JP3207577B2 - Hydrocarbon adsorbent and adsorption purification method - Google Patents

Hydrocarbon adsorbent and adsorption purification method

Info

Publication number
JP3207577B2
JP3207577B2 JP00770293A JP770293A JP3207577B2 JP 3207577 B2 JP3207577 B2 JP 3207577B2 JP 00770293 A JP00770293 A JP 00770293A JP 770293 A JP770293 A JP 770293A JP 3207577 B2 JP3207577 B2 JP 3207577B2
Authority
JP
Japan
Prior art keywords
adsorbent
crystalline silicate
hydrocarbons
exhaust gas
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00770293A
Other languages
Japanese (ja)
Other versions
JPH06210163A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP00770293A priority Critical patent/JP3207577B2/en
Publication of JPH06210163A publication Critical patent/JPH06210163A/en
Application granted granted Critical
Publication of JP3207577B2 publication Critical patent/JP3207577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関などより排出
される炭化水素(以下、HCと略称)を浄化する吸着剤
及びHCの吸着除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for purifying hydrocarbons (hereinafter abbreviated as HC) discharged from an internal combustion engine or the like and a method for adsorbing and removing HC.

【0002】[0002]

【従来の技術】近年、触媒コンバータの開発により、ガ
ソリン自動車からの排ガスはますます浄化される方向に
ある。しかし、触媒が作用する温度は200℃以上の高
温であり、始動時などの低温時では、内燃機関から発生
する未燃のHCなどがそのまま大気中に排出される問題
は依然として残っている。
2. Description of the Related Art In recent years, with the development of catalytic converters, exhaust gas from gasoline vehicles has been increasingly purified. However, the temperature at which the catalyst acts is as high as 200 ° C. or more, and at a low temperature such as when starting, there still remains a problem that unburned HC and the like generated from the internal combustion engine are directly discharged into the atmosphere.

【0003】[0003]

【発明が解決しようとする課題】上記状況を鑑み、低温
時で発生するHCなどを吸着剤を用いて吸着除去する試
みはこれまで多くの研究機関にて実施されてきた。例え
ば、活性炭を吸着剤として用いた場合、低温域では未燃
のHCを多く吸着するが、高温域では活性炭そのものに
酸化作用がないため、吸着したHCがそのまま脱離して
大気中に放出されてしまう問題点がある。さらに活性炭
は有機系吸着剤であるので高温域で活性炭自身が燃焼発
火してしまう危険が残っている。一方、無機系の吸着剤
としてはアルミナ、シリカなどがあげられるが、HCを
吸着する容量が少ないため多量の吸着剤を必要とする不
具合が生じている。そのため、低温にてHCを多量に吸
着し、高温にて吸着したHCを燃焼除去して自己再生す
ることが可能な吸着剤の適用が待ち望まれていた。
In view of the above-mentioned situation, attempts to adsorb and remove HC and the like generated at low temperatures by using an adsorbent have been carried out by many research institutions. For example, when activated carbon is used as an adsorbent, a large amount of unburned HC is adsorbed in a low-temperature region, but the activated carbon itself has no oxidizing action in a high-temperature region, so the adsorbed HC is desorbed and released to the atmosphere. There is a problem. Furthermore, since activated carbon is an organic adsorbent, there is a danger that the activated carbon itself will burn and ignite at high temperatures. On the other hand, examples of the inorganic adsorbent include alumina and silica, but there is a problem that a large amount of adsorbent is required due to a small capacity of adsorbing HC. Therefore, application of an adsorbent capable of adsorbing a large amount of HC at a low temperature and burning and removing the HC adsorbed at a high temperature to self-regenerate has been desired.

【0004】本発明は上記技術水準に鑑み、低温にてH
Cを多量に吸着し、高温にて吸着したHCを燃焼除去し
て自己再生することが可能な吸着剤及びそれらの吸着剤
を用いて内燃機関などから発生するHCを吸着除去しう
る方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned state of the art,
Provided is an adsorbent capable of adsorbing a large amount of C and burning and removing the adsorbed HC at a high temperature to be able to self-regenerate, and a method capable of adsorbing and removing HC generated from an internal combustion engine or the like using the adsorbent. What you want to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これまで
本目的に合った吸着剤の開発の検討を行ってきたとこ
ろ、銅を担持した分子篩構造をもつ結晶性シリケートが
好ましい吸着剤であることを見い出し、本発明を完成す
るに至った。
Means for Solving the Problems The inventors of the present invention have studied the development of an adsorbent suitable for this purpose, and found that a crystalline silicate having a molecular sieve structure carrying copper is a preferable adsorbent. They have found something and have completed the present invention.

【0006】すなわち本発明は (1)銅を担持してなる分子篩構造をもつ結晶性シリケ
ートよりなり、該結晶性シリケートが脱水された状態に
おいて酸化物のモル比で表わして、(1±0.6)R2
O・〔aM2 3 ・bAl2 3 ・cMeO〕・ySi
2(上記式中、Rはアルカリ金属イオン及び/又は水
素イオン、MはVIII族金属、希土類金属、チタン、バナ
ジウム、クロム、ニオブ、アンチモン、ガリウムからな
る群から選ばれた1種以上の金属、Meはアルカリ土類
金属、a≧0、b≧0、c≧0,a+b=1、y/c>
12,y>12)の化学式を有し、かつ本文で詳記する
表Aに示されるX線回折パターンを有する結晶性シリケ
ートであることを特徴とする炭化水素の吸着剤、(2) 分子篩構造をもつ結晶性シリケートが予め合成し
前記(1)の結晶性シリケートを母結晶とし、その外
表面に母結晶と同一の結晶構造を有するSiとOよりな
る結晶性シリケートを成長してなり、かつ本文で詳記す
る表Aに示されるX線回折パターンを有する層状複合結
晶性シリケートであることを特徴とする炭化水素の吸着
剤、(3)銅を担持してなる分子篩構造をもつ結晶性シリケ
ートよりなり、該 結晶性シリケートがL型ゼオライト、
クリノプチロライト、A型ゼオライト、フェリエライ
ト、ZSM−5型ゼオライトであることを特徴とする炭
化水素の吸着剤。(4) 上記(1)〜(3)いずれかの銅を担持してなる
分子篩構造をもつ結晶性シリケートに、さらにコバル
ト、ニッケル、クロム、鉄、マンガン、銀、金、白金、
パラジウム、ルテニウム、ロジウム、バナジウムからな
る群から選ばれた1種以上の金属を担持してなることを
特徴とする炭化水素の吸着剤、(5) 内燃機関などの起動時における排ガス中の炭化水
素を除去するにあたり、低温時の排ガスを上記(1)〜
(4)いずれかの炭化水素の吸着剤と接触させて該排ガ
ス中の炭化水素を吸着除去させ、その後該吸着剤を高温
条件にして吸着炭化水素を燃焼除去すると共に、吸着剤
を再生することを特徴とする炭化水素の吸着除去方法、(6) 炭化水素の吸着剤の内部を切り抜き、切り抜き箇
所に切り換え弁を設置し、低温時の排ガス中の炭化水素
を吸着剤に吸着させる場合は該切り換え弁を閉めて排ガ
スと吸着剤を接触させて吸着剤に炭化水素を吸着させ、
吸着炭化水素を燃焼除去する場合は切り換え弁を開けて
高温排ガスを切り抜き箇所を通してパージさせて吸着剤
を高温条件にすることを特徴とする上記(5)の炭化水
素の吸着除去方法、である。
[0006] The present invention is expressed in terms of mole ratios of oxides in (1) Copper Ri name from the crystalline silicate having a molecular sieve structure formed by carrying a state where the crystalline silicate is dehydrated, (1 ± 0 .6) R 2
O. [aM 2 O 3 .bAl 2 O 3 .cMeO] .ySi
O 2 (wherein R is an alkali metal ion and / or a hydrogen ion, M is at least one metal selected from the group consisting of group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony, and gallium) , Me is an alkaline earth metal, a ≧ 0, b ≧ 0, c ≧ 0, a + b = 1, y / c>
12, y> 12) of has the formula, and adsorbent charcoal hydrogen you being a crystalline silicate having an X-ray diffraction pattern shown in Table A to Shoki in the body, (2) A crystalline silicate of the above (1), which is a crystalline silicate having a molecular sieve structure previously synthesized, is used as a mother crystal, and a crystalline silicate made of Si and O having the same crystal structure as the mother crystal is grown on the outer surface thereof. and adsorbent charcoal hydrogen you being a layered composite crystalline silicate having an X-ray diffraction pattern shown in Table a to Shoki in the body, a molecular sieve structure formed by carrying (3) copper Crystalline silique
And the crystalline silicate is an L- type zeolite;
Clinoptilolite, A-type zeolite, ferrierite, adsorbent charcoal <br/> hydrogen you being a ZSM-5 type zeolite. (4) The crystalline silicate having a molecular sieve structure carrying any one of the above (1) to (3) is further added with cobalt, nickel, chromium, iron, manganese, silver, gold, platinum,
A hydrocarbon adsorbent, which carries one or more metals selected from the group consisting of palladium, ruthenium, rhodium, and vanadium; (5) hydrocarbons in exhaust gas when starting an internal combustion engine or the like In removing the waste gas, the exhaust gas at low temperature is removed from the above (1) to
(4) Contacting any of the hydrocarbon adsorbents to adsorb and remove the hydrocarbons in the exhaust gas, and then burning the adsorbed hydrocarbons under the high temperature condition of the adsorbent and regenerating the adsorbent. (6) cutting out the inside of the hydrocarbon adsorbent, installing a switching valve at the cut-out point, and adsorbing the hydrocarbons in the exhaust gas at low temperature to the adsorbent. Close the switching valve and contact the exhaust gas with the adsorbent to allow the adsorbent to adsorb hydrocarbons,
(5) The method for adsorbing and removing hydrocarbons according to the above (5) , wherein when the adsorbed hydrocarbons are burned and removed, the switching valve is opened and the high-temperature exhaust gas is purged through the cut-out portion to bring the adsorbent to high-temperature conditions.

【0007】[0007]

【作用】本発明における分子篩構造をもつ結晶性シリケ
ートは後記表Aで示されるX線回折パターンを有し、脱
水された状態において酸化物のモル比で表わして(1±
0.6)R2 O・〔aM2 3 ・bAl2 3 ・cMe
O〕・ySiO2(上記式中、Rはアルカリ金属イオン
及び/又は水素イオン、MはVIII族元素、希土類元素、
チタン、バナジウム、クロム、ニオブ、アンチモン及び
ガリウムからなる群より選ばれた少なくとも1種以上の
金属、Meはマグネシウム、カルシウム、ストロンチウ
ム、バリウムのアルカリ土類金属、a≧0,b≧0,c
≧0,a+b=1,y/c>12,y>12)なる化学
式を有する結晶性シリケートがあげられる。
The crystalline silicate having a molecular sieve structure according to the present invention has an X-ray diffraction pattern as shown in Table A below, and is expressed as a molar ratio of oxide in a dehydrated state (1 ± 1).
0.6) R 2 O · [aM 2 O 3 · bAl 2 O 3 · cMe
O] · ySiO 2 (where R is an alkali metal ion and / or hydrogen ion, M is a group VIII element, a rare earth element,
At least one metal selected from the group consisting of titanium, vanadium, chromium, niobium, antimony, and gallium; Me is an alkaline earth metal of magnesium, calcium, strontium, barium, a ≧ 0, b ≧ 0, c
≧ 0, a + b = 1, y / c> 12, y> 12).

【0008】[0008]

【表1】 W:弱 M:中級 S:強 VS:非常に強 (照射と銅のKα線) (I0 は最も強いピーク強度でI/I0 は相対強度)[Table 1] W: weak M: intermediate S: strong VS: very strong (irradiation and copper Kα ray) (I 0 is the strongest peak intensity and I / I 0 is the relative intensity)

【0009】また、結晶性シリケートが、予め合成した
上記結晶性シリケートを母結晶とし、その母結晶の外表
面に母結晶と同一の結晶構造を有するSiとOよりなる
結晶性シリケートを成長させた層状複合結晶性シリケー
トであり、耐熱、耐スチーム安定性を高めた結晶性シリ
ケートでもよく、結晶性シリケートがL型ゼオライト、
クリノプチロライト、A型ゼオライト、フェリエライ
ト、ZSM−5型ゼオライトでも十分吸着剤として有効
である。
Further, the crystalline silicate is obtained by using the previously synthesized crystalline silicate as a mother crystal, and growing a crystalline silicate made of Si and O having the same crystal structure as the mother crystal on the outer surface of the mother crystal. It is a layered composite crystalline silicate, and may be a crystalline silicate having improved heat resistance and steam resistance, and the crystalline silicate may be an L- type zeolite,
Clinoptilolite, A-type zeolite, ferrierite and ZSM-5-type zeolite are also sufficiently effective as adsorbents.

【0010】さらに上記結晶性シリケートに担持する金
属として銅のみ、または銅とコバルト、ニッケル、クロ
ム、鉄、マンガン、銀、金、白金、パラジウム、ルテニ
ウム、ロジウム、バナジウムからなる群から選ばれた1
種以上の金属を担持共存させた吸着剤を用いてHCの吸
着力、酸化力を制御させることもできる。
Further, the metal supported on the crystalline silicate is copper alone or a metal selected from the group consisting of copper and cobalt, nickel, chromium, iron, manganese, silver, gold, platinum, palladium, ruthenium, rhodium and vanadium.
HC adsorbing power and oxidizing power can be controlled by using an adsorbent in which at least one kind of metal is supported and coexisted.

【0011】分子篩構造を有する結晶性シリケートに銅
を含有させる方法としては硝酸銅、酢酸銅、塩化銅、硫
酸銅の各金属銅塩の水溶液を用いてイオン交換法あるい
は含浸法を用いて担持する方法が好ましい。
As a method for incorporating copper into a crystalline silicate having a molecular sieve structure, the crystalline silicate is supported by an ion exchange method or an impregnation method using an aqueous solution of a metal copper salt of copper nitrate, copper acetate, copper chloride or copper sulfate. The method is preferred.

【0012】なお、銅とコバルト、ニッケル、クロム、
鉄、マンガン、銀、金、白金、パラジウム、ルテニウ
ム、ロジウム、バナジウムを結晶性シリケートに担持さ
せる方法としては、各金属の硝酸塩、酢酸塩、塩化物、
硫酸塩などの水溶液を用いて共イオン交換法あるいは共
含浸法によって行う方法があげられる。
Incidentally, copper and cobalt, nickel, chromium,
Iron, manganese, silver, gold, platinum, palladium, ruthenium, rhodium, vanadium supported on the crystalline silicate, nitrate, acetate, chloride of each metal,
Examples of the method include a coion exchange method or a co-impregnation method using an aqueous solution such as a sulfate.

【0013】本発明のHC吸着剤をガソリンエンジンの
三元触媒(通常、Pt,Rh系の貴金属を含有した触媒
で、理論空燃比付近でNOx,CO,HCを同時に除去
できる触媒)の後流に据え付ける場合、起動時の排ガス
の温度は通常室温〜約100℃であり、本温度域にて多
量のHCを吸着することができる。三元触媒が作用する
温度は約200℃以上であり、排ガス温度が250℃以
上ではHCは三元触媒によって除去できる。そこで三元
触媒の後流に本発明HC触媒を設置し、三元触媒が作用
しない200℃以下でのHCを吸着させて系外へのHC
の排出を防ぐ。暖気が進み、吸着剤の温度が約150℃
以上になると吸着したHCが燃焼されてH2 O,CO2
となり、脱離されてHC吸着剤は再生され、再び低温域
にて未燃のHCを吸着するようになる。
The HC adsorbent of the present invention is downstream of a three-way catalyst for a gasoline engine (usually a catalyst containing a Pt, Rh-based noble metal and capable of simultaneously removing NOx, CO, and HC near the stoichiometric air-fuel ratio). When installed, the temperature of the exhaust gas at the time of startup is usually from room temperature to about 100 ° C., and a large amount of HC can be adsorbed in this temperature range. The temperature at which the three-way catalyst acts is about 200 ° C. or more, and when the exhaust gas temperature is 250 ° C. or more, HC can be removed by the three-way catalyst. Therefore, the HC catalyst of the present invention is installed downstream of the three-way catalyst, and adsorbs HC at a temperature of 200 ° C. or lower where the three-way catalyst does not act, thereby making the HC outside the system.
Prevent emissions. Warm air advances and the temperature of the adsorbent is about 150 ° C
Above this, the adsorbed HC is burned and H 2 O, CO 2
Then, the HC adsorbent is desorbed and regenerated, and unburned HC is adsorbed again in a low temperature range.

【0014】また、本発明のHC吸着剤を用いて、HC
を吸着除去するシステムを考える場合、ガス量の大小に
よる圧力損失を考慮に入れる必要がある。通常、低温起
動時はガス量が少ないため、HCを含有する排ガスを全
量HC吸着剤に流通させてもよいが、高温時ではガス量
も多くなるので、吸着剤に全量ガスを流して吸着したH
Cを燃焼除去してHC吸着剤を再生させると、圧損失や
吸着剤寿命に影響を与えることもある。この場合、HC
吸着剤の内部を切り抜き、この切り抜き場所に弁を設置
し、低温時でHCを吸着させる時は弁を閉め、HC吸着
剤にHCを含むガスを流してHCを吸着させ、一方、高
温時でガス量が多い時は圧力損失を少なくするため、弁
を開け排ガスをそのままパージする方法をとり、この場
合、吸着したHCはHC吸着剤の酸化作用により燃焼除
去されるが、生じたCO2 ,H2Oは自己拡散によりパ
ージされ系外へ排出され、HC吸着剤が再生される方法
を採用することが好ましい。
Further, the HC adsorbent of the present invention is used to
When considering a system that adsorbs and removes gas, it is necessary to take into account the pressure loss due to the magnitude of the gas amount. Normally, when starting at low temperature, the amount of gas is small, so that the entire amount of exhaust gas containing HC may be circulated to the HC adsorbent. However, at high temperatures, the amount of gas increases, so that the entire amount of gas is flowed through the adsorbent and adsorbed. H
Regeneration of the HC adsorbent by burning and removing C may affect pressure loss and adsorbent life. In this case, HC
Cut out the inside of the adsorbent, install a valve at this cutout location, close the valve when adsorbing HC at low temperature, flow HC-containing gas to the HC adsorbent to adsorb HC, while at high temperature because when the amount of gas is large to reduce the pressure loss, taking a method of directly purging exhaust gas opened valve, in this case, adsorbed HC but is burned off by the oxidation action of the HC adsorbent, the resulting CO 2, It is preferable to adopt a method in which H 2 O is purged by self-diffusion and discharged out of the system to regenerate the HC adsorbent.

【0015】[0015]

【実施例】【Example】

(実施例1)水ガラス1号(SiO2 :30%):56
16gを水:5429gに溶解し、この溶液を溶液Aと
する。一方、水:4175gに硫酸アルミニウム:71
8.9g、塩化第二鉄:110g、酢酸カルシウム:4
7.2g、塩化ナトリウム:262g、濃塩酸:202
0gを溶解し、この溶液を溶液Bとする。溶液Aと溶液
Bを一定割合で供給し、沈殿を生成させ、十分攪拌して
pH=8.0のスラリを得る。このスラリを20リット
ルのオートクレーブに仕込み、さらにテトラプロピルア
ンモニウムブロマイドを500g添加し、160℃にて
72時間水熱合成を行い、合成後水洗して乾燥させ、さ
らに500℃、3時間焼成させ結晶性シリケート1を得
る。この結晶性シリケートは酸化物のモル比で(結晶水
を省く)下記の組成式で表され、結晶構造はX線回折で
前記表Aにて表示されるものである。 0.5Na2 O・0.5H2 O・〔0.8Al2 3
0.2Fe2 3 ・0.25CaO〕・25SiO2
(Example 1) Water glass No. 1 (SiO 2 : 30%): 56
16 g was dissolved in 5429 g of water, and this solution was designated as solution A. On the other hand, water: 4175 g and aluminum sulfate: 71
8.9 g, ferric chloride: 110 g, calcium acetate: 4
7.2 g, sodium chloride: 262 g, concentrated hydrochloric acid: 202
0 g is dissolved, and this solution is referred to as solution B. The solution A and the solution B are supplied at a constant rate to form a precipitate, and the mixture is sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20-liter autoclave, and 500 g of tetrapropylammonium bromide was further added. Hydrothermal synthesis was performed at 160 ° C. for 72 hours. After the synthesis, the resultant was washed with water and dried. Obtain silicate 1. This crystalline silicate is represented by the following composition formula in terms of the molar ratio of the oxide (omitting the crystallization water), and the crystal structure is represented by X-ray diffraction in Table A above. 0.5Na 2 O.0.5H 2 O. [0.8Al 2 O 3.
0.2Fe 2 O 3 .0.25CaO] .25SiO 2

【0016】上記結晶性シリケート1を用いて、0.0
4M酢酸銅水溶液に浸漬して、24時間攪拌してCuイ
オン交換を実施した。洗浄後乾燥して粉末吸着剤1を得
た。
Using the above crystalline silicate 1, 0.0
It was immersed in a 4M copper acetate aqueous solution and stirred for 24 hours to perform Cu ion exchange. After washing and drying, powder adsorbent 1 was obtained.

【0017】次に、上記粉末吸着剤1の100部に対し
てバインダとしてアルミナゾル3部、シリカゾル55部
(SiO2 :20%)に水を200部加え、充分攪拌を
行いウォッシュコート用スラリとした。次にコージェラ
イト用モノリス基材(400セルの格子目)を上記スラ
リに浸漬し、取り出した後余分なスラリを吹きはらい2
00℃で乾燥させた。コート量は基材1リットルあたり
200g担持し、このコート物をハニカム吸着剤1とす
る。
Next, 3 parts of alumina sol as a binder and 200 parts of water were added to 55 parts of silica sol (SiO 2 : 20%) with respect to 100 parts of the powder adsorbent 1 and sufficiently stirred to obtain a slurry for wash coating. . Next, a cordierite monolith substrate (400-cell grid) is immersed in the slurry, taken out, and then sprayed with excess slurry.
Dried at 00 ° C. The coated amount is 200 g per liter of the base material.

【0018】(実施例2)実施例1の結晶性シリケート
の合成において、塩化第二鉄の代わりに塩化コバルト、
塩化ルテニウム、塩化ロジウム、塩化ランタン、塩化セ
リウム、塩化チタン、塩化バナジウム、塩化クロム、塩
化アンチモン、塩化ガリウム及び塩化ニオブを各々酸化
物換算でFe2 3 と同じモル数だけ添加した以外は結
晶性シリケート1と同様の操作を繰り返して結晶性シリ
ケート2〜12を調製した。これらの結晶性シリケート
の結晶構造はX線回折で前記表Aに表示されるものであ
り、その組成は酸化物のモル比(脱水された形態)で表
わして0.5Na2 O・0.5H2 O・〔0.2M2
3 ・0.8Al2 3 ・0.25CaO〕・25SiO
2 である。ここでMはCo,Ru,Rh,La,Ce,
Ti,V,Cr,Sb,Ga,Nbで結晶性シリケート
2〜12である。
Example 2 In the synthesis of the crystalline silicate of Example 1, cobalt chloride was used instead of ferric chloride.
Crystallinity except that ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride, antimony chloride, gallium chloride and niobium chloride are each added in the same mole number as Fe 2 O 3 in terms of oxide. The same operation as in silicate 1 was repeated to prepare crystalline silicates 2 to 12. The crystal structures of these crystalline silicates are shown in Table A above by X-ray diffraction, and their compositions are represented by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H 2 O ・ [0.2M 2 O
3 · 0.8Al 2 O 3 · 0.25CaO] · 25SiO
2 Where M is Co, Ru, Rh, La, Ce,
It is a crystalline silicate of Ti, V, Cr, Sb, Ga, Nb.

【0019】又、結晶性シリケート1の合成法において
酢酸カルシウムの代わりに酢酸マグネシウム、酢酸スト
ロンチウム、酢酸バリウムを各々酸化物換算でCaOと
同じモル数だけ添加した以外は結晶性シリケート1と同
様の操作を繰り返して結晶性シリケート13〜15を調
製した。これらの母結晶の結晶構造はX線回折で前記表
Aにて表示されるものであり、その組成は酸化物のモル
比(脱水された形態)で表わして0.5Na2 O・0.
5H2 O・〔0.2Fe2 3 ・0.8Al23
0.25MeO〕・25SiO2 である。ここでMeは
Mg,Sr,Baである。
The same operation as that of the crystalline silicate 1 was carried out except that magnesium acetate, strontium acetate and barium acetate were added in the same manner as in the case of CaO in terms of oxide in place of calcium acetate in the method for synthesizing the crystalline silicate 1. Was repeated to prepare crystalline silicates 13 to 15. The crystal structures of these mother crystals are shown in Table A by X-ray diffraction, and the composition is represented by a molar ratio of oxide (dehydrated form) of 0.5Na 2 O.O.
5H 2 O · [0.2Fe 2 O 3 · 0.8Al 2 O 3 ·
0.25MeO] is a · 25SiO 2. Here, Me is Mg, Sr, and Ba.

【0020】上記結晶性シリケート2〜15を実施例1
と同様な方法でCuイオン交換し粉末吸着剤2〜15を
得、さらに上記粉末吸着剤を実施例1と同様にハニカム
化し、ハニカム吸着剤2〜15を得た。
The above crystalline silicates 2 to 15 were used in Example 1.
Cu ion exchange was performed in the same manner as in Example 1 to obtain powder adsorbents 2 to 15, and the powder adsorbent was formed into a honeycomb in the same manner as in Example 1 to obtain honeycomb adsorbents 2 to 15.

【0021】(実施例3)実施例1で得た結晶性シリケ
ート1の1000gを母結晶とし、これを水:2160
gに添加し、さらにコロイダルシリカ(SiO2 :20
%):4590gを添加し、十分攪拌を行い、この溶液
を溶液aとする。一方、水:2008gに水酸化ナトリ
ウム:105.8gを溶解させ溶液bを得る。溶液aを
攪拌しながら溶液bを徐々に滴下し、沈殿を生成させて
スラリを得る。このスラリをオートクレーブに入れ、テ
トラプロピルアンモニウムブロマイド:568gを水:
2106gに溶解させた溶液を上記オートクレーブに添
加する。このオートクレーブで160℃、72時間水熱
合成を行い(200rpm にて攪拌)、攪拌後、洗浄して
乾燥後、500℃、3時間焼成を行い層状複合結晶性シ
リケート1を得る。この表層の層状シリケートはシリカ
ライトと呼ばれる。
(Example 3) 1000 g of the crystalline silicate 1 obtained in Example 1 was used as a mother crystal, and this was mixed with water: 2160
g of colloidal silica (SiO 2 : 20)
%): 4590 g was added, and the mixture was sufficiently stirred, and this solution was designated as solution a. On the other hand, 105.8 g of sodium hydroxide is dissolved in 2008 g of water to obtain a solution b. While stirring the solution a, the solution b is gradually added dropwise to form a precipitate to obtain a slurry. The slurry was placed in an autoclave, and 568 g of tetrapropylammonium bromide was added to water:
The solution dissolved in 2106 g is added to the autoclave. Hydrothermal synthesis is performed in this autoclave at 160 ° C. for 72 hours (stirring at 200 rpm), and after stirring, washing and drying, baking is performed at 500 ° C. for 3 hours to obtain a layered composite crystalline silicate 1. This surface layered silicate is called silicalite.

【0022】上記層状複合結晶性シリケート1を実施例
1と同様にCuイオン交換及びハニカム化し、粉末吸着
剤16及びハニカム吸着剤16を得た。
The layered composite crystalline silicate 1 was subjected to Cu ion exchange and honeycomb formation in the same manner as in Example 1 to obtain a powder adsorbent 16 and a honeycomb adsorbent 16.

【0023】(実施例4) Na型のY型ゼオライト(SiO2 /Al2 3 比:
5)、モルデナイト(SiO2 /Al2 3 比:1
5)、L型ゼオライト(SiO2 /Al2 3 比:
6)、クリノプチロライト(SiO2 /Al2 3 比:
5)、A型ゼオライト(SiO2 /Al2 3 比:
1)、フェリエライト(SiO2 /Al2 3 比:
5)、ZSM−5型ゼオライト(SiO2 /Al2 3
比:30)のゼオライトを実施例1の結晶性シリケート
1と同様にCuイオン交換及びハニカム化し、粉末吸着
剤17〜23及びハニカム吸着剤17〜23を得た。
お、ハニカム吸着剤17及び18は参考例である。
Example 4 Na-type Y-type zeolite (SiO 2 / Al 2 O 3 ratio:
5), mordenite (SiO 2 / Al 2 O 3 ratio: 1)
5), L-type zeolite (SiO 2 / Al 2 O 3 ratio:
6), clinoptilolite (ratio of SiO 2 / Al 2 O 3 :
5), A-type zeolite (SiO 2 / Al 2 O 3 ratio:
1), ferrierite (SiO 2 / Al 2 O 3 ratio:
5), ZSM-5 type zeolite (SiO 2 / Al 2 O 3)
The zeolite having a ratio of 30) was subjected to Cu ion exchange and honeycomb formation in the same manner as the crystalline silicate 1 of Example 1 to obtain powder adsorbents 17 to 23 and honeycomb adsorbents 17 to 23. What
The honeycomb adsorbents 17 and 18 are reference examples.

【0024】(実施例5)実施例1で得た結晶性シリケ
ート1を(0.04M塩化第二銅+0.04M塩化コバ
ルト)水溶液、(0.04M塩化第二銅+0.04M塩
化ニッケル)水溶液、(0.04M塩化第二銅+0.0
4M塩化第二鉄)水溶液、(0.04M塩化第二銅+
0.04M塩化マンガン)水溶液、(0.04M塩化第
二銅+0.01M三塩化バナジウム)水溶液に浸漬攪拌
し、各々共イオン交換を実施例1と同様に実施し、粉末
吸着剤24〜28を得、さらにハニカム吸着剤24〜2
8を得た。
(Example 5) The crystalline silicate 1 obtained in Example 1 was treated with an aqueous solution of (0.04 M cupric chloride + 0.04 M cobalt chloride) and an aqueous solution of (0.04 M cupric chloride + 0.04 M nickel chloride). , (0.04M cupric chloride + 0.0
4M ferric chloride aqueous solution, (0.04M cupric chloride +
0.04 M manganese chloride) aqueous solution and (0.04 M cupric chloride + 0.01 M vanadium trichloride) aqueous solution and stirred, and co-ion exchange was carried out in the same manner as in Example 1 to obtain powder adsorbents 24-28. And honeycomb adsorbents 24-2
8 was obtained.

【0025】また、実施例1で得た粉末吸着剤1に対し
て硝酸銀、塩化金酸、塩化白金酸、塩化パラジウム、塩
化ルテニウム、塩化ロジウムの各水溶液を含浸させ、粉
末吸着剤あたりAg,Au,Pt,Pd,Ru,Rhを
約1%担持させて、蒸発乾固させて粉末吸着剤29〜3
4を得た。さらに、これらの粉末吸着剤をウォッシュコ
ートしてハニカム吸着剤29〜34を得た。
The powder adsorbent 1 obtained in Example 1 was impregnated with aqueous solutions of silver nitrate, chloroauric acid, chloroplatinic acid, palladium chloride, ruthenium chloride and rhodium chloride, and Ag, Au per powder adsorbent was used. , Pt, Pd, Ru, and Rh are supported by about 1%, and evaporated to dryness to obtain a powder adsorbent 29-3.
4 was obtained. Further, these powder adsorbents were wash-coated to obtain honeycomb adsorbents 29 to 34.

【0026】(実施例6)実施例3で得た層状複合結晶
性シリケート1を実施例5と同様の方法で(0.04M
塩化第二銅+0.04M塩化コバルト)水溶液、(0.
04M塩化第二銅+0.04M塩化ニッケル)水溶液、
(0.04M塩化第二銅+0.04M塩化第二鉄)水溶
液、(0.04M塩化第二銅+0.04M塩化マンガ
ン)水溶液、(0.04M塩化第二銅+0.01M三塩
化バナジウム)水溶液に浸漬攪拌し、共イオン交換法に
より粉末吸着剤35〜39、さらにハニカム吸着剤35
〜39を得た。
Example 6 The layered composite crystalline silicate 1 obtained in Example 3 was prepared in the same manner as in Example 5 (0.04M
Aqueous solution of cupric chloride + 0.04 M cobalt chloride), (0.
04M cupric chloride + 0.04M nickel chloride) aqueous solution,
(0.04M cupric chloride + 0.04M ferric chloride) aqueous solution, (0.04M cupric chloride + 0.04M manganese chloride) aqueous solution, (0.04M cupric chloride + 0.01M vanadium trichloride) aqueous solution The powder adsorbent 35-39 and the honeycomb adsorbent 35
~ 39 was obtained.

【0027】また実施例4で得た粉末吸着剤17(Cu
/Y型ゼオライト)に対して、硝酸銀、塩化金酸、塩化
白金酸、塩化パラジウム、塩化ルテニウム、塩化ロジウ
ムの各水溶液を含浸させ粉末吸着剤あたりAg,Au,
Pt,Pd,Ru,Rhを0.6wt%担持させて、蒸発
乾固後、粉末吸着剤40〜45を得、さらに、ハニカム
40〜45を得た。
The powder adsorbent 17 (Cu
/ Y type zeolite) is impregnated with aqueous solutions of silver nitrate, chloroauric acid, chloroplatinic acid, palladium chloride, ruthenium chloride, and rhodium chloride, and Ag, Au,
After loading 0.6 wt% of Pt, Pd, Ru, and Rh, and evaporating to dryness, powder adsorbents 40 to 45 were obtained, and further, honeycombs 40 to 45 were obtained.

【0028】(比較例1)粉末の活性炭及び銅を担持し
たγ−Al2 3 (CuO:10wt%)をウォッシュコ
ート法によりハニカム基材にコートし、実施例1と同様
な方法で比較ハニカム吸着剤46、47を得た。
(Comparative Example 1) Powdered activated carbon and copper-carrying γ-Al 2 O 3 (CuO: 10 wt%) were coated on a honeycomb substrate by a wash coat method, and a comparative honeycomb was prepared in the same manner as in Example 1. Adsorbents 46 and 47 were obtained.

【0029】実施例1〜6、比較例1であげたハニカム
吸着剤1〜47(ハニカム吸着剤17及び18は参考
例)を後記表Bにまとめる。
Honeycomb adsorbents 1 to 47 described in Examples 1 to 6 and Comparative Example 1 (Honeycomb adsorbents 17 and 18 are reference
Examples) are summarized in Table B below.

【0030】(実験例1)1リットルのハニカム吸着剤
1〜47を吸着塔に設置し、炭化水素の吸着試験を実施
した。試験条件は下記のとおりである。 ○ ガス組成 C2 4 : 2000ppm C3 6 : 2000ppm (THC=10,000ppm ) O2 : 5% CO2 : 10% H2 O : 10% NO : 50ppm N2 : 残 ○ GHSV : 30,000h-1 ○ 吸着温度 : 50℃ ○ 脱離温度 : 150℃
(Experimental Example 1) One liter of honeycomb adsorbents 1 to 47 were set in an adsorption tower, and a hydrocarbon adsorption test was carried out. The test conditions are as follows. ○ Gas composition C 2 H 4 : 2000 ppm C 3 H 6 : 2000 ppm (THC = 10,000 ppm) O 2 : 5% CO 2 : 10% H 2 O: 10% NO: 50 ppm N 2 : balance ○ GHSV: 30, 000h -1 ○ Adsorption temperature: 50 ℃ ○ Desorption temperature: 150 ℃

【0031】試験装置を図1に、排ガス及び吸着剤の温
度パターンを図2に示す。吸着したHCはFID計で検
出する。なお、脱離温度150℃に設定した場合、HC
を除き、その他のガスはそのまゝ供給させた。上記ガス
組成にて吸着温度と脱離温度を交互に繰り返しながら平
衡になった時のHCの吸着量及び脱離量を後記表Cに示
す。
FIG. 1 shows the test apparatus, and FIG. 2 shows the temperature patterns of the exhaust gas and the adsorbent. The adsorbed HC is detected by the FID meter. When the desorption temperature is set to 150 ° C., HC
Other gases, except for, were supplied as they were. The amount of HC adsorbed and desorbed when equilibrium is reached while alternately repeating the adsorption temperature and desorption temperature with the above gas composition is shown in Table C below.

【0032】この結果より、本メタルハニカム吸着剤1
〜45を用いることにより、50℃において相当量のH
Cを吸着し、150℃において吸着したHCが燃焼除去
されるためHCは排出されず、繰り返し実施しても安定
な吸着挙動を示すことがわかった。
From these results, it can be seen that the present metal honeycomb adsorbent 1
By using ~ 45, a considerable amount of H
It was found that C was adsorbed and the adsorbed HC was burned and removed at 150 ° C., so that HC was not exhausted.

【0033】一方、活性炭(ハニカム吸着剤46)はあ
る程度50℃で吸着するものの150℃においては吸着
したHCがそのまま脱離し、Cuを担持したγ−Al2
3(ハニカム吸着剤47)は50℃においてもほとん
ど炭化水素を吸着しないことがわかった。
On the other hand, activated carbon (honeycomb adsorbent 46) is adsorbed to some extent at 50 ° C., but at 150 ° C., the adsorbed HC is desorbed as it is and Cu-loaded γ-Al 2
It was found that O 3 (honeycomb adsorbent 47) hardly adsorbs hydrocarbons even at 50 ° C.

