では、NOは浄化されなかった。
FIG. 4 shows the NO removal rate at 150 ° C. Whereas reference catalysts of 1, 7.1%, 11.9% in the reference catalysts 3, reference in the catalyst 4 28.4% and NO removal rate is improved. However, NO was not purified by the
本結果から、複数の金属成分を添加することで、高いNO浄化率が得られる温度域を広げられることが示唆された。即ち、Niを含む参考触媒4とCoを含む参考触媒1を物理的に混合してもよく、両金属成分を同一担体上に担持してもよい。 From this result, it was suggested that the temperature range where a high NO purification rate is obtained can be expanded by adding a plurality of metal components. That is, the reference catalyst 4 containing Ni and the reference catalyst 1 containing Co may be physically mixed, and both metal components may be supported on the same carrier.
本参考実施例ではNOx還元に必要なCOが不足した場合のCO供給法を図5に示す。炭化水素除去工程を通過した後のガス中のCOとNOx濃度を測定し、当量比以上のCOを計算し、不足分のCOをCO供給部から供給する。COはNOxがNOx還元触媒と接触する前に供給すればよい。 In this reference embodiment, FIG. 5 shows a CO supply method when CO required for NOx reduction is insufficient. The CO and NOx concentrations in the gas after passing through the hydrocarbon removal step are measured, CO equal to or greater than the equivalent ratio is calculated, and the shortage of CO is supplied from the CO supply unit. CO may be supplied before NOx comes into contact with the NOx reduction catalyst.
図6は、収着材を用いた炭化水素除去法の実施例である。NOx含有ガスを、まず、炭化水素除去工程1の収着材に導入させる。このとき、バルブ12,14以外のバルブは閉止する。次に、バルブ14を通過後のガス中の炭化水素がNOx量に対して所定量、例えば20vol%以上になった場合は、収着材が飽和したと判断し、バルブ12,14を閉止し、バルブ16,17を開きNOx含有ガスを炭化水素除去工程2の収着材に導入させる。炭化水素除去工程2を使用している間、炭化水素除去工程1のバルブ11を開き、不活性ガスを流通させて、吸着していた炭化水素を脱離させる。また、収着材を加熱して、脱離の促進や脱離しにくい炭化水素を放出させることも可能である。加熱は収着材が入った容器を外側から電気炉等で加熱したり、加温された不活性ガスを流通させたりすることにより可能である。排ガス13に含まれる炭化水素は燃焼プロセスに送り燃焼処理できる。この操作を交互に繰り返すことで、長時間,効率よく炭化水素を除去することができる。
FIG. 6 is an example of a hydrocarbon removal method using a sorbent. First, NOx-containing gas is introduced into the sorbent of the hydrocarbon removal step 1. At this time, valves other than the
図7は、物理的に炭化水素を分離する装置を用いた炭化水素除去法の参考実施例を示す。NOx含有ガスが流通する配管21内に多孔管20,22を設置し、NOx含有ガスを多孔管20,22内部に導入させる。多孔管20,22の外部を内部より負圧となるよう制御する。多孔管20,22の孔径はCO,NO,CH4のみが流通できるサイズとする。もし、C2の炭化水素が存在してもNOx量に対して20vol%以下であれば、C2の炭化水素も通過できる孔径にしてよい。これによりNOx含有ガスから炭化水素を容易に効率良く除去することができる。
FIG. 7 shows a reference embodiment of a hydrocarbon removal method using an apparatus for physically separating hydrocarbons. The
燃焼反応などで発生するNOを触媒により高効率でN2 に転化することができる。 NO generated in a combustion reaction or the like can be converted into N 2 with high efficiency by a catalyst.
Claims (5)
て、
前記排ガス中の炭化水素を炭化水素収着材に収着させる工程と、
前記炭化水素を収着した後の排ガスを、COを還元剤としてNOxを還元する反応について触媒能を有し、第9族の金属クラスタをメソポーラス体に担持したNOx浄化触媒に接触させる工程と
を有することを特徴とするNOx浄化方法。 In a method for purifying NOx in exhaust gas containing at least CO, O 2 and NOx,
Sorbing hydrocarbons in the exhaust gas to a hydrocarbon sorbent;
Contacting the exhaust gas after sorbing the hydrocarbon with a NOx purification catalyst having catalytic ability for a reaction of reducing NOx using CO as a reducing agent and carrying a metal cluster of Group 9 supported on a mesoporous body. A NOx purification method comprising:
前記炭化水素収着材に収着させる工程では、炭化水素濃度をNOx濃度の0〜20vol%以下とすることを特徴とするNOx浄化方法。 In the NOx purification method according to claim 1,
In the step of sorbing onto the hydrocarbon sorbent, the NOx purification method is characterized in that the hydrocarbon concentration is 0-20 vol% or less of the NOx concentration.
