JPH11319572A - Gas purifying catalyst and gas purifying process - Google Patents

Gas purifying catalyst and gas purifying process

Info

Publication number
JPH11319572A
JPH11319572A JP10135119A JP13511998A JPH11319572A JP H11319572 A JPH11319572 A JP H11319572A JP 10135119 A JP10135119 A JP 10135119A JP 13511998 A JP13511998 A JP 13511998A JP H11319572 A JPH11319572 A JP H11319572A
Authority
JP
Japan
Prior art keywords
catalyst
zeolite
adsorbent
porous carrier
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135119A
Other languages
Japanese (ja)
Inventor
Hiroshi Ogawa
宏 小川
Yukio Ito
雪夫 伊藤
Hidekazu Aoyama
英和 青山
Masao Nakano
雅雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP10135119A priority Critical patent/JPH11319572A/en
Publication of JPH11319572A publication Critical patent/JPH11319572A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To remove efficiently Nox by using a porous carrier containing precious metals such as Pt and Pd, and an adsorbent containing P is zeolite of MFI structure having SiO2 /Al2 O3 molar ratio in the specified range in a catalyst for removing Nox in exhaust gas. SOLUTION: A gas purifying catalyst is prepared by using a porous carrier containing at least one kind of Pt, Pd, Rh and Ir and an adsorbent containing P in zeolite and having the MFI structure with SiO2 /Al2 O3 of 20-200 molar ratio. In this case, the particle diameter of zeolite to be used is 0.1-10 μm, and the absorbent is heat treated preferably at 800-1000 deg.C. As the porous carrier, it is not particularly limited so long as the catalyst contains Pt, Pd, Rh and Ir, however alumina and zeolite having a SiO2 /Al2 O3 molar ratio of at least 100 is preferred from the viewpoint of heat resistance, and mordenite having a SiO2 /Al2 O3 molar ratio of at least 100 is more preferred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガス中の、特に自動
車等の内燃機関から排出される排ガス中の窒素酸化物を
除去するための触媒及び排ガス中の窒素酸化物の除去方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for removing nitrogen oxides from a gas, particularly from exhaust gas discharged from an internal combustion engine of an automobile or the like, and to a method for removing nitrogen oxides from an exhaust gas. .

【0002】[0002]

【従来の技術】ガソリンエンジンより排出される排ガス
の中で、人体に対して有害である窒素酸化物、一酸化炭
素、炭化水素は、主にPt,Pd,Rhを担体上に担持
させた三元触媒により除去されている。
2. Description of the Related Art Among exhaust gas discharged from a gasoline engine, nitrogen oxides, carbon monoxide and hydrocarbons which are harmful to the human body are mainly composed of Pt, Pd and Rh supported on a carrier. Removed by the original catalyst.

【0003】近年、資源問題、地球温暖化の環境問題が
クローズアップされている中で、二酸化炭素の排出量低
減のため、希薄燃焼方式あるいは直噴燃焼方式のガソリ
ンエンジンやディーゼルエンジンの普及が図られてい
る。これらのエンジン排ガスは過剰の酸素を含んでいる
ため、従来の三元触媒による窒素酸化物の除去が困難で
ある。
[0003] In recent years, while the problems of resources and environmental problems of global warming have been highlighted, the spread of lean-burn or direct-injection gasoline engines and diesel engines has been increasing in order to reduce carbon dioxide emissions. Have been. Since these engine exhaust gases contain excess oxygen, it is difficult to remove nitrogen oxides using a conventional three-way catalyst.

【0004】酸素過剰の排ガスから窒素酸化物を除去す
る方法として、アンモニアを還元剤としたV25/Ti
2上での選択還元法、アルカリ溶液への吸収法が知ら
れている。しかし、アンモニアは法令で指定される毒物
であり危険性も高く、移動体である自動車等への適用は
困難である。一方、吸収法ではアルカリ溶液の補充、処
理等の操作性の点で、一般的な自動車等の移動体への適
用は困難である。
[0004] As a method for removing nitrogen oxides from an exhaust gas having an excess of oxygen, V 2 O 5 / Ti using ammonia as a reducing agent is used.
A selective reduction method on O 2 and an absorption method in an alkaline solution are known. However, ammonia is a poison specified by law and has a high danger, and it is difficult to apply it to a mobile object such as an automobile. On the other hand, it is difficult to apply the absorption method to mobile objects such as general automobiles in terms of operability such as replenishment and treatment of an alkaline solution.

【0005】これまでに、酸素過剰下での排ガス浄化に
対して、触媒による浄化方法が提案され、種々の触媒が
開示されている。例えば、特開平1−135541号公
報ではメタノールやエタノールを還元剤として、H型ゼ
オライト、Al23、第4周期遷移金属担持Al23
ら選ばれる1種以上の触媒を使用する方法が提案されて
いる。
[0005] Hitherto, a purification method using a catalyst has been proposed for purifying exhaust gas under an excess of oxygen, and various catalysts have been disclosed. For example, as a reducing agent and methanol or ethanol in JP-1-135541 discloses, H type zeolite, Al 2 O 3, a method of using one or more catalysts selected from the fourth period transition metal supported Al 2 O 3 Proposed.

