JPH04334526A - Method and catalyst for removing nitrogen oxide in exhaust gas - Google Patents

Method and catalyst for removing nitrogen oxide in exhaust gas

Info

Publication number
JPH04334526A
JPH04334526A JP3105668A JP10566891A JPH04334526A JP H04334526 A JPH04334526 A JP H04334526A JP 3105668 A JP3105668 A JP 3105668A JP 10566891 A JP10566891 A JP 10566891A JP H04334526 A JPH04334526 A JP H04334526A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
nitrogen oxides
hydrocarbons
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3105668A
Other languages
Japanese (ja)
Other versions
JP2737441B2 (en
Inventor
Akira Chiyou
耿 張
Hiroshi Kawakami
博史 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3105668A priority Critical patent/JP2737441B2/en
Priority to KR1019920007592A priority patent/KR950007916B1/en
Priority to EP92107640A priority patent/EP0512506A1/en
Publication of JPH04334526A publication Critical patent/JPH04334526A/en
Application granted granted Critical
Publication of JP2737441B2 publication Critical patent/JP2737441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To provide a catalyst having capacity removing nitrogen oxide in exhaust gas especially at low temp. without undergoing the poisoning due to SOx using hydrocarbon as a reducing agent and easy to prepared. CONSTITUTION:Exhaust gas containing nitrogen oxide is brought into contact with a catalyst containing platinum in the presence of hydrocarbon within an oxidizing atmosphere. This catalyst is supported on a carrier and the reaction temp. thereof is held to 300 deg.C or lower, pref., 280 deg.C or lower.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ボイラー,内燃機関,
硝酸製造工場などから排出される排ガス中に含まれる窒
素酸化物を効率よく除去するための方法及び触媒に関す
る。 【0002】 【従来の技術】環境保全が世界的規模の課題になるにつ
れて、酸性雨の原因とも言われるNOx (窒素酸化物
)やSOx (硫黄酸化物)の除去問題は多くの関心を
集めている。NOx の主な発生源はボイラー,自動車
の内燃機関或いは硝酸製造工場からの排気ガスである。 【0003】従来、例えば、ガソリンを用いる自動車に
おいては、白金とロジウムとセシウムとを含む三元触媒
が使われている。ガソリンエンジンでは、ほぼ理論空燃
比(A/F=14.6)の条件下で燃料が燃やされるの
で、排ガス中の酸素濃度が低く、排ガス中のCO,NO
及び炭化水素は上記三元触媒で同時に除去され得る。こ
の触媒では、白金はCO及び炭化水素を酸化させる役割
を、ロジウムはNOx を還元させる役割を、又セシウ
ムは排ガスの組成によって酸素を放出したり貯蔵したり
する役割を夫々主に果たしている。 【0004】しかしながら、空燃比が高くて酸素リッチ