前記炭化水素収着材は、メソポーラス体にAg,Cu,Zn,Ba,Mgの少なくともいずれかが担持されていることを特徴とするNOx浄化方法。 In the NOx purification method according to claim 1,
The hydrocarbon sorbent is a NOx purification method characterized in that at least one of Ag, Cu, Zn, Ba, and Mg is supported on a mesoporous body.
前記NOx浄化触媒が、前記メソポーラス体に、Co,Ni,Fe,Zn,Cu,Mo,W,V,Pt,Pd、及びRhのうち少なくともいずれかを含有することを特徴とするNOx浄化方法。 In the NOx purification method according to claim 1,
The NOx purification method, wherein the NOx purification catalyst contains at least one of Co, Ni, Fe, Zn, Cu, Mo, W, V, Pt, Pd, and Rh in the mesoporous body.
前記メソポーラス体はSiO2,TiO2,ZrO2、及びAl2O3のいずれかであるこ
とを特徴とするNOx浄化方法。 In the NOx purification method according to claim 4,
The mesoporous body is any one of SiO 2 , TiO 2 , ZrO 2 , and Al 2 O 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066877A JP4876644B2 (en) | 2006-03-13 | 2006-03-13 | Exhaust gas purification method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066877A JP4876644B2 (en) | 2006-03-13 | 2006-03-13 | Exhaust gas purification method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2007237134A JP2007237134A (en) | 2007-09-20 |
JP2007237134A5 JP2007237134A5 (en) | 2008-05-15 |
JP4876644B2 true JP4876644B2 (en) | 2012-02-15 |
Family
ID=38583198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006066877A Expired - Fee Related JP4876644B2 (en) | 2006-03-13 | 2006-03-13 | Exhaust gas purification method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4876644B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009138591A (en) * | 2007-12-05 | 2009-06-25 | Babcock Hitachi Kk | Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine |
JP5476771B2 (en) * | 2009-04-03 | 2014-04-23 | いすゞ自動車株式会社 | Exhaust gas purification system and control method of exhaust gas purification system |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2689147B2 (en) * | 1988-11-02 | 1997-12-10 | 堺化学工業株式会社 | Nitrogen oxide removal catalyst |
JPH0810575A (en) * | 1994-06-30 | 1996-01-16 | Toyota Central Res & Dev Lab Inc | Nitrogen oxides reducing method |
JPH10263368A (en) * | 1997-03-26 | 1998-10-06 | Jisedai Haikazu Shokubai Kenkyusho:Kk | Purifying device of exhaust gas |
JP2007239616A (en) * | 2006-03-09 | 2007-09-20 | Babcock Hitachi Kk | Exhaust emission control device, exhaust emission control method, and purification catalyst |
-
2006
- 2006-03-13 JP JP2006066877A patent/JP4876644B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007237134A (en) | 2007-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fan et al. | Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust | |
JP5526410B2 (en) | Method for removing nitrogen oxides in exhaust gas | |
RU2674020C2 (en) | Nox trap composition | |
KR101189238B1 (en) | NOx Storage and Reduction Catalyst, Preparation Method thereof, and NOx Removing System Comprising the Same | |
US6103208A (en) | Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas | |
US20090317307A1 (en) | Exhaust gas purifying device | |
JP2005514551A (en) | Exhaust system and method for removing particulate matter from diesel engine exhaust | |
EP0935055B1 (en) | Method for purifying oxygen rich exhaust gas | |
JP2008240568A (en) | Exhaust emission control device | |
WO2009087935A1 (en) | Nox adsorbing device and exhaust purifying device | |
JPH08229404A (en) | Exhaust gas purifying catalyst and apparatus | |
CN113522232B (en) | Passive NOxAdsorbent and preparation method and application thereof | |
JPH07102957A (en) | Device and method for exhaust emission control | |
JP4876644B2 (en) | Exhaust gas purification method | |
JP5261930B2 (en) | Gas purification method, gas purification catalyst, and exhaust gas purification device | |
JP3207577B2 (en) | Hydrocarbon adsorbent and adsorption purification method | |
JP2006026635A (en) | Method of removing nitrogen oxides contained in exhaust gas | |
JP2005111436A (en) | Method for catalytically eliminating nitrogen oxide and device therefor | |
JP4501166B2 (en) | Exhaust gas purification system | |
JPH07328448A (en) | Exhaust gas purification catalyst and device for purifying exhaust gas | |
JP3197090B2 (en) | Hydrocarbon adsorbent and adsorption purification method | |
JP2002295241A (en) | Purification method of marine structure exhaust gas and purifying device | |
JP2002349248A (en) | Nitrogen oxide in diesel engine exhaust gas removing method and device | |
JP3257686B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method using the same | |
JPH1176827A (en) | Apparatus for cleaning exhaust gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080328 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100203 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110628 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110913 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111006 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111101 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111114 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |