JP4352486B2 - Exhaust gas purification catalyst and exhaust gas purification method - Google Patents

Exhaust gas purification catalyst and exhaust gas purification method Download PDF

Info

Publication number
JP4352486B2
JP4352486B2 JP32643698A JP32643698A JP4352486B2 JP 4352486 B2 JP4352486 B2 JP 4352486B2 JP 32643698 A JP32643698 A JP 32643698A JP 32643698 A JP32643698 A JP 32643698A JP 4352486 B2 JP4352486 B2 JP 4352486B2
Authority
JP
Japan
Prior art keywords
zeolite
exhaust gas
catalyst
gas purification
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32643698A
Other languages
Japanese (ja)
Other versions
JP2000153159A (en
Inventor
宏 小川
英和 青山
雅雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP32643698A priority Critical patent/JP4352486B2/en
Publication of JP2000153159A publication Critical patent/JP2000153159A/en
Application granted granted Critical
Publication of JP4352486B2 publication Critical patent/JP4352486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などの内燃機関から排出される排ガス中の窒素酸化物を除去する触媒及びその除去方法に関し、更に詳細には触媒が高温に晒された後でも、排ガスから窒素酸化物を効率的に除去する排ガス浄化触媒及びその浄化方法に関するものである。
【0002】
【従来の技術】
ガソリンエンジンより排出される排ガスの中で、人体に対して有害である窒素酸化物、一酸化炭素、炭化水素は、主にPt,Pd,Rhを担体上に担持させた三元触媒により除去されている。
【0003】
近年では、地球温暖化等の環境問題がクローズアップされる中で、二酸化炭素の排出量低減のため、希薄燃焼方式あるいは直噴燃焼方式のガソリンエンジンやディーゼルエンジンの普及が図られている。これらのエンジン排ガスは過剰の酸素を含んでいるため、従来の三元触媒による窒素酸化物の除去が困難であった。この問題に対し、酸素過剰の排ガス中から窒素酸化物を還元除去する触媒が提案されている。例えば特開平1−135541号公報にはPt,Pd,Rh,Ir,Ruから選択される1種以上の金属でイオン交換されたゼオライトからなることを特徴とする排気ガス浄化触媒、特開平3−232533号公報ではゼオライトにPt,Pd及びRhを担持させた排気ガス浄化触媒、特開平6−198190号公報ではZn及びPtをイオン交換により含有させたSiO2/Al23モル比が少なくとも15以上のZSM−5ゼオライトからなる排ガス浄化触媒、特開平6−198192号公報ではFe及びPtをイオン交換により含有させたSiO2/Al23モル比が少なくとも15以上のZSM−5ゼオライトからなる排ガス浄化触媒がそれぞれ提案されている。また、特開平8−206458号公報では窒素酸化物の除去方法において、SiO2/Al23モル比が少なくとも20〜100のFER構造を有するゼオライトに少なくとも一種以上の遷移金属を含有させた触媒が開示されている。しかしながら、上記で開示されている窒素酸化物の除去触媒は、一旦高温に晒されると触媒性能が大きく低下し、耐久性が十分でないため、未だ実用化には至っていない。
【0004】
窒素酸化物の除去活性及び耐久性の両者を考慮して、希薄燃焼方式のエンジンの排ガス浄化において、特開平5−317652号公報に開示されているようなアルカリ土類金属とPtをアルミナ等の多孔質担体に担持した触媒を用いて、酸素過剰雰囲気で窒素酸化物をアルカリ土類金属に吸着させ、定期的なエンジン制御でストイキ(理論空燃比)又はリッチ(還元雰囲気)な雰囲気として、窒素酸化物を還元除去する方法が採用されている。
【0005】
【発明が解決しようとする課題】
しかしながらディーゼルエンジンにおいては、排ガス中の酸素濃度が高い上に、希薄燃焼方式のガソリンエンジンで行われるようなエンジン制御によるストイキ及びリッチの排ガス雰囲気での運転が困難である。即ち、ディーゼルエンジンの排ガス浄化に特開平5−317652号公報で提案されているような触媒を用いた場合、初期の状態では窒素酸化物の吸着による浄化が可能であるが、吸着が飽和に達した時点からの窒素酸化物の除去はできなくなる。また、酸素過剰雰囲気での窒素酸化物の除去において、上記で提案されているPtを含有した触媒は、多くの亜酸化窒素の生成を伴うため、望ましくない。
【0006】
本発明の目的は、以上の様な従来技術の問題点を解決するためになされたものであり、触媒が高温に晒された後でも排ガスから窒素酸化物を効率的に除去し、更には無害な窒素へと転化する排ガス浄化触媒及び排ガス浄化方法を提供するところにある。
【0007】
【課題を解決するための手段】
本発明者は、上記課題に対して鋭意検討した結果、排ガスから窒素酸化物を除去する排ガス浄化において、所定以上の熱安定性を有するゼオライトに活性金属を含有させた触媒が高い窒素酸化物の還元除去活性及び耐久性を有し、且つ亜酸化窒素の生成が抑制されることを見いだし、本発明を完成するに至った。
【0008】
即ち本発明は、ゼオライトに周期律表のVIII族及びIB族から選ばれる1種以上の活性金属を含有させた排ガス浄化触媒において、該ゼオライトが、FER構造を有し、SiO /Al モル比が30以上であり、且つ、プロトン型の状態で、10体積%の水蒸気を含む湿潤空気で900℃5時間の熱水処理を行った場合に、結晶残存率が95%以上、且つ4配位Alの残存率が40%以上という特性を有することを特徴とする、排ガス浄化触媒である。また本発明は、そのような排ガス浄化触媒を排ガスと接触させることを特徴とする、排ガスの浄化方法である。以下本発明を詳細に説明する。
【0009】
本発明に係る排ガス浄化触媒は、ゼオライトに周期律表のVIII族及びIB族から選ばれる1種以上の活性金属を含有させたものであり、該ゼオライトが、FER構造を有し、SiO /Al モル比が30以上であり、且つ、プロトン型の状態で、10体積%の水蒸気を含む湿潤空気で900℃5時間の熱水処理を行った場合に、結晶残存率が95%以上、且つ4配位Alの残存率が40%以上という特性を有することを特徴とするものである。
【0010】
本発明を構成するゼオライトの特性について以下に述べる。本発明ではプロトン型ゼオライトの特性として、上述のような耐熱水性を規定している。ゼオライトは一般的には
xM2/nO・Al23・ySiO2・zH2
(ただしnは陽イオンMの原子価、xは0.8〜1.2の範囲の数、yは2以上の数、zは0以上の数である)
の組成を有するものである。ここで陽イオンMの一部はゼオライトの電荷バランスを保つために、イオン交換サイト(骨格Alサイト)に存在することが知られている。一般的には、Mは合成時に添加するアルカリ金属であるが、ゼオライトのイオン交換特性を利用して任意の金属に置換することもできる。また、鉱酸等で処理するか、アンモニウム塩でイオン交換したアンモニウム型を熱処理してプロトン型とすることもできる。
【0011】
ゼオライトは、その構成成分であるSiとAlがそれぞれ酸素と四面体構造を形成して連結している結晶性無機化合物である。つまり、Si、Al及び酸素でゼオライト骨格を形成しており、未処理のゼオライトの場合、Si、Alは共に4配位構造である。しかしながら、ゼオライト骨格中の一部のAl元素が、熱処理または水蒸気を含んだ雰囲気での熱処理(熱水処理)でゼオライト骨格から脱離する等、未処理とは異なった状態に変化することが知られている。この骨格Alの状態変化が、イオン交換サイトに存在するカチオンの種類で異なることも公知である。一般的には、プロトン型のゼオライトは、アルカリ金属型に比べて、骨格Alの状態変化が生じ易い。また、処理温度が高いほど骨格Alの4配位構造が変化しやすく、更には処理ガス中に水蒸気が含まれることでその変化が生じ易い。
【0012】
本発明に係るゼオライトは、プロトン型のゼオライトを、10体積%の水蒸気を含む湿潤空気で900℃5時間の熱水処理して、その特性(耐熱水性)を規定する。即ち本発明に係るゼオライトは、プロトン型の状態で、水蒸気を10体積%含む湿潤空気で900℃5時間の熱水処理した後の結晶残存率が95%以上であり、且つ4配位Alの残存率が40%以上であるという特性を有することが必須である。
【0013】
結晶残存率について説明する。ゼオライトの結晶性(度)は粉末X線回折で評価することができる。一般的に粉末X線回折による結晶度は、検出される回折ピークのピーク強度(高さ)及びピーク面積で評価でき、ゼオライトの結晶度の増加に伴ってゼオライトに帰属される回折ピークの強度が大きくなる。一般的にゼオライトを高温で熱処理することで、細孔構造の歪みや構造破壊が生じ、結晶度が低下することが知られている。本発明では粉末X線回折で得られるゼオライトピークの強度より結晶度を評価し、結晶残存率を規定する。結晶残存率は、未処理ゼオライトの結晶度に対する上記熱水処理後のゼオライト結晶度の割合を表したものであり、次式で算出した。
【0014】
結晶残存率(%)=([熱水処理後のゼオライトの結晶度]/[未処理ゼオライトの結晶度])×100
本発明に用いられるゼオライトは、熱水処理した後の結晶残存率が95%以上である。結晶残存率が95%未満ではゼオライト自体の耐熱性が低いため、触媒の十分な耐熱性、耐久性が得られない。
【0015】
4配位Alの残存率について説明する。ゼオライト中のAlの状態は、固体高分解能MASNMR(Magic Angle Spinning NMR)で調べることができ、具体的には29Si及び27AlのMASNMRスペクトルから定性定量分析することができる。本発明で規定した4配位Alの残存率は、29SiのMASNMRから求めた4配位Al量から求め、未処理ゼオライトの4配位Al量に対する上記熱水処理後のゼオライトの4配位Al量の割合を表したものであり、次式で算出した。
【0016】
4配位Alの残存率(%)=([熱水処理ゼオライトの4配位Al量]/[未処理ゼオライトの4配位Al量])×100
本発明に用いられるゼオライトは、上記熱水処理した後の4配位Alの残存率が40%以上である。Al残存率が40%未満ではゼオライト自体の耐熱性が低いため、触媒の十分な耐熱性、耐久性が得られない。
【0017】
このように本発明に用いられるゼオライトは上述のような特性を持ち、プロトン型の状態で熱水処理後も、ゼオライトの結晶構造及び局所構造の変化が少なく、耐熱水性に優れたものである。
【0018】
本発明に用いられるゼオライトとしてはFER構造のゼオライトを用いることができる。ゼオライトのSiO2/Al23モル比、上述した高い耐熱水性を有するために30以上である
【0019】
ゼオライトの製造方法も特に限定されず、一般的に知られているシリカ源及びアルミナ源をアルカリ溶液中に分散させ、水熱合成する方法を採用することができる。更には製造原料中に有機硬化剤等を添加して製造することもできる。
【0020】
本発明に使用される触媒は、上記ゼオライトに周期律表のVIII族、IB族から選ばれる活性金属を少なくとも一種以上含有させることにより製造される。ゼオライトに含有させる活性金属としては、例えばFe,Co,Ni,Cu,Ag,Rh,Pd,Ir,Pt,Au等が挙げられ、好ましくはPtである。活性金属の含有に用いる原料には特に限定はなく、硝酸塩、硫酸塩、酢酸塩、塩化物及びアンミン錯塩等を用いることができる。上記ゼオライトに活性金属を含有させる方法としては、一般に知られているイオン交換法、含浸担持法、蒸発乾固法、物理混合法等が採用でき、好ましくはイオン交換法、含浸担持法である。ゼオライトに含有させる活性金属の含有量は特に制限されないが、窒素酸化物の除去活性及び耐久性、並びに亜酸化窒素の生成抑制効果を十分に高めるためには、ゼオライトに対して活性金属が0.1〜15重量%の範囲で良い。好ましくは0.1〜7重量%の範囲が良い。
【0021】
また、活性金属の活性化、耐熱性を向上させるために、従来提案されていたような修飾処理を施しても良い。例えば、アルカリ金属、アルカリ土類金属、希土類金属等と活性金属を共存させる処理、P添加処理等を採用することができる。
【0022】
上記方法により活性金属を含有させたゼオライトは熱処理(焼成)して用いても良い。その熱処理条件も特に限定されない。通常400〜1200℃の範囲の温度、0.5〜20時間の範囲の時間で熱処理することができる。
【0023】
以上のようにして、本発明の排ガス浄化触媒を製造することができる。本発明の触媒は、シリカ、アルミナ及び粘土鉱物等のバインダーと混合し成形して使用することもできる。粘土鉱物としては、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン、セピオライト等を挙げることができる。またコージェライト製あるいは金属製のハニカム状基材にウォッシュコートして使用することもできる。ウォッシュコートする場合、ハニカム状基材にゼオライトをコートした後に活性金属を含有させる方法、予めゼオライトに上記活性金属を含有させた後に、ハニカム状基材にコートする方法のどちらを採用しても良い。
【0024】
上記のような本発明の排ガス浄化触媒に窒素酸化物を含有する排ガスを接触させることにより、窒素酸化物を除去することができ、更には無害な窒素へ転化することができる。本発明の排ガス浄化触媒は、特に酸素過剰の排ガスに対して有効である。酸素過剰の排ガスとは、排ガス中に含まれる炭化水素を完全に酸化するのに必要な酸素量より過剰な酸素が含まれている排ガスを指し、このような排ガスとしては、例えば、ディーゼルエンジン等の内燃機関から排出される排ガス、特に空燃比が大きい状態で燃焼された排ガス等が具体的に例示される。更に、上記排ガスに炭化水素、一酸化炭素、二酸化炭素、水素、窒素、硫黄化合物、水が含まれていても良い。
【0025】
本発明で処理される排ガスに含まれる炭化水素の種類は特に限定されず、パラフィン、オレフィンとしては炭素数で1〜20の炭化水素、ベンゼン、ナフタレン及びその誘導体が例示される。また、上記パラフィン、オレフィン、芳香族化合物から選ばれる2種以上の炭化水素を混合して使用することもできるし、軽油、灯油、ガソリン等も使用できる。
【0026】
排ガス中の各成分の濃度は特に限定されないが、通常、窒素酸化物が50〜2000ppm、硫黄酸化物が0.1〜1000ppm、炭化水素が10〜10000ppmC(メタン換算)、酸素が0〜20%、水蒸気が0〜15%である。また、窒素酸化物の除去活性及び窒素への転化活性を更に高めるためには、上記の適当な炭化水素を排ガス中に添加しても良い。
【0027】
処理される排ガスの空間速度及び温度は特に限定されないが、好ましくは空間速度(体積基準):500〜500000hr-1、温度:100〜800℃、更に好ましくは空間速度:2000〜300000hr-1、温度100〜600℃である。
【0028】
【実施例】
以下、本発明を実施例により更に説明するが、本発明はこれら実施例に限定されるものではない。
【0029】
<実施例1>触媒1の調製
SiO2/Al23モル比が40のFER構造のゼオライト:100gを、NH4Cl:45gを純水1000gに溶解した塩化アンモニウム水溶液中に添加し、60℃20時間のイオン交換操作を行った。このイオン交換操作を2回繰り返した後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥し、引き続き500℃で1時間焼成して、ゼオライト担体1を得た。ゼオライト担体1:10gを、Pt(NH34Cl2・H2O:0.20gを純水100gに溶解したテトラアンミン白金ジクロライド水溶液中に添加し、30℃で2時間のイオン交換操作でPt担持を行った。その後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥した。引き続き、乾燥空気中で500℃1時間焼成して、触媒1を得た。触媒1をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0030】
<実施例2>触媒2の調製
SiO2/Al23モル比が62のFER構造のゼオライトを用いたこと以外は実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行ってゼオライト担体2を得た。このゼオライト担体2:10gを、Pt(NH34Cl2・H2O:0.20gを純水100gに溶解したテトラアンミン白金ジクロライド水溶液中に添加し、アンモニア水溶液を用いてスラリーのpHを10.5に調整して、70℃で20時間のイオン交換操作でPt担持を行った。その後、固液分離し、Clイオンが検出できなくなるまで純水で洗浄し、110℃で20時間乾燥した。引き続き、乾燥空気中で500℃1時間焼成して、触媒2を得た。触媒2をICP発光分析により分析したところ、Ptの含有量は1重量%であった。
【0031】
<比較例1>比較触媒1の調製
東ソー製のMFI構造のゼオライト(商品名:HSZ−840NAA,SiO2/Al23モル比=40)を用いたこと以外は実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行って、ゼオライト担体3を得た。このゼオライト担体3:10gを使用して、実施例1と同様なPt担持を行い、比較触媒1を得た。比較触媒1をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0032】
<比較例2>比較触媒2の調製
東ソー製のFER構造のゼオライト(商品名:HSZ−720KOA,SiO2/Al23モル比=17)を用いたこと以外は実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行って、ゼオライト担体4を得た。このゼオライト担体4:10gを使用して、実施例1と同様なPt担持を行い、比較触媒2を得た。比較触媒2をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0033】
<比較例3>比較触媒3の調製
東ソー製のMOR構造のゼオライト(商品名:HSZ−660HOA,SiO2/Al23モル比=26)を用いたこと以外は実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行って、ゼオライト担体5を得た。このゼオライト担体5:10gを使用して、実施例1と同様なPt担持を行い、比較触媒3を得た。比較触媒3をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0034】
<比較例4>比較触媒4の調製
東ソー製のMOR構造のゼオライト(商品名:HSZ−690HOA,SiO2/Al23モル比=224)を用いたこと以外は実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行って、ゼオライト担体6を得た。このゼオライト担体6:10gを使用して、実施例1と同様なPt担持を行い、比較触媒4を得た。比較触媒4をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0035】
<比較例5>比較触媒5の調製
東ソー製のBEA構造のゼオライト(商品名:HSZ−930HOA,SiO2/Al23モル比=26)を乾燥空気中で600℃2時間焼成して、ゼオライト中に含まれる有機物を除去した。焼成したBEA構造のゼオライトを用いて、実施例1と同様な塩化アンモニウム水溶液中でのイオン交換及び乾燥・焼成を行い、ゼオライト担体7を得た。このゼオライト担体7:10gを使用して、実施例1と同様なPt担持を行い、比較触媒5を得た。比較触媒5をICP発光分析により分析したところ、Ptの含有量は1.1重量%であった。
【0036】
<ゼオライト担体の耐熱水性試験>
ゼオライト担体1〜7を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した各ゼオライト担体3ccを常圧固定床流通式反応管に充填し、水蒸気を10体積%含有した湿潤空気を300mL/minで流通させながら900℃まで昇温し、5時間保持する熱水処理を施した。これらの熱水処理したゼオライト担体及び未処理ゼオライト担体について、粉末X線回折を用いてゼオライトの結晶度、29Si−MASNMRを用いてゼオライト中のAlの状態をそれぞれ測定し、ゼオライト担体の耐熱水性を結晶残存率及び4配位Al残存率で評価した。各ゼオライトの耐熱水性を表1に示す。
【0037】
【表1】

Figure 0004352486
【0038】
<触媒活性試験1>
触媒1,2及び比較触媒1〜5を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した各触媒1.5ccを常圧固定床流通式反応管に充填し、反応に供した。反応ガスの組成を表2に示す。反応前処理として、反応ガスを4000mL/minで流通させながら550℃まで昇温し、30分保持した。その後、150〜550℃の任意の温度で、触媒の定常活性を調べた。表3に、最も高いNOx除去率を示す温度(200℃)でのNOx除去率及びN2Oの生成率を示す。この時の空間速度(体積基準)は、160000hr-1であった。尚、NOx除去率及びN2O生成率は次式で表される。
【0039】
NOx除去率={([NOx]in−[NOx]out)/[NOx]in}×100
2O生成率={([N2O]out×2)/[NOx]in}×100
[NOx]in:入口ガスのNOx濃度
[NOx]out:出口ガスのNOx濃度
[N2O]out:出口ガスのN2O濃度
<触媒活性試験2>
触媒1,2及び比較触媒1〜5を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した各触媒1.5ccを常圧固定床流通式反応管に充填し、触媒耐久試験に供した。触媒耐久試験については、AirガスにH2OとSO2を体積換算でそれぞれ10%、25ppmとなるように含有させた混合ガスを流速200mL/minで触媒に流通させながら、600℃で50時間耐久処理し、その後、<触媒活性試験1>と同様な反応前処理、活性評価条件で触媒の活性を調べた。表3に耐久試験後のNOx除去率及びN2O生成率を示す。
【0040】
【表2】
Figure 0004352486
【0041】
【表3】
Figure 0004352486
【0042】
表1及び3からも分かるように、耐熱水性の高いゼオライトを触媒担体とする本発明の触媒は、従来までに提案されている触媒と比較して、窒素酸化物の除去活性が高いことに加えて、耐久後の活性低下が小さい。更には、表3より本発明の触媒は、その窒素酸化物の除去特性において、N2Oの生成率が小さい。即ち本発明の触媒は、NOxの除去活性が高く、かつ除去されたNOxの無害なN2への転化活性が高いことが分かる。
【0043】
【発明の効果】
本発明に係る触媒を用いることにより、触媒が高温に晒された後でも排ガスから窒素酸化物を効率的に除去し、更には無害なN2へと転化することができる。また本発明により、ディーゼルエンジン等の常に酸素過剰雰囲気である排ガス中から窒素酸化物を効率的に除去できる。加えて、前述した様な希薄燃焼方式の排ガス浄化においては、エンジン制御による排ガス雰囲気(ストイキ及びリッチ雰囲気)を調整することなく、排ガス中の窒素酸化物を除去することができるため、エンジンの運転システムが簡略化される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for removing nitrogen oxides in exhaust gas discharged from an internal combustion engine such as an automobile and a method for removing the same, and more particularly, the efficiency of nitrogen oxides from exhaust gas even after the catalyst is exposed to high temperature. TECHNICAL FIELD The present invention relates to an exhaust gas purification catalyst that is removed in an effective manner and a purification method thereof.
[0002]
[Prior art]
Nitrogen oxides, carbon monoxide, and hydrocarbons that are harmful to the human body in the exhaust gas discharged from gasoline engines are mainly removed by a three-way catalyst that supports Pt, Pd, and Rh on a carrier. ing.
[0003]
In recent years, while environmental problems such as global warming have been highlighted, in order to reduce carbon dioxide emissions, the use of lean combustion or direct injection combustion gasoline engines and diesel engines has been promoted. Since these engine exhaust gases contain excessive oxygen, it has been difficult to remove nitrogen oxides using conventional three-way catalysts. In response to this problem, a catalyst for reducing and removing nitrogen oxides from exhaust gas containing excess oxygen has been proposed. For example, JP-A-1-135541 discloses an exhaust gas purification catalyst comprising a zeolite ion-exchanged with one or more metals selected from Pt, Pd, Rh, Ir, and Ru, and JP-A-3-135541. No. 232533 discloses an exhaust gas purification catalyst in which Pt, Pd and Rh are supported on zeolite, and JP-A-6-198190 discloses that a SiO 2 / Al 2 O 3 molar ratio containing Zn and Pt by ion exchange is at least 15 SiO 2 / Al 2 O 3 molar ratio of containing the ion-exchanged Fe and Pt are comprised of at least 15 or more ZSM-5 zeolite in an exhaust gas purifying catalyst, JP-a-6-198192 discloses having the above ZSM-5 zeolite Exhaust gas purification catalysts have been proposed. Further, in the method for removing nitrogen oxides in JP-8-206458 discloses, SiO 2 / Al 2 O 3 molar ratio was shown containing at least one kind of transition metal zeolite having at least 20 to 100 of the FER structural catalyst Is disclosed. However, the nitrogen oxide removal catalyst disclosed above has not yet been put into practical use because its catalytic performance is greatly reduced once it is exposed to high temperatures and its durability is not sufficient.
[0004]
In consideration of both nitrogen oxide removal activity and durability, in the exhaust gas purification of a lean combustion engine, alkaline earth metal and Pt as disclosed in JP-A-5-317652 are made of alumina or the like. Using a catalyst supported on a porous carrier, nitrogen oxides are adsorbed on alkaline earth metals in an oxygen-excess atmosphere, and nitrogen is used as a stoichiometric (theoretical air-fuel ratio) or rich (reducing atmosphere) atmosphere under regular engine control. A method of reducing and removing oxides is employed.
[0005]
[Problems to be solved by the invention]
However, in a diesel engine, the oxygen concentration in the exhaust gas is high, and it is difficult to operate in a stoichiometric and rich exhaust gas atmosphere by engine control as is done in a lean-burn gasoline engine. That is, when a catalyst such as that proposed in JP-A-5-317652 is used for exhaust gas purification of a diesel engine, purification by adsorption of nitrogen oxides is possible in the initial state, but the adsorption reaches saturation. Nitrogen oxide cannot be removed from this point. In addition, in the removal of nitrogen oxides in an oxygen-excess atmosphere, the Pt-containing catalyst proposed above is not desirable because it involves generation of a large amount of nitrous oxide.
[0006]
The object of the present invention was made to solve the above-mentioned problems of the prior art, and effectively removes nitrogen oxides from exhaust gas even after the catalyst is exposed to high temperature, and further harmless. The present invention provides an exhaust gas purifying catalyst and a method for purifying exhaust gas, which are converted into nitrogen.
[0007]
[Means for Solving the Problems]
As a result of intensive studies on the above problems, the inventor of the present invention, in exhaust gas purification that removes nitrogen oxides from exhaust gas, a catalyst in which an active metal is contained in a zeolite having thermal stability higher than a predetermined level is high in nitrogen oxide. It has been found that it has reduction removal activity and durability, and the production of nitrous oxide is suppressed, and the present invention has been completed.
[0008]
That is, the present invention relates to an exhaust gas purification catalyst in which a zeolite contains one or more active metals selected from Group VIII and Group IB of the periodic table, wherein the zeolite has a FER structure, and has SiO 2 / Al 2 O When the hydrothermal treatment at 900 ° C. for 5 hours with wet air containing 10% by volume of water vapor in a proton type state with a 3 molar ratio of 30 or more , the crystal residual rate is 95% or more, and An exhaust gas purifying catalyst characterized in that the remaining ratio of tetracoordinated Al is 40% or more. The present invention is also a method for purifying exhaust gas, wherein the exhaust gas purifying catalyst is brought into contact with exhaust gas. The present invention will be described in detail below.
[0009]
The exhaust gas purifying catalyst according to the present invention is one in which one or more active metals selected from Group VIII and Group IB of the periodic table are contained in zeolite, and the zeolite has a FER structure, SiO 2 / When the Al 2 O 3 molar ratio is 30 or more and the hydrothermal treatment is performed at 900 ° C. for 5 hours with moist air containing 10% by volume of water vapor in a proton type state, the crystal residual ratio is 95%. In addition, the tetracoordinate Al residual ratio is 40% or more.
[0010]
The characteristics of the zeolite constituting the present invention will be described below. In the present invention, the hot water resistance as described above is defined as a characteristic of the proton type zeolite. Zeolites is generally xM 2 / n O · Al 2 O 3 · ySiO 2 · zH 2 O
(Where n is the valence of the cation M, x is a number in the range of 0.8 to 1.2, y is a number of 2 or more, and z is a number of 0 or more)
It has the composition of. Here, it is known that a part of the cation M exists at the ion exchange site (framework Al site) in order to maintain the charge balance of the zeolite. In general, M is an alkali metal added at the time of synthesis, but it can be replaced with any metal by utilizing the ion exchange characteristics of zeolite. Alternatively, the proton type can be obtained by heat treatment of an ammonium type treated with a mineral acid or the like or ion-exchanged with an ammonium salt.
[0011]
Zeolite is a crystalline inorganic compound in which its constituent components, Si and Al, are connected to form a tetrahedral structure with oxygen, respectively. That is, a zeolite skeleton is formed by Si, Al, and oxygen. In the case of untreated zeolite, both Si and Al have a four-coordinate structure. However, it is known that a part of Al element in the zeolite framework changes to a state different from the untreated state, such as desorption from the zeolite framework by heat treatment or heat treatment in an atmosphere containing water vapor (hydrothermal treatment). It has been. It is also known that the state change of the skeleton Al differs depending on the type of cation present at the ion exchange site. Generally, proton-type zeolite is more likely to change the state of the skeleton Al than the alkali metal type. Further, the higher the processing temperature, the more easily the tetracoordinate structure of the skeleton Al changes, and the change easily occurs because water vapor is contained in the processing gas.
[0012]
The zeolite according to the present invention is obtained by subjecting proton-type zeolite to hot water treatment at 900 ° C. for 5 hours with moist air containing 10% by volume of water vapor, thereby defining the characteristics (hot water resistance). That is, the zeolite according to the present invention has a residual ratio of crystals of 95% or more after hydrothermal treatment at 900 ° C. for 5 hours with moist air containing 10% by volume of water vapor in a proton type state, and has four-coordinate Al. It is essential to have the characteristic that the residual rate is 40% or more.
[0013]
The crystal residual rate will be described. The crystallinity (degree) of zeolite can be evaluated by powder X-ray diffraction. In general, the crystallinity by powder X-ray diffraction can be evaluated by the peak intensity (height) and peak area of a detected diffraction peak, and the intensity of the diffraction peak attributed to the zeolite increases as the crystallinity of the zeolite increases. growing. In general, it is known that heat treatment of zeolite at high temperature causes distortion of the pore structure or structural destruction, resulting in a decrease in crystallinity. In the present invention, the crystallinity is evaluated from the intensity of the zeolite peak obtained by powder X-ray diffraction, and the crystal residual rate is defined. The crystal residual ratio represents the ratio of the zeolite crystallinity after the hydrothermal treatment to the crystallinity of the untreated zeolite, and was calculated by the following formula.
[0014]
Crystal residual ratio (%) = ([crystallinity of zeolite after hydrothermal treatment] / [crystallinity of untreated zeolite]) × 100
The zeolite used in the present invention has a crystal residual ratio of 95% or more after hydrothermal treatment. If the crystal residual rate is less than 95%, the heat resistance of the zeolite itself is low, so that sufficient heat resistance and durability of the catalyst cannot be obtained.
[0015]
The remaining ratio of tetracoordinate Al will be described. The state of Al in the zeolite can be examined by solid high resolution MASNMR (Magic Angle Spinning NMR), and specifically, qualitative and quantitative analysis can be performed from MASNMR spectra of 29 Si and 27 Al. The residual ratio of tetracoordinated Al defined in the present invention is determined from the amount of tetracoordinated Al determined from 29 Si MAS NMR, and the four-coordinated Al of the zeolite after the hydrothermal treatment with respect to the amount of tetracoordinated Al in the untreated zeolite. It represents the ratio of the amount of Al and was calculated by the following formula.
[0016]
Residual ratio of tetracoordinate Al (%) = ([4-coordinate Al amount of hydrothermally treated zeolite] / [4-coordinate Al amount of untreated zeolite]) × 100
The zeolite used in the present invention has a residual ratio of tetracoordinate Al after the hydrothermal treatment is 40% or more. If the Al residual ratio is less than 40%, the heat resistance of the zeolite itself is low, so that sufficient heat resistance and durability of the catalyst cannot be obtained.
[0017]
As described above, the zeolite used in the present invention has the characteristics as described above, and is excellent in hot water resistance with little change in the crystal structure and local structure of the zeolite even after hydrothermal treatment in a proton type state.
[0018]
As the zeolite used in the present invention, a zeolite having a FER structure can be used. SiO 2 / Al 2 O 3 molar ratio of the zeolite is 30 or more in order to have a high hot water resistance as described above.
[0019]
The method for producing zeolite is not particularly limited, and a generally known method in which a silica source and an alumina source are dispersed in an alkaline solution and hydrothermal synthesis is employed can be employed. Furthermore, it can also be produced by adding an organic curing agent or the like to the production raw material.
[0020]
The catalyst used in the present invention is produced by incorporating at least one active metal selected from Group VIII and Group IB of the Periodic Table into the zeolite. Examples of the active metal contained in the zeolite include Fe, Co, Ni, Cu, Ag, Rh, Pd, Ir, Pt, Au, and the like, preferably Pt. The raw material used for containing the active metal is not particularly limited, and nitrates, sulfates, acetates, chlorides, ammine complex salts, and the like can be used. As a method for incorporating the active metal into the zeolite, a generally known ion exchange method, impregnation support method, evaporation to dryness method, physical mixing method and the like can be adopted, and the ion exchange method and the impregnation support method are preferable. The content of the active metal to be contained in the zeolite is not particularly limited, but in order to sufficiently enhance the removal activity and durability of nitrogen oxides and the effect of suppressing the formation of nitrous oxide, the active metal content of the zeolite is 0. It may be in the range of 1-15% by weight. The range of 0.1 to 7% by weight is preferable.
[0021]
Moreover, in order to improve the activation and heat resistance of the active metal, a modification treatment as conventionally proposed may be performed. For example, a treatment in which an active metal coexists with an alkali metal, an alkaline earth metal, a rare earth metal, or the like, a P addition treatment, or the like can be employed.
[0022]
Zeolite containing an active metal by the above method may be used after heat treatment (calcination). The heat treatment conditions are not particularly limited. Usually, the heat treatment can be performed at a temperature in the range of 400 to 1200 ° C. and a time in the range of 0.5 to 20 hours.
[0023]
As described above, the exhaust gas purification catalyst of the present invention can be manufactured. The catalyst of the present invention can be used after being mixed with a binder such as silica, alumina and clay mineral. Examples of clay minerals include kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. The cordierite or metal honeycomb-like base material can be washed and used. In the case of wash coating, either a method of adding an active metal after coating the honeycomb substrate with zeolite or a method of coating the honeycomb substrate after previously adding the active metal to the zeolite may be employed. .
[0024]
By bringing the exhaust gas containing nitrogen oxides into contact with the exhaust gas purification catalyst of the present invention as described above, the nitrogen oxides can be removed and further converted into harmless nitrogen. The exhaust gas purification catalyst of the present invention is particularly effective for exhaust gas containing excess oxygen. Exhaust gas with excess oxygen refers to exhaust gas that contains oxygen in excess of the amount of oxygen necessary to completely oxidize the hydrocarbons contained in the exhaust gas. Examples of such exhaust gas include diesel engines, etc. Exhaust gas discharged from the internal combustion engine, particularly exhaust gas burned in a state where the air-fuel ratio is large is specifically exemplified. Furthermore, the exhaust gas may contain hydrocarbons, carbon monoxide, carbon dioxide, hydrogen, nitrogen, sulfur compounds, and water.
[0025]
The kind of hydrocarbon contained in the exhaust gas treated in the present invention is not particularly limited, and examples of paraffin and olefin include hydrocarbons having 1 to 20 carbon atoms, benzene, naphthalene, and derivatives thereof. In addition, two or more hydrocarbons selected from the above paraffin, olefin, and aromatic compound can be mixed and used, and light oil, kerosene, gasoline, and the like can also be used.
[0026]
The concentration of each component in the exhaust gas is not particularly limited. Usually, nitrogen oxide is 50 to 2000 ppm, sulfur oxide is 0.1 to 1000 ppm, hydrocarbon is 10 to 10000 ppmC (methane conversion), and oxygen is 0 to 20%. , Water vapor is 0 to 15%. Further, in order to further enhance the activity of removing nitrogen oxides and the activity of converting to nitrogen, the above-mentioned appropriate hydrocarbons may be added to the exhaust gas.
[0027]
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but preferably the space velocity (volume basis): 500 to 500000 hr −1 , temperature: 100 to 800 ° C., more preferably space velocity: 2000 to 300000 hr −1 , temperature 100-600 ° C.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited to these Examples.
[0029]
<Example 1> Preparation of catalyst 1 Zeolite having a FER structure having a SiO 2 / Al 2 O 3 molar ratio of 40: 100 g was added to an ammonium chloride aqueous solution in which 45 g of NH 4 Cl: 45 g was dissolved in 1000 g of pure water. An ion exchange operation was performed at 20 ° C. for 20 hours. After this ion exchange operation was repeated twice, solid-liquid separation was performed, and the product was washed with pure water until Cl ions could no longer be detected, dried at 110 ° C. for 20 hours, and subsequently calcined at 500 ° C. for 1 hour. Got. A zeolite carrier (1:10 g) was added to a tetraammineplatinum dichloride aqueous solution in which 0.20 g of Pt (NH 3 ) 4 Cl 2 .H 2 O: 100 g of pure water was dissolved. Loading was performed. Thereafter, it was separated into solid and liquid, washed with pure water until Cl ions could no longer be detected, and dried at 110 ° C. for 20 hours. Subsequently, catalyst 1 was obtained by calcining in dry air at 500 ° C. for 1 hour. When the catalyst 1 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0030]
Ion exchange and drying and calcining in <Example 2> Preparation SiO 2 / Al 2 O 3 molar ratio of catalyst 2 is in a similar aqueous ammonium chloride solution as in Example 1 except for using zeolite FER structure 62 And zeolite support 2 was obtained. This zeolite carrier (2:10 g) was added to a tetraammineplatinum dichloride aqueous solution in which 0.20 g of Pt (NH 3 ) 4 Cl 2 .H 2 O: 0.20 g was dissolved in pure water, and the pH of the slurry was adjusted to 10 using an aqueous ammonia solution. The Pt support was carried out by an ion exchange operation at 70 ° C. for 20 hours. Thereafter, it was separated into solid and liquid, washed with pure water until Cl ions could no longer be detected, and dried at 110 ° C. for 20 hours. Subsequently, the catalyst 2 was obtained by calcining in dry air at 500 ° C. for 1 hour. When the catalyst 2 was analyzed by ICP emission analysis, the Pt content was 1% by weight.
[0031]
<Comparative Example 1> Preparation of Comparative Catalyst 1 The same chlorination as in Example 1 except that Tosoh MFI-structured zeolite (trade name: HSZ-840NAA, SiO 2 / Al 2 O 3 molar ratio = 40) was used. Ion exchange in an aqueous ammonium solution and drying / calcination were performed to obtain a zeolite carrier 3. Using this zeolite carrier (3:10 g), Pt loading was carried out in the same manner as in Example 1 to obtain Comparative Catalyst 1. When Comparative Catalyst 1 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0032]
<Comparative Example 2> Preparation of Comparative Catalyst 2 Chlorination similar to Example 1 except that a FER-structured zeolite (trade name: HSZ-720KOA, SiO 2 / Al 2 O 3 molar ratio = 17) manufactured by Tosoh was used. Ion exchange in an aqueous ammonium solution and drying / calcination were performed to obtain a zeolite carrier 4. Using this zeolite carrier 4:10 g, the same Pt loading as in Example 1 was carried out to obtain a comparative catalyst 2. When Comparative Catalyst 2 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0033]
<Comparative Example 3> Preparation of Comparative Catalyst 3 The same chlorination as in Example 1 except that a zeolite with a MOR structure (trade name: HSZ-660HOA, SiO 2 / Al 2 O 3 molar ratio = 26) manufactured by Tosoh was used. Ion exchange in an aqueous ammonium solution and drying / calcination were performed to obtain a zeolite carrier 5. Using this zeolite carrier 5:10 g, the same Pt loading as in Example 1 was carried out to obtain Comparative Catalyst 3. When Comparative Catalyst 3 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0034]
<Comparative Example 4> Preparation of Comparative Catalyst 4 The same chlorination as in Example 1 except that a zeolite with a MOR structure (trade name: HSZ-690HOA, SiO 2 / Al 2 O 3 molar ratio = 224) manufactured by Tosoh was used. Ion exchange in an aqueous ammonium solution and drying / calcination were performed to obtain a zeolite carrier 6. Using this zeolite carrier 6:10 g, the same Pt loading as in Example 1 was carried out to obtain a comparative catalyst 4. When the comparative catalyst 4 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0035]
<Comparative Example 5> Preparation of Comparative Catalyst 5 A zeolite having a BEA structure (trade name: HSZ-930HOA, SiO 2 / Al 2 O 3 molar ratio = 26) manufactured by Tosoh was calcined in dry air at 600 ° C. for 2 hours, Organic substances contained in the zeolite were removed. Using the calcined zeolite with the BEA structure, ion exchange in an aqueous ammonium chloride solution and drying / calcination were performed in the same manner as in Example 1 to obtain a zeolite carrier 7. Using this zeolite carrier 7:10 g, Pt support similar to Example 1 was carried out to obtain a comparative catalyst 5. When the comparative catalyst 5 was analyzed by ICP emission analysis, the Pt content was 1.1% by weight.
[0036]
<Heat-resistant water test of zeolite carrier>
Zeolite carriers 1 to 7 were each pressure-molded and then pulverized and sized to 12 to 20 mesh. Hot water that is charged with 3 cc of each sized zeolite carrier in a normal pressure fixed bed flow-type reaction tube, heated to 900 ° C. while flowing wet air containing 10% by volume of water vapor at 300 mL / min, and held for 5 hours Treated. For these hydrothermally treated zeolite carrier and untreated zeolite carrier, the crystallinity of the zeolite was measured using powder X-ray diffraction, and the state of Al in the zeolite was measured using 29 Si-MAS NMR. Were evaluated by the crystal residual rate and the 4-coordinate Al residual rate. Table 1 shows the hot water resistance of each zeolite.
[0037]
[Table 1]
Figure 0004352486
[0038]
<Catalyst activity test 1>
Catalysts 1 and 2 and comparative catalysts 1 to 5 were respectively pressure-molded and then pulverized and sized to 12 to 20 mesh. 1.5 cc of each sized catalyst was charged into a normal pressure fixed bed flow type reaction tube and subjected to the reaction. The composition of the reaction gas is shown in Table 2. As pre-reaction treatment, the temperature was raised to 550 ° C. while circulating the reaction gas at 4000 mL / min, and held for 30 minutes. Thereafter, the steady activity of the catalyst was examined at an arbitrary temperature of 150 to 550 ° C. Table 3 shows the NOx removal rate and the N 2 O production rate at the temperature (200 ° C.) at which the highest NOx removal rate is obtained. The space velocity (volume basis) at this time was 160000 hr −1 . The NOx removal rate and N 2 O production rate are expressed by the following equations.
[0039]
NOx removal rate = {([NOx] in − [NOx] out ) / [NOx] in } × 100
N 2 O production rate = {([N 2 O] out × 2) / [NOx] in } × 100
[NOx] in : NOx concentration of inlet gas [NOx] out : NOx concentration of outlet gas [N 2 O] out : N 2 O concentration of outlet gas <catalytic activity test 2>
Catalysts 1 and 2 and comparative catalysts 1 to 5 were respectively pressure-molded and then pulverized and sized to 12 to 20 mesh. Each sized catalyst (1.5 cc) was charged into an atmospheric pressure fixed bed flow type reaction tube and subjected to a catalyst durability test. For the catalyst durability test, a mixed gas containing H 2 O and SO 2 in air gas at 10% and 25 ppm in terms of volume was passed through the catalyst at a flow rate of 200 mL / min for 50 hours at 600 ° C. After the endurance treatment, the activity of the catalyst was examined under the same reaction pretreatment and activity evaluation conditions as in <Catalyst Activity Test 1>. Table 3 shows the NOx removal rate and N 2 O production rate after the durability test.
[0040]
[Table 2]
Figure 0004352486
[0041]
[Table 3]
Figure 0004352486
[0042]
As can be seen from Tables 1 and 3, the catalyst of the present invention using a zeolite having a high hot water resistance as a catalyst carrier has a higher nitrogen oxide removal activity than the conventionally proposed catalysts. Thus, the decrease in activity after durability is small. Furthermore, from Table 3, the catalyst of the present invention has a low N 2 O production rate in terms of nitrogen oxide removal characteristics. That is, the catalyst of the present invention has a high NOx removal activity and a high conversion activity of the removed NOx to harmless N 2 .
[0043]
【The invention's effect】
By using the catalyst according to the present invention, nitrogen oxides can be efficiently removed from the exhaust gas even after the catalyst is exposed to high temperatures, and further converted into harmless N 2 . Further, according to the present invention, nitrogen oxides can be efficiently removed from exhaust gas that is always in an oxygen-excess atmosphere such as a diesel engine. In addition, in the lean combustion type exhaust gas purification as described above, it is possible to remove nitrogen oxides in the exhaust gas without adjusting the exhaust gas atmosphere (stoichiometric and rich atmosphere) by engine control. The system is simplified.

Claims (2)

ゼオライトに周期律表のVIII族及びIB族から選ばれる1種以上の活性金属を含有させた排ガス浄化触媒において、該ゼオライトが、FER構造を有し、SiO /Al モル比が30以上であり、且つ、プロトン型の状態で、10体積%の水蒸気を含む湿潤空気で900℃5時間の熱水処理を行った場合に、結晶残存率が95%以上、且つ4配位Alの残存率が40%以上という特性を有することを特徴とする、排ガス浄化触媒。In an exhaust gas purification catalyst in which one or more active metals selected from Group VIII and Group IB of the Periodic Table are contained in zeolite, the zeolite has a FER structure and a SiO 2 / Al 2 O 3 molar ratio of 30 When the hydrothermal treatment is performed at 900 ° C. for 5 hours with moist air containing 10% by volume of water vapor in the proton type state, the residual ratio of the crystal is 95% or more and the 4-coordinated Al An exhaust gas purification catalyst characterized by having a remaining rate of 40% or more. 請求項1に記載の排ガス浄化触媒を排ガスと接触させることを特徴とする、排ガスの浄化方法。A method for purifying exhaust gas, comprising contacting the exhaust gas purification catalyst according to claim 1 with exhaust gas.
JP32643698A 1998-11-17 1998-11-17 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP4352486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32643698A JP4352486B2 (en) 1998-11-17 1998-11-17 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32643698A JP4352486B2 (en) 1998-11-17 1998-11-17 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2000153159A JP2000153159A (en) 2000-06-06
JP4352486B2 true JP4352486B2 (en) 2009-10-28

Family

ID=18187796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32643698A Expired - Fee Related JP4352486B2 (en) 1998-11-17 1998-11-17 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP4352486B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220073360A1 (en) * 2018-12-13 2022-03-10 The University Of Tokyo Zeolite and Manufacturing Method Thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03293031A (en) * 1990-04-10 1991-12-24 Tosoh Corp Zeolite highly resistant to hot water and its production
JPH03295804A (en) * 1990-04-10 1991-12-26 Tosoh Corp Highly hot water-resistant zeolite and its production
JP2544317B2 (en) * 1990-06-29 1996-10-16 財団法人石油産業活性化センター Fluid catalytic cracking catalyst composition, method for producing the same, and fluid catalytic cracking method for hydrocarbon oil using the same
JPH04305010A (en) * 1991-04-01 1992-10-28 Tosoh Corp Production of zeolite highly resistant to hot water
JPH05138031A (en) * 1991-11-19 1993-06-01 Catalysts & Chem Ind Co Ltd Catalyst composition for catalytic decomposition of hydrocarbon
JPH06182210A (en) * 1992-12-16 1994-07-05 Honda Motor Co Ltd Heat-resistant modified zeolite and catalyst for purification of exhaust gas
JP3383374B2 (en) * 1993-08-26 2003-03-04 触媒化成工業株式会社 Catalyst composition for catalytic cracking of hydrocarbons and method for producing the same
JP3547791B2 (en) * 1994-04-22 2004-07-28 水澤化学工業株式会社 High heat water resistant high silica zeolite and method for producing the same
JP3436419B2 (en) * 1994-07-19 2003-08-11 株式会社豊田中央研究所 Method for producing high heat resistant nitrogen oxide purifying catalyst
JPH0857328A (en) * 1994-08-16 1996-03-05 Idemitsu Kosan Co Ltd Catalyst for catalytic cracking and method for catalytically cracking hydrocarbon using the same
JP2992971B2 (en) * 1994-09-01 1999-12-20 株式会社ジャパンエナジー Hydrotreating catalyst
JPH09276703A (en) * 1996-04-19 1997-10-28 Honda Motor Co Ltd Catalyst for clening of exhaust gas
JPH1052628A (en) * 1996-06-07 1998-02-24 Toyota Motor Corp Catalytic device for purifying exhaust gas from diesel engine
US5897846A (en) * 1997-01-27 1999-04-27 Asec Manufacturing Catalytic converter having a catalyst with noble metal on molecular sieve crystal surface and method of treating diesel engine exhaust gas with same

Also Published As

Publication number Publication date
JP2000153159A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
US20150078989A1 (en) Zeolite catalyst containing metals
KR20130125377A (en) Zeolite catalyst containing metal
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
EP0888808B1 (en) Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
US10807082B2 (en) Zeolite catalyst containing metals
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH05220403A (en) Exhaust gas purifying catalyst
JP2973524B2 (en) Exhaust gas purification catalyst
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2008080194A (en) Hydrocarbon adsorbent composed of beta-type zeolite
JPH11216359A (en) Ethylene adsorbent, adsorptive removal method and exhaust gas purifying method
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
KR100371089B1 (en) Preparation of Hybrid Molecular Sieve de-NOx Catalyst Containing Highly Dispersed Noble Metals
JP3114982B2 (en) Exhaust gas purification catalyst and method of using the same
KR20240012454A (en) Synthesis of palladium-containing AFX zeolite catalyst for NOX adsorption
KR20240012510A (en) Synthesis of AFX-BEA zeolite composite catalyst containing palladium for NOX adsorption
JPH09271640A (en) Removal of nitrogen oxide, nitrogen oxide removing production of catalyst of catalyst
JP3361136B2 (en) Exhaust gas purification catalyst
JPH06126187A (en) Removing method for nitrogen oxide
JPH05168940A (en) Exhaust gas purifying catalyst
JPH11319572A (en) Gas purifying catalyst and gas purifying process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees