JPH07100386A - Catalyst for purification of exhaust gas - Google Patents

Catalyst for purification of exhaust gas

Info

Publication number
JPH07100386A
JPH07100386A JP5248169A JP24816993A JPH07100386A JP H07100386 A JPH07100386 A JP H07100386A JP 5248169 A JP5248169 A JP 5248169A JP 24816993 A JP24816993 A JP 24816993A JP H07100386 A JPH07100386 A JP H07100386A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
lean
absorbent
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5248169A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
慎二 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5248169A priority Critical patent/JPH07100386A/en
Publication of JPH07100386A publication Critical patent/JPH07100386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain a catalyst hardly poisoned by S, having high durability and capable of efficient removal of NOx, CO and hydrocarbon in exhaust gas from an automobile. CONSTITUTION:A noble metal is supported on a porous carrier made of crystalline silicoaluminophosphate and an active metal selected from among alkali metals, alkaline earth metals, transition metals and lanthanoids is further supported by ion exchange to obtain the objective catalyst for removal of NOx in exhaust gas in an atmosphere contg. excess oxygen.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排気ガスの浄化用触媒
に関し、さらに詳細に述べるならば、酸素過剰下の排気
ガス、すなわち、排気ガス中に含まれる一酸化炭素、水
素及び炭化水素等の還元性物質を完全に酸化させるのに
必要な酸素量よりも過剰な量の酸素が含まれている排気
ガス中の窒素酸化物(NOx ) を効率よく浄化する触媒
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for purifying exhaust gas, and more specifically, exhaust gas in excess of oxygen, that is, carbon monoxide, hydrogen and hydrocarbons contained in exhaust gas. The catalyst for efficiently purifying nitrogen oxides (NO x ) in exhaust gas containing oxygen in excess of that required to completely oxidize the reducing substance.

【0002】[0002]

【従来の技術】従来、自動車の排気ガス浄化用触媒とし
て、排気ガス中の一酸化炭素(CO)及び炭化水素(H
C)の酸化と窒素酸化物(NOx ) の還元とを同時に行
って排気ガスを浄化する排気ガス浄化用三元触媒が数多
く知られている。このような触媒としては、例えばコー
ジェライトなどの耐火性担体にγ−アルミナスラリーを
塗布し、焼成し、パラジウム、白金、ロジウムなどの貴
金属を担持させたものが典型的である(例えば、特公昭
56−27295 号公報など参照)。
2. Description of the Related Art Conventionally, carbon monoxide (CO) and hydrocarbon (H) in exhaust gas have been used as catalysts for purifying exhaust gas of automobiles.
There are many known three-way catalysts for purifying exhaust gas that simultaneously purify C) and reduce nitrogen oxides (NO x ) to purify exhaust gas. A typical example of such a catalyst is one in which a γ-alumina slurry is applied to a refractory carrier such as cordierite and baked to carry a noble metal such as palladium, platinum or rhodium (for example, Japanese Patent Publication No.
56-27295, etc.).

【0003】ところで、前記排気ガス浄化用触媒の性能
はエンジンの設定空燃比によって大きく左右され、希薄
混合比、すなわち空燃比の大きなリーン側では燃焼後の
排気ガス中の酸素量が大きくなり、酸化作用が活発に、
還元作用が不活発になる。逆に、空燃比の小さなリッチ
側では燃焼後の排気ガス中の酸素量が少なくなり、酸化
作用が不活発に、還元作用が活発になる。
By the way, the performance of the exhaust gas purifying catalyst is greatly influenced by the set air-fuel ratio of the engine. On the lean side where the lean mixture ratio, that is, the air-fuel ratio is large, the amount of oxygen in the exhaust gas after combustion becomes large, and oxidation occurs. Active action,
The reducing action becomes inactive. On the other hand, on the rich side where the air-fuel ratio is small, the amount of oxygen in the exhaust gas after combustion becomes small, the oxidizing action becomes inactive, and the reducing action becomes active.

【0004】近年、自動車等の内燃機関において、省エ
ネルギーの見地から低燃費化が要請されており、この低
燃費化の一つの手段として走行時に酸素過剰の混合気で
燃焼させることが従来より行われている。従って、この
ような空燃比がリーン側である酸素過剰雰囲気において
も十分にNOx を浄化できる触媒が望まれていた。
In recent years, in an internal combustion engine of an automobile or the like, there has been a demand for low fuel consumption from the viewpoint of energy saving. As one of the means for reducing the fuel consumption, it has been conventionally performed to burn an air-fuel mixture with excess oxygen during traveling. ing. Therefore, there has been a demand for a catalyst that can sufficiently purify NO x even in an oxygen-excess atmosphere in which the air-fuel ratio is lean.

