JP2008080195A - Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite - Google Patents

Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite Download PDF

Info

Publication number
JP2008080195A
JP2008080195A JP2006260646A JP2006260646A JP2008080195A JP 2008080195 A JP2008080195 A JP 2008080195A JP 2006260646 A JP2006260646 A JP 2006260646A JP 2006260646 A JP2006260646 A JP 2006260646A JP 2008080195 A JP2008080195 A JP 2008080195A
Authority
JP
Japan
Prior art keywords
type zeolite
adsorbent
sio
ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006260646A
Other languages
Japanese (ja)
Inventor
Ko Ariga
耕 有賀
Hidekazu Aoyama
英和 青山
Hiroshi Ogawa
宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2006260646A priority Critical patent/JP2008080195A/en
Publication of JP2008080195A publication Critical patent/JP2008080195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a HC (hydrocarbon) adsorbent composed of β-type zeolite, which has ≥300 SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>ratio, high HC adsorption retentivity up to high temperature and high heat resistance. <P>SOLUTION: The HC adsorbent consists of β-type zeolite having ≥300 SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>ratio and is characterized in that the desorption temperature of HC is ≥185°C. The β-type zeolite which is heat-treated at the temperature of ≥700°C, particularly ≥900°C, has ≥300 SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>ratio and is an H (proton) type is used as the HC adsorbent. The SiO<SB>2</SB>/Al<SB>2</SB>O<SB>3</SB>ratio is preferably ≥400. The HC adsorbent has high heat resistance and keeps high XRD (X-ray diffraction) intensity after tested for heat resistance and durability. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高シリカβ型ゼオライトからなる炭化水素(以下HCと記載)吸着剤に関し、炭化水素の脱着開始温度、即ちHC保持能力が高く、さらに同等のSiO/Al比のβ型ゼオライトに比して耐熱性の高いHC吸着剤に関する。本発明のHC吸着剤は、例えば自動車排ガス用のHC吸着剤として用いることができる。 The present invention relates to a hydrocarbon (hereinafter referred to as HC) adsorbent composed of a high silica β-type zeolite, which has a high hydrocarbon desorption start temperature, that is, a high HC retention capacity, and an equivalent β ratio of SiO 2 / Al 2 O 3. The present invention relates to an HC adsorbent having higher heat resistance than that of type zeolite. The HC adsorbent of the present invention can be used as, for example, an HC adsorbent for automobile exhaust gas.

β型ゼオライトは自動車等の内燃機関から排出されるHCを含有する排ガス中のHC吸着剤として用いられている。自動車排ガスは、エンジン始動直後(冷始動、或いはコールドスタートという)に低温で炭化水素を多く含む排ガスが排出されるが、初期の排ガス温度は低いため、排ガス中の炭化水素を触媒で浄化することが困難であり、触媒が十分に加熱されるまでHC吸着剤で保持することが必要である。   β-type zeolite is used as an HC adsorbent in exhaust gas containing HC discharged from an internal combustion engine such as an automobile. Exhaust gas from automobiles is exhausted at a low temperature immediately after engine start (called cold start or cold start) and contains a large amount of hydrocarbons, but the initial exhaust gas temperature is low, so the hydrocarbons in the exhaust gas are purified with a catalyst. It is difficult to hold the catalyst with the HC adsorbent until the catalyst is sufficiently heated.

これまで、β型ゼオライトによるHC吸着剤としては、耐熱性向上の点からSiO/Al比(モル比)の高いもの、特にSiO/Al比が80以上のものが提案されている。(特許文献1〜3参照)
しかし、従来の高シリカ比のβ型ゼオライトによるHC吸着剤では、低温でHCを脱着してしまい、高温までHCを保持することができず、さらに耐熱性も十分でないという問題があった。
So far, HC adsorbents using β-type zeolite have high SiO 2 / Al 2 O 3 ratio (molar ratio) from the viewpoint of improving heat resistance, especially those having a SiO 2 / Al 2 O 3 ratio of 80 or more. Proposed. (See Patent Documents 1 to 3)
However, the conventional HC adsorbent using β-zeolite with a high silica ratio has a problem that HC is desorbed at a low temperature, HC cannot be maintained at a high temperature, and heat resistance is not sufficient.

そのため、高シリカで、従来よりも高温までHCを吸着保持し、耐熱性が高いHC吸着剤が求められている。   Therefore, there is a demand for an HC adsorbent that is high silica, adsorbs and holds HC up to a higher temperature than before, and has high heat resistance.

特開平5−31359号JP-A-5-31359 特開平9−38485号JP-A-9-38485 特開平11−228128号JP-A-11-228128

本発明は、SiO/Al比が300以上で、高温までのHC吸着保持力が高く、なおかつ耐熱性の高い高シリカβ型ゼオライトからなるHC吸着剤を提供することにある。 An object of the present invention is to provide an HC adsorbent comprising a high silica β-type zeolite having a SiO 2 / Al 2 O 3 ratio of 300 or more, a high HC adsorption holding power up to a high temperature, and a high heat resistance.

本発明者らは、β型ゼオライトのHCの吸着特性について鋭意検討を重ねた結果、SiO/Al比が300以上のβ型ゼオライトからなるHC吸着剤においてHCの脱着開始温度が185℃以上、特に200℃以上であり、なおかつ従来の同等のSiO/Al比のものに比して耐熱性に優れるHC吸着剤を見出し、本発明を完成するに至ったものである。 As a result of intensive studies on the adsorption characteristics of HC of β-type zeolite, the present inventors have found that the desorption start temperature of HC is 185 in an HC adsorbent composed of β-type zeolite having a SiO 2 / Al 2 O 3 ratio of 300 or more. An HC adsorbent having a heat resistance higher than that of a conventional SiO 2 / Al 2 O 3 ratio was found and the present invention was completed. .

本発明のHC吸着剤は、SiO/Al比が300以上のβ型ゼオライトからなり、なおかつ炭化水素の脱着温度が185℃以上である炭化水素吸着剤である。 The HC adsorbent of the present invention is a hydrocarbon adsorbent comprising a β-type zeolite having a SiO 2 / Al 2 O 3 ratio of 300 or higher and a hydrocarbon desorption temperature of 185 ° C. or higher.

本発明のHC吸着剤はβ型ゼオライトからなり、β型ゼオライトは酸素12員環からなる0.76×0.64nmおよび0.55×0.55nmの細孔が交差した3次元細孔構造を有するゼオライトである。β型ゼオライトのX線回折パターンは表1に示す格子面間隔d(オングストローム)とその回折強度で特徴づけられる。   The HC adsorbent of the present invention comprises a β-type zeolite, and the β-type zeolite has a three-dimensional pore structure in which 0.76 × 0.64 nm and 0.55 × 0.55 nm pores composed of oxygen 12-membered rings intersect. Zeolite. The X-ray diffraction pattern of β-type zeolite is characterized by the lattice spacing d (angstrom) shown in Table 1 and its diffraction intensity.

Figure 2008080195
Figure 2008080195

本発明のHC吸着剤で用いられるβ型ゼオライトのSiO/Al比は、SiO/Al比が300以上、特に400以上であることが好ましい。SiO/Al比が300未満では、耐熱性が十分でなく、特に高温での耐久性が要求される場合のHC吸着剤としては適さない。SiO/Al比の上限は特に限定されないが、約5000までである。 The SiO 2 / Al 2 O 3 ratio of the β-type zeolite used in the HC adsorbent of the present invention is preferably such that the SiO 2 / Al 2 O 3 ratio is 300 or more, particularly 400 or more. When the SiO 2 / Al 2 O 3 ratio is less than 300, the heat resistance is not sufficient, and it is not suitable as an HC adsorbent particularly when durability at a high temperature is required. The upper limit of the SiO 2 / Al 2 O 3 ratio is not particularly limited, but is up to about 5000.

本発明のHC吸着剤におけるHC脱着温度は、185℃以上、特に200℃以上であることが好ましい。HCの脱着温度が185℃未満では、HC吸着剤が十分に加熱する前に吸着したHCが脱離してしまうため、好ましくない。HC脱着温度の上限は特に限定されないが、本発明のSiO/Al比の範囲では約250℃までである。 The HC desorption temperature in the HC adsorbent of the present invention is preferably 185 ° C. or higher, particularly 200 ° C. or higher. When the desorption temperature of HC is less than 185 ° C., HC adsorbed before the HC adsorbent is sufficiently heated is desorbed, which is not preferable. The upper limit of the HC desorption temperature is not particularly limited, but is up to about 250 ° C. in the range of the SiO 2 / Al 2 O 3 ratio of the present invention.

さらに本発明のHC吸着剤は、HCの吸着量が250μmol/g以上であることが好ましい。HC脱着温度だけが高くても、HCの吸着容量が少なくてはHC吸着剤としては適さない。HC吸着量の上限は特に限定されないが、本発明のSiO/Al比の範囲では、特に295μmol/g以上、約330μmol/gまでである。 Further, the HC adsorbent of the present invention preferably has an HC adsorption amount of 250 μmol / g or more. Even if only the HC desorption temperature is high, if the adsorption capacity of HC is small, it is not suitable as an HC adsorbent. The upper limit of the HC adsorption amount is not particularly limited, but in the range of the SiO 2 / Al 2 O 3 ratio of the present invention, it is particularly 295 μmol / g or more and up to about 330 μmol / g.

HC吸着量は、便宜的には、一定の吸着条件を設定した上で、HC吸着剤からのHC脱離量として定義することができる。   For convenience, the HC adsorption amount can be defined as the amount of HC desorption from the HC adsorbent after setting certain adsorption conditions.

本発明のHC吸着剤に用いるβ型ゼオライトは、カチオンがH(プロトン)である、又はHを含むことが好ましい。H型のβ型ゼオライトが特に耐熱性が高いからである。H型のβ型ゼオライトはアンモニアでイオン交換した後、600℃以下で熱処理することによって得られる。アンモニアイオン交換のゼオライトを直接600℃を越える温度で熱処理した場合、HC吸着性能等が低下する。   In the β-type zeolite used in the HC adsorbent of the present invention, the cation is preferably H (proton) or contains H. This is because H-type zeolite has particularly high heat resistance. The H-type β-type zeolite is obtained by ion-exchange with ammonia and then heat-treating at 600 ° C. or lower. When the ammonia ion exchanged zeolite is directly heat-treated at a temperature exceeding 600 ° C., the HC adsorption performance and the like deteriorate.

本発明のHC吸着剤は、同じSiO/Al比のβ型ゼオライトに比べて耐熱性が高いものである。β型ゼオライトの耐熱性は、ゼオライトの結晶性(X線結晶回折)或いはBET表面積等によって評価することができる。 The HC adsorbent of the present invention has higher heat resistance than β-type zeolite having the same SiO 2 / Al 2 O 3 ratio. The heat resistance of β-type zeolite can be evaluated by the crystallinity of the zeolite (X-ray crystal diffraction) or the BET surface area.

本発明のHC吸着剤は、従来の同様なSiO/Al比のβ型ゼオライトと同一の温度での耐熱処理後、特に高温での耐熱処理後のXRDでの回折ピークの低下が小さいものである。具体的には、1000℃の熱処理で従来のβ型ゼオライトのXRDの回折ピーク強度は70%未満となるのに対し、本発明のHC吸着剤では70%以上の回折ピーク強度を維持するものである。回折ピーク強度は表1におけるd=3.97の回折ピークを比較して求めることができる。耐熱処理後のXRD回折ピークの上限は特に限定されないが、本発明のSiO/Al比の範囲では約90%までである。 The HC adsorbent of the present invention has a lower diffraction peak in XRD after the heat treatment at the same temperature as that of the conventional β-type zeolite having the same SiO 2 / Al 2 O 3 ratio, particularly after the heat treatment at a high temperature. It is a small one. Specifically, the XRD diffraction peak intensity of the conventional β-type zeolite is less than 70% by heat treatment at 1000 ° C., whereas the HC adsorbent of the present invention maintains a diffraction peak intensity of 70% or more. is there. The diffraction peak intensity can be obtained by comparing the diffraction peaks at d = 3.97 in Table 1. The upper limit of the XRD diffraction peak after the heat treatment is not particularly limited, but is up to about 90% within the range of the SiO 2 / Al 2 O 3 ratio of the present invention.

本発明のHC吸着剤のβ型ゼオライトのHC脱着温度が高いHC脱離温度を発揮する理由は定かではないが、高い結晶規則性のみによるものではないと考えられる。本発明者等はNMRスペクトルによって観測されるゼオライト骨格のQ値の高いβ型ゼオライトが高いHC脱着温度を示すことを報告しているが、本発明のHC吸着剤のβ型ゼオライトは、必ずしもQ値が高くなくてもよく、本発明のSiO/Al比においてQ値が含有率(重量%)で40%未満、特にQ値が30〜35の範囲で高いHC脱着温度を示すものである。Q値が高くないβ型ゼオライトにおいて高いHC脱着温度を達成し得ることは、工業的に極めて意義があるものである。(ゼオライトのQSi含有率については、小野嘉夫、八嶋建明著「ゼオライトの科学と工学」(講談社)参照)
本発明のHC吸着剤は、さらに金属及び/又は金属イオンが含有されていても良い。含有させる金属及び/又は金属イオンとしては、例えばアルカリ金属、アルカリ土類金属、希土類金属、遷移金属、及び貴金属が挙げられ、それらの1種又は2種以上を含有させても良い。
Although the reason why the HC desorption temperature of the β-type zeolite of the HC adsorbent of the present invention exhibits a high HC desorption temperature is not clear, it is thought that it is not only due to high crystal regularity. The present inventors have reported that β-type zeolite having a high Q 4 value of the zeolite skeleton observed by NMR spectrum shows a high HC desorption temperature, but the β-type zeolite of the HC adsorbent of the present invention is not necessarily The Q 4 value may not be high, and in the SiO 2 / Al 2 O 3 ratio of the present invention, the Q 4 value is less than 40% in terms of content (% by weight), particularly high HC in the range of Q 4 value of 30 to 35 It shows the desorption temperature. The ability to achieve a high HC desorption temperature in a β-type zeolite that does not have a high Q 4 value is extremely industrially significant. (For the Q 4 Si content of zeolite, see Yoshio Ono and Takeaki Yashima “Science and Engineering of Zeolite” (Kodansha))
The HC adsorbent of the present invention may further contain a metal and / or a metal ion. Examples of the metal and / or metal ion to be contained include alkali metals, alkaline earth metals, rare earth metals, transition metals, and noble metals, and one or more of them may be contained.

本発明のHC吸着剤は、シリカ、アルミナ及び粘土鉱物等のバインダーと混合し成形して使用することもできる。粘土鉱物としては、カオリン、アタパルガイト、モンモリロナイト、ベントナイト、アロフェン、セピオライト等を挙げることができる。またコージェライト製あるいは金属製のハニカム状基材にウォッシュコートして使用することもできる。ウォッシュコートする場合、ハニカム状基材にゼオライトをコートした後に、ゼオライトを修飾する方法、予めゼオライトを修飾した後に、ハニカム状基材にコートする方法などが採用できる。   The HC adsorbent of the present invention can also be used after being mixed with a binder such as silica, alumina and clay mineral. Examples of clay minerals include kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. The cordierite or metal honeycomb-like base material can be washed and used. In the case of wash coating, a method of modifying the zeolite after coating the honeycomb-shaped substrate with zeolite, a method of coating the honeycomb-shaped substrate after modifying the zeolite in advance, and the like can be employed.

本発明のHC吸着剤に供するβ型ゼオライトの製造法は、特に限定されるものではないが、例えば以下の方法によって製造することができる。   The production method of the β-type zeolite to be used for the HC adsorbent of the present invention is not particularly limited, but for example, it can be produced by the following method.

β型ゼオライトの製造法は種々の製法が報告されており、例えば特開昭58−208131号他によって、SiO/Al比が本発明の範囲のβ型ゼオライトを得ることができる。また、SiO/Al比が300以上になるように直接結晶化して得ることもできる。しかし、従来の方法で得られたβ型ゼオライトは、そのままでは本発明のHCの脱着温度及び耐熱性を満足するものではない。 Various production methods for β-type zeolite have been reported. For example, JP-A-58-208131 et al. can obtain a β-type zeolite having a SiO 2 / Al 2 O 3 ratio in the range of the present invention. It can also be obtained by direct crystallization so that the SiO 2 / Al 2 O 3 ratio is 300 or more. However, the β-type zeolite obtained by the conventional method does not satisfy the desorption temperature and heat resistance of HC of the present invention as it is.

本発明のHC吸着剤として用いるβ型ゼオライトは、上述の方法他で得られたSiO/Al比が300以上のβ型ゼオライトを700℃以上、1100℃未満で熱処理することによってHC脱着温度を本発明の範囲に高めることができる。 The β-type zeolite used as the HC adsorbent of the present invention is obtained by heat-treating β-type zeolite having a SiO 2 / Al 2 O 3 ratio of 300 or more obtained by the above-described method or the like at 700 ° C. or more and less than 1100 ° C. The desorption temperature can be increased within the scope of the present invention.

熱処理温度が700℃未満では、本発明のHCの脱着特性は得られず、特に750℃以上であることが好ましい。1100℃以上の熱処理では、β型ゼオライトの結晶性が低下し、HC吸着性能が低くなる。HC吸着性能を最大限に発揮するためには特に800℃以上、さらには900℃以上で、1000℃以下の温度で熱処理することが好ましい。   When the heat treatment temperature is less than 700 ° C., the desorption characteristics of the HC of the present invention cannot be obtained, and it is particularly preferably 750 ° C. or more. In the heat treatment at 1100 ° C. or higher, the crystallinity of β-type zeolite is lowered and the HC adsorption performance is lowered. In order to maximize the HC adsorption performance, heat treatment is preferably performed at a temperature of 800 ° C. or higher, more preferably 900 ° C. or higher and 1000 ° C. or lower.

本発明のSiO/Al比のβ型ゼオライトにおいて、HCの脱着温度を高める効果が発揮される最適な熱処理温度範囲が、他のSiO/Al比の場合とは異なる原因は定かでないが、本発明のSiO/Al比のβ型ゼオライトのHC脱着温度を高めるための熱処理条件は、SiO/Al比の低いβ型ゼオライトの最適処理条件とは異なる温度領域である。 In the β-type zeolite having the SiO 2 / Al 2 O 3 ratio of the present invention, the optimum heat treatment temperature range in which the effect of increasing the desorption temperature of HC is different from the case of other SiO 2 / Al 2 O 3 ratios. Although the cause is not clear, the heat treatment conditions for increasing the HC desorption temperature of the β-type zeolite having the SiO 2 / Al 2 O 3 ratio of the present invention are the optimum processing conditions for the β-type zeolite having a low SiO 2 / Al 2 O 3 ratio Is a different temperature range.

熱処理条件としては、さらに水蒸気雰囲気であることが好ましく、例えば10体積%程度の加湿条件が例示できる。   The heat treatment condition is preferably a water vapor atmosphere, for example, a humidification condition of about 10% by volume.

前述した通り、本発明のHC吸着剤のカチオンはH(プロトン)型である、或いはHを含むことが好ましいが、通常アンモニアイオン交換したゼオライトを熱処理してH型にする場合、熱処理(活性化)は600℃以下の温度で行われる。アンモニアイオン交換したゼオライトの熱処理が600℃を超える温度ではゼオライト骨格構造が破壊され、HC吸着性能が低下するためである。本発明のβ型ゼオライトは、まず600℃以下の熱処理でH型に変換した後、さらに700℃以上、特に750〜1000℃の範囲で熱処理して得ることが好ましい。   As described above, the cation of the HC adsorbent of the present invention is preferably in the H (proton) type or contains H. Usually, when heat treatment is performed on ammonia ion-exchanged zeolite to form H type, heat treatment (activation) ) Is performed at a temperature of 600 ° C. or lower. This is because when the heat treatment of the ammonia ion exchanged zeolite exceeds 600 ° C., the zeolite framework structure is destroyed and the HC adsorption performance is lowered. The β-type zeolite of the present invention is preferably obtained by first converting it to H-type by heat treatment at 600 ° C. or lower, and then heat-treating at 700 ° C. or higher, particularly 750-1000 ° C.

本発明のHC吸着剤に供するβ型ゼオライトの熱処理方法はロータリー焼成機による焼成が例示でき、特に特別な流動状態による熱処理を必要とするものではない。   The heat treatment method of the β-type zeolite to be used for the HC adsorbent of the present invention can be exemplified by calcination with a rotary calciner, and does not particularly require heat treatment in a special fluid state.

従来、ゼオライトを熱処理によって疎水化することは知られているが、疎水化するために実際に採用できる熱処理温度は本発明の場合とは異なる温度で、本発明の効果が得られない条件で行われているか、或いはより構造安定性の高いゼオライト種を疎水化されているものしかなかった。   Conventionally, it has been known to hydrophobize zeolite by heat treatment, but the heat treatment temperature that can be actually used for hydrophobizing is different from the case of the present invention, and is performed under the condition that the effect of the present invention cannot be obtained. Or zeolite species with higher structural stability have been hydrophobized.

例えば、従来のHC吸着剤に用いるβ型ゼオライトとしては、無機酸による脱アルミ処理、或いはアンモニウムイオン交換したものを熱処理によってH型にしたものを直接用いられており、熱処理温度として700℃以上で処理されているものはない。   For example, as a β-type zeolite used in a conventional HC adsorbent, dealuminated with an inorganic acid or directly converted into an H type by heat treatment using ammonium ion exchange is used, and the heat treatment temperature is 700 ° C. or higher. Nothing is being processed.

本発明のHC吸着剤の使用方法は特に限定されるものではないが、例えば以下の条件が例示できる。   Although the usage method of HC adsorption agent of this invention is not specifically limited, For example, the following conditions can be illustrated.

処理ガスは、具体的には、ガソリンエンジン自動車、ディーゼルエンジン自動車等の内
燃機関の排ガスが例示される。更に上記処理ガスには、HC以外に一酸化炭素、二酸化炭
素、水素、窒素、酸素、硫黄酸化物、水等が含まれていても良い。
Specific examples of the processing gas include exhaust gas from internal combustion engines such as gasoline engine vehicles and diesel engine vehicles. Further, the processing gas may contain carbon monoxide, carbon dioxide, hydrogen, nitrogen, oxygen, sulfur oxide, water and the like in addition to HC.

処理ガス中のHC濃度は特に限定されないが、メタン換算で0.001〜10体積%が
好ましく、より好ましくは0.001〜5体積%である。また処理ガス中の水分濃度も特
に限定されず、0.01〜15体積%が例示できる。処理ガス中のHC濃度、水分濃度は
時間と共に変動していても良い。
The HC concentration in the processing gas is not particularly limited, but is preferably 0.001 to 10% by volume, more preferably 0.001 to 5% by volume in terms of methane. Further, the moisture concentration in the processing gas is not particularly limited, and may be 0.01 to 15% by volume. The HC concentration and moisture concentration in the processing gas may vary with time.

更に、処理ガス中のHCを吸着除去する際の空間速度及び温度も特に限定されない。空
間速度:100〜50万hr−1、温度−30〜200℃であることが好ましい。
Furthermore, the space velocity and temperature when adsorbing and removing HC in the process gas are not particularly limited. Space velocity: 100 to 500,000 hr −1 , preferably temperature −30 to 200 ° C.

本発明のHC吸着剤は従来の同等のSiO/Al比のβ型ゼオライトに比して吸着したHCの脱離温度が高く、なおかつHC吸着量が多く、さらに耐熱性、クラッキング性能が高いため自動車等の排ガス浄化用吸着剤として優れている。 The HC adsorbent of the present invention has a higher desorption temperature of HC adsorbed than a conventional β-type zeolite having the same SiO 2 / Al 2 O 3 ratio, a large amount of HC adsorption, heat resistance, and cracking performance. Therefore, it is excellent as an adsorbent for exhaust gas purification of automobiles.

以下に本発明を実施例で説明するが、本発明はこれらの実施例に限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

実施例1〜3
SiO/Alモル比が40の東ソー製β型ゼオライト(商品名:HSZ−940NHA)を特開昭58−208131号公報に開示されている塩酸処理を参照し、SiO/Alモル比を高めた。β型ゼオライト20gを、0.2規定の塩酸100gに添加し、80℃で2時間攪拌した。その後、固液分離、十分量の純水で洗浄し、100℃で一晩乾燥した。粉末X線回折とICP発光分析から、生成物はβ型ゼオライトで、SiO/Alモル比が530であった。
Examples 1-3
Tosoh β-type zeolite (trade name: HSZ-940NHA) having a SiO 2 / Al 2 O 3 molar ratio of 40 is referred to the hydrochloric acid treatment disclosed in JP-A-58-208131, and SiO 2 / Al 2 The O 3 molar ratio was increased. 20 g of β-type zeolite was added to 100 g of 0.2 N hydrochloric acid and stirred at 80 ° C. for 2 hours. Thereafter, solid-liquid separation, washing with a sufficient amount of pure water, and drying at 100 ° C. overnight were performed. From the powder X-ray diffraction and ICP emission analysis, the product was β-type zeolite and had a SiO 2 / Al 2 O 3 molar ratio of 530.

当該β型ゼオライトを750〜1000℃、水蒸気雰囲気(10vol%)、1時間熱処理し、HC吸着剤とした。(実施例1:750℃、実施例2:850℃、実施例3:900℃)実施例3のβ型ゼオライトのSi NMRによるQ値は34重量%であった。 The β-type zeolite was heat treated at 750 to 1000 ° C. in a water vapor atmosphere (10 vol%) for 1 hour to obtain an HC adsorbent. (Example 1: 750 ° C., Example 2: 850 ° C., Example 3: 900 ° C.) The Q 4 value according to Si NMR of the β-type zeolite of Example 3 was 34% by weight.

比較例1
実施例1のβ型ゼオライトを750℃で熱処理しないものを比較HC吸着剤とした。当該β型ゼオライトのSi NMRによるQ値は30.4重量%であった。
Comparative Example 1
A comparative HC adsorbent was obtained by subjecting the β-type zeolite of Example 1 to no heat treatment at 750 ° C. The Q 4 value of the β-type zeolite by Si NMR was 30.4% by weight.

<吸着剤のHC吸脱着特性試験>
HC吸脱着特性を以下の方法で評価した。
吸着剤を各々加圧成形後、粉砕して12〜20メッシュに整粒した。整粒した吸着剤1mlを常圧固定床流通式反応管に充填し、窒素流通下、500℃で一時間前処理し30℃まで冷却した。次いで、表2に示すn−デカンと水分を含むモデル排ガスをガス流量2000ml/minで吸着剤に接触させながら、30℃から600℃まで10℃/minの昇温速度で昇温した。
<HC adsorption / desorption characteristic test of adsorbent>
HC adsorption / desorption characteristics were evaluated by the following methods.
Each of the adsorbents was pressed and then pulverized and sized to 12 to 20 mesh. 1 ml of the sized adsorbent was filled into a normal pressure fixed bed flow type reaction tube, pretreated at 500 ° C. for 1 hour under nitrogen flow, and cooled to 30 ° C. Next, the model exhaust gas containing n-decane and moisture shown in Table 2 was heated from 30 ° C. to 600 ° C. at a temperature increase rate of 10 ° C./min while contacting the adsorbent at a gas flow rate of 2000 ml / min.

Figure 2008080195
Figure 2008080195

出口ガス中のHC濃度を水素イオン化検出器(FID)により連続的に定量分析した。
HCの吸脱着特性は、供給濃度(2000ppmC)を基準に低濃度域を吸着、高濃度域
を脱離とし、吸着量は脱離領域の積分値、吸着保持力は吸着から脱離に転じる温度(脱離
開始温度)で評価した。
The HC concentration in the outlet gas was continuously quantitatively analyzed with a hydrogen ionization detector (FID).
The adsorption / desorption characteristics of HC are based on the supply concentration (2000 ppmC) as the low concentration region is adsorbed and the high concentration region is desorbed, the amount of adsorption is the integrated value of the desorbed region, and the adsorption holding power is the temperature at which the adsorption shifts from desorption to desorption. (Desorption start temperature).

実施例1〜3、及び比較例1〜3のHC吸着剤のHC脱離温度を表3に示す。   Table 3 shows the HC desorption temperatures of the HC adsorbents of Examples 1 to 3 and Comparative Examples 1 to 3.

Figure 2008080195
Figure 2008080195

表3から明らかな様に、本発明のHC吸着剤は、比較例のHC吸着剤と比較して脱離開始温度が高く、炭化水素保持能力が高かった。
As is apparent from Table 3, the HC adsorbent of the present invention had a higher desorption start temperature and higher hydrocarbon retention capacity than the comparative HC adsorbent.

Claims (5)

SiO/Al比が300以上のβ型ゼオライトからなり、なおかつ炭化水素の脱着温度が185℃以上である炭化水素吸着剤。 A hydrocarbon adsorbent comprising a β-type zeolite having a SiO 2 / Al 2 O 3 ratio of 300 or more and a hydrocarbon desorption temperature of 185 ° C. or more. 炭化水素の脱着温度が200℃以上である請求項1に記載の炭化水素吸着剤。 The hydrocarbon adsorbent according to claim 1, wherein the hydrocarbon desorption temperature is 200 ° C. or higher. 炭化水素の吸着量が250μmol/g以上である請求項1〜3に記載の炭化水素吸着剤。 The hydrocarbon adsorbent according to claim 1, wherein the adsorption amount of hydrocarbon is 250 μmol / g or more. β型ゼオライトのカチオンがH(プロトン)を含んでなる請求項1〜3に記載の炭化水素吸着剤。 The hydrocarbon adsorbent according to claims 1 to 3, wherein the cation of β-type zeolite comprises H (proton). 請求項1〜4のHC吸着剤を用いた自動車排ガスの吸着浄化方法。
A method for adsorbing and purifying automobile exhaust gas using the HC adsorbent according to claim 1.
JP2006260646A 2006-09-26 2006-09-26 Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite Pending JP2008080195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260646A JP2008080195A (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260646A JP2008080195A (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite

Publications (1)

Publication Number Publication Date
JP2008080195A true JP2008080195A (en) 2008-04-10

Family

ID=39351592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260646A Pending JP2008080195A (en) 2006-09-26 2006-09-26 Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite

Country Status (1)

Country Link
JP (1) JP2008080195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139088A1 (en) * 2008-05-15 2009-11-19 三井金属鉱業株式会社 Catalyst for purifying nitrogen oxide
RU2490481C1 (en) * 2012-02-28 2013-08-20 Закрытое акционерное общество "Саровские Лаборатории" Method for removing toxic substances from exhaust gases of automobile, and device for method's implementation
WO2017164111A1 (en) * 2016-03-22 2017-09-28 イビデン株式会社 Honeycomb structure
WO2021015129A1 (en) 2019-07-25 2021-01-28 東ソー株式会社 Hydrophobic zeolite, method for producing same and use of same
JP2021080132A (en) * 2019-11-19 2021-05-27 東ソー株式会社 Hydrophobic zeolite and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009139088A1 (en) * 2008-05-15 2009-11-19 三井金属鉱業株式会社 Catalyst for purifying nitrogen oxide
CN102026722A (en) * 2008-05-15 2011-04-20 三井金属矿业株式会社 Catalyst for purifying nitrogen oxide
US8551901B2 (en) 2008-05-15 2013-10-08 Mitsui Mining & Smelting Co., Ltd. Catalyst for purifying nitrogen oxide
JP5464669B2 (en) * 2008-05-15 2014-04-09 三井金属鉱業株式会社 Nitrogen oxide purification catalyst for diesel engine exhaust gas
RU2490481C1 (en) * 2012-02-28 2013-08-20 Закрытое акционерное общество "Саровские Лаборатории" Method for removing toxic substances from exhaust gases of automobile, and device for method's implementation
WO2017164111A1 (en) * 2016-03-22 2017-09-28 イビデン株式会社 Honeycomb structure
WO2021015129A1 (en) 2019-07-25 2021-01-28 東ソー株式会社 Hydrophobic zeolite, method for producing same and use of same
CN114007736A (en) * 2019-07-25 2022-02-01 东曹株式会社 Hydrophobic zeolite, process for producing the same, and use thereof
JP2021080132A (en) * 2019-11-19 2021-05-27 東ソー株式会社 Hydrophobic zeolite and method for producing the same

Similar Documents

Publication Publication Date Title
US6042797A (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
KR101286006B1 (en) β-TYPE ZEOLITE FOR SCR CATALYST AND METHOD FOR CONVERTING NITROGEN OXIDE USING THE ZEOLITE
KR100827788B1 (en) Hydrotalcite-zeolite composites and catalysts thereof by nox storage method
Li et al. A Study on the Properties and Mechanisms for NO x Storage Over Pt/BaAl 2 O 4-Al 2 O 3 Catalyst
US20150182941A1 (en) Fe(II)-SUBSTITUTED BETA-TYPE ZEOLITE, PRODUCTION METHOD THEREFOR AND GAS ADSORBENT INCLUDING SAME, AND NITRIC OXIDE AND HYDROCARBON REMOVAL METHOD
JP2008080195A (en) Hydrocarbon adsorbent composed of silica-enriched beta-type zeolite
EP1062029A1 (en) Catalytic reduction of nitrogen oxide emissions with mcm-49 and mcm-56
EP0888808B1 (en) Adsorbent for a hydrocarbon, and exhaust gas-purifying catalyst
JP7318193B2 (en) Hydrocarbon adsorbent and hydrocarbon adsorption method
JP4905027B2 (en) Hydrocarbon adsorbent comprising β-type zeolite
JP5071193B2 (en) SCR catalyst and nitrogen oxide purification method using the same
JP5124927B2 (en) Hydrocarbon adsorption / removal agent comprising β-type zeolite and hydrocarbon adsorption / removal method using the same
ES2290002T3 (en) PROCEDURE FOR ADSORTION AND DESORTION OF NITROGEN OXIDES IN EXHAUST GASES.
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP2018079428A (en) Hydrocarbon adsorbent, and method of adsorbing and removing hydrocarbon
JP2001293368A (en) Hydrocarbon adsorbent and method for adsorbing and removing hydrocarbon
JPH11216359A (en) Ethylene adsorbent, adsorptive removal method and exhaust gas purifying method
JP5387269B2 (en) Hydrocarbon adsorbent in automobile exhaust gas comprising SUZ-4 zeolite and method for adsorbing and removing hydrocarbons
JP2003126689A (en) Adsorbent for hydrocarbon and removal method by adsorbing hydrocarbon
JP2000126590A (en) Adsorbent and method for removal by adsorption
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3482658B2 (en) Nitrogen oxide removal method
KR20240012510A (en) Synthesis of AFX-BEA zeolite composite catalyst containing palladium for NOX adsorption
JPH02261546A (en) Catalyst for purification of exhaust gas