【0034】(実験例2)実験例1の類似の試験とし
て、メタルハニカム触媒1を図3のように設置し、中間
部を切り抜き、該切り抜き部後方に切り換え弁を設け
た。ガス組成は、実験例1と同様であるが、吸着温度5
0℃はGHSV:30,000h-1、脱離温度150℃
はGHSV:100,000h-1において実施した。
(Experimental Example 2) As a test similar to Experimental Example 1, a metal honeycomb catalyst 1 was installed as shown in FIG. 3, an intermediate portion was cut out, and a switching valve was provided behind the cutout portion. The gas composition was the same as in Experimental Example 1, but the adsorption temperature was 5
0 ° C. is GHSV: 30,000 h −1 , desorption temperature is 150 ° C.
Was carried out at GHSV: 100,000 h -1 .

【0035】前述した図1の試験装置方法ではGHS
V:100,000h-1の脱離条件では圧力損失が大と
なる不具合点が生じるが、図3のように中間部をそのま
ま通過させることにより、脱離条件の時は全く圧力損失
がかからない。脱離条件の時はメタルハニカム吸着剤1
の中へは殆んどガスは流れないが、吸着したHCは15
0℃で十分燃焼除去され、生成したH2 O,CO2 は自
己拡散によりパージされるので、再生も安定にできるこ
とがわかった。
In the test apparatus method shown in FIG.
V: 100,000h -1 desorption conditions cause a disadvantage that the pressure loss becomes large. However, by passing the intermediate portion as it is as shown in FIG. 3, no pressure loss is applied under the desorption conditions. Metal honeycomb adsorbent 1 under desorption conditions
Almost no gas flows into the tank, but the adsorbed HC
It has been found that since H 2 O and CO 2 produced by sufficiently burning and removing at 0 ° C. are purged by self-diffusion, regeneration can be stabilized.

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【発明の効果】本発明により、HCを低温域で吸着除去
し、高温域で吸着HCが速かに燃焼除去されるHCの吸
着剤が提供され、該吸着剤を使用することによって排ガ
ス中のHCが有効に除去できるようになり、その効果は
工業的に顕著なものである。
According to the present invention, there is provided an adsorbent for HC in which HC is adsorbed and removed in a low temperature range, and the adsorbed HC is quickly burned and removed in a high temperature range. HC can be effectively removed, and the effect is industrially remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実験例のハニカム吸着剤を用いる吸
着試験装置の説明図。
FIG. 1 is an explanatory view of an adsorption test apparatus using a honeycomb adsorbent of one experimental example of the present invention.

【図2】本発明の一実験例の排ガスの温度変化とハニカ
ム吸着剤の温度変化の相関々係を示す図表。
FIG. 2 is a chart showing a correlation between a temperature change of exhaust gas and a temperature change of a honeycomb adsorbent in one experimental example of the present invention.

【図3】本発明のハニカム吸着剤の使用態様の説明図。FIG. 3 is an explanatory view of a usage mode of the honeycomb adsorbent of the present invention.

フロントページの続き (56)参考文献 特開 平6−63394(JP,A) 特開 平5−345129(JP,A) 特開 平5−317701(JP,A) 特開 平5−293369(JP,A) 特開 平5−285378(JP,A) 特開 昭64−34440(JP,A) 特公 昭46−10064(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 Continuation of the front page (56) References JP-A-6-63394 (JP, A) JP-A-5-345129 (JP, A) JP-A-5-317701 (JP, A) JP-A-5-293369 (JP) JP-A-5-285378 (JP, A) JP-A-64-34440 (JP, A) JP-B-46-10064 (JP, B1) (58) Fields investigated (Int. Cl. 7 , DB Name) B01J 20/00-20/34