【0005】このような酸素過剰雰囲気下での自動車排
気ガス浄化用触媒として、一酸化炭素及び炭化水素の酸
化と、窒素酸化物の還元を同時に行う触媒が種々提案さ
れている。このような触媒として、例えば、アルミナ担
体に白金を担持させたPt/Al2 3 触媒が提案され
ている。しかしながら、この触媒は、酸素過剰雰囲気下
において実用上十分な浄化率を示す触媒とはいえなかっ
た。例えば、Ptの担持量を増加させてもNOx の浄化
率は40km/hr の一定定常走行時において30〜40%程度
(触媒入側温度 275℃、A/F=22)にすぎなかった。
As catalysts for purifying automobile exhaust gas under such an oxygen-rich atmosphere, various catalysts for simultaneously oxidizing carbon monoxide and hydrocarbons and reducing nitrogen oxides have been proposed. As such a catalyst, for example, a Pt / Al 2 O 3 catalyst in which platinum is supported on an alumina carrier has been proposed. However, this catalyst cannot be said to be a catalyst showing a practically sufficient purification rate in an oxygen excess atmosphere. For example, even if the amount of Pt supported was increased, the NO x purification rate was only about 30 to 40% (catalyst inlet side temperature 275 ° C., A / F = 22) during constant steady running at 40 km / hr.

【0006】また、定常走行時及び過渡状態時(市街地
走行模擬状態)においてNOx の浄化率を高めるため、
アルミナ担体に白金及びLa2 3 を担持させた触媒が
提案された(特願平3−344781号明細書参照)。しかし
ながら、この触媒はLa2 3 の担持量を制御しても過
渡時のNOx の浄化率は最高で60%程度であり、また高
温で耐久処理すると浄化率が半分程度に低下し、必ずし
も十分とはいえなかった。
[0006] In addition, during steady running and during transient states (in urban areas
NO in driving simulation state)xTo increase the purification rate of
Platinum and La on alumina carrier2O3The catalyst supporting
Proposed (see Japanese Patent Application No. 3-344781). However
However, this catalyst is La2O 3Even if the carrying amount of the
NO at the time of deliveryxThe maximum purification rate is around 60%
If you endure it at a high temperature, the purification rate will drop to about half.
Was not enough.

【0007】このような問題を解決するため、多孔質担
体にアルカリ金属又はアルカリ土類金属及び白金を担持
させた吸収還元型の触媒が提案された(特願平4−1309
04号明細書及び特願平4−184892号明細書参照)。この
ような吸収還元型の触媒において、リーン時にPtで酸
化されたNOx 及びSOx が共に吸収剤に吸収される。
しかし、リッチ時においてNOx は放出されるが、SO
x は分解温度が高いため吸収剤から放出されず、従って
吸収剤のNOx 吸収容量が低下してしまう(S被毒)。
また、吸収剤のBa等は 800℃以上に曝されると、Ba
がアルミナと反応して安定なBaAl2 4 を形成し、
担体の比表面積を低下させ、さらにNO x を吸収するB
aが減少するためNOx 浄化性能が低下してしまう。
In order to solve such a problem, a porous support is used.
Carrying alkali metal or alkaline earth metal and platinum on the body
An absorption-reduction type catalyst was proposed (Japanese Patent Application No. 4-1309).
04 specification and Japanese Patent Application No. 4-184892 specification). this
In such an absorption-reduction type catalyst, when lean, Pt
Converted NOxAnd SOxAre both absorbed by the absorbent.
However, when rich, NOxIs released, but SO
xIs not released from the absorbent due to its high decomposition temperature, therefore
Absorbent NOxAbsorption capacity will decrease (S poisoning).
In addition, when the Ba etc. of the absorbent is exposed to 800 ° C or higher, Ba
Is stable as it reacts with alumina2OFourTo form
The specific surface area of the carrier is reduced, and further NO xAbsorbs B
NO because a decreasesxPurification performance will decrease.

【0008】[0008]

【発明が解決しようとする課題】本発明は、自動車排気
ガス浄化用触媒の有する前記の如き欠点を解消し、S被
毒されにくく、耐久性の高い、排気ガス中のNOx 、C
O及びHCを効率よく浄化することのできる触媒を提供
することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of a catalyst for purifying exhaust gas of automobiles, is less likely to be poisoned by S, and has high durability, NO x and C in exhaust gas.
It is an object of the present invention to provide a catalyst capable of efficiently purifying O and HC.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記の自動
車排気ガス浄化用触媒の上記問題点を解決すべく鋭意研
究を重ねた結果、担体として結晶質シリコアルミノフォ
スフェート(SAPO)を用い、さらにこの担体に吸収
剤としてアルカリ金属、アルカリ土類金属、遷移金属及
びランタノイドからなる群より選ばれる活性金属をイオ
ン交換により担持させることにより、S被毒されにく
く、耐久性の高い触媒が得られることを見出し、本発明
を完成した。
The present inventor has conducted extensive studies to solve the above problems of the above-mentioned catalyst for purifying automobile exhaust gas, and as a result, uses crystalline silicoaluminophosphate (SAPO) as a carrier. By further carrying an active metal selected from the group consisting of alkali metals, alkaline earth metals, transition metals and lanthanoids as an absorbent on this carrier by ion exchange, a catalyst with high durability and low S poisoning can be obtained. Therefore, the present invention has been completed.

【0010】すなわち、本発明の自動車排気ガス浄化用
触媒は、結晶質シリコアルミノフォスフェート多孔質担
体に貴金属と、イオン交換によりアルカリ金属、アルカ
リ土類金属、遷移金属及びランタノイドからなる群より
選ばれる活性金属が担持されていることを特徴とするも
のである。
That is, the automobile exhaust gas purifying catalyst of the present invention is selected from the group consisting of a crystalline silicoaluminophosphate porous carrier and a noble metal, and an alkali metal, an alkaline earth metal, a transition metal and a lanthanoid by ion exchange. It is characterized in that an active metal is supported.

【0011】本発明の吸収還元型リーン触媒は、排気ガ
スをリーン、ストイキと交互に制御することにより、リ
ーン時にNOx を吸収し、ストイキ始めにおいて吸収剤
を還元させNOx を放出させ、引き続きストイキにより
NOx 、HC、CO等を浄化させる。その後ストイキ終
わりに十分にNOx を放出させ、リーンで吸収を行う。
The lean catalyst of the present invention absorbs NO x at the time of lean by controlling exhaust gas alternately with lean and stoichiometric, and reduces the absorbent at the beginning of stoichiometry to release NO x , and subsequently NO x, HC, thereby purifying the CO or the like by stoichiometry. Was then stoichiometric end sufficiently release the NO x, performs absorbed in lean.

【0012】本発明の触媒の担体として用いられる結晶
質シリコアルミノフォスフェートとしては、細孔が均一
であり、約3Åより大きな直径を有し、無水型であっ
て、化学組成が下式 (Six Aly z )O2 (上式中、x+y+z=1)で表されるものを用いる。
The crystalline silicoaluminophosphate used as a carrier of the catalyst of the present invention has uniform pores, has a diameter larger than about 3Å, is anhydrous, and has a chemical composition represented by the following formula (Si during x Al y P z) O 2 ( the above equation is used those represented by x + y + z = 1) .

【0013】前記結晶質シリコアルミノフォスフェート
の細孔径としては、NOx 分子径よりもわずかに大きい
約5〜10Åが好ましい。シリコアルミノフォスフェート
中のSiの割合は、0.01≦x<0.8 、好ましくは0.05〜
0.25である。この割合が0.05以下では担体の固体酸性が
低く、活性金属の担持能が低下してしまう。一方、この
割合が0.25以上になると、耐熱性が低下するため望まし
くない。
The crystalline silicoaluminophosphate preferably has a pore size of about 5 to 10Å, which is slightly larger than the NO x molecular size. The proportion of Si in the silicoaluminophosphate is 0.01 ≦ x <0.8, preferably 0.05-
It is 0.25. When this ratio is 0.05 or less, the solid acidity of the carrier is low, and the ability to support the active metal is reduced. On the other hand, if this ratio is 0.25 or more, the heat resistance decreases, which is not desirable.

