JP3975557B2 - Ethylene adsorption removal method - Google Patents

Ethylene adsorption removal method Download PDF

Info

Publication number
JP3975557B2
JP3975557B2 JP15433898A JP15433898A JP3975557B2 JP 3975557 B2 JP3975557 B2 JP 3975557B2 JP 15433898 A JP15433898 A JP 15433898A JP 15433898 A JP15433898 A JP 15433898A JP 3975557 B2 JP3975557 B2 JP 3975557B2
Authority
JP
Japan
Prior art keywords
adsorbent
ethylene
comparative
ferrierite
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15433898A
Other languages
Japanese (ja)
Other versions
JPH11216359A (en
Inventor
宏 小川
雪夫 伊藤
雅雄 中野
慶治 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP15433898A priority Critical patent/JP3975557B2/en
Publication of JPH11216359A publication Critical patent/JPH11216359A/en
Application granted granted Critical
Publication of JP3975557B2 publication Critical patent/JP3975557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、ガス中、例えば大気または内燃機関より排出される排ガス中に含まれる炭化水素の吸着除去方法に関するものであり、例えば自動車等の内燃機関から排出される排ガス中の炭化水素、特にエチレンの浄化及び農作物等から発生する成熟・老化ホルモンであるエチレンの吸着除去等に適用することができる。
【0002】
【従来の技術】
自動車等の内燃機関から排出される炭化水素を含有する排ガスの浄化において、三元触媒を用いて、排ガスと接触させる方法が実用化されている。上記三元触媒の排ガス浄化能は300℃以上で発現することが知られている。このためエンジン始動時の排ガス温度が低い場合、排ガス中の炭化水素濃度が高いことに加えて、三元触媒が作動する温度に達していないため、炭化水素は浄化されずにそのまま排出される。
【0003】
低温時の排ガスからの炭化水素の浄化に対し、特開平2−135126号公報では炭化水素を吸着浄化することを目的として、Y型ゼオライト及びモルデナイトのゼオライトをコ−トしたモノリス担体の一部に1種以上の金属を担持した炭化水素の吸着剤を用いた排ガス浄化装置が提案されている。この他にもゼオライトを構成成分とした炭化水素の吸着剤が数多く提案されている。例えば、特開平6−126165号公報ではAgを担持した分子篩、特開平6−312132号公報ではAg及びAgとCo,Ni,Cr,Fe,Mn,Ag,Au,Pt,Pd,Ru,Rh,Vからなる群から選ばれた少なくとも1種以上の金属を含有したゼオライト、特開平8−99033号公報ではAgと周期律表の第IIIB族の金属でイオン交換されたゼオライト、特開平6−210165号公報ではPdとゼオライトから構成される吸着剤、特開平6−210163号公報ではCu及びCuとCo,Ni,Cr,Fe,Mn,Ag,Au,Pt,Pd,Ru,Rh,Vからなる群から選ばれた少なくとも1種以上の金属を含有したゼオライト、特開平6−170234号公報ではCuとPdの少なくとも1種以上の金属でイオン交換したZSM−5ゼオライト、特開平5−31359号公報ではSiO2/Al23モル比が40以上のゼオライトが提案されている。
【0004】
また低温時の排ガスから吸着剤により炭化水素を吸着し、排ガス温度の上昇する際に吸着剤から脱離する炭化水素を利用して窒素酸化物の除去性能を向上させることができることも公知である。炭化水素吸着剤と窒素酸化物除去触媒を組み合わせた排ガス浄化触媒として、以下の触媒がこれまでに提案されている。
【0005】
特開平2−56247号公報では、冷間状態でかつ空燃比がリッチの状態で炭化水素を選択的にゼオライトに吸着させ、排ガス温度の上昇によりゼオライトから脱離した炭化水素及び排ガス中の窒素酸化物、一酸化炭素、炭化水素を浄化する触媒として、担体上にゼオライトを主成分とする第一触媒層と、その上に酸化還元能を備えた貴金属触媒を主成分とする第二触媒層とを形成させたことを特徴とする排ガス浄化触媒、特開平5−293380号公報では、多孔体からなる担体に、少なくともPtを含む触媒成分を担持させた触媒と、固体酸性及び分子篩性を有するアルミノシリケートを主体とし、アルカリ金属及びアルカリ土類金属から選択された少なくとも一種以上の金属を担持してなる炭化水素吸着剤から構成されることを特徴とする排ガス浄化触媒が提案されている。
【0006】
また特開平8−24655号公報では、結晶質の金属含有シリケートに触媒金属を担持させてなる排ガス中の窒素酸化物を炭化水素の存在下で浄化するNOx触媒に、排ガス中の炭化水素を吸着し、一定温度以上で吸着した炭化水素を脱離する炭化水素吸着剤とを混合、またはNOx触媒層と炭化水素吸着剤層を積層させることを特徴とする排ガス浄化触媒、特開平8−164338号公報では、担体上に無機結晶性モレキュラーシーブよりなる炭化水素吸着剤が担持され、その炭化水素吸着剤粒子の表面にPdを触媒金属とする第一触媒層を形成し、さらに第一触媒層の上に希土類酸化物を主成分とする希土類酸化物層を形成し、希土類酸化物層の上にPt及びRhのうち少なくとも一方を触媒とする第二触媒層を形成していることを特徴とする排ガス浄化触媒が提案されている。
【0007】
また特開平9−872号公報での内燃機関の排気管内に電子供与性及び/又は二酸化窒素の吸収及び放出作用を有する物質と貴金属とを含む低温着火性触媒組成物と炭化水素吸着能を有する吸着剤が配置されてなる排ガス浄化システムも提案されている。
【0008】
これらの吸着剤を用いた炭化水素の吸着除去方法及び排ガス浄化方法は、いずれもが排ガス中に含まれる炭化水素をエンジン始動時の低温域で吸着剤に一旦吸着せしめておき、且つ排ガス浄化触媒が作動する温度まで吸着保持し、それ以上の温度域で吸着剤から脱離した炭化水素を排ガス浄化触媒で浄化しようとするものである。即ち、吸着剤による炭化水素の吸着除去は、低温時の炭化水素の選択的吸着と吸着保持力を兼ね備えて、有効に機能する。
【0009】
【発明が解決しようとする課題】
近年、炭化水素の排出による環境汚染の問題が注目され、炭化水素の除去技術の向上が望まれている。例えば自動車等の内燃機関から排出される排ガスには、数多くの種類の炭化水素が混在するため、炭化水素の種類に応じた吸着剤が必要であるが、上記の従来技術においては、低級炭化水素特にエチレンの吸着特性に関する検討が不十分であり、従来技術に開示されている吸着剤ではエチレン吸着特性が十分でなかった。
【0010】
一般に、ゼオライトを吸着剤に用いた場合の炭化水素の吸着特性は、炭化水素の種類及びゼオライトの細孔構造に大きく影響される。炭素数の少ない炭化水素の吸着特性については、その分子径が小さいため、ゼオライト細孔内への拡散、移動が起こり易く、吸着も容易である。しかし、炭化水素の移動の容易性のため、脱離も容易となり、排ガス浄化を目的とした場合は、結果として三元触媒に代表される炭化水素の浄化触媒が作動する温度より低温で炭化水素が脱離し、浄化が不十分となる。また酸素過剰の排ガス浄化において、吸着した炭化水素の利用率が低くなる。一方、炭素数が大きい炭化水素の吸着特性については、ゼオライトの細孔径より分子径が大きい炭化水素では、細孔内への拡散、移動ができないため、吸着量が減少する。よって炭化水素の吸着量が減少し、炭化水素が充分に浄化されずにそのまま排出される。
【0011】
また、内燃機関の排ガスの温度が高くは600℃以上にも達するため、吸着剤が高温の排ガスに晒された後でも、炭化水素の吸着性能が低下しない、即ち耐熱性の高い吸着剤である必要がある。さらに炭化水素吸着剤と窒素酸化物除去触媒とを組み合わせた排ガス浄化システムは、吸着炭化水素の脱離温度と窒素酸化物除去触媒の作動温度とがマッチングして、有効に機能させる必要がある。
【0012】
本発明の目的は、エチレンの吸着能が高く、かつ排ガスの浄化に用いた場合でも、排ガス浄化触媒が作動する温度まで炭化水素を吸着保持する吸着性能を有し、かつその吸着性能において充分な耐熱性を有する吸着剤、及びその吸着剤を用いてガス中に含有される炭化水素を吸着除去する方法、また本発明の吸着剤と窒素酸化物除去触媒とを用いた排ガス浄化法を提供するところにある。
【0013】
【課題を解決するための手段】
本発明者らはこれらの状況に鑑み、低級炭化水素特にエチレンの吸着特性を鋭意検討した結果、これまでに開示された炭化水素の吸着剤に比べて、SiO2/Al23モル比が15以上のフェリエライト型構造を有するゼオライトから構成される吸着剤はエチレンの吸着量が特異的に多く、かつ吸着した炭化水素の保持力が強く、更には高温に晒された後でも吸着特性の低下がない、即ち耐熱性に優れていることを見い出し本発明を完成するに至った。
【0014】
すなわち本発明は、Agが含有されたSiO2/Al23モル比が15以上のフェリエライト型構造を有するゼオライトから構成されることを特徴とするエチレン吸着剤をガスに接触させることを特徴とする、ガス中のエチレン吸着除去方法である。以下、本発明を詳細に説明する。
【0015】
本発明のガス中のエチレン吸着除去方法に使用される吸着剤は、フェリエライト型構造を有するゼオライト(以下フェリエライト)で構成されることが必須である。本発明に係るフェリエライトとは、xMn/2O・Al23・ySiO2・zH20(但し、nは陽イオンMの原子価、xは0〜2.5の範囲の数、yは15以上の数、zは0以上の数である)の組成を有し、天然品及び合成品として得られる。その構造に関しては、例えばCOLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITES,M.M.J.Treacy,J.B.Higgins and R.von Ballmoos,ZEOLITES,vol.16,p.456−459(1996)に記載されており、表1の様なX線回折パタ−ンを有する構造として定義されている。
【0016】
【表1】

Figure 0003975557
【0017】
本発明のガス中のエチレン吸着除去方法に使用される吸着剤を構成するフェリエライトのSiO2/Al23モル比は、15以上である。SiO2/Al23モル比が15未満ではゼオライト自身の耐熱性が低くなり、吸着剤が高温に晒される場合には、吸着特性が低下する。フェリエライトのSiO2/Al23モル比は、より好ましくは21〜1000であり、更に好ましくは40〜200である。
【0018】
フェリエライトの製造方法については特に限定はないが、例えば特開昭59−73423号公報及び特開昭60−141617号公報等で開示されている有機硬化剤を使用しない方法で調製することができる。これらの製造方法は、シリカ源、アルミナ源をアルカリ溶液中に分散させ、水熱合成により得る手法である。更に、ピリジン、N−メチルピリジンヒドロキシド、ピペリジン、アルキル置換ピペリジン、ブタンジアミン等の有機硬化剤を合成原料中に存在せしめて製造することもできる。有機硬化剤の添加量は、有機硬化剤/SiO2モル比で0.01〜10であり、好ましくは0.05〜5である。より耐熱性、耐久性の高い炭化水素吸着剤とするには、特開平8−188414号公報に記載されているピリジンとフッ素化合物を用いた方法で製造することがより好ましい。
【0019】
フェリエライトを製造する際のフッ素化合物としては、フッ化水素、フッ化ナトリウム、ケイフッ化ナトリウム、クリオライト等の可溶性フッ素化合物を用いることができる。その添加量はフッ素化合物/SiO2モル比で0.01〜10であり、好ましくは0.05〜5が良い。ピリジンの添加量はピリジン/SiO2モル比で0.0〜10であり、好ましくは0.1〜5が良い。
【0020】
また、シリカ源としては、ケイ酸ナトリウム、無定型シリカ、シリカゾル、シリカゲル、カオリナイト、珪藻土等を、アルミナ源としてはアルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム等を用いることができる。特公昭63−46007号公報に開示されている珪酸アルカリ水溶液と含アルミニウム水溶液とを同時に且つ連続的に反応させることによって得られる粒状無定型アルミノ珪酸塩均一相化合物も、シリカ源、アルミナ源の好適な材料として使用することができる。
【0021】
反応系にピリジン及びフッ素化合物を添加してフェリエライトを製造する場合、フェリエライト中にフッ素及び/またはフッ素化合物が残存する場合がある。フッ素及び/またはフッ素化合物は残存していてもよいが、耐熱性、耐久性を更に高めるためにはフッ素及び/またはフッ素化合物を除去することが好ましい。フッ素及び/又はフッ素化合物の除去方法としては、例えば80℃の大量の熱水で濾過洗浄する方法、希薄な塩酸または塩化アルミニウム水溶液等を用いて洗浄する方法等が挙げられる。
【0022】
フェリエライトは、合成品あるいはそのか焼品等が用いられるが、フェリエライト中のNa等のイオンをアンモニウム塩あるいは鉱酸等で処理し、H型あるいはアンモニウム型として用いることもできる。か焼は300〜1200℃で行うことができる。
【0023】
本発明のガス中のエチレン吸着除去方法に使用されるエチレン吸着剤は、上記のフェリエライトにAgが含有されている。Agの含有量は、エチレンの吸着性能を十分に発揮させるためには、フェリエライト及び活性金属成分の合計量に対して0.1〜20重量%の範囲であることが好ましい。より好ましくは0.2〜10重量%であり、更に好ましくは0.2〜7重量%である。
【0024】
Agを含有させる方法としては、特に限定されず、公知の方法を適宜採用することができる。例えば、イオン交換法、含浸担持法、蒸発乾固法、浸漬法、固相交換法等を採用することができる。Agの含有に用いる塩としては、特に限定されるものではなく、硝酸塩、硫酸塩、酢酸塩、蓚酸塩あるいはアンミン錯塩等の塩で良い。
【0025】
本発明のガス中のエチレン吸着除去方法に使用されるエチレン吸着剤は、更にPdが含有されていても良い。Pdの含有量は、特に限定されないが、フェリエライト及び活性金属成分の合計量に対して0.01〜10重量%の範囲であることが好ましい。より好ましくは0.05〜5重量%であり、更に好ましくは0.1〜3重量%である。Pdを含有させる方法としては特に限定はなく、上述のAgと同様の方法、同様の塩を用いることができる。またAgとPdはどちらを先にフェリエライトに含有させてもよく、また同時に含有させてもよい。
【0026】
本発明のガス中のエチレン吸着除去方法に使用される吸着剤は、Ag,Pdだけでなく、他の遷移金属をフェリエライトに含有させてもよい。遷移金属としては特に限定はなく、周期表のIIIA,IVA,VA,VIA,VIIA,VIII,IB,IIB族の元素があげられ、これらも上述のAgと同様の方法、同様の塩を用いて含有させることができる。
【0027】
以上のようにして、本発明のガス中のエチレン吸着除去方法に使用されるエチレン吸着剤を調製することができる。
【0028】
本発明のガス中のエチレン吸着除去方法に使用される吸着剤は、シリカ、アルミナ及び粘土鉱物等のバインダ−と混合し成形して使用することもできる。粘土鉱物としては、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン、セピオライト等を挙げることができる。また、コ−ジェライト製あるいは金属製のハニカム状基材に本発明の吸着材をウォッシュコ−トして使用することもできる。
【0029】
本発明のガス中のエチレン吸着除去方法により、エチレンの吸着除去を行うことが出来る。このガスには特に制限はなく、具体的には大気、排気ガス、農作物の保管室内ガスなどエチレンを含んでいるガスが例示される。またエチレン以外に、一酸化炭素、二酸化炭素、水素、酸素、窒素、窒素酸化物、硫黄酸化物、水、エチレン以外の炭化水素が含まれている場合にも有効である。
【0030】
ガス中のエチレンの濃度は特に限定されないが、メタン換算で0.001〜5vol%が好ましく、より好ましくは0.005〜3vol%である。エチレン以外の各成分の濃度についても特に限定されず、例えばCO=0〜1vol%、CO2=0〜10vol%、O2=0〜20vol%、窒素酸化物=0〜1vol%、硫黄酸化物=0〜0.05vol%、H2O=0〜15vol%でよい。
【0031】
エチレンを吸着除去する際の空間速度、温度は特に限定されないが、空間速度:100〜500000hr-1、温度:−30〜250℃であることが好ましい。
【0032】
本発明において、Agを含有したSiO2/Al23モル比が15以上のフェリエライトが高いエチレン吸着特性を示す理由は不明であるが、フェリエライトの細孔構造に起因すると考えられる。フェリエライトの細孔は長径5.5オングストロ−ム(A)短径4.3Aの酸素10員環細孔と長径4.8A短径3.4Aの酸素8員環細孔が2次元的に連結した構造である。一方、ZSM−5、ゼオライトβ等の細孔のサイズは、フェリエライトより大きいことが知られている。エチレンの有効分子径は3.9Aであり、フェリエライト細孔内への拡散は可能である。更にエチレンの分子径とフェリエライト細孔の大きさが近似しており、吸着したエチレンとフェリエライトの相互作用が強くなる。即ち、吸着したエチレンの脱離が容易でなくなり、保持力が大きくなると考えられる。
【0045】
したがって本発明で処理される排ガスに含まれる炭化水素の種類は特に限定されないが、エチレンが含まれいる場合は窒素酸化物の除去率が大きく向上するため好ましく、その他にパラフィン、オレフィン、芳香族化合物及びそれらの混合物が含まれていてもよい。具体的には、パラフィン及びオレフィンとして炭素数が1〜20の炭化水素を例示することができ、芳香族化合物としてベンゼン、ナフタレン、アントラセン及びこれらの誘導体を例示することができる。また、軽油、灯油、ガソリンなどを例示することもできる。
【0046】
また本発明で処理される排ガス中に一酸化炭素、二酸化炭素、水素、窒素、硫黄酸化物、水が含まれている場合にも有効である。
【0047】
排ガス中の各成分ガスの濃度は特に限定されないが、通常、窒素酸化物が50〜2000ppm、炭化水素がメタン換算で0.001〜5vol%、酸素が0.1〜20%が好ましい。上記成分ガス以外の各成分の濃度についても特に限定されず、一酸化炭素が0〜1vol%、二酸化炭素が0〜10vol%、硫黄酸化物が0〜0.05vol%、水が0〜15vol%が好ましい。また排ガス中の炭化水素の濃度が低い場合には、上記の適当な炭化水素を排ガス中に添加しても良い。
【0048】
処理される排ガスの空間速度及び温度は特に限定されないが、空間速度(体積基準)が100〜500000hr-1、温度が−30〜900℃であることが好ましい。更に好ましくは空間速度が2000〜200000hr-1、温度が−30〜850℃である。
【0049】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、これらの実施例に何ら限定されるものではない。
【0050】
<実施例1>吸着剤1の調製
SiO2/Al23モル比が17の東ソ−製フェリエライト(商品名:HSZ−720KOA)40gを、NH4Cl:18.0gを純水400gに溶解した塩化アンモニウム水溶液中に添加し、60で20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥して、アンモニウム型フェリエライト(NH4−FER−1)を得た。
【0051】
NH4−FER−1:20g(無水換算)を、硝酸銀:0.62gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。その後、110℃で20時間乾燥して、吸着剤1を得た。吸着剤1のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0052】
<実施例2>吸着剤2の調製
用いた硝酸銀が1.55gであること以外は、実施例1と同様の条件でAg担持を行って、吸着剤2を調製した。吸着剤2のAg担持量をICP発光分析により分析したところ、5重量%であった。
【0053】
<実施例3>吸着剤3の調製
フェリエライトとして、水熱合成法により合成したSiO2/Al23モル比が21のフェリエライトを用いたこと以外は、実施例1と同様にして吸着剤3を得た。吸着剤3のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0054】
<実施例4>吸着剤4の調製
塩化アルミニウム・6水和物(AlCl3・6H2O:98.0重量%)8.2gと塩化アルミニウムから生成するHClを中和するだけの水酸化ナトリウム(NaOH:99重量%)6.5gとフッ素源としてフッ化ナトリウム(NaF:99重量%)40.3gとピリジン(C55N)95.6mlを、純水628mlに溶解し、均一な溶液とした。
【0055】
この均一溶液にホワイトカ−ボン(日本シリカ工業製、商品名:ニップシ−ルVN−3、SiO2:88重量%)81.1gを加えて、次のモル組成比の原料混合物スラリ−を調製した。
【0056】
SiO2/Al23=57
F/SiO2=0.8
55N/SiO2=1
2O/SiO2=30
この混合物を容積1Lのオ−トクレ−ブに入れ、回転速度50rpmで攪拌しながら180℃で72時間の水熱合成を行った。結晶化後のゼオライトスラリ−のpHは10.7であった。冷却後、固形分を分離し、十分水洗した後、110℃で一晩乾燥した。
【0057】
フッ素及び/またはフッ素化合物を除去するために、得られた生成物を80℃の純水で十分に洗浄した。蛍光X線分析の結果、洗浄後のゼオライト中のフッ素及び/またはフッ素化合物は検出限界(0.1%)以下であった。また洗浄後の生成物の組成をICP発光分析により分析したところ、無水換算で
0.96Na2O・Al23・74SiO2
であった。
【0058】
洗浄後の生成物の結晶構造をXRD分析により分析したところ、表1に示したものと同等のX線回折図が得られ、フェリエライトであることを確認した。
【0059】
この得られたフェリエライト型ゼオライトを、空気流通下で600℃で4時間焼成することによりピリジンを除去した。その後、フェリエライト:40gをNH4Cl:3.36gを純水400gに溶解した塩化アンモニウム水溶液中に添加し、60℃で20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥して、アンモニウム型フェリエライト(NH4−FER−2)を得た。
【0060】
NH4−FER−2:20g(無水換算)を、硝酸銀:0.62gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。その後、110℃で20時間乾燥して、吸着剤4を得た。吸着剤4のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0061】
<実施例5>吸着剤5の調製
フェリエライト合成の原料混合スラリーの組成比を
SiO2/Al23=35
F/SiO2=0.8
55N/SiO2=1
2O/SiO2=30
にしたこと以外は、実施例4と同様にして、フェリエライトの合成を行った。実施例4と同様な水洗、乾燥、フッ素及びフッ素化合物の除去操作を行った後の生成物の組成は無水換算で
1.02Na2O・Al23・48SiO2
であった。
【0062】
洗浄後の生成物の結晶構造をXRD分析により分析したところ、表1に示したものと同等のX線回折図が得られ、フェリエライトであることを確認した。
【0063】
この得られたフェリエライト型ゼオライトを、空気流通下で600℃で4時間焼成することによりピリジンを除去した。その後、フェリエライト:40gをNH4Cl:3.36gを純水400gに溶解した塩化アンモニウム水溶液中に添加し、60℃で20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥して、アンモニウム型フェリエライト(NH4−FER−3)を得た。
【0064】
NH4−FER−3:20g(無水換算)を、硝酸銀:0.62gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。その後、110℃で20時間乾燥して、吸着剤5を得た。吸着剤5のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0065】
<実施例6>吸着剤6の調製
フェリエライト合成の原料混合物スラリ−の組成比を
SiO2/Al23=80
F/SiO2=0.8
55N/SiO2=1.5
2O/SiO2=30
にしたこと以外は、実施例4と同様にして、フェリエライトの合成を行った。実施例4と同様な水洗、乾燥、フッ素及びフッ素化合物の除去操作を行った後の生成物の組成は無水換算で
1.09Na2O・Al23・86SiO2
であった。
【0066】
洗浄後の生成物の結晶構造をXRD分析により分析したところ、表1に示したものと同等のX線回折図が得られ、フェリエライトであることを確認した。
【0067】
この得られたフェリエライト型ゼオライトを、空気流通下で600℃で4時間焼成することによりピリジンを除去した。その後、フェリエライト:40gをNH4Cl:3.36gを純水400gに溶解した塩化アンモニウム水溶液中に添加し、60℃で20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥して、アンモニウム型フェリエライト(NH4−FER−4)を得た。
【0068】
NH4−FER−4:20g(無水換算)を、硝酸銀:0.62gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。その後、110℃で20時間乾燥して、吸着剤6を得た。吸着剤6のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0069】
<実施例7>吸着剤7の調製
フェリエライト合成の原料混合物スラリ−の組成比を
SiO2/Al23=100
F/SiO2=0.8
55N/SiO2=1.5
2O/SiO2=30
にしたこと以外は、実施例4と同様にして、フェリエライトの合成を行った。実施例4と同様な水洗、乾燥、フッ素及びフッ素化合物の除去操作を行った後の生成物の組成は無水換算で
1.09Na2O・Al23・113SiO2
であった。
【0070】
洗浄後の生成物の結晶構造をXRD分析により分析したところ、表1に示したものと同等のX線回折図が得られ、フェリエライトであることを確認した。
【0071】
この得られたフェリエライト型ゼオライトを、空気流通下で600℃で4時間焼成することによりピリジンを除去した。その後、フェリエライト:40gをNH4Cl:3.36gを純水400gに溶解した塩化アンモニウム水溶液中に添加し、60℃で20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥して、アンモニウム型フェリエライト(NH4−FER−5)を得た。
【0072】
NH4−FER−5:20g(無水換算)を、硝酸銀:0.62gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。その後、110℃で20時間乾燥して、吸着剤7を得た。吸着剤7のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0073】
<実施例8>
実施例1で得られたNH4−FER−1:10g(無水換算)を、硝酸銀:0.31gを純水100gに溶解させた硝酸銀水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ag担持を行った。そのAg担持フェリエライトを酢酸パラジウム:0.08gをアセトン50gに溶解させたパラジウム水溶液に添加し、70℃で蒸発乾固し、Pd担持を行った。その後、110℃で20時間乾燥して、吸着剤7を得た。吸着剤7のAg及びPd担持量をICP発光分析により分析したところ、Agが2重量%、Pdが0.4重量%であった。
【0074】
<実施例9>
実施例4で得られたNH4−FER−2を用いたこと以外は実施例8と同様にして、吸着剤9を得た。吸着剤9のAg及びPd担持量をICP発光分析により分析したところ、Agが2重量%、Pdが0.4重量%であった。
【0075】
<比較例1>比較吸着剤1の調製
フェリエライトとして、水熱合成法により合成したSiO2/Al23モル比が13のフェリエライトを用いたこと以外は、実施例1と同様にして、比較吸着剤1を得た。比較吸着剤1のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0076】
<比較例2>比較吸着剤2の調製
SiO2/Al23モル比が24の東ソ−製のZSM−5構造のゼオライト(商品名:HSZ−820NAA)40gを用いたこと以外は実施例1と同様にして、比較吸着剤2を得た。比較吸着剤1のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0077】
<比較例3>比較吸着剤3の調製
SiO2/Al23モル比が72の東ソ−製のZSM−5構造のゼオライト(商品名:HSZ−860HOA)を用いたこと以外は実施例1と同様にして、比較吸着剤3を得た。比較吸着剤3のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0078】
<比較例4>比較吸着剤4の調製
SiO2/Al23モル比が2100の東ソ−製のZSM−5構造のゼオライト(商品名:HSZ−890HOA)を用いたこと以外は実施例1と同様にして、比較吸着剤4を得た。比較吸着剤4のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0079】
<比較例5>比較吸着剤5の調製
SiO2/Al23モル比が26の東ソ−製のモルデナイト構造のゼオライト(商品名:HSZ−660HOA)を用いたこと以外は実施例1と同様にして、比較吸着剤5を得た。比較吸着剤5のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0080】
<比較例6>比較吸着剤6の調製
SiO2/Al23モル比が224の東ソ−製のモルデナイト構造のゼオライト(商品名:HSZ−690HOA)を用いたこと以外は実施例1と同様にして、比較吸着剤6を得た。比較吸着剤6のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0081】
<比較例7>比較吸着剤7の調製
SiO2/Al23モル比が6の東ソ−製のL型構造のゼオライト(商品名:HSZ−500KOA)を用いたこと以外は実施例1と同様にして、比較吸着剤7を得た。比較吸着剤7のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0082】
<比較例8>比較吸着剤8の調製
SiO2/Al23モル比が29の東ソ−製のY型ゼオライト(商品名:HSZ−500KOA)を用いたこと以外は実施例1と同様にして、比較吸着剤8を得た。比較吸着剤8のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0083】
<比較例9>比較吸着剤9の調製
SiO2/Al23モル比が27の東ソ−製のベータ型ゼオライト(商品名:HSZ−930NHA)を用いたこと以外は実施例1と同様にして、比較吸着剤9を得た。比較吸着剤9のAg担持量をICP発光分析により分析したところ、2重量%であった。
【0084】
<比較例10>比較吸着剤10の調製
実施例1で得られたNH4−FER−1をそのまま比較吸着剤10とした。
【0085】
<比較例11>比較吸着剤11の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸銅3水和物:1.52gを純水100gに溶解させた硝酸銅水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Cu担持を行った。その後、110℃で20時間乾燥して、比較吸着剤11を得た。比較吸着剤11のCu担持量をICP発光分析により分析したところ、2重量%であった。
【0086】
<比較例12>比較吸着剤12の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸鉄9水和物:2.9gを純水100gに溶解させた硝酸鉄水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Fe担持を行った。その後、110℃で20時間乾燥して、比較吸着剤12を得た。比較吸着剤12のFe担持量をICP発光分析により分析したところ、2重量%であった。
【0087】
<比較例13>比較吸着剤13の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸バリウム:0.76gを純水100gに溶解させた硝酸バリウム水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ba担持を行った。その後、110℃で20時間乾燥して、比較吸着剤13を得た。比較吸着剤13のBa担持量をICP発光分析により分析したところ、2重量%であった。
【0088】
<比較例14>比較吸着剤14の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸亜鉛:1.82gを純水100gに溶解させた硝酸亜鉛水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Zn担持を行った。その後、110℃で20時間乾燥して、比較吸着剤14を得た。比較吸着剤14のZn担持量をICP発光分析により分析したところ、2重量%であった。
【0089】
<比較例15>比較吸着剤15の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸マグネシウム:4.22gを純水100gに溶解させた硝酸マグネシウム水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Mg担持を行った。その後、110℃で20時間乾燥して、比較吸着剤15を得た。比較吸着剤15のMg担持量をICP発光分析により分析したところ、2重量%であった。
【0090】
<比較例16>比較吸着剤16の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、パラタングステン酸アンモニウム:0.57gを純水100gに溶解させたタングステン水溶液中に添加し、60℃減圧条件下で蒸発乾固し、W担持を行った。その後、110℃で20時間乾燥して、比較吸着剤16を得た。比較吸着剤16のW担持量をICP発光分析により分析したところ、2重量%であった。
【0091】
<比較例17>比較吸着剤17の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、モリブデン酸アンモニウム:5.15gを純水100gに溶解させたモリブデン水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Mo担持を行った。その後、110℃で20時間乾燥して、比較吸着剤17を得た。比較吸着剤17のMo担持量をICP発光分析により分析したところ、2重量%であった。
【0092】
<比較例18>比較吸着剤18の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、0.4gのIrを含有するヘキサアンミンイリジウム水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ir担持を行った。その後、110℃で20時間乾燥して、比較吸着剤18を得た。比較吸着剤18のIr担持量をICP発光分析により分析したところ、2重量%であった。