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銅を担持してなる分子篩構造をもつ結晶
性シリケートよりなり、該結晶性シリケートが脱水され
た状態において酸化物のモル比で表わして、 (1±0.6)R 2 O・〔aM 2 3 ・bAl 2 3
cMeO〕・ySiO 2 (上記式中、Rはアルカリ金属
イオン及び/又は水素イオン、MはVIII族金属、希土類
金属、チタン、バナジウム、クロム、ニオブ、アンチモ
ン、ガリウムからなる群から選ばれた1種以上の金属、
Meはアルカリ土類金属、a≧0、b≧0、c≧0,a
+b=1、y/c>12,y>12) の化学式を有し、かつ本文で詳記する表Aに示されるX
線回折パターンを有する結晶性シリケートである ことを
特徴とする炭化水素の吸着剤。
1. A crystalline silicate having a molecular sieve structure supporting copper , wherein said crystalline silicate is dehydrated.
It was expressed in terms of mole ratios of oxides in the state, (1 ± 0.6) R 2 O · [aM 2 O 3 · bAl 2 O 3 ·
cMeO] · ySiO 2 (where R is an alkali metal
Ion and / or hydrogen ion, M is group VIII metal, rare earth
Metal, titanium, vanadium, chromium, niobium, antimo
One or more metals selected from the group consisting of
Me is an alkaline earth metal, a ≧ 0, b ≧ 0, c ≧ 0, a
+ B = 1, y / c> 12, y> 12) , and X shown in Table A described in detail in the text.
A hydrocarbon adsorbent, which is a crystalline silicate having a line diffraction pattern .
【請求項2】 分子篩構造をもつ結晶性シリケートが
め合成した請求項1に記載の結晶性シリケートを母結晶
とし、その外表面に母結晶と同一の結晶構造を有するS
iとOよりなる結晶性シリケートを成長してなり、かつ
本文で詳記する表Aに示されるX線回折パターンを有す
る層状複合結晶性シリケートであることを特徴とする
化水素の吸着剤。
2. A crystalline silicate having a molecular sieve structure is preliminarily obtained.
2. The crystalline silicate according to claim 1 synthesized in a mother crystal.
Having an outer surface having the same crystal structure as that of the mother crystal.
growing a crystalline silicate consisting of i and O, and
Has the X-ray diffraction pattern shown in Table A detailed in the text
An adsorbent for hydrogen carbonate, which is a layered composite crystalline silicate .
【請求項3】 銅を担持してなる分子篩構造をもつ結晶
性シリケートよりなり、該結晶性シリケートがL型ゼオ
ライト、クリノプチロライト、A型ゼオライト、フェリ
エライト、ZSM−5型ゼオライトであることを特徴と
する炭化水素の吸着剤。
3. A crystal having a molecular sieve structure carrying copper.
The crystalline silicate is an L-type zeolite.
Light, clinoptilolite, zeolite A, ferri
Characterized by being Elite, ZSM-5 type zeolite
Hydrocarbon adsorbent.
【請求項4】 請求項1〜3いずれかの銅を担持してな
る分子篩構造をもつ結晶性シリケートに、さらにコバル
ト、ニッケル、クロム、鉄、マンガン、銀、金、白金、
パラジウム、ルテニウム、ロジウム、バナジウムからな
る群から選ばれた1種以上の金属を担持してなることを
特徴とする炭化水素の吸着剤。
4. The method according to claim 1 wherein copper is supported.
Crystalline silicate with a molecular sieve structure
G, nickel, chromium, iron, manganese, silver, gold, platinum,
From palladium, ruthenium, rhodium and vanadium
That one or more metals selected from the group
Characterized hydrocarbon adsorbent.
【請求項5】 内燃機関などの起動時における排ガス中
の炭化水素を除去するにあたり、低温時の排ガスを請求
項1〜4いずれかの炭化水素の吸着剤と接触させて該排
ガス中の炭化水素を吸着除去させ、その後該吸着剤を高
温条件にして吸着炭化水素を燃焼除去すると共に、吸着
剤を再生することを特徴とする炭化水素の吸着除去方
法。
5. In an exhaust gas at the time of starting an internal combustion engine or the like.
Low-temperature exhaust gas to remove hydrocarbons
Claims 1 to 4
Adsorb and remove hydrocarbons in the gas, then raise the adsorbent
Combustion and removal of adsorbed hydrocarbons under temperature conditions
Of adsorbing and removing hydrocarbons by regenerating sorbents
Law.
【請求項6】 炭化水素の吸着剤の内部を切り抜き、切
り抜き箇所に切り換え弁を設置し、低温時の排ガス中の
炭化水素を吸着剤に吸着させる場合は該切り換え弁を閉
めて排ガスと吸着剤を接触させて吸着剤に炭化水素を吸
着させ、吸着炭化水素を燃焼除去する場合は切り換え弁
を開けて高温排ガスを切り抜き箇所を通してパージさせ
て吸着剤を高温条件にすることを特徴とする請求項5記
載の炭化水素の吸着除去方法。
6. A method for cutting out the inside of a hydrocarbon adsorbent,
A switching valve is installed at the punching point,
When the hydrocarbon is adsorbed by the adsorbent, close the switching valve.
Contact the exhaust gas with the adsorbent to absorb hydrocarbons
Switching valve to burn and remove adsorbed hydrocarbons
Open and purge hot exhaust gas through the cutout
6. The method according to claim 5, wherein the adsorbent is heated to a high temperature.
Absorption and removal method for hydrocarbons mentioned.
JP00770293A 1993-01-20 1993-01-20 Hydrocarbon adsorbent and adsorption purification method Expired - Fee Related JP3207577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00770293A JP3207577B2 (en) 1993-01-20 1993-01-20 Hydrocarbon adsorbent and adsorption purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00770293A JP3207577B2 (en) 1993-01-20 1993-01-20 Hydrocarbon adsorbent and adsorption purification method

Publications (2)

Publication Number Publication Date
JPH06210163A JPH06210163A (en) 1994-08-02
JP3207577B2 true JP3207577B2 (en) 2001-09-10

Family

ID=11673091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00770293A Expired - Fee Related JP3207577B2 (en) 1993-01-20 1993-01-20 Hydrocarbon adsorbent and adsorption purification method

Country Status (1)

Country Link
JP (1) JP3207577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492015B (en) * 2009-03-02 2011-08-24 浙江师范大学 Reticular lamination carbon-copper composite material pantograph pan and manufacturing method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042797A (en) 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
JP6123178B2 (en) * 2012-07-11 2017-05-10 東ソー株式会社 Methane adsorbent and methane adsorption removal method using the same
JP6001483B2 (en) 2013-03-26 2016-10-05 ヘンケルジャパン株式会社 Hot melt adhesive
KR102085652B1 (en) * 2017-12-29 2020-03-06 현대자동차 주식회사 Hydrocarbon Trap Comprising Metal-impregnated Zeolite Particles Having Regular Mesopores and Method of Preparing the Same
US11648527B2 (en) 2018-03-02 2023-05-16 Tosoh Corporation Hydrocarbon adsorbent
WO2022255383A1 (en) 2021-06-02 2022-12-08 東ソー株式会社 Yfi-type zeolite, production method therefor, hydrocarbon adsorbent, and hydrocarbon adsorption method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492015B (en) * 2009-03-02 2011-08-24 浙江师范大学 Reticular lamination carbon-copper composite material pantograph pan and manufacturing method

Also Published As

Publication number Publication date
JPH06210163A (en) 1994-08-02

Similar Documents

Publication Publication Date Title
US6103208A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
CA2032799C (en) Catalyst for and method of purifying oxygen-excess exhaust gas
JP2005514551A (en) Exhaust system and method for removing particulate matter from diesel engine exhaust
JP2018513773A (en) Passive NOx adsorbent
US5795553A (en) Nitrogen oxide adsorbing material
KR20150121074A (en) NOx TRAP COMPOSITION
EP0935055A2 (en) Device for purifying oxygen rich exhaust gas
JPH08155303A (en) Exhaust gas purification catalyst carrier, production of the same and exhaust gas purification catalyst using the same and method for purifying exhaust gas
JP3137497B2 (en) Adsorbent and adsorption removal method for hydrocarbon
JP3207577B2 (en) Hydrocarbon adsorbent and adsorption purification method
EP0888808B1 (en) Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JPH07332073A (en) Exhaust emission control device
JP3197090B2 (en) Hydrocarbon adsorbent and adsorption purification method
JP3975557B2 (en) Ethylene adsorption removal method
JP3157555B2 (en) Exhaust gas purification catalyst
JPH0899033A (en) Adsorbent for hydrocarbon
JP4876644B2 (en) Exhaust gas purification method
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JP2005500152A (en) Substance for removing nitrogen oxides using lamellar structure
JPH09225265A (en) Exhaust gas purifying device
JP3271802B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

LAPS Cancellation because of no payment of annual fees