【0014】結晶質シリコアルミノフォスフェートは通
常の方法、例えば特公平3−72010号公報に記載の方法
によって合成してよい。すなわち、リン酸塩、水和アル
ミナ及びシリカゾル等を出発原料として用い、これらを
均一に混合し、該混合物に細孔構造を規定するために有
機テンプレート化剤を混入し、均一になるように攪拌
後、水熱合成により結晶質シリコアルミノフォスフェー
ト粉末を得る。
The crystalline silicoaluminophosphate may be synthesized by a conventional method, for example, the method described in Japanese Patent Publication No. 3-72010. That is, phosphate, hydrated alumina, silica sol, etc. are used as starting materials, these are uniformly mixed, and an organic templating agent is mixed into the mixture to define the pore structure, and the mixture is stirred to be uniform. Then, a crystalline silicoaluminophosphate powder is obtained by hydrothermal synthesis.

【0015】次いで、上記の結晶質シリコアルミノフォ
スフェート粉末に活性金属及び貴金属を担持させる。活
性金属としては、アルカリ金属、アルカリ土類金属、遷
移金属及びランタノイドが例示され、好ましくはBa、
Cu、Co、Niが挙げられる。貴金属としては、白
金、ロジウムが好ましい。
Next, the above-mentioned crystalline silicoaluminophosphate powder is loaded with an active metal and a noble metal. Examples of the active metal include alkali metals, alkaline earth metals, transition metals and lanthanoids, preferably Ba,
Cu, Co, and Ni are mentioned. Platinum and rhodium are preferable as the noble metal.

【0016】活性金属はいわゆるイオン交換法により担
体に担持させる。すなわち、活性金属の塩の水溶液中に
結晶質シリコアルミノフォスフェート粉末を一昼夜浸漬
し、その後水洗する処理を1ないし数回繰り返し行った
後、500 〜700 ℃の温度に数時間保持して焼成する。活
性金属の担持量には特に制限はないが、結晶質シリコア
ルミノフォスフェート粉末に対し0.5 〜3.0 重量%であ
ることが好ましい。0.5 重量%未満である場合、十分な
NOx 浄化率を得ることができない恐れがあり、また、
3.0 重量%を越えると担体の表面積を低下させる恐れが
ある。
The active metal is supported on the carrier by the so-called ion exchange method. That is, the crystalline silicoaluminophosphate powder is immersed in an aqueous solution of a salt of an active metal for a whole day and night and then washed with water repeatedly for 1 to several times, and then kept at a temperature of 500 to 700 ° C for several hours for firing. . The amount of the active metal supported is not particularly limited, but is preferably 0.5 to 3.0% by weight with respect to the crystalline silicoaluminophosphate powder. If it is less than 0.5% by weight, it may not be possible to obtain a sufficient NO x purification rate.
If it exceeds 3.0% by weight, the surface area of the carrier may be reduced.

【0017】貴金属を担持させる方法は特に制限はな
く、例えば、上記のイオン交換法又はいわゆる含浸法に
より担持させる。この貴金属の担持量には特に制限はな
いが、結晶質シリコアルミノフォスフェート粉末に対し
1.0 〜8.0 重量%であることが好ましい。1.0 重量%未
満である場合、十分な触媒活性が得られない恐れがあ
り、また、8.0 重量%を越えると、それ以上貴金属の担
持量を増加させても活性向上はわずかであり、高価とな
るのみであるからである。
The method for supporting the noble metal is not particularly limited, and for example, the above-mentioned ion exchange method or so-called impregnation method may be used. There is no particular limitation on the amount of this noble metal supported, but the amount of crystalline noble metal supported on crystalline silicoaluminophosphate powder
It is preferably 1.0 to 8.0% by weight. If it is less than 1.0% by weight, sufficient catalytic activity may not be obtained, and if it exceeds 8.0% by weight, even if the supported amount of the noble metal is further increased, the activity is slightly improved and it becomes expensive. Because it is only.

【0018】以上のようにして得られた粉末状の触媒
は、そのまま用いてよく、又は該触媒粉末にアルミナゾ
ルやシリカゾル等のバインダーを添加し、所定の形状に
成形したり、水を加えてスラリー状として、ハニカム等
の形状の耐火性基体上に塗布して用いてもよい。
The powdery catalyst obtained as described above may be used as it is, or a binder such as alumina sol or silica sol may be added to the catalyst powder to form a desired shape, or water may be added to form a slurry. As a shape, it may be applied on a refractory substrate in the shape of a honeycomb or the like and used.

【0019】[0019]

【作用】本発明に係る触媒において吸収剤がS被毒され
にくい理由は、必ずしも明らかではないが、次のように
考えられる。本発明の触媒において、吸収剤はSAPO
の細孔の中の固体酸点近傍にイオン交換されており、1
個づつの単位(サイズ)で吸収剤のイオンが担持されて
いる。この担持されている状態においては、固体酸点の
マイナスの電荷は吸収剤のプラスイオンの電荷と強固に
結び付いている。このため、排気ガス中のSOx ガスが
本触媒に流通してきて、リーン時にPtにより酸化され
SO4 2- になり、これが吸収剤のプラスイオン近傍にき
ても弱い吸着しか起こさない。従って、リッチ時におい
て、SO4 2- は還元され、吸収剤より放出され、その結
果S被毒されにくくなる。一方、従来の場合は、触媒担
体がSAPOのようなマイクロポアスタイルではないの
で、吸収剤はイオン交換されておらず、触媒担体との結
びつきは強固ではない。このためリーン時におけるSO
4 2- は吸収剤の元素と強固に結合し、リッチ時において
十分に還元することができず、S被毒が回復できないの
である。
The reason why the absorbent of the catalyst according to the present invention is less likely to be poisoned with S is not clear, but it is considered as follows. In the catalyst of the present invention, the absorbent is SAPO.
Ions are exchanged near the solid acid points in the pores of
The ions of the absorbent are carried in individual units (size). In this supported state, the negative charge of the solid acid point is strongly connected to the positive ion charge of the absorbent. Therefore, the SO x gas in the exhaust gas flows into the catalyst and is oxidized by Pt at the time of leaning to become SO 4 2− , and even if it comes near the positive ions of the absorbent, only weak adsorption occurs. Therefore, when rich, SO 4 2− is reduced and released from the absorbent, and as a result, S poisoning becomes difficult. On the other hand, in the conventional case, since the catalyst carrier is not a micropore style like SAPO, the absorbent is not ion-exchanged and the bond with the catalyst carrier is not strong. For this reason, the SO when lean
4 2− is strongly bound to the element of the absorbent and cannot be sufficiently reduced when rich, and S poison cannot be recovered.

【0020】[0020]

【実施例】下記実施例により本発明をさらに詳細に説明
するが、本発明はこれらに限定されるものではない。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0021】シリコアルミノフォスフェート多孔質担体
の合成 アルミニウムイソプロポキシド61.2g を水120gに溶解
し、85重量%のリン酸31.9g を添加してこの混合物を均
一になるまで室温において攪拌した。この混合物に20重
量%シリカゾル20.0g を添加し、次いで40重量%水酸化
テトラエチルアンモニウム117ml を添加し、室温におい
て均一になるまで4時間攪拌した。この混合物をオート
クレーブに入れ、250 ℃において72時間水熱合成を行
い、冷却後、遠心分離によって回収し、水で十分に洗浄
した。この水熱合成物を120 ℃において乾燥し、その後
空気中で600 ℃において3時間仮焼成し、比表面積550c
m2/g、細孔径4ÅのSAPO(No.1)を得た。
Silico aluminophosphate porous carrier
61.2 g of the synthetic aluminum isopropoxide of was dissolved in 120 g of water, 31.9 g of 85% by weight phosphoric acid was added and the mixture was stirred at room temperature until homogeneous. To this mixture was added 20.0 g of 20 wt% silica sol, then 117 ml of 40 wt% tetraethylammonium hydroxide, and the mixture was stirred at room temperature for 4 hours until uniform. This mixture was placed in an autoclave, subjected to hydrothermal synthesis at 250 ° C. for 72 hours, cooled, recovered by centrifugation, and thoroughly washed with water. The hydrothermal compound was dried at 120 ℃ and then calcined in air at 600 ℃ for 3 hours to give a specific surface area of 550c.
SAPO (No. 1) having m 2 / g and a pore size of 4Å was obtained.

【0022】SAPO(No.1)と同じ合成方法において、
40重量%水酸化テトラエチルアンモニウムの代わりにジ
−n−プロピルアンモニウムを用いて、比表面積350cm2
/g、細孔径6ÅのSAPO(No.2)を得た。
In the same synthesis method as SAPO (No. 1),
Di-n-propylammonium was used instead of 40 wt% tetraethylammonium hydroxide, and the specific surface area was 350 cm 2.
SAPO (No. 2) having a pore size of 6 g / g and a pore size of 6Å was obtained.

【0023】さらに、SAPO(No.1)と同じ合成方法に
おいて、40重量%水酸化テトラエチルアンモニウムの代
わりにトリエチルアミンを用いて、比表面積300cm2/g、
細孔径8ÅのSAPO(No.3)を得た。
Further, in the same synthetic method as SAPO (No. 1), a specific surface area of 300 cm 2 / g was obtained by using triethylamine instead of 40% by weight of tetraethylammonium hydroxide.
SAPO (No. 3) having a pore size of 8Å was obtained.