になったり、ディーゼルエンジンやボイラーにおける如
く排ガス中に過剰の酸素が含まれている場合は、脱硝活
性の高いロジウムでも殆どその活性を失ってしまうため
、上記の三元触媒は機能しなくなり、使用することがで
きなくなる。そこで、従来このような場合には、窒素酸
化物を除去する方法として、例えばV2 O5 −Ti
O2 触媒を用い、アンモニア還元剤で一酸化窒素を選
択的に還元する方法が採用されていた。しかしながら、
この方法では、危険で取扱いに困難の多いアンモニアを
使用するため、これに代えて炭化水素を還元剤として使
える触媒が望まれ、従来、この目的のために、例えば、
銅イオンでゼオライトのH+ 又はNa+ とイオン交
換することによって得られる触媒(特開昭63−100
919号)等幾種類かの触媒が提案されている。 【0005】 【発明が解決しようとする課題】ところで、上記の銅−
ゼオライト触媒は、ゼオライトが高価であるばかりか、
銅イオンの交換に手間が掛かるという欠点があり、窒素
酸化物の除去能力も必ずしも十分ではないという問題が
ある。更に、銅触媒はSOx により被毒され易いとい
う問題もあり、而も低温で活性が低く、実用上十分なも
のとは言い難かった。 【0006】本発明は、従来の技術の有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、炭化水素を還元剤として使用してSOx によ
る被毒がなく窒素酸化物を特に低温において除去する能
力を有し且つ調製の容易な、排ガス中の窒素酸化物除去
方法及び触媒を提供しようとするものである。 【0007】 【課題を解決するための手段】上記目的を達成するため
に、本発明による方法は、窒素酸化物を含む排ガスを酸
化雰囲気中炭化水素の存在下で白金を含有する触媒と接
触させるようにしたものである。 【0008】本発明による白金を含有する触媒は、好ま
しくは、アルミナ,シリカ,チタニア,ジルコニア,り
ん酸アルミニウム,硼酸アルミニウム、ボリア,シリカ
アルミナ,ゼオライト及び活性炭の内の一若しくは二以
上を複合することにより得られる担体により担持されて
いる。 【0009】反応温度は、300℃以下、好ましくは2
80℃以下に保たれる。又、本発明の方法によれば、S
Ox が共存する窒素酸化物を含む排ガス中からNOx
 が除去されるようになっている。 【0010】 【作用】本発明者らは、窒素酸化物を含有する排ガスを
酸化雰囲気中炭化水素の存在下で白金を含有する触媒と
接触させると、排ガス中の窒素酸化物を効率よく除去で
きることを見出した。又、この触媒は、担体上に担持さ
せて表面積を大きく保つことによって活性を大きくする
ことが可能である。シリカは、比較例1に示すように、
それ自体では窒素酸化物の除去能力を全く持たず、アル
ミナ及びりん酸アルミニウムは、比較例2及び3に示す
ように、僅かにしか活性を示さない。しかしながら、こ
のような化合物に白金を担持させると、実施例1乃至3
に示すように、高い窒素酸化物除去活性を得ることがで
きる。触媒の調製方法としては、白金を担体上に分散す
ることができればよく、特に限定されない。 【0011】炭化水素としては、窒素酸化物を還元し得
るものならば何でもよく、排ガス中に存在するものでも
よいし、足りない場合は外部から導入してもよい。導入
される炭化水素としては、プロパン,ブタン,シクロヘ
キサン等のパラフイン系炭化水素,エチレン,プロピレ
ン等のオレフイン系炭化水素、或いはトルエン,キシレ
ン等の芳香族炭化水素を例として挙げることができる。 導入量としては、排ガス中の既存の炭化水素と合わせて
、排ガス中の窒素酸化物と化学量論的に反応してN2 
,H2 O及びCO2 を生成させるだけの量又はそれ
以上あればよい。 【0012】又、白金含有触媒によって、酸化雰囲気中
で炭化水素は酸素よりも窒素酸化物と優先的に反応する
。この場合、酸化雰囲気とは、排ガス中の一酸化炭素,
水素及び炭化水素すべてを炭酸ガスと水に変換するのに
必要な量よりも多くの酸素が存在する状態を言うものと
する。 【0013】更に、本発明者らは、反応温度を300℃
以下に保つと期待通りの触媒活性が得られることを見出
した。還元雰囲気中でSOx がS又はH2 Sに還元
され、生成されたSとH2 Sにより白金触媒は被毒を
受けて性能が低下することはよく知られているところで
あるが、反応温度を300℃以下好ましくは280℃以
下に保つと、酸化雰囲気下では上述の被毒メカニズムが
働かず、実施例7で示されるようにSOx により殆ど
被毒を受けない。しかも、300℃以下で特にNOx 
除去能力が発揮される。 【0014】 【実施例】 活性実験 触媒1gを内径10mmのステンレス製反応管に充填し
、これに反応ガス(ガス組成  NO:1000ppm
,C3 H6 :1000ppm,O2 :5容量%,
He:残量)を30ml/minの流速で、触媒層の温
度を150℃,200℃,250℃,300℃に夫々保
った反応管中を通過させた。各反応管の出口のNOとN
O2 の濃度は化学発光式のNOx 計で測定した。触
媒の性能評価基準として、{(反応管入口のNOx 濃
度−出口のNOx 濃度)/(反応管入口のNOx 濃
度)}×100%で表わされるNOの転換率を用いた。 尚、副生成物のN2 Oはガスクロマトグラフで検出し
、NOの転換率の補正を行なった。 【0015】実施例1 塩化白金酸0.4gを200mlの水に溶かし、15g
のシリカ担体(富士デビソン製CARIACT−10,
BET表面積:300m2 /g)にこれを加え、蒸発
乾固し、500℃空気中で3時間焼成することにより、
触媒を作った。これを用いた活性実験結果は表1に示さ
れている。 比較例1 実施例1と同じシリカ担体に白金を担持させずに活性実
験を行なった。その結果は表1に示されている。 【0016】実施例2 0.4gの塩化白金酸を200mlの水に溶かした溶液
を23gのAl(OH)3 粉末(日本ケツチェン製水
酸化アルミニウムGrade  G,BET表面積34
0m2 /g)に加え、攪拌しながら蒸発乾固した。こ
れを110℃で24時間乾燥した後、500℃空気中で
3時間焼成して、1重量%pt/Al2 O3 の触媒
を作った。 使用する前に400℃2時間20%水素中で還元した。 これを用いた活性実験結果は表1に示されている。 比較例2 実施例2と同じAl(OH)3 粉末に白金を担持させ
ず、500℃空気中で3時間焼成したものを用いて活性
実験を行なった。その結果は表1に示されている。 【0017】実施例3 75gのAl(OH3 )3 .9H2 O及び23g
のH3 PO4 を1リットルの水に溶かし、アンモニ
ア水を最終PHが7〜8になるまで1ml/minの速
度で滴下し、約2時間攪拌した後、24時間放置し、次
にこれを濾過して純水で洗浄した後、110℃で24時
間乾燥し、その後500℃空気中で3時間焼成して、り
ん酸アルミニウムを得た。かくして得られたりん酸アン
モニウム15gに、0.4gの塩化白金酸を渡河した溶
液を加えて、攪拌しながら蒸発乾固し、110℃で20
時間乾燥した後、500℃空気中で3時間焼成すること
により、触媒を作った。使用する前に400℃2時間2
0%水素中で還元した。これを用いた活性実験結果は表
1に示されている。 比較例3 実施例3において得たりん酸アルミニウムを用いて活性
実験を行なった。その結果は表1に示されている。 【0018】実施例4 実施例2で用いたAl(OH)3 粉末32gに、硼酸
24.7gを200mlの熱湯(80℃)に溶かした溶
液を添加し、2時間攪拌して、110℃で蒸発乾固した
後、500℃空気中で3時間焼成し、硼酸アルミニウム
(AlBx Oy )を得た。かくして得られた硼酸ア
ルミニウム15gに、2gの塩化白金酸を溶かした溶液
を加え、攪拌しながら蒸発乾固し、110℃で20時間
乾燥した後、500℃空気中で3時間焼成することによ
り、触媒を作った。使用する前に400℃2時間20%
水素中で還元した。これを用いた活性実験結果は表1に
示されている。 比較例4 実施例4において得た硼酸アルミニウムを用いて活性実
験を行なった。その結果は表1に示されている。 【0019】実施例5 実施例3においては、窒素酸化物を還元する炭化水素と
してプロピレンが用いられたが、本実施例ではその代わ
りにプロパンが用いられた。この場合のpt/Al2 
O3 の反応活性は表1に示されている。 【0020】実施例6 実施例1と実施例3において用いられたのと同様の触媒
を用い、反応ガスの組成を変化させて活性実験を行なっ
た。その時の活性の変化は表2に示されている。 【0021】実施例7 実施例1と実施例3において用いられたのと同様の触媒
を用い、SO2 100ppmの存在下において活性実
験を行なった。その場合の脱硝活性が表3に示されてい
る。 【0022】 【0023】                       表2 
   NOの転換率(%)      ───────
──────────────────────   
       O2       C3 H6    
 Pt/SiO2   Pt/AlPO4      
           (%)    (ppm)  
    (1wt)      (5wt%)    
                0      10
00          1            
    6.5                  
    5      1000        57
.1          80.5         
             5        400
        21.9          47.
6                    10  
    1000        48.6     
     66.6                
    10        400        
17.9          62.8       
           ──────────────
───────────────          
        NO:1000ppm      反
応温度:200℃【0024】                       表3 
   NOの転換率(%)    ─────────
──────────────────────   
         SO2     Pt/SiO2 
  Pt/AlPO4   Pt/AlPO4    
       (ppm)    (1wt)    
  (1wt%)    (5wt%)       
             0        57.
1      84.1          90.5
                  100    
    50.0      83.4       
   84.5                ──
─────────────────────────
────                NO:10
00ppm        反応温度:200℃   
       C3 H6 :1000ppm    
    O2 :5容量%             
   【0025】 【発明の効果】上述の如く、本発明によれば、特にボイ
ラー,内燃機関,硝酸製造工場等から排出される排ガス
に含まれる窒素酸化物を効率的に除去でき、またSOx
 による被毒を受けることなく酸素雰囲気下において勿
ろ高活性を示す、方法及び触媒を提供することができる
Detailed Description of the Invention [0001] [Industrial Application Field] The present invention is applicable to boilers, internal combustion engines,
The present invention relates to a method and catalyst for efficiently removing nitrogen oxides contained in exhaust gas discharged from a nitric acid manufacturing factory. [0002] As environmental conservation becomes a global issue, the problem of removing NOx (nitrogen oxides) and SOx (sulfur oxides), which are said to be the causes of acid rain, has attracted much attention. There is. The main sources of NOx are exhaust gas from boilers, automobile internal combustion engines, and nitric acid manufacturing plants. Conventionally, for example, in gasoline-powered automobiles, a three-way catalyst containing platinum, rhodium, and cesium has been used. In a gasoline engine, fuel is burned under conditions of approximately the stoichiometric air-fuel ratio (A/F = 14.6), so the oxygen concentration in the exhaust gas is low, and CO and NO in the exhaust gas are low.
and hydrocarbons can be removed simultaneously with the three-way catalyst. In this catalyst, platinum plays the role of oxidizing CO and hydrocarbons, rhodium plays the role of reducing NOx, and cesium plays the role of releasing or storing oxygen depending on the composition of the exhaust gas. [0004] However, when the air-fuel ratio is high and oxygen-rich, or when the exhaust gas contains excess oxygen as in diesel engines and boilers, even rhodium, which has high denitrification activity, loses most of its activity. , the above three-way catalyst will no longer function and cannot be used. Therefore, conventional methods for removing nitrogen oxides in such cases include, for example, V2 O5 -Ti
A method has been adopted in which nitrogen monoxide is selectively reduced with an ammonia reducing agent using an O2 catalyst. however,
Since this method uses ammonia, which is dangerous and difficult to handle, it is desirable to have a catalyst that can use hydrocarbons as a reducing agent instead.
Catalyst obtained by ion-exchanging H+ or Na+ of zeolite with copper ions (Japanese Patent Application Laid-open No. 63-100
Several types of catalysts have been proposed, such as No. 919). Problems to be Solved by the Invention By the way, the above-mentioned copper-
Zeolite catalysts are not only expensive, but also
There is a drawback that it takes time and effort to exchange copper ions, and the ability to remove nitrogen oxides is not always sufficient. Furthermore, copper catalysts have the problem of being easily poisoned by SOx, and their activity is low at low temperatures, making them difficult to say are sufficient for practical use. The present invention has been made in view of the above-mentioned problems of the conventional technology, and its purpose is to use hydrocarbons as reducing agents to reduce nitrogen oxidation without being poisoned by SOx. It is an object of the present invention to provide a method and a catalyst for removing nitrogen oxides from exhaust gas, which have the ability to remove nitrogen oxides particularly at low temperatures and are easy to prepare. [0007]In order to achieve the above objects, the method according to the invention comprises contacting exhaust gas containing nitrogen oxides with a platinum-containing catalyst in the presence of hydrocarbons in an oxidizing atmosphere. This is how it was done. The platinum-containing catalyst according to the invention is preferably a composite of one or more of alumina, silica, titania, zirconia, aluminum phosphate, aluminum borate, boria, silica alumina, zeolite and activated carbon. It is supported by a carrier obtained by. [0009] The reaction temperature is 300°C or less, preferably 2
The temperature is kept below 80℃. Furthermore, according to the method of the present invention, S
NOx is removed from exhaust gas containing nitrogen oxides that coexist with Ox.
is now removed. [Operation] The present inventors have discovered that nitrogen oxides in exhaust gas can be efficiently removed by contacting exhaust gas containing nitrogen oxides with a catalyst containing platinum in the presence of hydrocarbons in an oxidizing atmosphere. I found out. Furthermore, the activity of this catalyst can be increased by supporting it on a carrier to maintain a large surface area. As shown in Comparative Example 1, silica is
By themselves, they have no ability to remove nitrogen oxides, and alumina and aluminum phosphate exhibit only slight activity, as shown in Comparative Examples 2 and 3. However, when platinum is supported on such a compound, Examples 1 to 3
As shown in Figure 2, high nitrogen oxide removal activity can be obtained. The method for preparing the catalyst is not particularly limited as long as platinum can be dispersed on the carrier. [0011] The hydrocarbon may be anything as long as it can reduce nitrogen oxides, and it may be present in the exhaust gas, or if it is insufficient, it may be introduced from the outside. Examples of the hydrocarbons introduced include paraffinic hydrocarbons such as propane, butane, and cyclohexane, olefinic hydrocarbons such as ethylene and propylene, and aromatic hydrocarbons such as toluene and xylene. The amount of N2 introduced is stoichiometrically reacted with nitrogen oxides in the exhaust gas, together with the existing hydrocarbons in the exhaust gas.
, H2 O and CO2, or more. The platinum-containing catalyst also causes hydrocarbons to react preferentially with nitrogen oxides over oxygen in an oxidizing atmosphere. In this case, the oxidizing atmosphere refers to carbon monoxide in the exhaust gas,
A condition in which more oxygen is present than is required to convert all hydrogen and hydrocarbons to carbon dioxide and water. Furthermore, the present inventors set the reaction temperature to 300°C.
It has been found that the expected catalytic activity can be obtained by maintaining the following. It is well known that SOx is reduced to S or H2S in a reducing atmosphere, and platinum catalysts are poisoned by the generated S and H2S, reducing their performance. If the temperature is preferably maintained below 280° C., the above-mentioned poisoning mechanism will not work in an oxidizing atmosphere, and as shown in Example 7, there will be little poisoning by SOx. Moreover, especially at temperatures below 300°C, NOx
Demonstrates removal ability. [Example] 1 g of active experimental catalyst was filled in a stainless steel reaction tube with an inner diameter of 10 mm, and a reaction gas (gas composition NO: 1000 ppm
, C3 H6: 1000 ppm, O2: 5% by volume,
He (residual amount) was passed at a flow rate of 30 ml/min through a reaction tube whose catalyst layer temperatures were maintained at 150°C, 200°C, 250°C, and 300°C, respectively. NO and N at the outlet of each reaction tube
The O2 concentration was measured using a chemiluminescent NOx meter. As a criterion for evaluating the performance of the catalyst, the NO conversion rate expressed by {(NOx concentration at the inlet of the reaction tube−NOx concentration at the outlet)/(NOx concentration at the inlet of the reaction tube)}×100% was used. Note that the by-product N2O was detected using a gas chromatograph, and the conversion rate of NO was corrected. Example 1 0.4 g of chloroplatinic acid was dissolved in 200 ml of water, and 15 g of it was dissolved in 200 ml of water.
Silica carrier (CARIACT-10 manufactured by Fuji Davison,
By adding this to BET surface area: 300 m / g), evaporating to dryness, and baking in air at 500 ° C for 3 hours,
I made a catalyst. The results of the activity experiments using this are shown in Table 1. Comparative Example 1 An activity experiment was conducted on the same silica carrier as in Example 1 without supporting platinum. The results are shown in Table 1. Example 2 A solution of 0.4 g of chloroplatinic acid dissolved in 200 ml of water was mixed with 23 g of Al(OH)3 powder (Aluminum hydroxide Grade G, manufactured by Nippon Ketsuchen, BET surface area 34).
0 m2/g) and evaporated to dryness while stirring. This was dried at 110° C. for 24 hours and then calcined in air at 500° C. for 3 hours to produce a 1 wt% pt/Al2 O3 catalyst. It was reduced in 20% hydrogen at 400° C. for 2 hours before use. The results of the activity experiments using this are shown in Table 1. Comparative Example 2 An activity experiment was conducted using the same Al(OH)3 powder as in Example 2, which was fired in air at 500° C. for 3 hours without supporting platinum. The results are shown in Table 1. Example 3 75 g of Al(OH3)3. 9H2O and 23g
of H3PO4 was dissolved in 1 liter of water, aqueous ammonia was added dropwise at a rate of 1 ml/min until the final pH reached 7-8, stirred for about 2 hours, left for 24 hours, and then filtered. After washing with pure water, it was dried at 110°C for 24 hours, and then calcined at 500°C in air for 3 hours to obtain aluminum phosphate. A solution containing 0.4 g of chloroplatinic acid was added to 15 g of ammonium phosphate obtained in this way, and the mixture was evaporated to dryness with stirring, and heated to 20 °C at 110 °C.
After drying for an hour, a catalyst was prepared by calcining at 500° C. in air for 3 hours. 2 hours at 400℃ before use
Reduced in 0% hydrogen. The results of the activity experiments using this are shown in Table 1. Comparative Example 3 An activity experiment was conducted using the aluminum phosphate obtained in Example 3. The results are shown in Table 1. Example 4 A solution of 24.7 g of boric acid dissolved in 200 ml of hot water (80°C) was added to 32 g of the Al(OH)3 powder used in Example 2, stirred for 2 hours, and heated to 110°C. After evaporating to dryness, it was calcined in air at 500°C for 3 hours to obtain aluminum borate (AlBx Oy). A solution of 2 g of chloroplatinic acid was added to 15 g of the aluminum borate thus obtained, evaporated to dryness with stirring, dried at 110°C for 20 hours, and then calcined at 500°C in air for 3 hours. I made a catalyst. 20% at 400℃ for 2 hours before use
Reduced in hydrogen. The results of the activity experiments using this are shown in Table 1. Comparative Example 4 An activity experiment was conducted using the aluminum borate obtained in Example 4. The results are shown in Table 1. Example 5 In Example 3, propylene was used as the hydrocarbon for reducing nitrogen oxides, but in this example propane was used instead. pt/Al2 in this case
The reaction activity of O3 is shown in Table 1. Example 6 Using the same catalyst as used in Examples 1 and 3, activity experiments were conducted by varying the composition of the reaction gas. The changes in activity at that time are shown in Table 2. Example 7 Activity experiments were conducted using a catalyst similar to that used in Examples 1 and 3 in the presence of 100 ppm SO2. Table 3 shows the denitrification activity in that case. [0022] Table 2
NO conversion rate (%) ────────
──────────────────────
O2 C3 H6
Pt/SiO2 Pt/AlPO4
(%) (ppm)
(1wt) (5wt%)
0 10
00 1
6.5
5 1000 57
.. 1 80.5
5 400
21.9 47.
6 10
1000 48.6
66.6
10 400
17.9 62.8
──────────────
────────────────
NO: 1000ppm Reaction temperature: 200°C Table 3
NO conversion rate (%) ──────────
──────────────────────
SO2 Pt/SiO2
Pt/AlPO4 Pt/AlPO4
(ppm) (1wt)
(1wt%) (5wt%)
0 57.
1 84.1 90.5
100
50.0 83.4
84.5 ---
──────────────────────────
──── NO:10
00ppm Reaction temperature: 200℃
C3 H6: 1000ppm
O2: 5% by volume
[0025] As described above, according to the present invention, nitrogen oxides contained in exhaust gas emitted from boilers, internal combustion engines, nitric acid manufacturing plants, etc. can be efficiently removed, and SOx
It is possible to provide a method and a catalyst which exhibit high activity in an oxygen atmosphere without being poisoned by.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  窒素酸化物を含む排ガスを酸化雰囲気
中炭化水素の存在下で白金を含有する触媒と接触させる
ことにより排ガス中の窒素酸化物を除去するようにした
方法。
1. A method for removing nitrogen oxides from exhaust gas by contacting the exhaust gas containing nitrogen oxides with a platinum-containing catalyst in the presence of hydrocarbons in an oxidizing atmosphere.
【請求項2】  300℃以下の温度で接触反応を行な
わせるようにした、請求項1に記載の方法。
2. The method according to claim 1, wherein the catalytic reaction is carried out at a temperature of 300° C. or lower.
【請求項3】  硫黄酸化物が共存する窒素酸化物を含
む排ガス中より窒素酸化物を除去するようにした、請求
項1又は2に記載の方法。
3. The method according to claim 1, wherein nitrogen oxides are removed from exhaust gas containing nitrogen oxides in which sulfur oxides coexist.
【請求項4】  白金を含有していて酸化雰囲気中炭化
水素の存在下で窒素酸化物を含む排ガスと接触せしめら
れて該排ガス中より該窒素酸化物を除去する触媒。
4. A catalyst containing platinum which is brought into contact with exhaust gas containing nitrogen oxides in the presence of hydrocarbons in an oxidizing atmosphere to remove the nitrogen oxides from the exhaust gas.
【請求項5】  アルミナ,シリカ,チタニア,ジルコ
ニア,りん酸アルミニウム,硼酸アルミニウム,ボリア
,シリカアルミナ,ゼオライト及び活性炭の内の一若し
くは二以上を複合することにより得られる担体により担
持されている、請求項4に記載の触媒。
Claim 5: Supported by a carrier obtained by combining one or more of alumina, silica, titania, zirconia, aluminum phosphate, aluminum borate, boria, silica alumina, zeolite, and activated carbon. The catalyst according to item 4.
JP3105668A 1991-05-10 1991-05-10 Method for removing nitrogen oxides from exhaust gas and catalyst Expired - Lifetime JP2737441B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3105668A JP2737441B2 (en) 1991-05-10 1991-05-10 Method for removing nitrogen oxides from exhaust gas and catalyst
KR1019920007592A KR950007916B1 (en) 1991-05-10 1992-05-04 Method for removing nitrogen exides from exhaust gases
EP92107640A EP0512506A1 (en) 1991-05-10 1992-05-06 Method for removing nitrogen oxides from exhaust gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3105668A JP2737441B2 (en) 1991-05-10 1991-05-10 Method for removing nitrogen oxides from exhaust gas and catalyst

Publications (2)

Publication Number Publication Date
JPH04334526A true JPH04334526A (en) 1992-11-20
JP2737441B2 JP2737441B2 (en) 1998-04-08

Family

ID=14413822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3105668A Expired - Lifetime JP2737441B2 (en) 1991-05-10 1991-05-10 Method for removing nitrogen oxides from exhaust gas and catalyst

Country Status (1)

Country Link
JP (1) JP2737441B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000446A (en) * 2008-06-20 2010-01-07 Asahi Kasei Corp Catalyst for purifying lean burn exhaust gas
JP2013075286A (en) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
WO2013099706A1 (en) 2011-12-26 2013-07-04 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing same
US9498771B2 (en) 2012-09-12 2016-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102237069B1 (en) * 2015-12-15 2021-04-06 현대자동차 주식회사 LEAN NOx TRAP CATALYST

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220971A (en) * 1975-08-12 1977-02-17 Nippon Shokubai Kagaku Kogyo Co Ltd Process for removing nitrogen oxides
JPS5319554A (en) * 1976-08-04 1978-02-22 Nishinihon Kontorooru Kk Dc reactor
JPS6044026A (en) * 1983-07-23 1985-03-08 ヘキスト・アクチエンゲゼルシヤフト Reduction of nitrogen dioxide content of gaseous mixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220971A (en) * 1975-08-12 1977-02-17 Nippon Shokubai Kagaku Kogyo Co Ltd Process for removing nitrogen oxides
JPS5319554A (en) * 1976-08-04 1978-02-22 Nishinihon Kontorooru Kk Dc reactor
JPS6044026A (en) * 1983-07-23 1985-03-08 ヘキスト・アクチエンゲゼルシヤフト Reduction of nitrogen dioxide content of gaseous mixture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010000446A (en) * 2008-06-20 2010-01-07 Asahi Kasei Corp Catalyst for purifying lean burn exhaust gas
JP2013075286A (en) * 2011-09-14 2013-04-25 Mitsui Mining & Smelting Co Ltd Exhaust gas purification catalyst, and exhaust gas purification catalyst structure
WO2013099706A1 (en) 2011-12-26 2013-07-04 トヨタ自動車株式会社 Exhaust gas purifying catalyst and method for producing same
US9067193B2 (en) 2011-12-26 2015-06-30 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst and method for producing same
US9498771B2 (en) 2012-09-12 2016-11-22 Toyota Jidosha Kabushiki Kaisha Catalyst for exhaust gas purification, and method for producing same

Also Published As

Publication number Publication date
JP2737441B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP5540421B2 (en) Method for removing nitrogen oxides in exhaust gas
JP5354903B2 (en) Catalyst and nitrogen oxide reduction method
JP2801423B2 (en) Nitrogen oxide purification catalyst
JP2008212799A (en) Catalyst for performing catalytic reduction of nitrogen oxide in exhaust gas and method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JP2645614B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH04334526A (en) Method and catalyst for removing nitrogen oxide in exhaust gas
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
US4695438A (en) Selective catalytic reduction catalysts
JP4330666B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JPH05137963A (en) Method for removing nitrogen oxide
JP2605956B2 (en) Exhaust gas purification catalyst
JP3398159B2 (en) Nitrogen oxide removal method
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JP2005279372A (en) Denitrification catalyst and denitrification method using it
KR950007916B1 (en) Method for removing nitrogen exides from exhaust gases
JPH0557189A (en) Catalyst for removing nitrogen oxide
JP3423703B2 (en) Nitrogen oxide removal catalyst
JPH06198192A (en) Exhaust gas purification catalyst
JPH0780316A (en) Waste gas purification catalyst and method for removing nox
JPH05192539A (en) Method for purifying nitrogen oxide
JPH11128687A (en) Purifyication of waste gas
JPH081014A (en) Denitration catalyst and denitrating method using that
JPH0889813A (en) Catalyst for denitrification and method for denitrification using it