JP4905027B2 - Hydrocarbon adsorbent comprising β-type zeolite - Google Patents

Hydrocarbon adsorbent comprising β-type zeolite Download PDF

Info

Publication number
JP4905027B2
JP4905027B2 JP2006260645A JP2006260645A JP4905027B2 JP 4905027 B2 JP4905027 B2 JP 4905027B2 JP 2006260645 A JP2006260645 A JP 2006260645A JP 2006260645 A JP2006260645 A JP 2006260645A JP 4905027 B2 JP4905027 B2 JP 4905027B2
Authority
JP
Japan
Prior art keywords
type zeolite
adsorbent
sio
ratio
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006260645A
Other languages
Japanese (ja)
Other versions
JP2008080194A (en
Inventor
耕 有賀
英和 青山
宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006260645A priority Critical patent/JP4905027B2/en
Publication of JP2008080194A publication Critical patent/JP2008080194A/en
Application granted granted Critical
Publication of JP4905027B2 publication Critical patent/JP4905027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、β型ゼオライトからなる炭化水素(以下HCと記載)吸着剤に関し、炭化水素の脱着開始温度、即ちHC保持能力が高く、なおかつ吸着したHCの分解、即ちクラッキング性能の高く、さらに同等のSiO/Al比を有する従来のβ型ゼオライトに比して耐熱性の高いHC吸着剤に関する。本発明のHC吸着剤は、例えば自動車排ガス用のHC吸着剤として用いることができる。 The present invention relates to a hydrocarbon (hereinafter referred to as HC) adsorbent composed of β-type zeolite, which has a high hydrocarbon desorption start temperature, that is, HC retention capability, and also has a high decomposition and cracking performance of adsorbed HC. The present invention relates to an HC adsorbent having high heat resistance as compared with a conventional β-type zeolite having a SiO 2 / Al 2 O 3 ratio. The HC adsorbent of the present invention can be used as, for example, an HC adsorbent for automobile exhaust gas.

β型ゼオライトは自動車等の内燃機関から排出されるHCを含有する排ガス中のHC吸着剤として用いられている。自動車排ガスは、エンジン始動直後(冷始動、或いはコールドスタートという)に低温で炭化水素を多く含む排ガスが排出されるが、初期の排ガス温度は低いため、排ガス中の炭化水素を触媒で浄化する事が困難であり、触媒が十分に加熱されるまでHC吸着剤で保持することが必要である。   β-type zeolite is used as an HC adsorbent in exhaust gas containing HC discharged from an internal combustion engine such as an automobile. Exhaust gas containing automobiles contains a lot of hydrocarbons at low temperatures immediately after the engine is started (called cold start or cold start), but since the initial exhaust gas temperature is low, hydrocarbons in the exhaust gas must be purified with a catalyst. It is difficult to hold the catalyst with the HC adsorbent until the catalyst is sufficiently heated.

これまで、β型ゼオライトによるHC吸着剤としては、耐熱性向上の点からSiO/Al比(モル比)の高いもの、特にSiO/Al比が80以上のものが提案されている。(特許文献1〜3参照)
SiO/Al比が高いβ型ゼオライトでは耐熱性が高いが、固体酸含有量が低いため、吸着したHCのクラッキング性能が小さいという問題があった。そこで、クラッキング性能を要求される用途におけるHC吸着剤では、SiO/Al比が小さいものが使用されている。
So far, HC adsorbents using β-type zeolite have high SiO 2 / Al 2 O 3 ratio (molar ratio) from the viewpoint of improving heat resistance, especially those having a SiO 2 / Al 2 O 3 ratio of 80 or more. Proposed. (See Patent Documents 1 to 3)
The β-type zeolite having a high SiO 2 / Al 2 O 3 ratio has high heat resistance, but has a problem that the cracking performance of adsorbed HC is small because the solid acid content is low. Therefore, HC adsorbents for applications requiring cracking performance are those having a small SiO 2 / Al 2 O 3 ratio.

従来の低シリカ比のβ型ゼオライトによるHC吸着剤では、低温でHCを脱着してしまい、クラッキング温度までHCを保持することができず、低シリカ比を選択する効果が十分に発揮されず、さらに耐熱性も低いという問題があった。   In conventional HC adsorbents with low silica ratio β-type zeolite, HC is desorbed at a low temperature, HC cannot be maintained up to the cracking temperature, and the effect of selecting a low silica ratio is not sufficiently exhibited, There was also a problem that heat resistance was low.

そのため、低シリカで、従来よりも高温までHCを吸着保持し、クラッキング性能が高く、なおかつ耐熱性が高いHC吸着剤が求められている。   Therefore, an HC adsorbent that is low silica, adsorbs and holds HC up to a higher temperature than before, has high cracking performance, and has high heat resistance.

特開平5−31359号JP-A-5-31359 特開平9−38485号JP-A-9-38485 特開平11−228128号JP-A-11-228128

本発明は、SiO/Al比が80未満で、高温までのHC吸着保持力が高く、なおかつ耐熱性の高いβ型ゼオライトからなるHC吸着剤を提供することにある。 An object of the present invention is to provide an HC adsorbent composed of β-type zeolite having a SiO 2 / Al 2 O 3 ratio of less than 80, high HC adsorption holding power up to a high temperature, and high heat resistance.

本発明者らは、β型ゼオライトのHCの吸着特性について鋭意検討を重ねた結果、SiO/Al比が80未満のβ型ゼオライトからなるHC吸着剤においてHCの脱着開始温度が185℃以上、特に200℃以上であるHC吸着剤を見出し、本発明を完成するに至ったものである。 As a result of intensive studies on the HC adsorption characteristics of β-type zeolite, the present inventors have found that the desorption start temperature of HC is 185 in an HC adsorbent composed of β-type zeolite having a SiO 2 / Al 2 O 3 ratio of less than 80. The inventors have found an HC adsorbent having a temperature of not lower than ° C., particularly not lower than 200 ° C., and have completed the present invention.

本発明のHC吸着剤は、SiO/Al比が80未満のβ型ゼオライトからなり、なおかつ炭化水素の脱着温度が185℃以上である炭化水素吸着剤である。 The HC adsorbent of the present invention is a hydrocarbon adsorbent comprising a β-type zeolite having a SiO 2 / Al 2 O 3 ratio of less than 80 and a hydrocarbon desorption temperature of 185 ° C. or higher.

本発明のHC吸着剤はβ型ゼオライトからなり、β型ゼオライトは、酸素12員環からなる0.76×0.64nmおよび0.55×0.55nmの細孔が交差した3次元細孔構造を有するゼオライトである。β型ゼオライトのX線回折パターンは表1に示す格子面間隔d(オングストローム)とその回折強度で特徴づけられる。   The HC adsorbent of the present invention is composed of β-type zeolite, which is a three-dimensional pore structure in which 0.76 × 0.64 nm and 0.55 × 0.55 nm pores composed of oxygen 12-membered rings intersect. It is a zeolite having The X-ray diffraction pattern of β-type zeolite is characterized by the lattice spacing d (angstrom) shown in Table 1 and its diffraction intensity.

Figure 0004905027
本発明のHC吸着剤に用いられるβ型ゼオライトのSiO/Al比は、SiO/Al比が80未満、特に48未満であることが好ましい。SiO/Al比が80以上になると、固体酸量が減少し、特にクラッキング特性を要求される場合のHC吸着剤としては適さない。一方、本発明のHC吸着剤に用いるβ型ゼオライトのSiO/Al比は、20未満では耐熱性が十分でなく、少なくとも30以上、さらには35以上であることが好ましい。
Figure 0004905027
The SiO 2 / Al 2 O 3 ratio of the β-type zeolite used in the HC adsorbent of the present invention is preferably such that the SiO 2 / Al 2 O 3 ratio is less than 80, particularly less than 48. When the SiO 2 / Al 2 O 3 ratio is 80 or more, the amount of solid acid decreases, and it is not suitable as an HC adsorbent particularly when cracking characteristics are required. On the other hand, if the SiO 2 / Al 2 O 3 ratio of the β-type zeolite used in the HC adsorbent of the present invention is less than 20, the heat resistance is not sufficient, and is preferably at least 30 or even 35 or more.

本発明のHC吸着剤におけるHC脱着温度は、185℃以上、特に200℃以上であることが好ましい。HCの脱着温度が185℃未満では、HC吸着剤が十分に加熱する前に吸着したHCが脱離してしまうため、吸着したHCを十分にクラッキング(分解)することができない。HC脱着温度の上限は特に限定されるものではないが、本発明のSiO/Al比においては約220℃までである。 The HC desorption temperature in the HC adsorbent of the present invention is preferably 185 ° C. or higher, particularly 200 ° C. or higher. When the desorption temperature of HC is less than 185 ° C., HC adsorbed before the HC adsorbent is sufficiently heated is desorbed, so that the adsorbed HC cannot be sufficiently cracked (decomposed). The upper limit of the HC desorption temperature is not particularly limited, but it is up to about 220 ° C. in the SiO 2 / Al 2 O 3 ratio of the present invention.

さらに本発明のHC吸着剤は、HCの吸着量が250μmol/g以上であることが好ましい。HC脱着温度が高くても、吸着容量が少なくてはHC吸着剤としては適さない。
上限は特に限定されるものではないが、本発明のSiO/Al比においては特に280μmol/g以上、約330μmol/gまでである。
Further, the HC adsorbent of the present invention preferably has an HC adsorption amount of 250 μmol / g or more. Even if the HC desorption temperature is high, if the adsorption capacity is small, it is not suitable as an HC adsorbent.
The upper limit is not particularly limited, but in the SiO 2 / Al 2 O 3 ratio of the present invention, it is particularly 280 μmol / g or more and about 330 μmol / g.

HCの吸着量は、便宜的に一定のHC吸着条件を設定した上で、HC吸着剤からのHC脱離量として定義することができる。   The amount of HC adsorbed can be defined as the amount of HC desorbed from the HC adsorbent after setting certain HC adsorption conditions for convenience.

本発明のHC吸着剤に用いるβ型ゼオライトは、カチオンがH(プロトン)である、又はHを含むことが好ましい。クラッキング性能を有するためには、ゼオライト中に固体酸が必要なためである。H型のβ型ゼオライトはアンモニアでイオン交換した後、通常は600℃以下で熱処理することによって得られる。アンモニアイオン交換のβ型ゼオライトを600℃を越える温度で熱処理した場合、HC吸着性能等が低下する。   In the β-type zeolite used in the HC adsorbent of the present invention, the cation is preferably H (proton) or contains H. This is because a solid acid is required in the zeolite in order to have cracking performance. The H-type β-type zeolite is usually obtained by heat-treating at 600 ° C. or lower after ion exchange with ammonia. When ammonia ion exchange β-type zeolite is heat-treated at a temperature exceeding 600 ° C., the HC adsorption performance and the like deteriorate.

本発明のHC吸着剤は、同じSiO/Al比のβ型ゼオライトに比べて耐熱性が高いという特徴を有する。β型ゼオライトの耐熱性は、ゼオライトの結晶性(X線結晶回折)或いはBET表面積等によって評価することができる。 The HC adsorbent of the present invention is characterized by higher heat resistance than β-type zeolite having the same SiO 2 / Al 2 O 3 ratio. The heat resistance of β-type zeolite can be evaluated by the crystallinity of the zeolite (X-ray crystal diffraction) or the BET surface area.

本発明のHC吸着剤は、従来の同様なSiO/Al比のβ型ゼオライトと同一の温度での耐熱処理、特に高温での耐熱処理後の、XRDでの回折ピークの低下が小さいものである。具体的には、900℃の熱処理で従来のβ型ゼオライトのXRDの回折ピーク強度が60%未満となるのに対して、本発明のHC吸着剤では60%以上の回折ピーク強度を維持するものである。回折ピーク強度は表1のd=3.97の回折ピークから求めることができる。上限は特に限定されるものではないが、本発明のSiO/Al比においては約80%までである。 The HC adsorbent of the present invention has a lower diffraction peak in XRD after heat treatment at the same temperature as that of the conventional β-type zeolite having the same SiO 2 / Al 2 O 3 ratio, particularly after heat treatment at high temperature. It is a small one. Specifically, the XRD diffraction peak intensity of the conventional β-type zeolite is less than 60% by heat treatment at 900 ° C., whereas the HC adsorbent of the present invention maintains a diffraction peak intensity of 60% or more. It is. The diffraction peak intensity can be obtained from the diffraction peak at d = 3.97 in Table 1. The upper limit is not particularly limited, but is up to about 80% in the SiO 2 / Al 2 O 3 ratio of the present invention.

本発明のHC吸着剤は、さらに金属及び/又は金属イオンを含有していても良い。含有させる金属及び/又は金属イオンとしては、例えばアルカリ金属、アルカリ土類金属、希土類金属、遷移金属、及び貴金属が挙げられ、それらの1種又は2種以上を含有させても良い。   The HC adsorbent of the present invention may further contain a metal and / or a metal ion. Examples of the metal and / or metal ion to be contained include alkali metals, alkaline earth metals, rare earth metals, transition metals, and noble metals, and one or more of them may be contained.

本発明のHC吸着剤は、シリカ、アルミナ及び粘土鉱物等のバインダーと混合し成形して使用することもできる。粘土鉱物としては、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン、セピオライト等を挙げることができる。またコージェライト製あるいは金属製のハニカム状基材にウォッシュコートして使用することもできる。ウォッシュコートする場合、ハニカム状基材にゼオライトをコートした後に、ゼオライトを修飾する方法、予めゼオライトを修飾した後に、ハニカム状基材にコートする方法などが採用できる。   The HC adsorbent of the present invention can also be used after being mixed with a binder such as silica, alumina and clay mineral. Examples of clay minerals include kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. The cordierite or metal honeycomb-like base material can be washed and used. In the case of wash coating, a method of modifying the zeolite after coating the honeycomb-shaped substrate with zeolite, a method of coating the honeycomb-shaped substrate after modifying the zeolite in advance, and the like can be employed.

本発明のHC吸着剤に供するβ型ゼオライトの製造法下の方法によって製造できる。

Preparation of β-type zeolite subjected to HC adsorbent of the present invention can be prepared by the methods below.

β型ゼオライトの製造法は種々の製法が報告されており、例えば特開平2−293021号他によって、SiO/Al比が本発明の範囲のβ型ゼオライトを得ることができる。しかし、従来の方法で合成した同様のSiO/Al比のβ型ゼオライトでは、本発明のHC脱着温度及び耐熱性等を満足するものとはならない。 Various production methods have been reported for the production method of β-type zeolite. For example, according to JP-A-2-293302 et al., a β-type zeolite having a SiO 2 / Al 2 O 3 ratio in the range of the present invention can be obtained. However, a similar β 2 type zeolite having a SiO 2 / Al 2 O 3 ratio synthesized by a conventional method does not satisfy the HC desorption temperature and heat resistance of the present invention.

本発明のHC吸着剤として用いるβ型ゼオライトは、上述の方法他で得られたSiO/Al比が80未満のβ型ゼオライトを700℃以上、900℃未満で熱処理することによって脱着温度を本発明の範囲に高めることができる。 The β-type zeolite used as the HC adsorbent of the present invention is desorbed by heat-treating the β-type zeolite having a SiO 2 / Al 2 O 3 ratio of less than 80 obtained by the above-described method and others at 700 ° C. or more and less than 900 ° C. The temperature can be increased within the scope of the present invention.

加熱温度が700℃未満では、本発明の脱着温度とならず、特に750℃以上であることが好ましい。一方、900℃を超える熱処理では、β型ゼオライトの結晶性が低下し、HC吸着性能が低くなるため、HC吸着性能を最大限に発揮するためには特に800℃以下の温度で熱処理することが好ましい。   When the heating temperature is less than 700 ° C., the desorption temperature of the present invention is not achieved, and particularly preferably 750 ° C. or more. On the other hand, in the heat treatment exceeding 900 ° C., the crystallinity of β-type zeolite is lowered, and the HC adsorption performance is lowered. preferable.

加熱条件としては、水蒸気雰囲気であることが好ましく、例えば10体積%程度の加湿条件が例示できる。   As heating conditions, it is preferable that it is a water vapor | steam atmosphere, for example, humidification conditions of about 10 volume% can be illustrated.

本発明のHC吸着剤のカチオンはH(プロトン)型であることが好ましいが、通常アンモニアイオン交換したゼオライトを熱処理してH型にする場合、熱処理(活性化)は600℃以下の温度で行われる。600℃を超える温度ではゼオライトが破壊され、吸着性能が低下するためである。本発明のβ型ゼオライトは、まずH型に変換した後で、さらに700℃以上で熱処理する。   The cation of the HC adsorbent of the present invention is preferably H (proton) type. However, when heat-treating an ammonia ion exchanged zeolite into H type by heat treatment, the heat treatment (activation) is performed at a temperature of 600 ° C. or lower. Is called. This is because the zeolite is destroyed at a temperature exceeding 600 ° C. and the adsorption performance is lowered. The β-type zeolite of the present invention is first heat treated at 700 ° C. or higher after first converted to H-type.

本発明のHC吸着剤に供するβ型ゼオライトの熱処理方法はロータリー焼成機による焼成が例示でき、特に特別な流動状態による熱処理を必要とするものではない。   The heat treatment method of the β-type zeolite to be used for the HC adsorbent of the present invention can be exemplified by calcination with a rotary calciner, and does not particularly require heat treatment in a special fluid state.

従来、ゼオライトを熱処理によって疎水化することは知られているが、その様な疎水化は本発明のβ型ゼオライトにおいて実施した温度範囲とは異なる温度、即ち本発明の効果が得られない条件で行われているか、或いはより構造安定性の高いゼオライト種を疎水化する方法に用いられるものであった。特にβ型ゼオライトを高い耐熱性が要求される分野では、特に高シリカ比のものが用いられ、本発明の範囲の低シリカのβ型ゼオライトを上述の温度で熱処理することによりHCの脱着温度を高温化したものはなかった。   Conventionally, it has been known that the zeolite is hydrophobized by heat treatment, but such hydrophobization is performed at a temperature different from the temperature range performed in the β-type zeolite of the present invention, that is, under the condition where the effect of the present invention is not obtained. It has been used or used in a process for hydrophobizing zeolite species with higher structural stability. Particularly in the field where high heat resistance is required for β-type zeolite, those having a high silica ratio are used, and the desorption temperature of HC is reduced by heat-treating low-silica β-type zeolite within the scope of the present invention at the above-mentioned temperature. None were heated.

また従来、β型ゼオライトを用いたHC吸着剤では、無機酸による脱アルミ処理、或いはアンモニウムイオン交換したものを熱処理によってH型にしたものが直接用いられており、上述した通り、これらの熱処理では通常700℃以上で処理されることはなかった。   Conventionally, in HC adsorbents using β-type zeolite, dealuminated aluminum with inorganic acid or ammonium ion exchanged H-type by heat treatment is directly used. Usually, it was not processed at 700 ° C. or higher.

本発明のHC吸着剤の使用方法は特に限定されるものではないが、例えば以下の条件が例示できる。   Although the usage method of HC adsorption agent of this invention is not specifically limited, For example, the following conditions can be illustrated.

処理ガスは、具体的には、ガソリンエンジン自動車、ディーゼルエンジン自動車等の内
燃機関の排ガスが例示される。更に上記処理ガスには、HC以外に一酸化炭素、二酸化炭
素、水素、窒素、酸素、硫黄酸化物、水等が含まれていても良い。
Specific examples of the processing gas include exhaust gas from internal combustion engines such as gasoline engine vehicles and diesel engine vehicles. Further, the processing gas may contain carbon monoxide, carbon dioxide, hydrogen, nitrogen, oxygen, sulfur oxide, water and the like in addition to HC.

処理ガス中のHC濃度は特に限定されないが、メタン換算で0.001〜10体積%が
好ましく、より好ましくは0.001〜5体積%である。また処理ガス中の水分濃度も特
に限定されず、0.01〜15体積%が例示できる。処理ガス中のHC濃度、水分濃度は
時間と共に変動していても良い。
The HC concentration in the processing gas is not particularly limited, but is preferably 0.001 to 10% by volume, more preferably 0.001 to 5% by volume in terms of methane. Further, the moisture concentration in the processing gas is not particularly limited, and may be 0.01 to 15% by volume. The HC concentration and moisture concentration in the processing gas may vary with time.

更に、処理ガス中のHCを吸着除去する際の空間速度及び温度も特に限定されない。空
間速度:100〜50万hr−1、温度−30〜200℃であることが好ましい。
Furthermore, the space velocity and temperature when adsorbing and removing HC in the process gas are not particularly limited. Space velocity: 100 to 500,000 hr −1 , preferably temperature −30 to 200 ° C.

本発明のHC吸着剤は吸着したHCの脱離温度が高く、なおかつHC吸着量が多く、さらに従来の同等のSiO/Al比のβ型ゼオライトに比して耐熱性、クラッキング性能が高いため自動車等の排ガス浄化用吸着剤として優れている。 The HC adsorbent of the present invention has a high desorption temperature of adsorbed HC and a large amount of HC adsorption, and further has heat resistance and cracking performance as compared with conventional β-type zeolite having the same SiO 2 / Al 2 O 3 ratio. Therefore, it is excellent as an adsorbent for exhaust gas purification of automobiles.

以下に本発明を実施例で説明するが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1
特開平2−293021号に開示されている方法を参照して、フッ素化合物を用いないでβ型ゼオライトを合成した。
Example 1
A β-type zeolite was synthesized without using a fluorine compound with reference to the method disclosed in JP-A-2-2933021.

珪酸ソーダ水溶液、硫酸アルミニウム水溶液を用いてれ粒状無定型アルミノ珪酸塩を得た。該無定型アルミノ珪酸塩189g、固形水酸化ナトリウム1.4g、固形水酸化カリウム3.5g及びTEAOH20%水溶液480gを30分攪拌混合し、β型ゼオライトの原料とし、当該原料スラリーを150℃で96時間結晶化した。結晶化後のスラリー状混合物を固液分離し、十分量の純水で洗浄し、110℃で乾燥した。次いで乾燥粉末を空気流通下600℃で焼成した。粉末X線回折とICP発光分析から、生成物はβ型ゼオライトで、SiO/Alモル比が36であった。 A granular amorphous aluminosilicate was obtained using a sodium silicate aqueous solution and an aluminum sulfate aqueous solution. 189 g of the amorphous aluminosilicate, 1.4 g of solid sodium hydroxide, 3.5 g of solid potassium hydroxide, and 480 g of TEAOH 20% aqueous solution were stirred and mixed for 30 minutes to obtain a raw material for β-type zeolite. Crystallized over time. The slurry mixture after crystallization was subjected to solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110 ° C. The dry powder was then fired at 600 ° C. under air flow. From the powder X-ray diffraction and ICP emission analysis, the product was β-type zeolite and had a SiO 2 / Al 2 O 3 molar ratio of 36.

当該β型ゼオライトを750℃、水蒸気雰囲気(10体積%)、1時間熱処理し、HC吸着剤とした。   The β-type zeolite was heat treated at 750 ° C. in a steam atmosphere (10% by volume) for 1 hour to obtain an HC adsorbent.

実施例2
SiO/Alモル比が40の東ソー製β型ゼオライト(商品名:HSZ−940NHA)を空気流通下600℃で焼成した。粉末X線回折とICP発光分析から、焼成後もβ型ゼオライトであり、SiO/Alモル比が40であった。
Example 2
Tosoh β-type zeolite (trade name: HSZ-940NHA) having a SiO 2 / Al 2 O 3 molar ratio of 40 was calcined at 600 ° C. under air flow. From the powder X-ray diffraction and ICP emission analysis, it was β-type zeolite even after calcination, and the SiO 2 / Al 2 O 3 molar ratio was 40.

当該β型ゼオライトを750℃、水蒸気雰囲気(10体積%)、1時間熱処理し、HC吸着剤とした。   The β-type zeolite was heat treated at 750 ° C. in a steam atmosphere (10% by volume) for 1 hour to obtain an HC adsorbent.

比較例1〜4
実施例1〜2のβ型ゼオライトを750℃で熱処理しないもの(比較例1〜2)、1000℃で熱処理したもの(比較例3)、SiO/Alモル比が本発明の範囲を超えるもの(比較例4)をそれぞれHC吸着剤として評価した。
Comparative Examples 1-4
The β-type zeolites of Examples 1 and 2 were not heat-treated at 750 ° C. (Comparative Examples 1 and 2), heat-treated at 1000 ° C. (Comparative Example 3), and the SiO 2 / Al 2 O 3 molar ratio was within the scope of the present invention. (Comparative Example 4) exceeding the above were evaluated as HC adsorbents.

なお比較例4のβ型ゼオライトは以下のものを熱処理しないで用いた。   The β-type zeolite of Comparative Example 4 was used without heat treatment.

SiO/Alモル比が40の東ソー製β型ゼオライト(商品名:HSZ−940NHA)を特開昭58−208131号公報に開示されている塩酸処理を参照し、SiO/Alモル比を高めた。β型ゼオライト20gを、0.2規定の塩酸100gに添加し、80℃で2時間攪拌した。その後、固液分離、十分量の純水で洗浄し、100℃で一晩乾燥した。粉末X線回折とICP発光分析から、生成物はβ型ゼオライトで、SiO/Alモル比が530であった。これを比較例4のHC吸着剤とした。 Tosoh β-type zeolite (trade name: HSZ-940NHA) having a SiO 2 / Al 2 O 3 molar ratio of 40 is referred to the hydrochloric acid treatment disclosed in JP-A-58-208131, and SiO 2 / Al 2 The O 3 molar ratio was increased. 20 g of β-type zeolite was added to 100 g of 0.2 N hydrochloric acid and stirred at 80 ° C. for 2 hours. Thereafter, solid-liquid separation, washing with a sufficient amount of pure water, and drying at 100 ° C. overnight were performed. From the powder X-ray diffraction and ICP emission analysis, the product was β-type zeolite and had a SiO 2 / Al 2 O 3 molar ratio of 530. This was used as the HC adsorbent of Comparative Example 4.

<吸着剤のHC吸脱着特性試験>
HC吸脱着特性を以下の方法で評価した。
<HC adsorption / desorption characteristic test of adsorbent>
HC adsorption / desorption characteristics were evaluated by the following methods.

吸着剤を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した吸着剤1mlを常圧固定床流通式反応管に充填し、窒素流通下、500℃で一時間前処理し30℃まで冷却した。次いで、表2に示すn−デカンと水分を含むモデル排ガスをガス流量2000ml/minで吸着剤に接触させながら、30℃から600℃まで10℃/minの昇温速度で昇温した。   Each of the adsorbents was pressed and then pulverized and sized to 12 to 20 mesh. 1 ml of the sized adsorbent was filled into a normal pressure fixed bed flow type reaction tube, pretreated at 500 ° C. for 1 hour under nitrogen flow, and cooled to 30 ° C. Next, the model exhaust gas containing n-decane and moisture shown in Table 2 was heated from 30 ° C. to 600 ° C. at a temperature increase rate of 10 ° C./min while contacting the adsorbent at a gas flow rate of 2000 ml / min.

Figure 0004905027
出口ガス中のHC濃度を水素イオン化検出器(FID)により連続的に定量分析した。
HCの吸脱着特性は、供給濃度(2000ppmC)を基準に低濃度域を吸着域、高濃度域を脱離域とみなし、吸着量は脱離領域の積分値、吸着保持力は吸着から脱離に転じる温度(脱離開始温度)で評価した。
Figure 0004905027
The HC concentration in the outlet gas was continuously quantitatively analyzed with a hydrogen ionization detector (FID).
The adsorption / desorption characteristics of HC are based on the supply concentration (2000 ppmC), with the low concentration region regarded as the adsorption region and the high concentration region as the desorption region, the adsorption amount is the integral value of the desorption region, and the adsorption retention is desorbed from the adsorption. Evaluation was made at a temperature (desorption start temperature).

実施例1〜3、及び比較例1〜3のHC吸着剤のHC脱離温度を表3に示す。   Table 3 shows the HC desorption temperatures of the HC adsorbents of Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 0004905027
表3から明らかな様に、本発明のHC吸着剤は、比較例のHC吸着剤と比較して脱離開始温度が高く、炭化水素保持能力が高く、なおかつ耐熱性が高かった。
Figure 0004905027
As is apparent from Table 3, the HC adsorbent of the present invention had a higher desorption start temperature, a higher hydrocarbon retention capacity, and higher heat resistance than the HC adsorbent of the comparative example.

Claims (5)

SiO /Al 比が80未満のβ型ゼオライトを水蒸気雰囲気で700℃以上、900℃未満で熱処理して得られる、SiO/Al比が80未満であり、カチオンがH(プロトン)であるβ型ゼオライトからなり、なおかつ炭化水素の脱着開始温度が185℃以上である炭化水素吸着剤。 SiO 2 / Al 2 O 3 ratio of the β-type zeolite of less than 80 700 ° C. or higher in a water vapor atmosphere, obtained by heat-treating at less than 900 ° C., a SiO 2 / Al 2 O 3 ratio of less than 80, the cation is H A hydrocarbon adsorbent comprising a β-type zeolite which is (proton) and having a hydrocarbon desorption start temperature of 185 ° C. or higher. SiO/Al比が48未満のβ型ゼオライトからなる請求項1に記載の炭化水素吸着剤。 The hydrocarbon adsorbent according to claim 1, comprising a β-type zeolite having a SiO 2 / Al 2 O 3 ratio of less than 48. 炭化水素の脱着温度が200℃以上である請求項1又は2に記載の炭化水素吸着剤。 The hydrocarbon adsorbent according to claim 1 or 2, wherein the hydrocarbon desorption temperature is 200 ° C or higher. 炭化水素の吸着量が250μmol/g以上である請求項1〜3のいずれかに記載の炭化水素吸着剤。   The hydrocarbon adsorbent according to any one of claims 1 to 3, wherein the hydrocarbon adsorption amount is 250 µmol / g or more. 請求項1〜4のいずれかに記載の炭化水素吸着剤を用いた自動車排ガスの吸着浄化方法。 The adsorption purification method of the motor vehicle exhaust gas using the hydrocarbon adsorbent in any one of Claims 1-4.
JP2006260645A 2006-09-26 2006-09-26 Hydrocarbon adsorbent comprising β-type zeolite Active JP4905027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260645A JP4905027B2 (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent comprising β-type zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260645A JP4905027B2 (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent comprising β-type zeolite

Publications (2)

Publication Number Publication Date
JP2008080194A JP2008080194A (en) 2008-04-10
JP4905027B2 true JP4905027B2 (en) 2012-03-28

Family

ID=39351591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260645A Active JP4905027B2 (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent comprising β-type zeolite

Country Status (1)

Country Link
JP (1) JP4905027B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7578285B2 (en) 2005-11-17 2009-08-25 Basf Catalysts Llc Hydrocarbon adsorption filter for air intake system evaporative emission control
JP5549839B2 (en) 2008-08-19 2014-07-16 東ソー株式会社 High heat-resistant β-type zeolite and SCR catalyst using the same
US8372477B2 (en) 2009-06-11 2013-02-12 Basf Corporation Polymeric trap with adsorbent
JP2017170299A (en) * 2016-03-22 2017-09-28 イビデン株式会社 Method for producing honeycomb structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3176146B2 (en) * 1992-10-16 2001-06-11 出光興産株式会社 Adsorbent for purifying hydrocarbons in exhaust gas
JP2957873B2 (en) * 1993-12-27 1999-10-06 出光興産株式会社 Hydrocarbon adsorbent
JP2001293368A (en) * 2000-04-13 2001-10-23 Tosoh Corp Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon

Also Published As

Publication number Publication date
JP2008080194A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
EP2457872A1 (en) Zeolite and method for producing same
WO2011078149A1 (en) Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof
KR100827788B1 (en) Hydrotalcite-zeolite composites and catalysts thereof by nox storage method
CA2141564A1 (en) Method for reducing automotive no emissions in lean burn internal combustion engine exhaust using zeolites
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
CN110944941B (en) Direct synthesis of copper-containing microporous aluminosilicate materials having AFX structure and uses of the materials
JP4905027B2 (en) Hydrocarbon adsorbent comprising β-type zeolite
WO1999030816A1 (en) Catalytic reduction of nitrogen oxide emissions with mcm-49 and mcm-56
JP7318193B2 (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
JP6926459B2 (en) Hydrocarbon adsorbent containing SZR-type zeolite and method for adsorbing hydrocarbon
JP5124927B2 (en) Hydrocarbon adsorption / removal agent comprising β-type zeolite and hydrocarbon adsorption / removal method using the same
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
JPH11216358A (en) Hydrocarbon adsorbent and catalyst for cleaning waste gas
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP3975557B2 (en) Ethylene adsorption removal method
JP3438379B2 (en) Hydrocarbon adsorbent, method for producing the same, and exhaust gas purification catalyst
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JP7104298B2 (en) New zeolite and hydrocarbon adsorbent containing it
JP2001347123A (en) Adsorptive separation method for carbon dioxide
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2000126590A (en) Adsorbent and method for removal by adsorption
WO2023182344A1 (en) Zeolite, production method thereof, hydrocarbon adsorbent and exhaust gas purifying catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4905027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3