【0024】触媒調製 上記SAPO粉末(No.1、2及び3)の各々を、アンモ
ニア水を添加してpHを調整した0.2Nの酢酸バリウム水
溶液に添加し、室温において24時間のイオン交換を行
い、Baを担持させた。その後、洗浄、乾燥を行い、次
いでこのSAPO粉末をジニトロアミンPt硝酸水溶液
(Pt濃度4.5 重量%)に添加し、室温において1時間
攪拌し、Ptを含浸担持させた。このスラリーを遠心分
離により固形分と上澄み液とに分離し、固形分を120 ℃
において12時間乾燥し、次いで250℃において1時間仮
焼成を行った。得られた試料の元素分析により、SAP
O粉末に対し、2.0 重量%のPt及び5.0 重量%のBa
が担持されていた。
Catalyst Preparation Each of the above SAPO powders (Nos. 1, 2 and 3) was added to a 0.2N barium acetate aqueous solution whose pH was adjusted by adding aqueous ammonia, and ion exchange was performed at room temperature for 24 hours. , Ba were carried. Then, washing and drying were performed, and then this SAPO powder was added to a dinitroamine Pt nitric acid aqueous solution (Pt concentration 4.5 wt%) and stirred at room temperature for 1 hour to impregnate and carry Pt. This slurry was separated into solids and supernatant by centrifugation, and the solids were collected at 120 ° C.
Was dried for 12 hours and then calcined at 250 ° C. for 1 hour. By elemental analysis of the obtained sample, SAP
2.0 wt% Pt and 5.0 wt% Ba based on O powder
Was carried.

【0025】こうして得た活性金属を担持させたSAP
O多孔質担体粉末に、アルミナゾル、硫酸アルミニウム
及び水を加えてスラリーを調製した。次いで該スラリー
にコージエライト製ハニカム担体を浸漬し、余分のスラ
リーを吹き払う方法により該スラリーをウォシュコート
した。これを120 ℃において3時間乾燥し、次いで500
℃において1時間仮焼成し、吸収分解型リーンNOx
媒を得た。
The active metal-supported SAP thus obtained
A slurry was prepared by adding alumina sol, aluminum sulfate and water to O porous carrier powder. Next, a cordierite honeycomb carrier was immersed in the slurry, and the slurry was wash-coated by a method of blowing off the excess slurry. It is dried at 120 ° C for 3 hours and then 500
It was calcined for 1 hour at 0 ° C. to obtain an absorption decomposition type lean NO x catalyst.

【0026】触媒の評価 S被毒量 モノリスにコートする前の粉末を用いて、以下に示すモ
デルガスによる耐久試験(リーン、600 ℃×10時間)を
行い、S被毒量をFT−IR(フーリエ変換赤外線分光
分析)により測定し、この結果を表1に示す。 モデルガス組成 リーン: NO C3 6 CO CO2 2 2 O SO2 2 1000ppm 800ppm 0.08% 12.0% 4.5% 10% 200ppm 残部 空間速度 SV=10万h-1 尚、S被毒量は下記式より計算した。
Evaluation of catalyst S poisoning amount The powder before coating on the monolith was subjected to a durability test (lean, 600 ° C. × 10 hours) with the following model gas, and the S poisoning amount was measured by FT-IR ( Fourier transform infrared spectroscopy) and the results are shown in Table 1. Model gas composition Lean: NO C 3 H 6 CO CO 2 O 2 H 2 O SO 2 N 2 1000ppm 800ppm 0.08% 12.0% 4.5% 10% 200ppm Residual space velocity SV = 100,000 h -1 It was calculated from the following formula.

【数1】 Sの重量はSO2 より換算し、吸収剤とは、ここではB
aである。
[Equation 1] The weight of S is converted from SO 2 and the term “absorbent” means B here.
a.

【0027】比表面積 上記の耐久試験前後の比表面積を常法により測定し、こ
の結果を表2に示す。
Specific Surface Area The specific surface area before and after the above durability test was measured by an ordinary method, and the results are shown in Table 2.

【0028】浄化率 モノリス形状の吸収分解型リーンNOx 触媒について、
新品触媒とモデルガス耐久試験(リーン、600 ℃×50時
間)後の触媒の浄化性能を測定し、この結果を表3に示
す。この浄化率は、下記のモデルガスを、リーン2分、
ストイキ2分を繰り返して制御し、NOx 、HC及びC
Oの平均浄化率を測定温度350 ℃において測定した。 モデルガス組成 リーン: NO C3 6 CO CO2 2 2 O SO2 2 1000ppm 800ppm 0.08% 12.0% 4.5% 10% 200ppm 残部 ストイキ:NO C3 6 CO CO2 2 2 O SO2 2 2500ppm 1000ppm 0.5% 14.0% 0.3% 10% 200ppm 残部 空間速度 SV=10万h-1
[0028] Absorption-resolved lean NO x catalyst purification rate monolithic shape,
The purification performance of the fresh catalyst and the catalyst after the model gas durability test (lean, 600 ° C x 50 hours) were measured, and the results are shown in Table 3. This purification rate is the following model gas, lean 2 minutes,
The stoichiometry is repeated for 2 minutes to control NO x , HC and C
The average purification rate of O was measured at a measurement temperature of 350 ° C. Model gas composition lean: NO C 3 H 6 CO CO 2 O 2 H 2 O SO 2 N 2 1000ppm 800ppm 0.08% 12.0% 4.5% 10% 200ppm balance stoichiometry: NO C 3 H 6 CO CO 2 O 2 H 2 O SO 2 N 2 2500ppm 1000ppm 0.5% 14.0% 0.3% 10% 200ppm Remainder space velocity SV = 100,000 h -1

【0029】比較例 比表面積150cm2/gのγアルミナに、上記実施例と同様に
してPtを担持させ、その後酢酸バリウム水溶液に含浸
しBaを担持させた。次いで実施例と同様にしてモノリ
スにコートし、触媒を得た。この触媒について、上記と
同様にしてS被毒量、比表面積及び浄化率を測定し、そ
の結果をそれぞれ表1、2及び3に示す。
Comparative Example Pt was supported on γ-alumina having a specific surface area of 150 cm 2 / g and then impregnated with an aqueous barium acetate solution to support Ba. Then, a monolith was coated in the same manner as in the example to obtain a catalyst. For this catalyst, the S poisoning amount, the specific surface area and the purification rate were measured in the same manner as above, and the results are shown in Tables 1, 2 and 3, respectively.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【発明の効果】本発明の吸収還元型触媒において、吸収
剤は担体であるSAPOの細孔中の固体酸点近傍にイオ
ン交換されており、固体酸点のマイナスの電荷を吸収剤
のプラスイオンの電荷により強固に結び付けている。こ
のため、排気ガス中のSOx がリーン時において白金等
の貴金属により酸化されSO4 2- になり、吸収剤のプラ
スイオン近傍において弱い吸着しか起こさない。従っ
て、リッチ時においてSO 4 2- が還元され、吸収剤より
放出されるため、従来の吸収還元型触媒において見られ
たS被毒が防止される。
EFFECT OF THE INVENTION In the absorption-reduction type catalyst of the present invention, absorption
The agent is ionic in the vicinity of the solid acid points in the pores of the SAPO carrier.
It has been exchanged, and it absorbs the negative charge of the solid acid point.
It is tightly bound by the positive ion charge of. This
Therefore, SO in exhaust gasxWhen lean, platinum etc.
Oxidized by precious metals in SOFour 2-Becomes an absorbent plastic
Only weak adsorption occurs near the swion. Obey
SO when rich Four 2-Is reduced and absorbed
Since it is released, it can be seen in conventional absorption-reduction type catalysts.
S poisoning is prevented.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102 H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B01D 53/36 102 H

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素過剰雰囲気下における排気ガス中の
NOx を除去するための触媒であって、結晶質シリコア
ルミノフォスフェート(SAPO)多孔質担体に貴金属
と、イオン交換によりアルカリ金属、アルカリ土類金
属、遷移金属及びランタノイドからなる群より選ばれた
活性金属が担持されていることを特徴とする排気ガス浄
化用触媒。
1. A catalyst for removing NO x in exhaust gas in an oxygen excess atmosphere, comprising a crystalline silicoaluminophosphate (SAPO) porous carrier and a precious metal, and an alkali metal or alkaline earth by ion exchange. An exhaust gas purifying catalyst, which carries an active metal selected from the group consisting of group metals, transition metals, and lanthanoids.
JP5248169A 1993-10-04 1993-10-04 Catalyst for purification of exhaust gas Pending JPH07100386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5248169A JPH07100386A (en) 1993-10-04 1993-10-04 Catalyst for purification of exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5248169A JPH07100386A (en) 1993-10-04 1993-10-04 Catalyst for purification of exhaust gas

Publications (1)

Publication Number Publication Date
JPH07100386A true JPH07100386A (en) 1995-04-18

Family

ID=17174243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5248169A Pending JPH07100386A (en) 1993-10-04 1993-10-04 Catalyst for purification of exhaust gas

Country Status (1)

Country Link
JP (1) JPH07100386A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0768111A1 (en) * 1995-10-16 1997-04-16 Corning Incorporated Method of modifying a hydrocarbon adsorber and its use
WO1997026989A1 (en) * 1996-01-26 1997-07-31 Chevron U.S.A. Inc. Method of preparing non-zeolitic molecular sieve catalyst
US6001320A (en) * 1995-10-12 1999-12-14 Corning Incorporated Method of adsorbing hydrocarbons
US6004896A (en) * 1996-09-30 1999-12-21 Corning Incorporated Hydrocarbon adsorbers, method of making and use therefor
EP1142639A1 (en) * 1996-01-26 2001-10-10 Chevron U.S.A. Inc. Method of preparing non-zeolitic molecular sieve catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001320A (en) * 1995-10-12 1999-12-14 Corning Incorporated Method of adsorbing hydrocarbons
EP0768111A1 (en) * 1995-10-16 1997-04-16 Corning Incorporated Method of modifying a hydrocarbon adsorber and its use
WO1997026989A1 (en) * 1996-01-26 1997-07-31 Chevron U.S.A. Inc. Method of preparing non-zeolitic molecular sieve catalyst
US5939349A (en) * 1996-01-26 1999-08-17 Chevron U.S.A. Inc. Method of preparing non-zeolitic molecular sieve catalyst
EP1142639A1 (en) * 1996-01-26 2001-10-10 Chevron U.S.A. Inc. Method of preparing non-zeolitic molecular sieve catalyst
JP2008062236A (en) * 1996-01-26 2008-03-21 Chevron Usa Inc Method for producing non-zeolite molecular sieve catalyst
US6004896A (en) * 1996-09-30 1999-12-21 Corning Incorporated Hydrocarbon adsorbers, method of making and use therefor
US6670296B2 (en) 2001-01-11 2003-12-30 Delphi Technologies, Inc. Alumina/zeolite lean NOx catalyst
US6455463B1 (en) 2001-03-13 2002-09-24 Delphi Technologies, Inc. Alkaline earth/transition metal lean NOx catalyst
US6576587B2 (en) 2001-03-13 2003-06-10 Delphi Technologies, Inc. High surface area lean NOx catalyst
US6624113B2 (en) 2001-03-13 2003-09-23 Delphi Technologies, Inc. Alkali metal/alkaline earth lean NOx catalyst
US6864213B2 (en) 2001-03-13 2005-03-08 Delphi Technologies, Inc. Alkaline earth / rare earth lean NOx catalyst

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
EP0396085B1 (en) Catalyst for purification of exhaust gases
EP1016447A1 (en) Exhaust gas purification method and exhaust gas purification catalyst
EP0993861A1 (en) Catalyst for purifying exhaust gas from lean-burn engine
WO1993004776A1 (en) Catalyst for purification of lean-burn engine exhaust gas
WO2020073667A1 (en) Integrated catalyst system for stoichiometric-burn natural gas vehicles and preparation method therefor
JPH07100386A (en) Catalyst for purification of exhaust gas
JP2529739B2 (en) Exhaust gas purification catalyst and method
JPH07155614A (en) Production of exhaust gas purifying catalyst
JPH05220403A (en) Exhaust gas purifying catalyst
JPH08281110A (en) Catalyst for purifying exhaust gas and its production
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2910278B2 (en) Exhaust gas purification method
JPH07171349A (en) Exhaust gas purification
JP3506392B2 (en) Exhaust gas purification catalyst using only hydrocarbons as reducing agents
JP2849585B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3447513B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPS59162948A (en) Catalyst for purifying exhaust gas
JPH06190282A (en) Catalyst for purification of exhaust gas
JPH06210174A (en) Catalyst for purification of exhaust gas and its production
JPH1176827A (en) Apparatus for cleaning exhaust gas
JP3219815B2 (en) Exhaust gas purification catalyst
JP3477982B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3311370B2 (en) Exhaust purification catalyst system
JP3817679B2 (en) Exhaust gas purification catalyst