【0006】また、特開平1−135541号公報、特
開平3−232533号公報では、貴金属を含有したゼ
オライト触媒、特開平6−315635号公報では、外
層にIb、IIa、IIb、IIIa、IIIb、IV
a、IVb、Va、VIIa、VIII族の少なくとも
1種をH型ゼオライト等に担持した触媒を配置し、内層
に貴金属よりなる触媒成分を配置した触媒、特開平6−
327980号公報では、外層にH型ゼオライト等の触
媒を配置し、内層に貴金属よりなる触媒成分を配置した
触媒、特開平6−327978号公報では、HCl処理
を行った改質ゼオライトとVIIa族、鉄族、白金族を
担持したセラミックス性担体からなる触媒が開示されて
いる。また本発明者らは、先にPt,Pd,Ir及びR
hからなる群より選ばれる1種以上の活性金属を含有す
る多孔性担体とSiO2/Al2 3モル比が20以上2
00未満のMFI型ゼオライトからなる触媒を提案して
いる(特願平9−230730号)。
[0006] Also, Japanese Patent Application Laid-Open No. 1-135541,
In Japanese Unexamined Patent Publication No. Hei 3-232533, a zeolite containing a noble metal is disclosed.
Olite catalysts are disclosed in JP-A-6-315635.
Ib, IIa, IIb, IIIa, IIIb, IV
a, IVb, Va, VIIa, at least of group VIII
A catalyst in which one type is supported on H-type zeolite or the like is disposed, and the inner layer
Catalyst in which a catalyst component composed of a noble metal is disposed
In Japanese Patent No. 327980, the outer layer is made of H-type zeolite or the like.
A medium is arranged, and a catalyst component composed of a noble metal is arranged in the inner layer.
Catalysts, disclosed in JP-A-6-327978, are treated with HCl.
The modified zeolite and the group VIIa, iron group, platinum group
A catalyst comprising a supported ceramic carrier is disclosed
I have. Further, the present inventors have previously described Pt, Pd, Ir and R
h. containing at least one active metal selected from the group consisting of
Porous carrier and SiOTwo/ AlTwoO ThreeMolar ratio of 20 or more 2
Proposing a catalyst comprising less than 00 MFI type zeolite
(Japanese Patent Application No. 9-230730).

【0007】しかしながら、これまでに開示されている
触媒は、耐久性が不十分であり、触媒が一旦高温に晒さ
れると触媒活性が大きく低下する。このため、未だ実用
化に至っていない。
[0007] However, the catalysts disclosed so far have insufficient durability, and once the catalyst is exposed to a high temperature, the catalytic activity is greatly reduced. For this reason, it has not yet been put to practical use.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、以上
のような従来技術の問題点を解決するためになされたも
のであり、触媒が高温に晒された後でもガスから窒素酸
化物を効率的に除去するガス浄化触媒及びガス浄化方法
を提供するところにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above, and it is possible to remove nitrogen oxides from gas even after the catalyst is exposed to high temperatures. It is an object of the present invention to provide a gas purifying catalyst and a gas purifying method for removing gas efficiently.

【0009】[0009]

【課題を解決するするための手段】本発明者は、上記解
決しようとする課題に対して鋭意検討した結果、Pt,
Pd,Rh,Irから選ばれる少なくとも1種以上の貴
金属を含有する多孔性担体と、SiO2/Al23モル
比が20以上200未満のMFI構造を有するゼオライ
トにPを含有する吸着体からなる触媒が高い窒素酸化物
の除去活性を有し、更には高温に晒された後の活性低下
が小さく、耐久性に優れていることを見出し本発明を完
成するに至った。
The inventor of the present invention has made intensive studies on the problems to be solved and found that Pt,
From a porous carrier containing at least one noble metal selected from Pd, Rh, and Ir, and an adsorbent containing P in a zeolite having an MFI structure having a SiO 2 / Al 2 O 3 molar ratio of 20 to less than 200 It has been found that such a catalyst has a high activity of removing nitrogen oxides, has a small decrease in activity after being exposed to a high temperature, and has excellent durability, and has completed the present invention.

【0010】即ち本発明は、Pt,Pd,Rh,Irか
ら選ばれる少なくとも1種以上を含有する多孔性担体
と、SiO2/Al23モル比が20以上200未満の
MFI構造を有するゼオライトでPを含有する吸着体か
らなることを特徴とする、ガス浄化触媒である。また本
発明は、上述のガス浄化触媒をガスに接触させることを
特徴とする、ガス浄化方法である。以下本発明を詳細に
説明する。
That is, the present invention provides a porous support containing at least one selected from the group consisting of Pt, Pd, Rh, and Ir, and a zeolite having an MFI structure having a SiO 2 / Al 2 O 3 molar ratio of 20 to less than 200. And a gas purifying catalyst comprising a P-containing adsorbent. Further, the present invention is a gas purification method, which comprises bringing the above-mentioned gas purification catalyst into contact with a gas. Hereinafter, the present invention will be described in detail.

【0011】本発明のガス浄化触媒を構成する多孔性担
体について述べる。多孔性担体は、上記のPt,Pd,
Rh,Irを含有しうるものであれば特に限定されない
が、アルミナ、シリカ、チタニア、ジルコニア等の酸化
物やシリカアルミナ、シリカジルコニア、シリカチタニ
ア、チタニアジルコニア等の複合酸化物及びモルデナイ
ト、フェリエライト、β型ゼオライト、MFI型ゼオラ
イト、Y型ゼオライト等のゼオライトを使用することが
できる。中でも耐熱性の点から、アルミナ、SiO2
Al23モル比が100以上のゼオライトの使用が好ま
しく、SiO2/Al23モル比が100以上のモルデ
ナイトが更に好ましい。
The porous carrier constituting the gas purification catalyst of the present invention will be described. The porous carrier is composed of the above Pt, Pd,
There is no particular limitation as long as it can contain Rh and Ir, but oxides such as alumina, silica, titania and zirconia, and composite oxides such as silica alumina, silica zirconia, silica titania and titania zirconia and mordenite, ferrierite, Zeolites such as beta zeolite, MFI zeolite and Y zeolite can be used. Among them, alumina and SiO 2 /
Al 2 O 3 molar ratio is preferably used in more than 100 zeolite, SiO 2 / Al 2 O 3 molar ratio is more preferably 100 or more mordenite.

【0012】多孔性担体は、Pt,Pd,Rh,Irか
ら選ばれる貴金属を少なくとも1種以上含有しているこ
とが必須である。貴金属は多孔性担体に含有されること
により、安定性が向上する。貴金属の含有に用いる原料
は特に限定されないが、アンミン錯塩、塩化物、硝酸塩
等を好適に用いることができる。上記多孔性担体への貴
金属の含有方法も特に限定されず、含浸担持法、蒸発乾
固法、物理混合法、イオン交換法等の公知の方法を採用
することができる。多孔性担体に含有される貴金属の量
は特に限定されないが、より窒素酸化物の除去活性を高
めるためには、多孔性担体に対して0.1重量%以上で
あることが好ましい。また、貴金属を含有した多孔性担
体は、金属を安定化させるために熱処理することが好ま
しい。熱処理の条件は特に限定されるものでなく、40
0〜1000℃の温度で処理することができる。熱処理
の雰囲気も特に限定されず、空気、窒素、ヘリウム等の
不活性ガス及びそれらのガスが混合した雰囲気で処理す
ることができる。それらのガス中に水、炭化水素、水
素、窒素酸化物、硫黄酸化物が含有されていても良い。
It is essential that the porous carrier contains at least one noble metal selected from Pt, Pd, Rh and Ir. When the noble metal is contained in the porous carrier, the stability is improved. The raw material used to contain the noble metal is not particularly limited, but ammine complex salts, chlorides, nitrates and the like can be suitably used. The method for containing the noble metal in the porous carrier is not particularly limited, and a known method such as an impregnation-supporting method, an evaporation to dryness method, a physical mixing method, or an ion exchange method can be employed. The amount of the noble metal contained in the porous carrier is not particularly limited, but is preferably 0.1% by weight or more based on the porous carrier in order to further enhance the activity of removing nitrogen oxides. Further, it is preferable that the porous carrier containing the noble metal is subjected to a heat treatment in order to stabilize the metal. The conditions for the heat treatment are not particularly limited.
It can be processed at a temperature of 0 to 1000C. The atmosphere for the heat treatment is not particularly limited, and the treatment can be performed in an atmosphere in which an inert gas such as air, nitrogen, or helium or a mixture of these gases is used. These gases may contain water, hydrocarbons, hydrogen, nitrogen oxides and sulfur oxides.

【0013】本発明に係る吸着体について述べる。先ず
本発明に係る吸着体はMFI構造のゼオライトで構成さ
れることが必須である。一般にMFI構造のゼオライト
とは、 xMn/2O・Al23・ySiO2・zH2O (但し、nは陽イオンMの原子価、xは0〜1.5の範
囲の数、yは20以上の数、zは0以上の数)の組成を
有している。その構造に関しては、例えば米国特許第3
702886号等に記載されており、表1の様なX線回
折パターンを有する構造として定義される。
The adsorbent according to the present invention will be described. First, it is essential that the adsorbent according to the present invention is composed of zeolite having an MFI structure. And generally of MFI zeolite, xM n / 2 O · Al 2 O 3 · ySiO 2 · zH 2 O ( where, n is the valence of the cation M, x is a number in the range of 0 to 1.5, y Is a number of 20 or more, and z is a number of 0 or more). Regarding its structure, for example, US Pat.
No. 702886 and the like, and are defined as a structure having an X-ray diffraction pattern as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】MFI構造のゼオライトは既知の方法で製
造することができる。具体的には米国特許第37028
86号、特公昭56−49851号公報等の方法が例示
される。本発明に係る吸着体に用いられるゼオライトの
SiO2/Al23モル比は20以上200未満であ
る。SiO2/Al23モル比が20未満ではゼオライ
ト自身の耐熱性が低くなり、高温に晒された場合には触
媒活性が低下する。SiO2/Al23モル比が200
以上では、詳細は不明であるが触媒性能が十分に発現し
ない。窒素酸化物の除去活性及びその耐久性をより高め
るためには、SiO2/Al23モル比が20以上50
未満であることが好ましい。
The zeolite having the MFI structure can be produced by a known method. Specifically, US Pat.
No. 86, JP-B-56-49851 and the like. The SiO 2 / Al 2 O 3 molar ratio of the zeolite used for the adsorbent according to the present invention is 20 or more and less than 200. If the SiO 2 / Al 2 O 3 molar ratio is less than 20, the heat resistance of the zeolite itself will be low, and the catalyst activity will be reduced when exposed to high temperatures. SiO 2 / Al 2 O 3 molar ratio of 200
Above, the details are unknown, but the catalytic performance is not sufficiently exhibited. In order to further enhance the activity of removing nitrogen oxides and its durability, the SiO 2 / Al 2 O 3 molar ratio should be 20 to 50.
It is preferably less than.

【0016】また、本発明に係る吸着体に用いるゼオラ
イトの粒子径は特に限定されないが、好ましくは0.1
μm以上10μm以下であり、更に好ましくは1μm以
上5μm以下の範囲のゼオライトを用いることができ
る。一般にゼオライトの粒子径はコールターカウンタ
ー、マイクロトラック測定及び電子線顕微鏡観察(SE
M,TEM)等で求めることができる。本発明では、S
EM観察で平均一次粒子径を評価しており、一次粒子径
とはゼオライト結晶の最小単位の結晶径を意味する。
The particle size of the zeolite used in the adsorbent according to the present invention is not particularly limited, but is preferably 0.1%.
A zeolite having a size of at least 10 μm and more preferably at least 1 μm and at most 5 μm can be used. In general, the particle size of zeolite can be measured using a Coulter counter, microtrack measurement, and electron microscope observation (SE
(M, TEM). In the present invention, S
The average primary particle diameter is evaluated by EM observation, and the primary particle diameter means the minimum unit crystal diameter of the zeolite crystal.

【0017】本発明に係る吸着体に用いるゼオライトは
アルカリ金属、アルカリ土類金属、希土類金属等を含ん
でいても良い。またアンモニウム塩等で処理したNH4
型、または鉱酸等での酸処理もしくはNH4型の熱処理
でH型としたものを使用することもできる。好ましく
は、NH4型、H型を用いることが望ましい。
The zeolite used in the adsorbent according to the present invention may contain an alkali metal, an alkaline earth metal, a rare earth metal, or the like. NH 4 treated with ammonium salt, etc.
It is also possible to use a mold or an H-form obtained by acid treatment with a mineral acid or the like or NH 4 -type heat treatment. Preferably, it is desirable to use NH 4 type and H type.

【0018】本発明に係る吸着体は、Pを含有している
ことが必須である。Pの含有に用いられる原料は特に限
定されず、オルトリン酸、メタリン酸、ピロリン酸及び
リン酸水素二アンモニウム、有機リン酸アンモニウム等
のリン酸塩化合物や亜リン酸トリメチル等の亜リン酸化
合物で良く、これらのリン化合物を組み合わせて用いて
も良い。Pを含有させる方法も特に限定されるものでな
い。例えば水等の適当な溶媒にリン化合物溶解させた溶
液を用いて、含浸担持法、蒸発乾固法により、ゼオライ
ト上にPを含有させることができる。また、リン化合物
を含むガスをゼオライトと接触させる気相処理法やリン
化合物の物理混合等によりPを含有させることもでき
る。Pの含有量は特に限定されないが、窒素酸化物の除
去活性を及び耐久性を十分に高めるためには、ゼオライ
トに対して、Pが0.05〜30重量%の範囲で良い。
更に好ましくは0.1〜15重量%の範囲である。
It is essential that the adsorbent according to the present invention contains P. Raw materials used for containing P are not particularly limited, and are phosphoric acid compounds such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, diammonium hydrogenphosphate, and ammonium ammonium phosphate, and phosphite compounds such as trimethyl phosphite. These phosphorus compounds may be used in combination. The method for containing P is not particularly limited. For example, P can be contained on zeolite by an impregnation-supporting method or an evaporation-drying method using a solution in which a phosphorus compound is dissolved in a suitable solvent such as water. Further, P can be contained by a gas phase treatment method in which a gas containing a phosphorus compound is brought into contact with zeolite, or by physical mixing of a phosphorus compound. Although the content of P is not particularly limited, P may be in the range of 0.05 to 30% by weight with respect to the zeolite in order to sufficiently enhance the activity of removing nitrogen oxides and the durability.
More preferably, it is in the range of 0.1 to 15% by weight.

【0019】上記方法によりPを含有させたゼオライト
は焼成などの熱処理をして用いても良い。その熱処理条
件も特に限定されない。通常、400〜1200℃の範
囲の温度、0.5〜20時間の範囲の時間で熱処理する
ことができる。好ましくは温度が800〜1000℃で
あり、時間が0.5〜10時間である。熱処理する際の
雰囲気も特に限定されず、空気、窒素、ヘリウム等の不
活性ガス及びこれらのガスが混合した雰囲気で処理する
ことができる。また、それらの雰囲気ガス中に水、炭化
水素、窒素酸化物、硫黄酸化物が含有されていても良
い。好ましくは、水を含んだ加湿空気中で処理すること
が望ましい。
The zeolite containing P by the above method may be used after heat treatment such as calcination. The heat treatment conditions are not particularly limited. Usually, the heat treatment can be performed at a temperature in the range of 400 to 1200 ° C. for a time in the range of 0.5 to 20 hours. Preferably, the temperature is 800-1000 ° C. and the time is 0.5-10 hours. The atmosphere for the heat treatment is not particularly limited, and the treatment can be performed in an atmosphere of an inert gas such as air, nitrogen, helium, or a mixture of these gases. Further, water, hydrocarbons, nitrogen oxides, and sulfur oxides may be contained in the atmosphere gas. Preferably, the treatment is performed in humidified air containing water.

【0020】本発明のガス浄化触媒は上記記載の多孔性
担体と吸着体から構成されるが、これらの組み合わせ
は、多孔性担体と吸着体が接触した状態であれば特に限
定されず、例えば粉末や成形した状態で混合して用いる
方法や、成形体やハニカム状基材にウォッシュコート
し、ガスを触媒に接触させ流通させる際のガスの上流側
から下流側にむけて多孔性担体と吸着体とを任意の順序
で配置する方法や、多孔性担体と吸着体を積層して用い
る方法等が挙げられる。この中でも両者を粉末で混合す
る方法が好ましく用いられる。
The gas purification catalyst of the present invention comprises the above-described porous carrier and adsorbent. The combination thereof is not particularly limited as long as the porous carrier and the adsorbent are in contact with each other. Or a method of mixing and using in a molded state, or wash-coating a molded body or a honeycomb-shaped substrate, and contacting a gas with a catalyst to flow a gas from a catalyst to a porous carrier and an adsorbent from an upstream side to a downstream side. And a method in which a porous carrier and an adsorbent are laminated and used. Among them, a method of mixing both with powder is preferably used.

【0021】本発明のガス浄化触媒を構成する多孔性担
体と吸着体は、単独であるいは組み合わせた後にシリ
カ、アルミナ、粘土鉱物等のバインダーと混合し成形し
て使用することもできる。粘土鉱物としては、カオリ
ン、アタパルガイト、モンモリロナイト、ベントナイ
ト、アロフェン、セピオライト等の粘土鉱物である。ま
た、コージェライト製あるいは金属製のハニカム状基材
に本発明のガス浄化触媒をウォッシュコートして使用す
ることもできる。また、調製されたガス浄化触媒は、使
用前に熱処理を行っても良い。その時の条件は特に限定
されないが、400〜1000℃の温度で処理すること
ができる。熱処理の雰囲気も特に限定されず、空気、窒
素、水素、又は水素を含むガスで処理することができ
る。
The porous carrier and the adsorbent constituting the gas purification catalyst of the present invention can be used alone or in combination and then mixed with a binder such as silica, alumina, clay mineral or the like and molded. Examples of the clay mineral include clay minerals such as kaolin, attapulgite, montmorillonite, bentonite, allophane, and sepiolite. Further, the gas purification catalyst of the present invention may be wash-coated on a cordierite or metal honeycomb substrate and used. The prepared gas purification catalyst may be subjected to a heat treatment before use. The conditions at that time are not particularly limited, but the treatment can be performed at a temperature of 400 to 1000 ° C. The atmosphere for the heat treatment is not particularly limited, and the treatment can be performed with air, nitrogen, hydrogen, or a gas containing hydrogen.

【0022】ガスからの窒素酸化物の除去は、窒素酸化
物を含んだガスと上記ガス浄化触媒を接触させることに
より行うことができ、特に酸素過剰の排ガスに対しても
有効である。酸素過剰の排ガスとは、排ガス中に含まれ
る一酸化炭素、水素、炭化水素を完全に酸化するのに必
要な酸素量よりも過剰な酸素が含まれている排ガスを指
し、このような排ガスとしては、例えばディーゼルエン
ジン等の内燃機関から排出される排ガス、特に空燃比が
大きい状態で燃焼された排ガス等が具体的に例示され
る。更に、上記ガスに炭化水素、一酸化炭素、二酸化炭
素、水素、窒素、硫黄化合物、水が含まれていても良
い。
The removal of nitrogen oxides from the gas can be carried out by bringing the gas containing nitrogen oxides into contact with the above-mentioned gas purification catalyst, and is particularly effective for exhaust gas containing excess oxygen. Oxygen-excessive exhaust gas refers to exhaust gas containing an excess amount of oxygen that is necessary to completely oxidize carbon monoxide, hydrogen, and hydrocarbons contained in the exhaust gas. Specific examples of the exhaust gas include exhaust gas discharged from an internal combustion engine such as a diesel engine, particularly exhaust gas burned in a state where the air-fuel ratio is large. Further, the gas may contain hydrocarbon, carbon monoxide, carbon dioxide, hydrogen, nitrogen, sulfur compounds, and water.

【0023】本発明で処理されるガスに含まれる炭化水
素の種類は特に限定されず、パラフィン、オレフィンと
しては炭素数で1〜20の炭化水素が使用できベンゼ
ン、ナフタレン及びその誘導体が使用できる。また、上
記パラフィン、オレフィン、芳香族化合物から選ばれる
2種以上の炭化水素を混合して使用することもできる
し、軽油、灯油、ガソリン等も使用できる。ガス中の各
成分の濃度は特に限定されないが、例えば排ガス中では
通常、窒素酸化物が50〜2000ppm、炭化水素が
10〜10000ppmC(メタン換算)、酸素が0.
1〜20%である。また、窒素酸化物の除去活性を更に
高めるためには、上記の適当な炭化水素を排ガス中に添
加しても良い。
The kind of hydrocarbon contained in the gas to be treated in the present invention is not particularly limited. As paraffin and olefin, hydrocarbons having 1 to 20 carbon atoms can be used, and benzene, naphthalene and derivatives thereof can be used. Further, two or more kinds of hydrocarbons selected from the above paraffins, olefins, and aromatic compounds can be used as a mixture, and gas oil, kerosene, gasoline, and the like can also be used. The concentration of each component in the gas is not particularly limited. For example, in an exhaust gas, for example, usually 50 to 2000 ppm of nitrogen oxide, 10 to 10000 ppm of hydrocarbon (in terms of methane), and 0.1% of oxygen.
1 to 20%. In order to further enhance the activity of removing nitrogen oxides, the above-mentioned appropriate hydrocarbon may be added to the exhaust gas.

【0024】処理される排ガスの空間速度及び温度は特
に限定されないが、好ましくは空間速度(体積基準):
500〜500000hr-1、温度:100〜800
℃、更に好ましくは空間速度:2000〜300000
hr-1、温度100〜600℃である。
The space velocity and temperature of the exhaust gas to be treated are not particularly limited, but are preferably space velocity (based on volume):
500 to 500,000 hr -1 , temperature: 100 to 800
° C, more preferably space velocity: 2000-300000
hr −1 , temperature 100 to 600 ° C.

【0025】[0025]

【実施例】以下、本発明を実施例により更に説明する
が、本発明はこれら実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.

【0026】<実施例1>触媒1の調製 Pt含有多孔性担体1の調製 SiO2/Al23モル比が224のモルデナイト:1
00gを、テトラアンミンジクロロ白金:2.9gを溶
解させた1000mL水溶液に添加した後、アンモニア
水溶液によりpHを7に調整し、30℃で2時間撹拌し
た。その後、固液分離、十分量の純水での洗浄を行い、
110℃で20時間乾燥させ、更に空気流通下で500
℃1時間焼成して、Pt含有多孔性担体1を得た。この
Pt含有多孔性担体1をICP発光分析により分析した
ところ、Ptの含有量は1.7重量%であった。
Example 1 Preparation of Catalyst 1 Preparation of Pt-Containing Porous Carrier 1 Mordenite having a SiO 2 / Al 2 O 3 molar ratio of 224: 1
After adding 00 g to a 1000 mL aqueous solution in which 2.9 g of tetraamminedichloroplatinum was dissolved, the pH was adjusted to 7 with an aqueous ammonia solution, followed by stirring at 30 ° C. for 2 hours. After that, solid-liquid separation, washing with a sufficient amount of pure water,
Dry at 110 ° C. for 20 hours, and further 500
Calcination was carried out at 1 ° C. for 1 hour to obtain a Pt-containing porous carrier 1. When this Pt-containing porous carrier 1 was analyzed by ICP emission spectrometry, the Pt content was 1.7% by weight.

【0027】吸着体1の調製 SiO2/Al23モル比が40で、粒子径が4μmで
あるMFI構造のゼオライト40gを、NH4Cl:1
8gを溶解させた400mL水溶液に添加し、60℃で
20時間のイオン交換操作を行った。このイオン交換操
作を2回繰り返した後、固液分離し、Clイオンが検出
できなくなるまで純水で洗浄し、110℃で20時間乾
燥して、アンモニウム型MFI(NH4−MFI−1)
を得た。
Preparation of Adsorbent 1 40 g of an MFI-structured zeolite having a SiO 2 / Al 2 O 3 molar ratio of 40 and a particle diameter of 4 μm was admixed with NH 4 Cl: 1
The solution was added to a 400 mL aqueous solution in which 8 g was dissolved, and an ion exchange operation was performed at 60 ° C. for 20 hours. After repeating this ion exchange operation twice, solid-liquid separation is performed, washed with pure water until Cl ions cannot be detected, dried at 110 ° C. for 20 hours, and ammonium-type MFI (NH 4 -MFI-1)
I got

【0028】NH4−MFI−1:20g(無水換算)
を、リン酸水素二アンモニウム:1gを溶解させた10
0mL水溶液に添加し、60℃減圧下で蒸発乾固した。
その後、110℃で20時間乾燥して、乾燥空気中で5
00℃1時間焼成し、吸着体1を得た。吸着体1をIC
P発光分析より分析したところ、無水の酸化物ベースで 0.48P25・Al23・40SiO2 の組成を有していた。上記操作で得られたPt含有多孔
性担体1:2gと吸着体1:2gを乳鉢で混合し、加圧
成形した後、粉砕して12〜20メッシュに整粒し、触
媒1を得た。
NH 4 -MFI-1: 20 g (in terms of anhydrous)
Was dissolved in 10 g of diammonium hydrogen phosphate: 1 g.
0 mL aqueous solution was added and evaporated to dryness under reduced pressure at 60 ° C.
Then, it is dried at 110 ° C. for 20 hours, and dried in dry air for 5 hours.
It was baked at 00 ° C. for 1 hour to obtain an adsorbent 1. Adsorber 1 is IC
Analysis from P emission spectroscopy, had a composition of 0.48P 2 O 5 · Al 2 O 3 · 40SiO 2 in oxide-based anhydrous. 1: 2 g of the Pt-containing porous carrier obtained by the above operation and 1: 2 g of the adsorbent were mixed in a mortar, pressed and molded, crushed and sized to 12 to 20 mesh to obtain Catalyst 1.

【0029】<実施例2>触媒2の調製 Pt含有多孔性担体2の調製 触媒化成製のアルミナ(商品名:ACP−1):100
gを、テトラアンミンジクロロ白金:3.1gを溶解さ
せた1000mL水溶液に添加し含浸担持した後、11
0℃で20時間乾燥させた。その後、空気流通下で80
0℃1時間焼成してPt含有多孔性担体2を得た。ま
た、Ptの含有量はICP発光分析により分析したとこ
ろ、1.7重量%であった。Pt含有多孔性担体2:2
gと吸着体1:2gを乳鉢で混合し、加圧成形した後、
粉砕して12〜20メッシュに整粒し、触媒2を得た。
Example 2 Preparation of Catalyst 2 Preparation of Pt-Containing Porous Carrier 2 Alumina (ACP-1) manufactured by Catalyst Chemicals: 100
g was added to a 1000 mL aqueous solution in which 3.1 g of tetraamminedichloroplatinum was dissolved and supported by impregnation.
Dry at 0 ° C. for 20 hours. Then, under air circulation, 80
Calcination was carried out at 0 ° C. for 1 hour to obtain a Pt-containing porous carrier 2. Further, the Pt content was analyzed by ICP emission analysis, and was 1.7% by weight. Pt-containing porous carrier 2: 2
g and adsorbent 1: 2 g were mixed in a mortar and pressed and molded.
The powder was pulverized and sized to 12 to 20 mesh to obtain Catalyst 2.

【0030】<実施例3>触媒3の調製 実施例1で得られた吸着体1を、水を10体積%含んだ
加湿空気中で850℃5時間の熱処理を施し、吸着体2
とした。Pt含有多孔性担体1:2gと吸着体2:2g
を乳鉢で混合し、加圧成形した後、粉砕して12〜20
メッシュに整粒し、触媒3を得た。
Example 3 Preparation of Catalyst 3 The adsorbent 1 obtained in Example 1 was subjected to a heat treatment at 850 ° C. for 5 hours in humidified air containing 10% by volume of water.
And Pt-containing porous carrier 1: 2 g and adsorbent 2: 2 g
Are mixed in a mortar, pressed and molded, and then crushed to 12 to 20.
The granules were sized to obtain Catalyst 3.

【0031】<実施例4>触媒4の調製 吸着体3の調製 SiO2/Al23モル比が70で、粒子径が1μmで
あるMFI構造のゼオライトを用いたこと以外は実施例
1の吸着体1と同様な操作を行って吸着体3を得た。吸
着体3をICP発光分析より分析したところ、無水の酸
化物ベースで、 0.75P25・Al23・70SiO2 の組成を有していた。Pt含有多孔性担体1:2gと吸
着体3:2gを乳鉢で混合し、加圧成形した後、粉砕し
て12〜20メッシュに整粒し、触媒4を得た。
<Example 4> Preparation of catalyst 4 Preparation of adsorbent 3 The procedure of Example 1 was repeated except that a zeolite having an MFI structure having a SiO 2 / Al 2 O 3 molar ratio of 70 and a particle diameter of 1 μm was used. Adsorbent 3 was obtained by performing the same operation as for adsorbent 1. When the adsorbent 3 was analyzed from ICP emission spectrometry, in the oxide-based anhydrous had a composition of 0.75P 2 O 5 · Al 2 O 3 · 70SiO 2. 1: 2 g of the Pt-containing porous carrier and 3: 2 g of the adsorbent were mixed in a mortar, pressed and molded, and then crushed and sized to 12 to 20 mesh to obtain a catalyst 4.

【0032】<実施例5>SiO2/Al23モル比が
24で、粒子径が0.2μmであるMFI構造のゼオラ
イトを用いたこと以外は実施例1の吸着体1と同様な操
作を行って吸着体4を得た。吸着体4をICP発光分析
より分析したところ、無水の酸化物ベースで 0.30P25・Al23・24SiO2 の組成を有していた。Pt含有多孔性担体1:2gと吸
着体4:2gを乳鉢で混合し、加圧成形した後、粉砕し
て12〜20メッシュに整粒し、触媒5を得た。
Example 5 The same operation as that of the adsorbent 1 of Example 1 was carried out except that a zeolite having an MFI structure having a SiO 2 / Al 2 O 3 molar ratio of 24 and a particle diameter of 0.2 μm was used. Was carried out to obtain an adsorbent 4. The adsorbent 4 was analyzed from ICP emission spectrometry, it had a composition of 0.30P 2 O 5 · Al 2 O 3 · 24SiO 2 in oxide-based anhydrous. 1: 2 g of the Pt-containing porous carrier and 4: 2 g of the adsorbent were mixed in a mortar, pressed and molded, and then crushed and sized to 12 to 20 mesh to obtain a catalyst 5.

【0033】<比較例1>比較触媒1の調製 SiO2/Al23モル比が26で、粒子径が1μmで
あるMOR構造のゼオライトを用いたこと以外は実施例
1の吸着体1と同様な操作を行って吸着体5を得た。吸
着体5をICP発光分析より分析したところ、無水の酸
化物ベースで0.32P25・Al23・26SiO2
の組成を有していた。Pt含有多孔性担体1:2gと吸
着体5:2gを乳鉢で混合し、加圧成形した後、粉砕し
て12〜20メッシュに整粒し、比較触媒1を得た。
Comparative Example 1 Preparation of Comparative Catalyst 1 The adsorbent 1 of Example 1 was used except that a zeolite having an MOR structure having a SiO 2 / Al 2 O 3 molar ratio of 26 and a particle diameter of 1 μm was used. By performing the same operation, the adsorbent 5 was obtained. When the adsorbent 5 was analyzed from the ICP emission spectrometry, 0.32P 2 O 5 · Al 2 O 3 · 26SiO 2 in oxide-based anhydrous
Having the following composition: 1: 2 g of the Pt-containing porous carrier and 5: 2 g of the adsorbent were mixed in a mortar, pressed and molded, and then crushed and sized to 12 to 20 mesh to obtain Comparative Catalyst 1.

【0034】<比較例2>比較触媒2の調製 SiO2/Al23モル比が27で、粒子径が0.2μ
mであるBEA構造のゼオライトを用いたこと以外は実
施例1の吸着体1と同様な操作を行って吸着体6を得
た。吸着体6をICP発光分析より分析したところ、無
水の酸化物ベースで 0.33P25・Al23・27SiO2 の組成を有していた。Pt含有多孔性担体1:2gと吸
着体6:2gを乳鉢で混合し、加圧成形した後、粉砕し
て12〜20メッシュに整粒し、比較触媒2を得た。
Comparative Example 2 Preparation of Comparative Catalyst 2 The SiO 2 / Al 2 O 3 molar ratio was 27 and the particle size was 0.2 μm.
The adsorbent 6 was obtained by performing the same operation as the adsorbent 1 of Example 1 except that the zeolite having a BEA structure of m was used. The adsorbent 6 was analyzed from ICP emission spectrometry, it had a composition of 0.33P 2 O 5 · Al 2 O 3 · 27SiO 2 in oxide-based anhydrous. 1: 2 g of the Pt-containing porous carrier and 6: 2 g of the adsorbent 6 were mixed in a mortar, pressed and molded, crushed and sized to 12 to 20 mesh to obtain Comparative Catalyst 2.

【0035】<比較例3>比較触媒3の調製 実施例1で得られたNH4−MFI−1を乾燥空気中で
500℃1時間焼成して、吸着体7とした。Pt含有多
孔性担体1:2gと吸着体7:2gを乳鉢で混合し、加
圧成形した後、粉砕して12〜20メッシュに整粒し、
比較触媒3を得た。
Comparative Example 3 Preparation of Comparative Catalyst 3 The NH 4 -MFI-1 obtained in Example 1 was calcined in dry air at 500 ° C. for 1 hour to obtain an adsorbent 7. Pt-containing porous carrier 1: 2 g and adsorbent 7: 2 g were mixed in a mortar, pressed and molded, crushed and sized to 12 to 20 mesh,
Comparative catalyst 3 was obtained.

【0036】<比較例4>比較触媒4の調製 SiO2/Al23モル比が2100で、粒子径が1μ
mであるMFI構造のゼオライトを用いたこと以外は実
施例1の吸着体1と同様な操作を行って吸着体8を得
た。吸着体8をICP発光分析より分析したところ、無
水の酸化物ベースで 24.1P25・Al23・2100SiO2 の組成を有していた。Pt含有多孔性担体1:2gと吸
着体8:2gを乳鉢で混合し、加圧成形した後、粉砕し
て12〜20メッシュに整粒し、比較触媒4を得た。
Comparative Example 4 Preparation of Comparative Catalyst 4 The SiO 2 / Al 2 O 3 molar ratio was 2100 and the particle size was 1 μm.
The adsorbent 8 was obtained by performing the same operation as the adsorbent 1 of Example 1 except that the zeolite having the MFI structure of m was used. The adsorbent 8 was analyzed from ICP emission spectrometry, it had a composition of 24.1P 2 O 5 · Al 2 O 3 · 2100SiO 2 oxide-based anhydrous. 1: 2 g of the Pt-containing porous carrier and 8: 2 g of the adsorbent 8 were mixed in a mortar, pressed and molded, crushed and sized to 12 to 20 mesh to obtain Comparative Catalyst 4.

【0037】<比較例5>比較触媒5の調製 実施例1で得られたPt含有多孔性担体1を、空気流通
下で500℃1時間焼成し、加圧成形した後、粉砕して
12〜20メッシュに整粒し、比較触媒5を得た。
<Comparative Example 5> Preparation of Comparative Catalyst 5 The Pt-containing porous carrier 1 obtained in Example 1 was calcined for 1 hour at 500 ° C. in an air flow, pressed and then pulverized. The mixture was sized to 20 mesh to obtain Comparative Catalyst 5.

【0038】<触媒活性試験>触媒1〜5及び比較触媒
1〜5について、各触媒:1gを常圧固定床流通式反応
管に充填し、反応に供した。反応ガスの組成を表2に示
す。反応前処理として、反応ガスを4000mL/mi
nで流通させながら触媒層温度を550℃まで昇温し、
30分保持した。その後100℃に降温し1時間保持し
た後、触媒を10℃/minの昇温速度で昇温しなが
ら、触媒入口、出口の排ガス組成を連続分析することに
より窒素酸化物の除去活性を調べた。表3に150〜3
00℃の範囲でのNOx除去率を示す。この時の空間速
度(体積基準)は、120000hr-1であった。尚、
NOx除去率は次式で表される。
<Catalyst activity test> With respect to catalysts 1 to 5 and comparative catalysts 1 to 5, 1 g of each catalyst was filled in a normal-pressure fixed-bed flow-type reaction tube and subjected to a reaction. Table 2 shows the composition of the reaction gas. The reaction gas is 4000 mL / mi as a pre-reaction treatment.
n and raise the temperature of the catalyst layer to 550 ° C.
Hold for 30 minutes. Thereafter, the temperature was lowered to 100 ° C. and maintained for 1 hour. Then, while the temperature of the catalyst was raised at a rate of 10 ° C./min, the exhaust gas composition at the catalyst inlet and outlet was continuously analyzed to examine the nitrogen oxide removing activity. . Table 3 shows 150-3
The NOx removal rate in the range of 00 ° C. is shown. The space velocity (volume basis) at this time was 120,000 hr -1 . still,
The NOx removal rate is expressed by the following equation.

【0039】NOx除去率={([NOx]in−[NO
x]out)/[NOx]in}×100 [NOx]in:150〜300℃での触媒への流入NO
x量 [NOx]out:150〜300℃での触媒からの流出
NOx量
NOx removal rate = {([NOx] in − [NO
x] out ) / [NOx] in } × 100 [NOx] in : NO flowing into the catalyst at 150 to 300 ° C.
x amount [NOx] out : NOx amount flowing out of the catalyst at 150 to 300 ° C

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】<触媒耐久試験>触媒1〜5及び比較触媒
1〜5について、各触媒:1gを常圧固定床流通式反応
管に充填し、触媒耐久試験に供した。触媒耐久試験につ
いては、AirガスにH2OとSO2を体積換算でそれぞ
れ10%、25ppmとなるように含有させた混合ガス
を流速200mL/minで触媒に流通させながら、6
00℃で100時間耐久処理し、その後、<触媒活性試
験>と同様な反応前処理、活性評価条件でNOx除去活
性を調べた。表4に耐久試験後のNOx除去率を示す。
<Catalyst Durability Test> With respect to Catalysts 1 to 5 and Comparative Catalysts 1 to 5, 1 g of each catalyst was filled in a normal-pressure fixed-bed flow type reaction tube and subjected to a catalyst durability test. The catalyst durability test was carried out by flowing a mixed gas containing 10% and 25 ppm by volume of H 2 O and SO 2 in Air gas at a flow rate of 200 mL / min.
After a durability treatment at 00 ° C. for 100 hours, NOx removal activity was examined under the same reaction pretreatment and activity evaluation conditions as in <Catalytic Activity Test>. Table 4 shows the NOx removal rate after the durability test.

【0043】[0043]

【表4】 [Table 4]

【0044】表3、4から明らかなように、本発明の排
ガス浄化触媒は比較触媒に比して、窒素酸化物の除去活
性が高く、更には耐久試験による窒素酸化物の除去活性
の低下が小さく、耐久性に優れていることが分かる。
As is clear from Tables 3 and 4, the exhaust gas purifying catalyst of the present invention has a higher activity of removing nitrogen oxides than the comparative catalyst, and furthermore has a lower activity of removing nitrogen oxides in a durability test. It turns out that it is small and has excellent durability.

【0045】[0045]

【発明の効果】本発明の排ガス浄化触媒を用いることに
より、触媒が高温に晒された後でも窒素酸化物を含有す
る排ガスから窒素酸化物を効率的に除去することができ
る。
By using the exhaust gas purifying catalyst of the present invention, nitrogen oxides can be efficiently removed from exhaust gas containing nitrogen oxides even after the catalyst is exposed to a high temperature.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Pt,Pd,Rh,Irから選ばれる少な
くとも1種以上を含有する多孔性担体と、SiO2/A
23モル比が20以上200未満のMFI構造を有す
るゼオライトでPを含有する吸着体からなることを特徴
とする、ガス浄化触媒。
1. A porous carrier containing at least one selected from the group consisting of Pt, Pd, Rh, and Ir, and SiO 2 / A
A gas purification catalyst comprising a zeolite having an MFI structure having a l 2 O 3 molar ratio of 20 or more and less than 200 and comprising a P-containing adsorbent.
【請求項2】吸着体を構成するMFI構造を有するゼオ
ライトのSiO2/Al23モル比が、20以上50未
満であることを特徴とする、請求項1に記載のガス浄化
触媒。
2. The gas purification catalyst according to claim 1, wherein the zeolite having an MFI structure constituting the adsorbent has a molar ratio of SiO 2 / Al 2 O 3 of 20 to less than 50.
【請求項3】吸着体を構成するMFI構造を有するゼオ
ライトの粒子径が、0.1μm以上10μm以下である
ことを特徴とする、請求項1又は2に記載のガス浄化触
媒。
3. The gas purification catalyst according to claim 1, wherein the zeolite having an MFI structure constituting the adsorbent has a particle diameter of 0.1 μm or more and 10 μm or less.
【請求項4】吸着体が800〜1000℃で熱処理され
たことを特徴とする請求項1〜3いずれかに記載のガス
浄化触媒。
4. The gas purification catalyst according to claim 1, wherein the adsorbent is heat-treated at 800 to 1000 ° C.
【請求項5】請求項1〜4のいずれかに記載のガス浄化
触媒をガスに接触させることを特徴とする、ガス浄化方
法。
5. A gas purification method comprising bringing the gas purification catalyst according to claim 1 into contact with a gas.
JP10135119A 1998-05-18 1998-05-18 Gas purifying catalyst and gas purifying process Pending JPH11319572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135119A JPH11319572A (en) 1998-05-18 1998-05-18 Gas purifying catalyst and gas purifying process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135119A JPH11319572A (en) 1998-05-18 1998-05-18 Gas purifying catalyst and gas purifying process

Publications (1)

Publication Number Publication Date
JPH11319572A true JPH11319572A (en) 1999-11-24

Family

ID=15144275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135119A Pending JPH11319572A (en) 1998-05-18 1998-05-18 Gas purifying catalyst and gas purifying process

Country Status (1)

Country Link
JP (1) JPH11319572A (en)

Similar Documents

Publication Publication Date Title
EP0888815B1 (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
BR112017028424B1 (en) NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES
RU2634702C2 (en) Low-phosphorus chabazites
KR20190052715A (en) Catalyzed substrate and exhaust system for internal combustion engines
JP2014522308A (en) Platinum group (PGM) catalyst for treating exhaust gas
JP2022529175A (en) Rapid synthesis of catalysts containing zeolites with AFX structure and at least one transition metal for selective reduction of NOx
JP2000024505A (en) Catalyst for selective nitrogen oxide reduction having wide active temperature range
JP3918305B2 (en) Hydrocarbon adsorbent and exhaust gas purification catalyst
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH07100386A (en) Catalyst for purification of exhaust gas
JPH07144134A (en) Catalyst for purifying exhaust gas
JPH11319572A (en) Gas purifying catalyst and gas purifying process
JP3510908B2 (en) Exhaust gas purification catalyst
JPH11216359A (en) Ethylene adsorbent, adsorptive removal method and exhaust gas purifying method
JP4352486B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3044622B2 (en) Exhaust gas purification method
JP2000126590A (en) Adsorbent and method for removal by adsorption
JP3985301B2 (en) Exhaust gas purification catalyst and purification method using the same
JPH04334526A (en) Method and catalyst for removing nitrogen oxide in exhaust gas
JPH01247710A (en) Purifying device for automobile exhaust
JPH11319571A (en) Catalyst for purification of gas and method for purification of gas
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3362401B2 (en) Exhaust gas purification catalyst
JP3324130B2 (en) Exhaust gas purification catalyst
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603