【0093】
<比較例19>比較吸着剤19の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸ランタン水和物:1.25gを純水100gに溶解させた硝酸ランタン水溶液中に添加し、60℃減圧条件下で蒸発乾固し、La担持を行った。その後、110℃で20時間乾燥して、比較吸着剤19を得た。比較吸着剤19のLa担持量をICP発光分析により分析したところ、2重量%であった。
【0094】
<比較例20>比較吸着剤20の調製
実施例1で得られたNH4−FER−1:20g(無水換算)を、硝酸ニッケル6水和物:1.98gを純水100gに溶解させた硝酸ニッケル水溶液中に添加し、60℃減圧条件下で蒸発乾固し、Ni担持を行った。その後、110℃で20時間乾燥して、比較吸着剤20を得た。比較吸着剤20のNi担持量をICP発光分析により分析したところ、2重量%であった。
【0095】
<エチレンの吸着除去試験>
吸着剤1〜9及び比較吸着剤1〜10について、各々0.1gを石英ガラス製の常圧固定床流通式反応管に充填し、エチレンの吸着実験に供した。前処理として、空気を50cc/min流通させながら、20℃/minの昇温速度で500℃まで加熱し、500℃で1時間保持した。室温まで冷却し、Heガスで完全に置換した後に、表2の組成のモデル排ガスを室温下、ガス流速100cc/minで吸着剤に1時間接触させた。このときの空間速度(体積基準)は30000hr-1であった。モデル排ガス中のエチレンの吸着剤への吸着が飽和に達したのを確認し、再度Heガスを吸着剤に導入し、気相に残存するエチレンを完全に除去した。続いて、Heガスを50cc/minで流通させながら、吸着剤を10℃/minで昇温しながら、吸着剤から脱離する炭化水素を水素炎イオン化検出器(FID)を備えたガスクロマトグラフにより、連続的に定量分析し、エチレンの吸着特性を評価した。表3にエチレンの吸着量及び脱離ピ−ク温度の吸着特性を示す。
【0096】
【表2】
Figure 0003975557
【0097】
【表3】
Figure 0003975557
【0098】
<吸着剤の耐久試験>
吸着剤1〜9、比較吸着剤1〜20を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した各吸着剤3ccを石英ガラス製の常圧固定床流通反応管に充填し、耐久試験に供した。耐久試験は、AirガスにH2Oを体積換算で10vol%となるように含有させた混合ガスを流速300cc/minで吸着剤に流通しながら、850℃で5時間処理した。これら耐久処理を施した吸着剤を<炭化水素の吸着除去試験>と同様な前処理、評価条件で炭化水素の吸着特性を評価した。耐久試験後の炭化水素の吸着特性をそれぞれ表4に示す。
【0099】
【表4】
Figure 0003975557
【0100】
表3および表4からも分かるように、本発明の吸着剤はエチレンの吸着量が大きく、これまでに提案されている吸着剤に比して、吸着特性が優れている。また、本発明の吸着剤は耐久処理による吸着量の低下がみられず、吸着剤が高温に晒された後でもエチレンの吸着除去性能が維持される。
【0121】
本発明に係るエチレン吸着剤は、炭化水素、特にエチレンの吸着量が大きく、吸着特性が優れており、更には本発明に係る吸着剤は、耐久処理よる吸着量の低下がみられず、吸着剤が高温にさらされた後でもエチレンの吸着除去性能が維持される。しかし表6,7より、吸着剤だけでは窒素酸化物及び炭化水素を含む酸素過剰の排ガスから窒素酸化物を除去する活性が低く、その触媒性能は低い。一方、従来提案されている窒素酸化物除去触媒は酸素過剰の排ガスより窒素酸化物の除去活性を示すが、窒素酸化物の除去性能は十分に満足されるものではない。
【0123】
【発明の効果】
本発明のエチレン吸着剤は、気相中のエチレンを効率よく吸着除去でき、かつ吸着剤が高温に晒された後でも炭化水素の吸着性能は低下しない。更に本発明の吸着剤はエチレンを吸着保持する性能が高い。従って、本発明の吸着剤をエチレンを含む気相に接触させることでエチレンを効率よく除去できる。この性質を利用して、本発明の吸着剤により自動車などのエンジン始動時に排出されるエチレンを効率よく吸着除去し、排ガス浄化触媒が作動する温度まで吸着保持することができる。
【0124】
また、本発明の吸着剤は農作物から発生するエチレンの吸着除去等にも適用できる。[0001]
[Industrial application fields]
The present invention relates to hydrocarbons contained in gas, for example, exhaust gas discharged from the atmosphere or an internal combustion engine.Adsorption removal methodFor example, the present invention can be applied to purification of hydrocarbons in exhaust gas discharged from an internal combustion engine such as an automobile, particularly ethylene, and adsorption / removal of ethylene, which is a mature / aging hormone generated from agricultural products.
[0002]
[Prior art]
In purification of exhaust gas containing hydrocarbons discharged from an internal combustion engine such as an automobile, a method of bringing the exhaust gas into contact with exhaust gas using a three-way catalyst has been put into practical use. It is known that the exhaust gas purification ability of the three-way catalyst is manifested at 300 ° C. or higher. For this reason, when the exhaust gas temperature at the time of starting the engine is low, in addition to the high hydrocarbon concentration in the exhaust gas, the temperature does not reach the temperature at which the three-way catalyst operates, so the hydrocarbons are discharged without being purified.
[0003]
In contrast to the purification of hydrocarbons from exhaust gas at low temperatures, JP-A-2-135126 discloses that a part of a monolith support coated with Y-type zeolite and mordenite zeolite is used for the purpose of adsorbing and purifying hydrocarbons. An exhaust gas purification apparatus using a hydrocarbon adsorbent carrying one or more metals has been proposed. In addition, many hydrocarbon adsorbents containing zeolite as a constituent component have been proposed. For example, JP-A-6-126165 discloses a molecular sieve supporting Ag, and JP-A-6-312132 discloses Ag and Ag and Co, Ni, Cr, Fe, Mn, Ag, Au, Pt, Pd, Ru, Rh, Zeolite containing at least one metal selected from the group consisting of V, Zeolite ion-exchanged with Ag and Group IIIB metal of the Periodic Table in JP-A-8-99033, JP-A-6-210165 In this publication, the adsorbent is composed of Pd and zeolite, and in JP-A-6-210163, it is composed of Cu and Cu and Co, Ni, Cr, Fe, Mn, Ag, Au, Pt, Pd, Ru, Rh, V. Zeolite containing at least one metal selected from the group, in Japanese Patent Application Laid-Open No. 6-170234, at least one metal of Cu and Pd is ionized Conversion was ZSM-5 zeolite, SiO in JP-A 5-31359 Patent Publication2/ Al2OThreeZeolite having a molar ratio of 40 or more has been proposed.
[0004]
It is also known that hydrocarbons can be adsorbed by an adsorbent from exhaust gas at a low temperature and the removal performance of nitrogen oxides can be improved by using hydrocarbons desorbed from the adsorbent when the exhaust gas temperature rises. . The following catalysts have been proposed so far as exhaust gas purification catalysts that combine hydrocarbon adsorbents and nitrogen oxide removal catalysts.
[0005]
In Japanese Patent Laid-Open No. 2-56247, hydrocarbons are selectively adsorbed on zeolite in a cold state and in a rich air-fuel ratio, and hydrocarbons desorbed from the zeolite due to an increase in exhaust gas temperature and nitrogen oxidation in the exhaust gas. As a catalyst for purifying substances, carbon monoxide, and hydrocarbons, a first catalyst layer mainly composed of zeolite on a support, and a second catalyst layer mainly composed of a noble metal catalyst having oxidation-reduction ability thereon. In JP-A-5-293380, an exhaust gas purification catalyst characterized in that a catalyst component containing at least Pt is supported on a porous carrier, and an alumino having solid acidity and molecular sieving properties are disclosed. It is characterized by comprising a hydrocarbon adsorbent composed mainly of silicate and carrying at least one metal selected from alkali metals and alkaline earth metals. Exhaust gas purifying catalyst has been proposed that.
[0006]
In JP-A-8-24655, hydrocarbons in exhaust gas are adsorbed to a NOx catalyst that purifies nitrogen oxides in exhaust gas in which a catalytic metal is supported on a crystalline metal-containing silicate in the presence of hydrocarbons. An exhaust gas purification catalyst characterized by mixing a hydrocarbon adsorbent that desorbs hydrocarbons adsorbed at a temperature above a certain temperature, or by laminating a NOx catalyst layer and a hydrocarbon adsorbent layer, Japanese Patent Application Laid-Open No. 8-164338 In the publication, a hydrocarbon adsorbent composed of an inorganic crystalline molecular sieve is supported on a carrier, a first catalyst layer having Pd as a catalyst metal is formed on the surface of the hydrocarbon adsorbent particles, and further, A rare earth oxide layer mainly composed of a rare earth oxide is formed thereon, and a second catalyst layer using at least one of Pt and Rh as a catalyst is formed on the rare earth oxide layer. Exhaust gas purifying catalyst has been proposed.
[0007]
Further, the exhaust pipe of an internal combustion engine described in JP-A-9-872 has a low-temperature ignitable catalyst composition containing a substance having an electron donating and / or nitrogen dioxide absorption and release action and a noble metal, and a hydrocarbon adsorption ability. An exhaust gas purification system in which an adsorbent is arranged has also been proposed.
[0008]
The hydrocarbon adsorption removal method and the exhaust gas purification method using these adsorbents both adsorb the hydrocarbons contained in the exhaust gas once on the adsorbent in the low temperature range when starting the engine, and the exhaust gas purification catalyst. The hydrocarbon is desorbed from the adsorbent at a temperature range higher than that at which the gas is activated, and the exhaust gas purifying catalyst is used to purify the hydrocarbon. That is, the adsorption removal of hydrocarbons by the adsorbent functions effectively by combining the selective adsorption of hydrocarbons at low temperatures and the adsorption holding power.
[0009]
[Problems to be solved by the invention]
In recent years, attention has been paid to the problem of environmental pollution caused by the discharge of hydrocarbons, and improvements in hydrocarbon removal technology are desired. For example, since many types of hydrocarbons are mixed in exhaust gas discharged from an internal combustion engine such as an automobile, an adsorbent corresponding to the type of hydrocarbon is necessary. In particular, the study on the adsorption characteristics of ethylene is insufficient, and the adsorbents disclosed in the prior art have not been sufficient in ethylene adsorption characteristics.
[0010]
In general, the adsorption characteristics of hydrocarbons when zeolite is used as an adsorbent are greatly affected by the type of hydrocarbon and the pore structure of the zeolite. As for the adsorption characteristics of hydrocarbons having a small number of carbon atoms, the molecular diameter thereof is small, so that diffusion and movement into zeolite pores are likely to occur, and adsorption is also easy. However, due to the ease of hydrocarbon migration, desorption is also easy, and when purifying exhaust gas, the hydrocarbons at a temperature lower than the temperature at which the hydrocarbon purification catalyst represented by the three-way catalyst operates as a result. Desorbs and purification becomes insufficient. In addition, in the exhaust gas purification with excess oxygen, the utilization rate of adsorbed hydrocarbons is lowered. On the other hand, as for the adsorption characteristics of hydrocarbons having a large number of carbon atoms, the amount of adsorption decreases because hydrocarbons having a molecular diameter larger than the pore diameter of zeolite cannot diffuse and move into the pores. Therefore, the amount of adsorbed hydrocarbons is reduced, and the hydrocarbons are discharged as they are without being sufficiently purified.
[0011]
Further, since the exhaust gas temperature of the internal combustion engine reaches 600 ° C. or higher, the adsorption performance of hydrocarbons does not deteriorate even after the adsorbent is exposed to high temperature exhaust gas, that is, the adsorbent has high heat resistance. There is a need. Furthermore, an exhaust gas purification system that combines a hydrocarbon adsorbent and a nitrogen oxide removal catalyst must function effectively by matching the desorption temperature of the adsorbed hydrocarbon with the operating temperature of the nitrogen oxide removal catalyst.
[0012]
It is an object of the present invention to have an adsorption capability for adsorbing and holding hydrocarbons up to a temperature at which an exhaust gas purification catalyst operates even when it has a high ethylene adsorption capacity and is used for exhaust gas purification. An adsorbent having heat resistance, a method for adsorbing and removing hydrocarbons contained in gas using the adsorbent, and an exhaust gas purification method using the adsorbent of the present invention and a nitrogen oxide removing catalyst are provided. By the way.
[0013]
[Means for Solving the Problems]
In view of these circumstances, the present inventors have intensively studied the adsorption characteristics of lower hydrocarbons, particularly ethylene, and as a result, compared with the hydrocarbon adsorbents disclosed so far, SiO 22/ Al2OThreeThe adsorbent composed of zeolite having a ferrierite type structure with a molar ratio of 15 or more has a particularly large amount of adsorption of ethylene, a strong retention of adsorbed hydrocarbons, and even after exposure to high temperatures. The inventors have found that there is no decrease in adsorption characteristics, that is, excellent heat resistance, and have completed the present invention.
[0014]
That is, the present invention relates to SiO containing Ag.2/ Al2OThreeEthylene adsorbent comprising a zeolite having a ferrierite structure having a molar ratio of 15 or moreOf adsorbing and removing ethylene in a gas, characterized by contacting the gas with a gasIt is. Hereinafter, the present invention will be described in detail.
[0015]
Of the present inventionUsed in ethylene adsorption removal method in gasIt is essential that the adsorbent is composed of zeolite having a ferrierite structure (hereinafter referred to as ferrierite). The ferrierite according to the present invention is xMn / 2O ・ Al2OThree・ YSiO2・ ZH2Having a composition of 0 (where n is the valence of the cation M, x is a number in the range of 0 to 2.5, y is a number of 15 or more, and z is a number of 0 or more), Obtained as a synthetic product. Regarding the structure, for example, COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITES, M.C. M.M. J. et al. Treacy, J. et al. B. Higgins and R.M. von Ballmoos, ZEOLITES, vol. 16, p. 456-459 (1996) and is defined as a structure having an X-ray diffraction pattern as shown in Table 1.
[0016]
[Table 1]
Figure 0003975557
[0017]
Of the present inventionUsed in ethylene adsorption removal method in gasSiO of ferrierite constituting adsorbent2/ Al2OThreeThe molar ratio is 15 or more. SiO2/ Al2OThreeIf the molar ratio is less than 15, the heat resistance of the zeolite itself becomes low, and if the adsorbent is exposed to a high temperature, the adsorption characteristics deteriorate. Ferrierite SiO2/ Al2OThreeThe molar ratio is more preferably 21 to 1000, still more preferably 40 to 200.
[0018]
The method for producing ferrierite is not particularly limited, but it can be prepared by a method that does not use an organic curing agent disclosed in, for example, JP-A-59-73423 and JP-A-60-141617. . These production methods are methods in which a silica source and an alumina source are dispersed in an alkaline solution and obtained by hydrothermal synthesis. Furthermore, it can also be produced in the presence of an organic curing agent such as pyridine, N-methylpyridine hydroxide, piperidine, alkyl-substituted piperidine, butanediamine in the synthetic raw material. The amount of organic curing agent added is organic curing agent / SiO2The molar ratio is 0.01 to 10, preferably 0.05 to 5. In order to obtain a hydrocarbon adsorbent having higher heat resistance and durability, it is more preferable to produce by a method using pyridine and a fluorine compound described in JP-A-8-188414.
[0019]
Soluble fluorine compounds such as hydrogen fluoride, sodium fluoride, sodium silicofluoride, and cryolite can be used as the fluorine compound for producing ferrierite. The amount added is fluorine compound / SiO2The molar ratio is 0.01 to 10, preferably 0.05 to 5. The amount of pyridine added is pyridine / SiO2The molar ratio is 0.0 to 10, preferably 0.1 to 5.
[0020]
Also, sodium silicate, amorphous silica, silica sol, silica gel, kaolinite, diatomaceous earth, etc. are used as the silica source, and sodium aluminate, aluminum hydroxide, aluminum chloride, aluminum nitrate, aluminum sulfate, etc. are used as the alumina source. Can do. A granular amorphous aluminosilicate homogeneous phase compound obtained by reacting an alkali silicate aqueous solution and an aluminum-containing aqueous solution simultaneously and continuously as disclosed in JP-B 63-46007 is also suitable for a silica source and an alumina source. Can be used as a new material.
[0021]
When ferrierite is produced by adding pyridine and a fluorine compound to the reaction system, fluorine and / or a fluorine compound may remain in the ferrierite. Fluorine and / or fluorine compounds may remain, but it is preferable to remove fluorine and / or fluorine compounds in order to further improve heat resistance and durability. As a method for removing fluorine and / or fluorine compounds, for example, a method of filtering and washing with a large amount of hot water at 80 ° C., a method of washing using dilute hydrochloric acid or an aluminum chloride aqueous solution, and the like can be mentioned.
[0022]
A synthetic product or a calcined product thereof is used as the ferrierite, but it can also be used as an H type or an ammonium type by treating ions such as Na in the ferrierite with an ammonium salt or a mineral acid. Calcination can be performed at 300-1200 degreeC.
[0023]
Of the present inventionUsed in ethylene adsorption removal method in gasThe ethylene adsorbent contains Ag in the above ferrierite. The Ag content is preferably in the range of 0.1 to 20% by weight with respect to the total amount of ferrierite and active metal component in order to sufficiently exhibit ethylene adsorption performance. More preferably, it is 0.2-10 weight%, More preferably, it is 0.2-7 weight%.
[0024]
The method for containing Ag is not particularly limited, and a known method can be appropriately employed. For example, an ion exchange method, an impregnation support method, an evaporation to dryness method, an immersion method, a solid phase exchange method, or the like can be employed. The salt used for containing Ag is not particularly limited, and may be a salt such as nitrate, sulfate, acetate, oxalate, or ammine complex.
[0025]
Of the present inventionUsed in ethylene adsorption removal method in gasThe ethylene adsorbent may further contain Pd. Although content of Pd is not specifically limited, It is preferable that it is the range of 0.01 to 10 weight% with respect to the total amount of a ferrierite and an active metal component. More preferably, it is 0.05-5 weight%, More preferably, it is 0.1-3 weight%. The method for containing Pd is not particularly limited, and the same method and the same salt as Ag described above can be used. Further, either Ag or Pd may be contained in the ferrierite first, or may be contained simultaneously.
[0026]
Of the present inventionUsed in ethylene adsorption removal method in gasThe adsorbent may contain not only Ag and Pd but also other transition metals in ferrierite. The transition metal is not particularly limited, and includes elements of groups IIIA, IVA, VA, VIA, VIIA, VIII, IB, and IIB in the periodic table, and these are also used in the same method and the same salt as Ag described above. It can be included.
[0027]
As described above, the present inventionUsed in ethylene adsorption removal method in gasAn ethylene adsorbent can be prepared.
[0028]
Of the present inventionUsed in ethylene adsorption removal method in gasThe adsorbent can also be used after being mixed with a binder such as silica, alumina and clay mineral. Examples of clay minerals include kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. Also, the adsorbent of the present invention can be washed and used on a cordierite or metal honeycomb substrate.
[0029]
Of the present inventionDepending on the adsorption and removal method of ethylene in gasThe adsorption and removal of ethylene can be performed. There are no particular limitations on this gas, and specific examples include gas containing ethylene, such as the atmosphere, exhaust gas, and storage room gas for agricultural products. In addition to ethylene, it is also effective when carbon monoxide, carbon dioxide, hydrogen, oxygen, nitrogen, nitrogen oxides, sulfur oxides, water, and hydrocarbons other than ethylene are included.
[0030]
Although the density | concentration of ethylene in gas is not specifically limited, 0.001-5 vol% is preferable in conversion of methane, More preferably, it is 0.005-3 vol%. The concentration of each component other than ethylene is not particularly limited. For example, CO = 0 to 1 vol%, CO2= 0 to 10 vol%, O2= 0 to 20 vol%, nitrogen oxide = 0 to 1 vol%, sulfur oxide = 0 to 0.05 vol%, H2O = 0 to 15 vol% may be sufficient.
[0031]
The space velocity and temperature when ethylene is adsorbed and removed are not particularly limited, but the space velocity is 100 to 500,000 hr.-1The temperature is preferably -30 to 250 ° C.
[0032]
In the present invention, Ag containing SiO2/ Al2OThreeThe reason why ferrierite having a molar ratio of 15 or more exhibits high ethylene adsorption characteristics is unclear, but is thought to be due to the pore structure of ferrierite. Ferrierite pores are two-dimensionally composed of a major axis 5.5 angstrom (A) a minor axis 4.3A oxygen 10-membered ring pore and a major axis 4.8A minor axis 3.4A oxygen 8-membered ring pore. It is a connected structure. On the other hand, it is known that the pore size of ZSM-5, zeolite β, etc. is larger than that of ferrierite. The effective molecular diameter of ethylene is 3.9 A, and diffusion into the ferrierite pores is possible. Furthermore, the molecular diameter of ethylene and the size of the ferrierite pore are close, and the interaction between adsorbed ethylene and ferrierite becomes stronger. That is, it is considered that the adsorbed ethylene is not easily desorbed and the holding force is increased.
[0045]
Therefore, the type of hydrocarbons contained in the exhaust gas treated in the present invention is not particularly limited, but when ethylene is contained, the removal rate of nitrogen oxides is greatly improved, and in addition, paraffin, olefin, aromatic compounds are preferable. And mixtures thereof. Specifically, hydrocarbons having 1 to 20 carbon atoms can be exemplified as paraffin and olefin, and benzene, naphthalene, anthracene and derivatives thereof can be exemplified as aromatic compounds. Moreover, light oil, kerosene, gasoline, etc. can also be illustrated.
[0046]
It is also effective when the exhaust gas treated in the present invention contains carbon monoxide, carbon dioxide, hydrogen, nitrogen, sulfur oxide, and water.
[0047]
The concentration of each component gas in the exhaust gas is not particularly limited, but normally, nitrogen oxide is preferably 50 to 2000 ppm, hydrocarbon is preferably 0.001 to 5 vol% in terms of methane, and oxygen is preferably 0.1 to 20%. The concentration of each component other than the above component gas is not particularly limited, and carbon monoxide is 0 to 1 vol%, carbon dioxide is 0 to 10 vol%, sulfur oxide is 0 to 0.05 vol%, and water is 0 to 15 vol%. Is preferred. In addition, when the concentration of hydrocarbons in the exhaust gas is low, the above-mentioned appropriate hydrocarbons may be added to the exhaust gas.
[0048]
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but the space velocity (volume basis) is 100 to 500,000 hr.-1The temperature is preferably -30 to 900 ° C. More preferably, the space velocity is 2000 to 200000 hr.-1The temperature is -30 to 850 ° C.
[0049]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples at all.
[0050]
<Example 1> Preparation of adsorbent 1
SiO2/ Al2OThree40 g of Tosoh ferrierite (trade name: HSZ-720KOA) having a molar ratio of 17FourCl: 18.0 g was added to an ammonium chloride aqueous solution dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 for 20 hours. This ion exchange operation was repeated twice, followed by solid-liquid separation, washing with pure water until Cl ions could no longer be detected, drying at 110 ° C. for 20 hours, and ammonium-type ferrierite (NHFour-FER-1) was obtained.
[0051]
NHFour-FER-1: 20 g (anhydrous conversion) was added to a silver nitrate aqueous solution in which 0.62 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Ag. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 1 was obtained. When the amount of Ag supported on the adsorbent 1 was analyzed by ICP emission analysis, it was 2% by weight.
[0052]
<Example 2> Preparation of adsorbent 2
Adsorbent 2 was prepared by carrying Ag under the same conditions as in Example 1 except that the silver nitrate used was 1.55 g. The amount of Ag supported on the adsorbent 2 was analyzed by ICP emission analysis, and found to be 5% by weight.
[0053]
<Example 3> Preparation of adsorbent 3
SiO synthesized by hydrothermal synthesis as ferrierite2/ Al2OThreeAdsorbent 3 was obtained in the same manner as in Example 1 except that ferrierite having a molar ratio of 21 was used. When the amount of Ag supported on the adsorbent 3 was analyzed by ICP emission analysis, it was 2% by weight.
[0054]
<Example 4> Preparation of adsorbent 4
Aluminum chloride hexahydrate (AlClThree・ 6H2O: 98.0 wt%) 8.2 g and 6.5 g of sodium hydroxide (NaOH: 99 wt%) to neutralize HCl produced from aluminum chloride and sodium fluoride (NaF: 99 wt%) as a fluorine source ) 40.3 g and pyridine (CFiveHFiveN) 95.6 ml was dissolved in 628 ml of pure water to obtain a uniform solution.
[0055]
To this homogeneous solution, white carbon (manufactured by Nippon Silica Kogyo, trade name: nip seal VN-3, SiO2: 88 wt%) 81.1 g was added to prepare a raw material mixture slurry having the following molar composition ratio.
[0056]
SiO2/ Al2OThree= 57
F / SiO2= 0.8
CFiveHFiveN / SiO2= 1
H2O / SiO2= 30
This mixture was put into an autoclave having a volume of 1 L, and hydrothermal synthesis was performed at 180 ° C. for 72 hours while stirring at a rotation speed of 50 rpm. The pH of the zeolite slurry after crystallization was 10.7. After cooling, the solid content was separated, washed thoroughly with water, and dried at 110 ° C. overnight.
[0057]
In order to remove fluorine and / or fluorine compounds, the obtained product was sufficiently washed with pure water at 80 ° C. As a result of fluorescent X-ray analysis, the fluorine and / or fluorine compound in the zeolite after washing was below the detection limit (0.1%). The composition of the product after washing was analyzed by ICP emission analysis.
0.96Na2O ・ Al2OThree・ 74SiO2
Met.
[0058]
When the crystal structure of the product after washing was analyzed by XRD analysis, an X-ray diffraction pattern equivalent to that shown in Table 1 was obtained, and it was confirmed to be ferrierite.
[0059]
The obtained ferrierite-type zeolite was calcined at 600 ° C. for 4 hours under air flow to remove pyridine. Then ferrierite: 40g NHFourCl: 3.36 g was added to an ammonium chloride aqueous solution dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. This ion exchange operation was repeated twice, followed by solid-liquid separation, washing with pure water until Cl ions could no longer be detected, drying at 110 ° C. for 20 hours, and ammonium-type ferrierite (NHFour-FER-2) was obtained.
[0060]
NHFour-FER-2: 20 g (anhydrous conversion) was added to a silver nitrate aqueous solution in which 0.62 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Ag. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 4 was obtained. The amount of Ag supported on the adsorbent 4 was analyzed by ICP emission analysis and found to be 2% by weight.
[0061]
<Example 5> Preparation of adsorbent 5
The composition ratio of the raw slurry for ferrierite synthesis
SiO2/ Al2OThree= 35
F / SiO2= 0.8
CFiveHFiveN / SiO2= 1
H2O / SiO2= 30
The ferrierite was synthesized in the same manner as in Example 4 except for the above. The composition of the product after performing the same water washing, drying, and fluorine and fluorine compound removal operation as in Example 4 was calculated as anhydrous.
1.02Na2O ・ Al2OThree・ 48SiO2
Met.
[0062]
When the crystal structure of the product after washing was analyzed by XRD analysis, an X-ray diffraction pattern equivalent to that shown in Table 1 was obtained, and it was confirmed to be ferrierite.
[0063]
The obtained ferrierite-type zeolite was calcined at 600 ° C. for 4 hours under air flow to remove pyridine. Then ferrierite: 40g NHFourCl: 3.36 g was added to an ammonium chloride aqueous solution dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. This ion exchange operation was repeated twice, followed by solid-liquid separation, washing with pure water until Cl ions could no longer be detected, drying at 110 ° C. for 20 hours, and ammonium-type ferrierite (NHFour-FER-3) was obtained.
[0064]
NHFour-FER-3: 20 g (anhydrous conversion) was added to a silver nitrate aqueous solution in which 0.62 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure conditions at 60 ° C. to carry Ag. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 5 was obtained. When the amount of Ag supported on the adsorbent 5 was analyzed by ICP emission analysis, it was 2% by weight.
[0065]
<Example 6> Preparation of adsorbent 6
The composition ratio of the raw material mixture slurry for ferrierite synthesis
SiO2/ Al2OThree= 80
F / SiO2= 0.8
CFiveHFiveN / SiO2= 1.5
H2O / SiO2= 30
The ferrierite was synthesized in the same manner as in Example 4 except for the above. The composition of the product after performing the same water washing, drying, and fluorine and fluorine compound removal operation as in Example 4 was calculated as anhydrous.
1.09Na2O ・ Al2OThree・ 86SiO2
Met.
[0066]
When the crystal structure of the product after washing was analyzed by XRD analysis, an X-ray diffraction pattern equivalent to that shown in Table 1 was obtained, and it was confirmed to be ferrierite.
[0067]
The obtained ferrierite-type zeolite was calcined at 600 ° C. for 4 hours under air flow to remove pyridine. Then ferrierite: 40g NHFourCl: 3.36 g was added to an ammonium chloride aqueous solution dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. This ion exchange operation was repeated twice, followed by solid-liquid separation, washing with pure water until Cl ions could no longer be detected, drying at 110 ° C. for 20 hours, and ammonium-type ferrierite (NHFour-FER-4) was obtained.
[0068]
NHFour-FER-4: 20 g (anhydrous conversion) was added to a silver nitrate aqueous solution in which 0.62 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure conditions at 60 ° C. to carry Ag. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 6 was obtained. The amount of Ag supported on the adsorbent 6 was analyzed by ICP emission analysis and found to be 2% by weight.
[0069]
<Example 7> Preparation of adsorbent 7
The composition ratio of the raw material mixture slurry for ferrierite synthesis
SiO2/ Al2OThree= 100
F / SiO2= 0.8
CFiveHFiveN / SiO2= 1.5
H2O / SiO2= 30
The ferrierite was synthesized in the same manner as in Example 4 except for the above. The composition of the product after performing the same water washing, drying, and fluorine and fluorine compound removal operation as in Example 4 was calculated as anhydrous.
1.09Na2O ・ Al2OThree・ 113SiO2
Met.
[0070]
When the crystal structure of the product after washing was analyzed by XRD analysis, an X-ray diffraction pattern equivalent to that shown in Table 1 was obtained, and it was confirmed to be ferrierite.
[0071]
The obtained ferrierite-type zeolite was calcined at 600 ° C. for 4 hours under air flow to remove pyridine. Then ferrierite: 40g NHFourCl: 3.36 g was added to an ammonium chloride aqueous solution dissolved in 400 g of pure water, and an ion exchange operation was performed at 60 ° C. for 20 hours. This ion exchange operation was repeated twice, followed by solid-liquid separation, washing with pure water until Cl ions could no longer be detected, drying at 110 ° C. for 20 hours, and ammonium-type ferrierite (NHFour-FER-5) was obtained.
[0072]
NHFour-FER-5: 20 g (anhydrous conversion) was added to a silver nitrate aqueous solution in which 0.62 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Ag. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 7 was obtained. When the amount of Ag supported on the adsorbent 7 was analyzed by ICP emission analysis, it was 2 wt%.
[0073]
<Example 8>
NH obtained in Example 1Four-FER-1: 10 g (anhydrous conversion) was added to an aqueous silver nitrate solution in which 0.31 g of silver nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Ag. The Ag-carrying ferrierite was added to an aqueous palladium solution in which 0.08 g of palladium acetate was dissolved in 50 g of acetone and evaporated to dryness at 70 ° C. to carry Pd. Then, it dried at 110 degreeC for 20 hours, and the adsorption agent 7 was obtained. The amount of Ag and Pd supported on the adsorbent 7 was analyzed by ICP emission analysis. As a result, Ag was 2% by weight and Pd was 0.4% by weight.
[0074]
<Example 9>
NH obtained in Example 4FourAdsorbent 9 was obtained in the same manner as in Example 8, except that -FER-2 was used. The amount of Ag and Pd supported on the adsorbent 9 was analyzed by ICP emission analysis. As a result, Ag was 2% by weight and Pd was 0.4% by weight.
[0075]
<Comparative Example 1> Preparation of Comparative Adsorbent 1
SiO synthesized by hydrothermal synthesis as ferrierite2/ Al2OThreeA comparative adsorbent 1 was obtained in the same manner as in Example 1 except that ferrierite having a molar ratio of 13 was used. The amount of Ag supported in Comparative Adsorbent 1 was analyzed by ICP emission analysis and found to be 2% by weight.
[0076]
<Comparative Example 2> Preparation of Comparative Adsorbent 2
SiO2/ Al2OThreeComparative adsorbent 2 was obtained in the same manner as in Example 1 except that 40 g of a ZSM-5 structure zeolite (trade name: HSZ-820NAA) manufactured by Tosoh Corporation having a molar ratio of 24 was used. The amount of Ag supported in Comparative Adsorbent 1 was analyzed by ICP emission analysis and found to be 2% by weight.
[0077]
<Comparative Example 3> Preparation of Comparative Adsorbent 3
SiO2/ Al2OThreeComparative adsorbent 3 was obtained in the same manner as in Example 1 except that a ZSM-5 structure zeolite (trade name: HSZ-860HOA) manufactured by Tosoh Corporation having a molar ratio of 72 was used. The amount of Ag supported in Comparative Adsorbent 3 was analyzed by ICP emission analysis and found to be 2% by weight.
[0078]
<Comparative Example 4> Preparation of Comparative Adsorbent 4
SiO2/ Al2OThreeComparative adsorbent 4 was obtained in the same manner as in Example 1 except that a ZSM-5 structure zeolite (trade name: HSZ-890HOA) manufactured by Tosoh Corporation having a molar ratio of 2100 was used. The amount of Ag supported in Comparative Adsorbent 4 was analyzed by ICP emission analysis and found to be 2% by weight.
[0079]
<Comparative Example 5> Preparation of Comparative Adsorbent 5
SiO2/ Al2OThreeComparative adsorbent 5 was obtained in the same manner as in Example 1, except that a mordenite structure zeolite (trade name: HSZ-660HOA) manufactured by Tosoh Corporation having a molar ratio of 26 was used. The amount of Ag supported in Comparative Adsorbent 5 was analyzed by ICP emission analysis and found to be 2% by weight.
[0080]
<Comparative Example 6> Preparation of comparative adsorbent 6
SiO2/ Al2OThreeComparative adsorbent 6 was obtained in the same manner as in Example 1, except that a mordenite structure zeolite (trade name: HSZ-690HOA) manufactured by Tosoh Corporation having a molar ratio of 224 was used. The amount of Ag supported on the comparative adsorbent 6 was analyzed by ICP emission analysis and found to be 2% by weight.
[0081]
<Comparative Example 7> Preparation of Comparative Adsorbent 7
SiO2/ Al2OThreeComparative adsorbent 7 was obtained in the same manner as in Example 1 except that a zeolite having an L-type structure (trade name: HSZ-500KOA) manufactured by Tosoh Corporation having a molar ratio of 6 was used. The amount of Ag supported on the comparative adsorbent 7 was analyzed by ICP emission analysis and found to be 2% by weight.
[0082]
<Comparative Example 8> Preparation of comparative adsorbent 8
SiO2/ Al2OThreeComparative adsorbent 8 was obtained in the same manner as in Example 1 except that Y type zeolite made by Tosoh (trade name: HSZ-500KOA) having a molar ratio of 29 was used. The amount of Ag supported on the comparative adsorbent 8 was analyzed by ICP emission analysis and found to be 2% by weight.
[0083]
<Comparative Example 9> Preparation of comparative adsorbent 9
SiO2/ Al2OThreeComparative adsorbent 9 was obtained in the same manner as in Example 1 except that a beta zeolite made by Tosoh (trade name: HSZ-930NHA) having a molar ratio of 27 was used. The amount of Ag supported on the comparative adsorbent 9 was analyzed by ICP emission analysis and found to be 2% by weight.
[0084]
<Comparative Example 10> Preparation of Comparative Adsorbent 10
NH obtained in Example 1Four-FER-1 was used as the comparative adsorbent 10 as it was.
[0085]
<Comparative Example 11> Preparation of Comparative Adsorbent 11
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) is added to a copper nitrate aqueous solution in which copper nitrate trihydrate: 1.52 g is dissolved in 100 g of pure water, evaporated to dryness under reduced pressure at 60 ° C., Cu Loading was performed. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 11 was obtained. When the amount of Cu supported on the comparative adsorbent 11 was analyzed by ICP emission analysis, it was 2% by weight.
[0086]
<Comparative Example 12> Preparation of Comparative Adsorbent 12
NH obtained in Example 1Four-FER-1: 20 g (anhydrous equivalent) was added to an iron nitrate aqueous solution in which iron nitrate nonahydrate: 2.9 g was dissolved in 100 g of pure water, evaporated to dryness under reduced pressure at 60 ° C., Fe Loading was performed. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 12 was obtained. The amount of Fe supported on the comparative adsorbent 12 was analyzed by ICP emission analysis and found to be 2% by weight.
[0087]
<Comparative Example 13> Preparation of Comparative Adsorbent 13
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a barium nitrate aqueous solution in which 0.76 g of barium nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Ba. . Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 13 was obtained. The amount of Ba supported on the comparative adsorbent 13 was analyzed by ICP emission analysis and found to be 2% by weight.
[0088]
<Comparative Example 14> Preparation of Comparative Adsorbent 14
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a zinc nitrate aqueous solution in which 1.82 g of zinc nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Zn. . Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 14 was obtained. The amount of Zn supported on the comparative adsorbent 14 was analyzed by ICP emission analysis and found to be 2% by weight.
[0089]
<Comparative Example 15> Preparation of Comparative Adsorbent 15
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a magnesium nitrate aqueous solution in which 4.22 g of magnesium nitrate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Mg. . Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 15 was obtained. The amount of Mg supported on the comparative adsorbent 15 was analyzed by ICP emission analysis and found to be 2% by weight.
[0090]
<Comparative Example 16> Preparation of Comparative Adsorbent 16
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) is added to a tungsten aqueous solution in which 0.57 g of ammonium paratungstate is dissolved in 100 g of pure water, evaporated to dryness under reduced pressure at 60 ° C., and W is supported. It was. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 16 was obtained. When the W carrying amount of the comparative adsorbent 16 was analyzed by ICP emission analysis, it was 2% by weight.
[0091]
<Comparative Example 17> Preparation of Comparative Adsorbent 17
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to an aqueous molybdenum solution in which 5.15 g of ammonium molybdate was dissolved in 100 g of pure water, and evaporated to dryness under reduced pressure at 60 ° C. to carry Mo. . Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 17 was obtained. The amount of Mo supported on the comparative adsorbent 17 was analyzed by ICP emission analysis and found to be 2% by weight.
[0092]
<Comparative Example 18> Preparation of comparative adsorbent 18
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a hexaammineiridium aqueous solution containing 0.4 g of Ir and evaporated to dryness under reduced pressure at 60 ° C. to carry Ir. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 18 was obtained. The amount of Ir supported on the comparative adsorbent 18 was analyzed by ICP emission analysis and found to be 2% by weight.
[0093]
<Comparative Example 19> Preparation of Comparative Adsorbent 19
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a lanthanum nitrate aqueous solution in which 1.25 g of lanthanum nitrate hydrate was dissolved in 100 g of pure water, evaporated to dryness under reduced pressure at 60 ° C., and La-supported Went. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 19 was obtained. When the amount of La supported on the comparative adsorbent 19 was analyzed by ICP emission analysis, it was 2% by weight.
[0094]
<Comparative Example 20> Preparation of Comparative Adsorbent 20
NH obtained in Example 1Four-FER-1: 20 g (anhydrous conversion) was added to a nickel nitrate aqueous solution in which nickel nitrate hexahydrate: 1.98 g was dissolved in 100 g of pure water, evaporated to dryness under reduced pressure at 60 ° C., Ni Loading was performed. Then, it dried at 110 degreeC for 20 hours, and the comparative adsorption agent 20 was obtained. The amount of Ni supported on the comparative adsorbent 20 was analyzed by ICP emission analysis and found to be 2% by weight.
[0095]
<Ethylene adsorption removal test>
About each of the adsorbents 1 to 9 and the comparative adsorbents 1 to 10, 0.1 g was filled in an atmospheric pressure fixed bed flow type reaction tube made of quartz glass and subjected to an ethylene adsorption experiment. As a pretreatment, the air was heated to 500 ° C. at a rate of temperature increase of 20 ° C./min while flowing air at 50 cc / min, and held at 500 ° C. for 1 hour. After cooling to room temperature and completely replacing with He gas, a model exhaust gas having the composition shown in Table 2 was brought into contact with the adsorbent at a gas flow rate of 100 cc / min for 1 hour at room temperature. The space velocity (volume basis) at this time is 30000 hr.-1Met. After confirming that the adsorption of ethylene in the model exhaust gas to the adsorbent reached saturation, He gas was again introduced into the adsorbent, and the ethylene remaining in the gas phase was completely removed. Subsequently, hydrocarbon gas desorbed from the adsorbent was heated by a gas chromatograph equipped with a flame ionization detector (FID) while the He gas was circulated at 50 cc / min and the adsorbent was heated at 10 ° C./min. Then, quantitative analysis was continuously performed to evaluate the adsorption characteristics of ethylene. Table 3 shows the adsorption characteristics of ethylene adsorption amount and desorption peak temperature.
[0096]
[Table 2]
Figure 0003975557
[0097]
[Table 3]
Figure 0003975557
[0098]
<Durability test of adsorbent>
The adsorbents 1 to 9 and the comparative adsorbents 1 to 20 were respectively pressure-molded and then pulverized and sized to 12 to 20 mesh. Each sized adsorbent 3 cc was filled in a quartz glass normal pressure fixed bed flow reaction tube and subjected to an endurance test. The endurance test was performed using Air gas with H2The mixed gas containing O at 10 vol% in terms of volume was treated at 850 ° C. for 5 hours while flowing through the adsorbent at a flow rate of 300 cc / min. The adsorbents subjected to these endurance treatments were evaluated for hydrocarbon adsorption characteristics under the same pretreatment and evaluation conditions as in the <Hydrocarbon adsorption removal test>. Table 4 shows the hydrocarbon adsorption characteristics after the durability test.
[0099]
[Table 4]
Figure 0003975557
[0100]
As can be seen from Tables 3 and 4, the adsorbent of the present invention has a large ethylene adsorption amount and is superior in adsorption characteristics as compared with the adsorbents proposed so far. Further, the adsorbent of the present invention does not show a decrease in the amount of adsorption due to endurance treatment, and maintains the adsorption / removal performance of ethylene even after the adsorbent is exposed to a high temperature.
[0121]
The ethylene adsorbent according to the present invention has a large amount of adsorption of hydrocarbons, particularly ethylene, and has excellent adsorption characteristics. Further, the adsorbent according to the present invention does not show a decrease in the amount of adsorption due to endurance treatment, and is adsorbed. Even after the agent is exposed to a high temperature, the adsorption and removal performance of ethylene is maintained. However, from Tables 6 and 7, the adsorbent alone has a low activity for removing nitrogen oxides from exhaust gas containing excess oxygen containing nitrogen oxides and hydrocarbons, and its catalytic performance is low. On the other hand, conventionally proposed nitrogen oxide removal catalysts exhibit nitrogen oxide removal activity from exhaust gas containing excess oxygen, but the nitrogen oxide removal performance is not fully satisfactory.
[0123]
【The invention's effect】
The ethylene adsorbent of the present invention can efficiently adsorb and remove ethylene in the gas phase, and the adsorption performance of hydrocarbons does not deteriorate even after the adsorbent is exposed to a high temperature. Furthermore, the adsorbent of the present invention has high performance for adsorbing and holding ethylene. Therefore, ethylene can be efficiently removed by bringing the adsorbent of the present invention into contact with a gas phase containing ethylene. Utilizing this property, it is possible to efficiently adsorb and remove ethylene discharged when starting an engine of an automobile or the like with the adsorbent of the present invention, and to adsorb and hold it up to a temperature at which the exhaust gas purification catalyst operates.
[0124]
The adsorbent of the present invention can also be applied to adsorption removal of ethylene generated from agricultural crops.

Claims (4)

Agが含有されたSiO2/Al23モル比が15以上のフェリエライト型構造を有するゼオライトから構成されることを特徴とするエチレン吸着剤をガスに接触させることを特徴とする、ガス中のエチレン吸着除去方法Characterized in that an ethylene adsorbent composed of a zeolite having a ferrierite structure having a SiO 2 / Al 2 O 3 molar ratio of 15 or more containing Ag is brought into contact with the gas. Of ethylene adsorption removal . ピリジンとフッ素化合物を反応系に添加して合成されたフェリエライト型構造のゼオライトを用いることを特徴とする、請求項1に記載のガス中のエチレン吸着除去方法The method for adsorbing and removing ethylene in a gas according to claim 1, wherein a zeolite having a ferrierite structure synthesized by adding pyridine and a fluorine compound to the reaction system is used. Agの含有量が、フェリエライト型構造を有するゼオライト及び活性金属成分の合計量に対して0.1〜20重量%であることを特徴とする、請求項1または2に記載のガス中のエチレン吸着除去方法 The ethylene in the gas according to claim 1 or 2, wherein the content of Ag is 0.1 to 20% by weight based on the total amount of the zeolite having a ferrierite structure and the active metal component. Adsorption removal method . フェリエライト型構造を有するゼオライトに、更にPdが含有されたことを特徴とする、請求項1〜3いずれかに記載のガス中のエチレン吸着除去方法The method for adsorbing and removing ethylene in a gas according to any one of claims 1 to 3, wherein the zeolite having a ferrierite structure further contains Pd.
JP15433898A 1997-07-02 1998-06-03 Ethylene adsorption removal method Expired - Fee Related JP3975557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15433898A JP3975557B2 (en) 1997-07-02 1998-06-03 Ethylene adsorption removal method

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP9-177306 1997-07-02
JP9-177309 1997-07-02
JP17730997 1997-07-02
JP17730697 1997-07-02
JP32427997 1997-11-26
JP9-324279 1997-11-26
JP15433898A JP3975557B2 (en) 1997-07-02 1998-06-03 Ethylene adsorption removal method

Publications (2)

Publication Number Publication Date
JPH11216359A JPH11216359A (en) 1999-08-10
JP3975557B2 true JP3975557B2 (en) 2007-09-12

Family

ID=27473285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15433898A Expired - Fee Related JP3975557B2 (en) 1997-07-02 1998-06-03 Ethylene adsorption removal method

Country Status (1)

Country Link
JP (1) JP3975557B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5324369B2 (en) * 2009-09-17 2013-10-23 関西熱化学株式会社 Method for producing alkene adsorption / desorption agent
JP6123178B2 (en) * 2012-07-11 2017-05-10 東ソー株式会社 Methane adsorbent and methane adsorption removal method using the same
JP6201518B2 (en) * 2013-08-21 2017-09-27 東ソー株式会社 Catalyst for producing C5-C6 compounds
WO2017002954A1 (en) * 2015-07-01 2017-01-05 株式会社Adeka Supporter, ethylene removal agent, and freshness-maintaining agent
JP6617384B2 (en) * 2015-07-15 2019-12-11 太陽化学株式会社 Ethylene decomposing agent
WO2020203441A1 (en) * 2019-03-29 2020-10-08 株式会社Nbcメッシュテック Method for preventing physiological disorder and method for inhibiting mold growth

Also Published As

Publication number Publication date
JPH11216359A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US5433933A (en) Method of purifying oxygen-excess exhaust gas
US6419890B1 (en) SOX tolerant NOX trap catalysts and methods of making and using the same
KR100827788B1 (en) Hydrotalcite-zeolite composites and catalysts thereof by nox storage method
KR20000064436A (en) Zeolites for the adsorption and oxidation of hydrocarbons in diesel engine exhaust gases
JPH07144128A (en) Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
KR20150121074A (en) NOx TRAP COMPOSITION
EP0888808B1 (en) Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
JP3975557B2 (en) Ethylene adsorption removal method
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP3137497B2 (en) Adsorbent and adsorption removal method for hydrocarbon
JP3207577B2 (en) Hydrocarbon adsorbent and adsorption purification method
JP4905027B2 (en) Hydrocarbon adsorbent comprising β-type zeolite
JPH08173761A (en) Method for removing nitrogen oxide
JPH0899033A (en) Adsorbent for hydrocarbon
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JP2021161019A (en) Composite material, nitrogen oxide adsorbent, nitrogen oxide adsorbing method, and nitrogen oxide removing device
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JPH07185326A (en) Adsorbent for purifying hydrocarbons in exhaust gas
JP3044622B2 (en) Exhaust gas purification method
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JP3242126B2 (en) Nitrogen oxide removal method
JP3197090B2 (en) Hydrocarbon adsorbent and adsorption purification method
JP3497043B2 (en) Adsorbent for purifying hydrocarbons in exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees