JPH08173761A - Method for removing nitrogen oxide - Google Patents

Method for removing nitrogen oxide

Info

Publication number
JPH08173761A
JPH08173761A JP6323090A JP32309094A JPH08173761A JP H08173761 A JPH08173761 A JP H08173761A JP 6323090 A JP6323090 A JP 6323090A JP 32309094 A JP32309094 A JP 32309094A JP H08173761 A JPH08173761 A JP H08173761A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
exhaust gas
nitrogen oxides
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6323090A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
宏 小川
Shuji Okazaki
修二 岡崎
Senji Kasahara
泉司 笠原
Kazuhiko Sekizawa
和彦 関沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP6323090A priority Critical patent/JPH08173761A/en
Publication of JPH08173761A publication Critical patent/JPH08173761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE: To provide a method for removing more efficiently nitrogen oxides from an exhaust gas with excess oxygen exhausted from an internal combustion engine by using a catalyst with high performance in the wide temp. range, especially at a low temp. CONSTITUTION: In a method for removing nitrogen oxides in an exhaust gas contg. nitrogen oxides and hydrocarbons with excess oxygen, a catalyst wherein at least one of transition metals such as Cu, Co, Pt, Rh and In is incorporated in zeolite with a particle diameter of smaller than 0.1μm is brought into contact with the above described exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関か
ら排出される排ガス中の窒素酸化物、一酸化炭素および
炭化水素を除去する排ガス浄化触媒に関し、更に詳細に
は過剰酸素下の排ガスから窒素酸化物を低減する方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying catalyst for removing nitrogen oxides, carbon monoxide and hydrocarbons in exhaust gas discharged from internal combustion engines such as automobiles, and more particularly to exhaust gas under excess oxygen. To a method for reducing nitrogen oxides.

【0002】[0002]

【従来の技術】現在、ガソリンエンジンより排出される
排ガスの中で人体に対して有害である窒素酸化物、一酸
化炭素は、白金,ロジウム,パラジウムを担体上に担持
させた三元触媒により除去されている。しかし、ディ−
ゼルエンジン排ガスについては、ガソリンエンジンに比
べて排ガス中の酸素濃度が高いため、三元触媒による還
元脱硝は困難である。
2. Description of the Related Art At present, nitrogen oxides and carbon monoxide which are harmful to the human body in exhaust gas emitted from gasoline engines are removed by a three-way catalyst in which platinum, rhodium and palladium are supported on a carrier. Has been done. However,
Regarding the exhaust gas from a Zel engine, the oxygen concentration in the exhaust gas is higher than that from a gasoline engine, so reduction and denitration by a three-way catalyst is difficult.

【0003】また近年では、炭酸ガス排出量低減にとも
なう低燃費化のため、希薄燃焼方式のガソリンエンジン
が開発されている。しかしながら、この希薄燃焼ガソリ
ンエンジンの排ガスは酸素過剰雰囲気であるため、上記
のような従来の三元触媒での脱硝が困難であり、窒素酸
化物除去に関する技術開発が望まれている。
Further, in recent years, a lean-burn gasoline engine has been developed in order to reduce fuel consumption due to reduction of carbon dioxide emission. However, since the exhaust gas of this lean burn gasoline engine is in an oxygen excess atmosphere, it is difficult to denitrate with the conventional three-way catalyst as described above, and there is a demand for technological development related to nitrogen oxide removal.

【0004】これまでに、酸素過剰の排ガスから窒素酸
化物を除去する方法として、アンモニアを還元剤とした
25/TiO2上での選択的接触還元法、アルカリ溶
液への吸収法が知られているが、いずれの場合も使用範
囲が限定され、自動車等の移動発生源への適用は困難で
ある。
As a method for removing nitrogen oxides from an oxygen-excessive exhaust gas, a selective catalytic reduction method on V 2 O 5 / TiO 2 using ammonia as a reducing agent and an absorption method to an alkaline solution have been used so far. Although known, in any case, the range of use is limited, and it is difficult to apply it to mobile sources such as automobiles.

【0005】近年、遷移金属を担持したゼオライト触媒
が、アンモニア等の選択的還元剤を添加しなくても、酸
素過剰下で排ガス中の窒素酸化物を還元除去できること
が報告されている(例えば、特開昭63−283727
号公報、特開平1−130735号公報等)。
In recent years, it has been reported that a zeolite catalyst supporting a transition metal can reduce and remove nitrogen oxides in exhaust gas in the presence of excess oxygen without adding a selective reducing agent such as ammonia. JP-A-63-283727
No. JP-A-1-130735, etc.).

【0006】遷移金属を含有するゼオライト触媒におい
て、これまでに触媒の構成成分であるゼオライトとして
ZSM−5、モルデナイト、フェリエライト、USY、
ゼオライトβ等を使用し、これらのゼオライトにCu,
Co,Fe,Ni等の遷移金属を担持した窒素酸化物の
除去触媒が提案されている。これらのゼオライトの中で
もZSM−5を用いた窒素酸化物除去触媒は触媒活性が
特異的に高く、最も有望な脱硝用触媒として注目されて
いる。
Among transition metal-containing zeolite catalysts, ZSM-5, mordenite, ferrierite, USY, and zeolite have been used as zeolites, which have been components of the catalyst so far.
Using zeolite β etc., Cu, Cu,
A nitrogen oxide removal catalyst supporting a transition metal such as Co, Fe, or Ni has been proposed. Among these zeolites, the nitrogen oxide removal catalyst using ZSM-5 has a specific high catalytic activity, and has attracted attention as the most promising denitration catalyst.

【0007】しかしながら、上記遷移金属含有ゼオライ
ト触媒は、例えば、特開平5−168863号公報等で
指摘されているような高温による触媒劣化に加えて、低
温活性が低いこと等の問題点を有している。このため、
ガソリンエンジンに比べて排ガス温度が低い、ディ−ゼ
ルエンジンの排ガス浄化に適用するには、更に低温域で
の触媒性能を改善する必要がある。
However, the above-mentioned transition metal-containing zeolite catalyst has problems such as low catalyst activity at low temperature in addition to catalyst deterioration due to high temperature as pointed out in JP-A-5-168863. ing. For this reason,
In order to apply to the exhaust gas purification of a diesel engine whose exhaust gas temperature is lower than that of a gasoline engine, it is necessary to further improve the catalyst performance in a low temperature range.

【0008】これに対して、遷移金属の中でも白金、パ
ラジウム、ロジウム等の貴金属を含有するゼオライト触
媒は、上記遷移金属含有ゼオライト触媒に比べて低温活
性が高く、耐熱性が高い特徴を有している。しかしなが
ら、その活性は十分でなく、活性向上等の性能改善が望
まれている。
On the other hand, among the transition metals, the zeolite catalyst containing a noble metal such as platinum, palladium, or rhodium has the characteristics of high activity at low temperature and high heat resistance as compared with the above-mentioned transition metal-containing zeolite catalyst. There is. However, its activity is not sufficient, and performance improvement such as activity improvement is desired.

【0009】これまでにも、低温域での触媒性能向上に
関する改良触媒が多く提案されている。例えば、特開平
5−168942号公報にはAuを添加した遷移金属含
有ゼオライト触媒が、特開平5−317720号公報に
はMgを共存させたPt担持ゼオライト触媒が提案され
ている。
To date, many improved catalysts have been proposed for improving the catalyst performance in the low temperature range. For example, JP-A-5-168942 proposes a transition metal-containing zeolite catalyst to which Au is added, and JP-A-5-317720 proposes a Pt-supported zeolite catalyst in which Mg coexists.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、その効
果は十分に満足されるほどでなく、低温活性が不十分で
あるため、実用化には至っていない。本発明の目的は、
更に広い温度範囲、特に低温で高い性能を有する触媒を
用いて、内燃機関より排出される酸素過剰の排ガスから
窒素酸化物をより効率的に除去する方法を提供するとこ
ろにある。
However, the effect is not sufficiently satisfied and the low temperature activity is insufficient, so that it has not been put to practical use. The purpose of the present invention is to
It is another object of the present invention to provide a method for more efficiently removing nitrogen oxides from an oxygen-excess exhaust gas discharged from an internal combustion engine by using a catalyst having a high performance in a wider temperature range, particularly at a low temperature.

【0011】[0011]

【課題を解決するための手段】本発明者らは、これらの
状況に鑑み、ゼオライト触媒の酸素過剰の排ガス中の窒
素酸化物除去性能を鋭意検討した結果、粒子径が0.1
ミクロン未満のゼオライトに、1種類以上の遷移金属を
含有した触媒が、これまでに提案されているゼオライト
触媒に比べて、広い温度範囲で優れた窒素酸化物除去能
を有することを見出し、本発明を完成するに至った。
In view of these circumstances, the inventors of the present invention have made earnest studies on the ability of a zeolite catalyst to remove nitrogen oxides in exhaust gas with an excess of oxygen, and as a result, have a particle diameter of 0.1.
The present invention has found that a catalyst containing one or more kinds of transition metals in a submicron zeolite has an excellent nitrogen oxide removing ability in a wide temperature range as compared with the zeolite catalysts proposed so far. Has been completed.

【0012】すなわち本発明は、粒子径が0.1ミクロ
ン未満のゼオライトに、1種類以上の遷移金属を含有し
た触媒を、窒素酸化物および炭化水素を含有する酸素過
剰の排ガスに接触させることを特徴とする窒素酸化物の
除去方法を提供するものである。
That is, the present invention comprises contacting a zeolite having a particle size of less than 0.1 micron with a catalyst containing one or more kinds of transition metals in an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons. The present invention provides a characteristic method for removing nitrogen oxides.

【0013】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0014】本発明に係る触媒を構成するゼオライト
は、その粒子径が0.1ミクロン未満であることが重要
である。ゼオライトの粒子径が0.1ミクロン以上の場
合、十分な性能向上効果が発現しない。好ましくは0.
08ミクロン以下であり、更に好ましくは0.05ミク
ロン以下である。ここで粒子径とはゼオライトの一次粒
子を意味し、通常、電子顕微鏡で確認することができ
る。ゼオライトの構造に関しては特に限定されないが、
例えばZSM−5,−11,−12,−20,モルデナ
イト,フェリエライト,Y型,ゼオライトβ等が挙げら
れる。好ましくはZSM−5,ゼオライトβである。ゼ
オライトの製造方法に関しても特に限定されるものでは
なく、これまでに報告されている既知の方法で製造でき
る。また、ゼオライトの粒子径を制御する方法に関して
も特に限定されない。製造されたゼオライトの粒子径が
0.1ミクロン以上の場合、粉砕処理を施こすことも可
能であるが、粉砕により結晶性が低下し、性能低下を起
こす可能性があるため、製造されたゼオライトで0.1
ミクロン未満のものを使用することが望ましい。
It is important that the zeolite constituting the catalyst according to the present invention has a particle size of less than 0.1 micron. When the particle size of zeolite is 0.1 micron or more, a sufficient performance improving effect is not exhibited. Preferably 0.
It is 08 microns or less, more preferably 0.05 microns or less. Here, the particle size means primary particles of zeolite, and can be usually confirmed by an electron microscope. The structure of zeolite is not particularly limited,
For example, ZSM-5, -11, -12, -20, mordenite, ferrierite, Y type, zeolite β and the like can be mentioned. ZSM-5 and zeolite β are preferred. The method for producing zeolite is not particularly limited, and it can be produced by the known methods reported so far. Further, the method for controlling the particle size of zeolite is not particularly limited. If the particle size of the produced zeolite is 0.1 micron or more, it is possible to subject it to a pulverization process, but the pulverization may lower the crystallinity and may cause a decrease in performance. At 0.1
It is desirable to use those of less than micron.

【0015】さらにその組成は特に限定されるものでは
ないが、高耐熱性、高耐久性のものを得る場合にはSi
2/Al23モル比が10〜1000程度のものを用
いることが望ましい。また、このゼオライトは、そのま
まあるいはアンモニウム塩、鉱酸等で処理してNH4
あるいはH型にイオン交換してから本発明の触媒として
使用することもできる。
The composition is not particularly limited, but in order to obtain high heat resistance and high durability, Si is used.
It is desirable to use an O 2 / Al 2 O 3 molar ratio of about 10 to 1000. Further, this zeolite can be used as the catalyst of the present invention as it is or after being treated with an ammonium salt, a mineral acid or the like and subjected to ion exchange into NH 4 type or H type.

【0016】本発明に係る触媒は、上記ゼオライトに1
種類以上の遷移金属を含有させることにより調製され
る。
The catalyst according to the present invention comprises the above zeolite
It is prepared by containing at least one kind of transition metal.

【0017】上記ゼオライトに含有させる遷移金属とし
ては特に限定されないが、チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ジ
ルコニウム、モリブデン、白金、ルテニウム、パラジウ
ム、ロジウム、インジウム、金等を使用することができ
る。好ましくは銅、鉄、コバルト、ニッケル、白金、パ
ラジウム、ロジウム、インジウムがよく、更に好ましく
は銅、コバルト、白金、ロジウム、インジウムがよい。
これらの遷移金属は一般に、イオン交換法や含浸担持
法、蒸発乾固法、物理混合法等により含有させることが
できるが、好ましくはイオン交換法がよい。
The transition metal contained in the zeolite is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, platinum, ruthenium, palladium, rhodium, indium, gold. Etc. can be used. Copper, iron, cobalt, nickel, platinum, palladium, rhodium and indium are preferable, and copper, cobalt, platinum, rhodium and indium are more preferable.
These transition metals can be generally contained by an ion exchange method, an impregnation-supporting method, an evaporation-drying method, a physical mixing method, etc., but the ion exchange method is preferable.

【0018】イオン交換法としては一般に行なわれてい
る方法、例えば、所定の金属を含有する水溶液を用いて
イオン交換する方法を採用することができる。これらの
金属は可溶性の塩の形で使用でき、可溶性の塩として
は、硝酸塩、酢酸塩、蓚酸塩、塩化物等あるいはアンミ
ン錯体等の錯塩化合物が使用できる。
As the ion exchange method, a generally used method, for example, a method of performing ion exchange using an aqueous solution containing a predetermined metal can be adopted. These metals can be used in the form of soluble salts, and as the soluble salts, nitrates, acetates, oxalates, chlorides and the like or complex salt compounds such as ammine complexes can be used.

【0019】イオン交換時の金属の添加量はゼオライト
中のアルミニウムに対して原子比で0.1から10であ
ることが望ましい。金属の添加量が0.1未満である
と、本発明の触媒の金属の含有量が少なくなり、十分な
触媒性能が得られなくなる恐れがあり、また、10を越
えてもそれに見合うだけの効果が得られなくなる恐れが
ある。処理条件については、通常行なわれる室温から1
00℃の温度、数時間から数十時間の時間でよい。ま
た、必要に応じて、イオン交換操作を繰り返し行なうこ
ともできる。また、イオン交換の際、交換母液へアンモ
ニウム水溶液を添加してイオン交換することもできる。
2種類以上の上記遷移金属を含有させる場合は、これら
の金属を順次含有させても、同時に含有させてもどちら
でもよい。
The amount of metal added during ion exchange is preferably 0.1 to 10 in atomic ratio with respect to aluminum in the zeolite. If the amount of the metal added is less than 0.1, the metal content of the catalyst of the present invention may be low, and sufficient catalyst performance may not be obtained. May not be obtained. Regarding the processing conditions, the room temperature is usually 1 to 1.
The temperature may be 00 ° C. and the time may be several hours to several tens of hours. Further, the ion exchange operation can be repeated if necessary. Further, at the time of ion exchange, an ammonium aqueous solution may be added to the exchange mother liquor for ion exchange.
When two or more transition metals are contained, these metals may be contained either sequentially or simultaneously.

【0020】これらの金属を含有するゼオライトは、更
にアルカリ金属およびアルカリ土類金属が含まれてもよ
い。アルカリ金属およびアルカリ土類金属の含有方法は
特に限定されないが、イオン交換法が好ましく、含有さ
せる際にアルカリ金属およびアルカリ土類金属と上記金
属を順次含有させてもよい。好ましくは、先にアルカリ
金属およびアルカリ土類金属を含有させた後、上記金属
を含有させる。
The zeolite containing these metals may further contain alkali metals and alkaline earth metals. The method for containing the alkali metal and the alkaline earth metal is not particularly limited, but an ion exchange method is preferable, and when the alkali metal and the alkaline earth metal are contained, the alkali metal and the alkaline earth metal and the above metal may be sequentially contained. Preferably, the alkali metal and the alkaline earth metal are first added, and then the above metal is added.

【0021】上記の方法で調製された触媒の金属の含有
量は特に限定されないが、ゼオライト中のアルミニウム
に対して原子比で0.1から3倍であることが望まし
い。含有金属がゼオライト中のアルミニウムに対して原
子比で0.1未満では十分な触媒性能が得られなくなる
恐れがある。また、3を越えてもそれに見合うだけの効
果が得られない恐れがある。
The metal content of the catalyst prepared by the above method is not particularly limited, but is preferably 0.1 to 3 times the atomic ratio of aluminum in the zeolite. If the contained metal has an atomic ratio of less than 0.1 with respect to aluminum in the zeolite, sufficient catalytic performance may not be obtained. Moreover, even if it exceeds 3, there is a possibility that the effect corresponding to it may not be obtained.

【0022】本発明に係る排ガス浄化触媒は、粘土鉱物
等のバインダ−と混合し成形して使用することもでき
る。また、予めゼオライトを成形し、その成形体に遷移
金属およびアルカリ金属、アルカリ土類金属を含有させ
ることもできる。ゼオライトを成形する際に用いられる
バインダ−としては、特に制限はないが、カオリン、ア
タパルガイト、モンモリロナイト、ベントナイト、アロ
フェン、セピオライト等の粘土鉱物やシリカ、アルミナ
等が使用できる。あるいは、バインダ−を用いずに成形
体を直接合成したバインダレスゼオライト成形体であっ
てもよい。また、コ−ジェライト製あるいは金属製のハ
ニカム状基材にゼオライトをウォッシュコ−トして用い
ることもできる。
The exhaust gas purifying catalyst according to the present invention can also be used by mixing with a binder such as clay mineral and molding. It is also possible to form zeolite in advance and to add a transition metal, an alkali metal or an alkaline earth metal to the formed body. The binder used when molding the zeolite is not particularly limited, but clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane and sepiolite, silica, alumina and the like can be used. Alternatively, it may be a binderless zeolite molded product obtained by directly synthesizing a molded product without using a binder. Further, zeolite can be used as a washcoat on a honeycomb-shaped substrate made of cordierite or metal.

【0023】酸素過剰排ガスからの窒素酸化物の除去
は、上記で説明した排ガス浄化触媒と該排ガスを接触さ
せることにより行うことができる。該排ガスは窒素酸化
物および炭化水素を含むものであり、本発明が対象とす
る酸素過剰の排ガスとは、排ガス中に含まれる炭化水素
を完全に酸化するのに必要な酸素量より過剰な酸素が含
まれている排ガスを指し、このような排ガスとしては例
えば、ディ−ゼルエンジン等の内燃機関から排出される
排ガス、特に空燃比が大きい状態で燃焼された排ガス等
が具体的に例示される。
The removal of nitrogen oxides from the oxygen-excess exhaust gas can be carried out by bringing the exhaust gas purification catalyst described above into contact with the exhaust gas. The exhaust gas contains nitrogen oxides and hydrocarbons, and the oxygen-excessive exhaust gas targeted by the present invention means oxygen in excess of the amount of oxygen necessary to completely oxidize the hydrocarbons contained in the exhaust gas. Examples of such exhaust gas include exhaust gas discharged from an internal combustion engine such as a diesel engine, particularly exhaust gas burned in a state where the air-fuel ratio is large. .

【0024】本発明で処理される排ガスに含まれる炭化
水素の種類は特に限定されず、パラフィン、オレフィ
ン、芳香族化合物およびそれらの混合物が使用できる。
具体的には、パラフィン、オレフィンとしては炭素数で
1〜20の炭化水素が使用でき、芳香族化合物としては
ベンゼン、ナフタレン、アントラセンおよびそれらの誘
導体が使用できる。また、混合物としては軽油、灯油、
ガソリン等が使用できる。本発明ではゼオライト粒子間
でも触媒反応が生じていると考えられるため、細孔に入
りにくい炭化水素種が共存している場合に一層効果が大
きくなる。ゼオライト細孔に入りにくい炭化水素種とし
ては炭素数で10以上のものであり、例えばペンタデカ
ン、ヘキサデカン、ヘプタデカン、1−ヘキサデセン等
のパラフィン並びにオレフィン,ナフタレン、アントラ
セン等の芳香族化合物,または軽油、灯油の混合物であ
る。更には、炭化水素として軽油を用いることが好まし
い。
The kind of hydrocarbon contained in the exhaust gas treated in the present invention is not particularly limited, and paraffin, olefin, aromatic compound and a mixture thereof can be used.
Specifically, hydrocarbons having 1 to 20 carbon atoms can be used as paraffins and olefins, and benzene, naphthalene, anthracene and derivatives thereof can be used as aromatic compounds. Also, as a mixture, light oil, kerosene,
Gasoline etc. can be used. In the present invention, it is considered that the catalytic reaction occurs between the zeolite particles, so that the effect is further enhanced when the hydrocarbon species that are difficult to enter the pores coexist. The hydrocarbon species that are difficult to enter into the zeolite pores have a carbon number of 10 or more. Is a mixture of. Furthermore, it is preferable to use light oil as the hydrocarbon.

【0025】排ガス中の各成分ガスの濃度は特に限定さ
れないが、通常、窒素酸化物が50から2000pp
m、炭化水素が10から10000ppm、酸素が0.
1から20%である。
The concentration of each component gas in the exhaust gas is not particularly limited, but normally, the nitrogen oxide content is 50 to 2000 pp.
m, hydrocarbons 10 to 10000 ppm, oxygen 0.
1 to 20%.

【0026】処理される排ガスの空間速度および温度は
特に限定されないが、好ましくは空間速度(体積基準)
500から500000hr-1、温度100から800
℃、更に好ましくは、空間速度2000から20000
0hr-1、温度100から600℃である。
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but preferably space velocity (volume basis).
500 to 500,000 hr -1 , temperature 100 to 800
° C, more preferably space velocity 2000 to 20000
The temperature is 0 hr −1 and the temperature is 100 to 600 ° C.

【0027】[0027]

【実施例】以下、本発明を実施例により更に説明する
が、本発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0028】実施例1<触媒1の調製> 特開昭53−147699号公報の実施例15に従っ
て、ZSM−5型ゼオライトを調製した。無水ベ−スに
おける酸化物のモル比で表して次の組成を有していた。
Example 1 <Preparation of catalyst 1> ZSM-5 type zeolite was prepared according to Example 15 of JP-A-53-147699. It had the following composition, expressed as the molar ratio of oxides in the anhydrous base.

【0029】1.38(TPA)2O・0.73Na2
・Al23・45SiO2 (TPA:テトラプロピルアンモニウム) また、このZSM−5型ゼオライトを電子顕微鏡(SE
M)で観察したところ、0.04〜0.045ミクロン
の粒子径を有していた。
1.38 (TPA) 2 O · 0.73Na 2 O
・ Al 2 O 3 .45SiO 2 (TPA: tetrapropylammonium) Further, this ZSM-5 type zeolite was analyzed by an electron microscope (SE
According to M), it had a particle size of 0.04 to 0.045 micron.

【0030】このゼオライトを空気流通下で550℃、
4時間焼成することによりテトラプロピルアンモニウム
を除去した。
This zeolite was 550 ° C. under air flow.
Tetrapropylammonium was removed by baking for 4 hours.

【0031】焼成後のゼオライト;30gを、酢酸アン
モニウム;11.5gを含む水溶液500ccに添加
し、60℃にて20時間撹拌した後、洗浄し、アンモニ
ウムイオン交換を行った。この操作を2回繰り返した
後、110℃で20時間乾燥してアンモニウム型ゼオラ
イトを得た。
30 g of the calcined zeolite was added to 500 cc of an aqueous solution containing 11.5 g of ammonium acetate, and the mixture was stirred at 60 ° C. for 20 hours, washed, and then subjected to ammonium ion exchange. After repeating this operation twice, it was dried at 110 ° C. for 20 hours to obtain an ammonium-type zeolite.

【0032】このアンモニウム型ゼオライト;10g
を、その中に含まれているアルミニウムに対して原子比
で2倍となるように精秤された濃度0.1mol/Lの
酢酸銅水溶液中に添加し、直ちに2.5%−アンモニア
水を加えてスラリ−のpHを10.5とし、室温で20
時間撹拌した。固液分離後、十分洗浄し、110℃で2
0時間乾燥して触媒1を得た。化学分析の結果、触媒1
は無水ベースにおける酸化物のモル比で表して次の組成
を有していた。
This ammonium type zeolite: 10 g
Was added to an aqueous solution of copper acetate having a concentration of 0.1 mol / L, which was precisely weighed so that the atomic ratio was twice that of aluminum contained therein, and 2.5% -ammonia water was immediately added. In addition, the pH of the slurry was set to 10.5 and the slurry was kept at room temperature for 20
Stirred for hours. After solid-liquid separation, thoroughly wash and 2 at 110 ℃
After drying for 0 hours, catalyst 1 was obtained. As a result of chemical analysis, catalyst 1
Had the following composition, expressed as the molar ratio of oxides on an anhydrous basis.

【0033】1.86CuO・Al23・45SiO2 実施例2<触媒2の調製> 実施例1で調製したアンモニウム型ゼオライト;10g
を、その中に含まれているアルミニウムに対して原子比
で0.5倍となるように精秤された濃度0.1mol/
Lのテトラアンミン硝酸白金水溶液中に添加し、直ちに
2.5%−アンモニア水を加えてスラリ−のpHを1
0.5とし、室温で20時間撹拌した。固液分離後、十
分洗浄し、110℃で20時間乾燥して触媒2を得た。
化学分析の結果、触媒2は無水ベースにおける酸化物の
モル比で表して次の組成を有していた。
1.86 CuO.Al 2 O 3 .45SiO 2 Example 2 <Preparation of catalyst 2> Ammonium-type zeolite prepared in Example 1; 10 g
Was accurately weighed so that the atomic ratio was 0.5 times that of aluminum contained therein, and the concentration was 0.1 mol /
L tetraammine platinum nitrate aqueous solution, and immediately add 2.5% -ammonia water to adjust the pH of the slurry to 1.
It was set to 0.5 and stirred at room temperature for 20 hours. After solid-liquid separation, it was thoroughly washed and dried at 110 ° C. for 20 hours to obtain catalyst 2.
As a result of chemical analysis, catalyst 2 had the following composition expressed as the molar ratio of oxide on an anhydrous basis.

【0034】0.43PtO・Al23・45SiO2 実施例3<触媒3の調製> アルミン酸ナトリウム;1.88gと水酸化ナトリウ
ム;8.08gを水酸化テトラエチルアンモニウム水溶
液(20%水溶液);442gに添加し、完全に溶解さ
せた。これにニップシ−ル(日本シリカ工業製Nip
VN−3);82gを徐々に添加し、30分混合撹拌さ
せた。反応混合物の組成はモル比で表して次に示すとお
りであった。
0.43PtO.Al 2 O 3 .45SiO 2 Example 3 <Preparation of catalyst 3> Sodium aluminate; 1.88 g and sodium hydroxide; 8.08 g of tetraethylammonium hydroxide aqueous solution (20% aqueous solution); It was added to 442 g and completely dissolved. Nip seal (Nip made by Nippon Silica Industry Co., Ltd.)
VN-3); 82 g was gradually added, and the mixture was stirred for 30 minutes. The composition of the reaction mixture was as shown below in terms of molar ratio.

【0035】SiO2/Al23=100 (TEA)2O/SiO2=0.25 (TEA;テトラ
エチルアンモニウム) Na2O/SiO2=0.09 H2O/SiO2=16.9 該混合物をオ−トクレ−ブに仕込み、150℃で96時
間静置下で結晶化した。生成物を固液分離、水洗、乾燥
した。この生成物をX線回折により、分析したところ、
純粋なゼオライトβであった。化学分析の結果、その組
成は無水ベ−スにおける酸化物のモル比で表して次の組
成を有していた。
SiO 2 / Al 2 O 3 = 100 (TEA) 2 O / SiO 2 = 0.25 (TEA; tetraethylammonium) Na 2 O / SiO 2 = 0.09 H 2 O / SiO 2 = 16.9 The mixture was charged into an autoclave and crystallized by standing at 150 ° C. for 96 hours. The product was solid-liquid separated, washed with water and dried. When this product was analyzed by X-ray diffraction,
It was pure zeolite β. As a result of chemical analysis, the composition had the following composition expressed by the molar ratio of the oxide in the anhydrous base.

【0036】2.38(TEA)2O・0.51Na2
・Al23・36SiO2 また、ゼオライトβを電子顕微鏡(SEM)で観察した
ところ、0.2〜1ミクロンの粒子径を有していた。
2.38 (TEA) 2 O ・ 0.51Na 2 O
· Al 2 O 3 · 36SiO 2 also was observed with zeolite β with electron microscope (SEM), and a particle size of 0.2 to 1 micron.

【0037】このゼオライトを空気流通下で550℃、
4時間焼成することによりテトラエチルアンモニウムを
除去した。焼成後のゼオライトを3時間のボ−ルミル粉
砕を行った後に、電子顕微鏡で観察したところ、0.0
45〜0.05ミクロンの粒子径を有していた。
This zeolite was 550 ° C. under air flow.
Tetraethylammonium was removed by baking for 4 hours. After calcination of the zeolite after ball milling for 3 hours, it was observed with an electron microscope that it was 0.0
It had a particle size of 45 to 0.05 microns.

【0038】このゼオライト;30gを酢酸アンモニウ
ム;11.5gを含む水溶液500ccに添加し、60
℃にて20時間撹拌してアンモニウム交換を行った。こ
の操作を2回繰り返した後、110℃で20時間乾燥し
てアンモニウム型ゼオライトを得た。
30 g of this zeolite was added to 500 cc of an aqueous solution containing 11.5 g of ammonium acetate;
Ammonium exchange was carried out by stirring at 20 ° C. for 20 hours. After repeating this operation twice, it was dried at 110 ° C. for 20 hours to obtain an ammonium-type zeolite.

【0039】このアンモニウム型ゼオライト;10g
を、その中に含まれているアルミニウムに対して原子比
で2倍となるように精秤された濃度0.1mol/Lの
酢酸銅水溶液中に添加し、直ちに2.5%−アンモニア
水を加えてスラリ−のpHを10.5とし、室温で20
時間撹拌した。固液分離後、十分洗浄し、110℃で2
0時間乾燥して、触媒3を得た。化学分析の結果、触媒
3は無水ベ−スにおける酸化物のモル比で表して次の組
成を有していた。
This ammonium type zeolite: 10 g
Was added to an aqueous solution of copper acetate having a concentration of 0.1 mol / L, which was precisely weighed so that the atomic ratio was twice that of aluminum contained therein, and 2.5% -ammonia water was immediately added. In addition, the pH of the slurry was set to 10.5 and the slurry was kept at room temperature for 20
Stirred for hours. After solid-liquid separation, thoroughly wash and 2 at 110 ℃
After drying for 0 hour, catalyst 3 was obtained. As a result of chemical analysis, the catalyst 3 had the following composition represented by the molar ratio of oxides in the anhydrous base.

【0040】1.91CuO・Al23・36SiO2 実施例4<触媒活性試験> 触媒1〜3を各々プレス成形後、粉砕して12〜20メ
ッシュに整粒した。整粒した各触媒2ccを常圧固定床
流通反応管に充填し、反応に供した。反応前処理とし
て、反応ガスを1000mL/minで流通させながら
550℃まで昇温し、30分保持した。その後、150
〜550℃の間の任意の温度で表1のモデルガスを使用
して触媒定常活性を調べた。この時の空間速度(体積基
準)は、30000hr-1であった。表2には各温度に
おけるNOx除去率を示した。尚、NOx除去率は次式
で表される。
1.91 CuO.Al 2 O 3 .36SiO 2 Example 4 <Catalyst activity test> Catalysts 1 to 3 were each press-molded and then pulverized to be sized to 12 to 20 mesh. Each sized catalyst (2 cc) was filled in a normal pressure fixed bed flow reaction tube and subjected to reaction. As a reaction pretreatment, the reaction gas was flowed at 1000 mL / min, the temperature was raised to 550 ° C., and the temperature was maintained for 30 minutes. Then 150
Steady-state catalyst activity was investigated using the model gases of Table 1 at any temperature between ~ 550 ° C. The space velocity (volume basis) at this time was 30,000 hr −1 . Table 2 shows the NOx removal rate at each temperature. The NOx removal rate is expressed by the following equation.

【0041】NOx除去率={([NOx]in−[NO
x]out)/[NOx]in}×100 [NOx]in :入口ガスのNOx濃度 [NOx]out:出口ガスのNOx濃度 比較例1<比較触媒1の調製> 撹拌状態にある実容積2Lのオーバフロータイプの反応
槽に、珪酸ソーダ水溶液(SiO2:29.6%,Na2
O:9.35%,Al23:0.01%,H2O:6
1.04%)と、硫酸アルミニウム水溶液(Al23
8.8g/L,H2SO4;370g/L)とをそれぞれ
3L/hr,1L/hrの速度で連続的に供給した。反
応温度は30〜32℃、排出されるスラリーのpHは
6.7〜7.0であった。
[0041] NOx removal rate = {([NOx] in - [NO
x] out ) / [NOx] in } × 100 [NOx] in : NOx concentration of inlet gas [NOx] out : NOx concentration of outlet gas Comparative Example 1 <Preparation of Comparative Catalyst 1> 2 L of actual volume in a stirring state Sodium silicate solution (SiO 2 : 29.6%, Na 2
O: 9.35%, Al 2 O 3 : 0.01%, H 2 O: 6
1.04%) and an aluminum sulfate aqueous solution (Al 2 O 3 ;
8.8 g / L, H 2 SO 4 ; 370 g / L) were continuously fed at a rate of 3 L / hr and 1 L / hr, respectively. The reaction temperature was 30 to 32 ° C., and the pH of the discharged slurry was 6.7 to 7.0.

【0042】排出スラリーを固液分離し十分洗浄した
後、Na2O;0.75wt%,Al23;0.77w
t%,SiO2;36.1wt%,H2O;62.5wt
%の粒状無定形アルミノ珪酸塩均一化合物を得た。該均
一化合物;2,860gと3.2wt%のNaOH水溶
液;6,150gとをオートクレーブに仕込み、160
℃で72時間撹拌下で結晶化した。生成物を固液分離、
水洗、乾燥してZSM−5型ゼオライトを得た。化学分
析の結果、その組成は無水ベースにおける酸化物のモル
比で表して次の組成を有していた。
After solid-liquid separation of the discharged slurry and sufficient washing, Na 2 O; 0.75 wt%, Al 2 O 3 ; 0.77 w
t%, SiO 2 ; 36.1 wt%, H 2 O; 62.5 wt
% Of granular amorphous aluminosilicate homogeneous compound was obtained. The homogeneous compound; 2,860 g and 3.2 wt% NaOH aqueous solution; 6,150 g were charged into an autoclave, and 160
Crystallized at 72 ° C under stirring for 72 hours. Solid-liquid separation of products,
It was washed with water and dried to obtain ZSM-5 type zeolite. As a result of chemical analysis, the composition had the following composition represented by the molar ratio of oxide on an anhydrous basis.

【0043】1.03Na2O・Al23・41SiO2 また、このZSM−5型ゼオライトを電子顕微鏡(SE
M)で観察したところ、1〜3ミクロンの粒子径を有し
ていた。
[0043] 1.03Na 2 O · Al 2 O 3 · 41SiO 2 The electron microscope the ZSM-5 type zeolite (SE
According to M), it had a particle diameter of 1 to 3 microns.

【0044】上記ナトリウム型ZSM−5;200g
を、その中に含まれているアルミニウムに対して原子比
で2倍となるように精秤された濃度0.1mol/Lの
酢酸銅水溶液中に添加し、直ちに2.5%アンモニア水
を加えてスラリ−のpHを10.5とし、室温で20時
間攪拌した。固液分離後、十分洗浄し、110℃で20
時間乾燥して比較触媒1を得た。この比較触媒1の銅イ
オン含有量を化学分析で調べた結果、無水ベースの酸化
物モル比で表して次の組成を有していた。
200 g of the above sodium type ZSM-5
Was added to an aqueous solution of copper acetate having a concentration of 0.1 mol / L, which was precisely weighed so that the atomic ratio was twice that of aluminum contained therein, and 2.5% aqueous ammonia was immediately added. The slurry was adjusted to pH 10.5 and stirred at room temperature for 20 hours. After solid-liquid separation, wash thoroughly and leave at 110 ° C for 20
Comparative catalyst 1 was obtained after drying for an hour. As a result of investigating the copper ion content of this comparative catalyst 1 by chemical analysis, it had the following composition expressed in terms of oxide molar ratio on an anhydrous basis.

【0045】1.74CuO・Al23・41SiO2 比較例2<比較触媒2の調製>比較例1で調製したナト
リウム型ゼオライト;10gを、その中に含まれている
アルミニウムに対して原子比で0.5倍となるように精
秤された濃度0.1mol/Lのテトラアンミン硝酸白
金水溶液中に添加し、直ちに2.5%−アンモニア水を
加えてスラリ−のpHを10.5とし、室温で20時間
撹拌した。固液分離後、十分洗浄し、110℃で20時
間乾燥して比較触媒2を得た。化学分析の結果、比較触
媒2は無水ベースにおける酸化物のモル比で表して次の
組成を有していた。
1.74 CuO.Al 2 O 3 .41SiO 2 Comparative Example 2 <Preparation of Comparative Catalyst 2> Sodium-type zeolite prepared in Comparative Example 1; 10 g, atomic ratio relative to aluminum contained therein Was added to an aqueous solution of tetraammine platinum nitrate having a concentration of 0.1 mol / L, which was precisely weighed to 0.5 times, and 2.5% -ammonia water was immediately added to adjust the pH of the slurry to 10.5. Stir at room temperature for 20 hours. After solid-liquid separation, it was thoroughly washed and dried at 110 ° C. for 20 hours to obtain comparative catalyst 2. As a result of chemical analysis, Comparative Catalyst 2 had the following composition expressed as the molar ratio of oxide on an anhydrous basis.

【0046】0.45PtO・0.51Na2O・Al2
3・41SiO2 比較例3<比較触媒3の調製> ボ−ルミル粉砕を行わなかったこと以外は、実施例3と
同様な操作を行って、アンモニウム型のゼオライトβを
調製した。
0.45PtO.0.51Na 2 O.Al 2
O 3 .41SiO 2 Comparative Example 3 <Preparation of Comparative Catalyst 3> An ammonium type zeolite β was prepared in the same manner as in Example 3 except that the ball mill pulverization was not performed.

【0047】このアンモニウム型ゼオライトβ;10g
を、その中に含まれているアルミニウムに対して原子比
で2倍となるように精秤された濃度0.1mol/Lの
酢酸銅水溶液中に添加し、直ちに2.5%−アンモニア
水を加えてスラリ−のpHを10.5とし、室温で20
時間撹拌した。固液分離後、十分洗浄し、110℃で2
0時間乾燥して、比較触媒3を得た。化学分析の結果、
比較触媒3は無水ベ−スにおける酸化物のモル比で表し
て次の組成を有していた。
This ammonium type zeolite β: 10 g
Was added to an aqueous solution of copper acetate having a concentration of 0.1 mol / L, which was precisely weighed so that the atomic ratio was twice that of aluminum contained therein, and 2.5% -ammonia water was immediately added. In addition, the pH of the slurry was set to 10.5 and the slurry was kept at room temperature for 20
Stirred for hours. After solid-liquid separation, thoroughly wash and 2 at 110 ℃
After drying for 0 hour, comparative catalyst 3 was obtained. As a result of chemical analysis,
Comparative catalyst 3 had the following composition, expressed as the molar ratio of oxides in the anhydrous base.

【0048】1.95CuO・Al23・36SiO 比較例4<触媒活性試験> 触媒1〜3、および比較触媒1〜3についてNOx転化
活性を実施例4と同様な条件で測定した。各温度におけ
るNOx除去率を表2に示す。
1.95 CuO.Al 2 O 3 .36SiO 2 Comparative Example 4 <Catalyst Activity Test> The NOx conversion activity of the catalysts 1 to 3 and the comparative catalysts 1 to 3 was measured under the same conditions as in Example 4. Table 2 shows the NOx removal rate at each temperature.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【発明の効果】本発明の触媒を用いることにより、窒素
酸化物および炭化水素を含有する酸素過剰の排ガスから
窒素酸化物を、更に広い温度域で、より効率的に除去す
ることができる。
EFFECTS OF THE INVENTION By using the catalyst of the present invention, nitrogen oxides can be more efficiently removed from an exhaust gas containing excess oxygen containing nitrogen oxides and hydrocarbons in a wider temperature range.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 29/44 ZAB A 29/46 A 29/48 A B01D 53/36 102 H 102 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 29/44 ZAB A 29/46 A 29/48 A B01D 53/36 102 H 102 A

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物および炭化水素を含有する酸
素過剰の排ガス中の窒素酸化物を除去する方法におい
て、粒子径が0.1ミクロン未満のゼオライトに1種類
以上の遷移金属を含有させた触媒を、窒素酸化物および
炭化水素を含有する酸素過剰の排ガスと接触させること
を特徴とする窒素酸化物の除去方法。
1. A method for removing nitrogen oxides in an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons, wherein zeolite having a particle size of less than 0.1 micron contains one or more transition metals. A method for removing nitrogen oxides, which comprises contacting the catalyst with an oxygen-excess exhaust gas containing nitrogen oxides and hydrocarbons.
JP6323090A 1994-12-26 1994-12-26 Method for removing nitrogen oxide Pending JPH08173761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6323090A JPH08173761A (en) 1994-12-26 1994-12-26 Method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6323090A JPH08173761A (en) 1994-12-26 1994-12-26 Method for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH08173761A true JPH08173761A (en) 1996-07-09

Family

ID=18150969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6323090A Pending JPH08173761A (en) 1994-12-26 1994-12-26 Method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH08173761A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100362108B1 (en) * 1997-05-29 2003-03-26 기아자동차주식회사 METHOD OF FABRICATING Cu-Pt-ZSM-5 CATALYST FOR LEAN BURN ENGINE FOR VEHICLE
KR100408502B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaust gas of vehicle
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
WO2004045766A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
JP2008218359A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Gas discharge display panel
WO2009141872A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure
CN110368982A (en) * 2019-07-25 2019-10-25 大连理工大学 Non-noble metal nano cluster catalyst and preparation method and application are stablized in Silicalite-1 molecular sieve pore passage confinement

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100408502B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaust gas of vehicle
KR100408503B1 (en) * 1996-07-23 2004-02-14 삼성전기주식회사 Catalyst for purifying exhaus gas of vehicle
KR100362108B1 (en) * 1997-05-29 2003-03-26 기아자동차주식회사 METHOD OF FABRICATING Cu-Pt-ZSM-5 CATALYST FOR LEAN BURN ENGINE FOR VEHICLE
WO2004045766A1 (en) * 2002-11-18 2004-06-03 Ict Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas
JPWO2004045765A1 (en) * 2002-11-18 2006-03-16 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
US7393804B2 (en) 2002-11-18 2008-07-01 Ict Co., Ltd. Exhaust gas purifying catalyst and process for purification of exhaust gas
JP2009066596A (en) * 2002-11-18 2009-04-02 Ict:Kk Method for suppressing oxidization of sulfur dioxide in exhaust gas
JP4594097B2 (en) * 2002-11-18 2010-12-08 株式会社アイシーティー Exhaust gas purification catalyst and exhaust gas purification method
CN101607209B (en) * 2002-11-18 2014-07-02 优美科触媒日本有限公司 Exhaust gas purifying catalyst and method for purifying exhaust gas
JP2008218359A (en) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd Gas discharge display panel
WO2009141872A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure
CN110368982A (en) * 2019-07-25 2019-10-25 大连理工大学 Non-noble metal nano cluster catalyst and preparation method and application are stablized in Silicalite-1 molecular sieve pore passage confinement

Similar Documents

Publication Publication Date Title
JPH04371231A (en) Catalyst for purification of exhaust gas
JP3276191B2 (en) Nitrogen oxide purification method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
RU2736265C1 (en) Method for preparation of copper-containing zeolites and use thereof
JPH08173761A (en) Method for removing nitrogen oxide
JPH11216358A (en) Hydrocarbon adsorbent and catalyst for cleaning waste gas
JPH04219141A (en) Exhaust gas purification catalyst
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH05305240A (en) Exhaust gas purifying catalyst
JP3511638B2 (en) Exhaust gas purification method
JPH11216359A (en) Ethylene adsorbent, adsorptive removal method and exhaust gas purifying method
JP2605956B2 (en) Exhaust gas purification catalyst
JP3482661B2 (en) Nitrogen oxide removal method
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
KR0146879B1 (en) Mordenite containing zeolite catalyst for nox removal
JP3395221B2 (en) Nitrogen oxide removal method
JPH06170166A (en) Removal of nitrogen oxide
JPH09271640A (en) Removal of nitrogen oxide, nitrogen oxide removing production of catalyst of catalyst
JP3395220B2 (en) Nitrogen oxide removal method
JP3395219B2 (en) Nitrogen oxide removal method
JP3362401B2 (en) Exhaust gas purification catalyst
JPH0389942A (en) Exhaust gas purifying catalyst and purifying method with it utilized therefor
JPH09168724A (en) Removing method for nitrogen oxide
JP2601018B2 (en) Exhaust gas purification catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20071205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091205

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20091205

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 14