JPH0889813A - Catalyst for denitrification and method for denitrification using it - Google Patents

Catalyst for denitrification and method for denitrification using it

Info

Publication number
JPH0889813A
JPH0889813A JP6254245A JP25424594A JPH0889813A JP H0889813 A JPH0889813 A JP H0889813A JP 6254245 A JP6254245 A JP 6254245A JP 25424594 A JP25424594 A JP 25424594A JP H0889813 A JPH0889813 A JP H0889813A
Authority
JP
Japan
Prior art keywords
catalyst
alumina
exhaust gas
denitration
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6254245A
Other languages
Japanese (ja)
Other versions
JP3567998B2 (en
Inventor
Takeshi Naganami
武 長南
Taiji Sugano
泰治 菅野
Masao Wakabayashi
正男 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP25424594A priority Critical patent/JP3567998B2/en
Publication of JPH0889813A publication Critical patent/JPH0889813A/en
Application granted granted Critical
Publication of JP3567998B2 publication Critical patent/JP3567998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a denitrification catalyst by means of which NOx in the exhaust gas of an internal engine with a dilute air-fuel ratio can be removed with a sufficiently high gas space velocity and efficiently and a method for denitrification with high efficiency and high reliability for NOx in the exhaust gas of the internal engine using the catalyst. CONSTITUTION: A denitrification catalyst wherein an active alumina is used as a carrier and silver and/or silver oxide is carried thereon and the active alumina has a specific surface area measured by means of a nitrogen gas adsorption method of at least 120m<2> /g and when the total value of the vol. of pores with the pore radius of at most 300Å is A and the total value of the vol. of pores with the pore radius of at most 50Å is B and the total value of the vol. of pores with the pore radius in the range of 100-300Å is C and the relation between the pore radii and the pore vol. are in such a way that B is at least 30% of A and C is at most 15% of A and sulfate ions therein are less than 0.9%, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は移動発生源または定置発
生源からの排ガス、特に内燃機関の排気ガス中の窒素酸
化物の浄化に用いられる排気ガス浄化用の脱硝触媒に関
し、更に詳細には、希薄空燃比の内燃機関の排気ガス中
の窒素酸化物を高い空間速度で、且つ高い効率で浄化す
ることができるような脱硝触媒およびこれを用いた脱硝
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration catalyst for purifying exhaust gas from a mobile generation source or a stationary generation source, particularly nitrogen oxide in exhaust gas of an internal combustion engine, and more specifically to a denitration catalyst. The present invention relates to a denitration catalyst capable of purifying nitrogen oxides in exhaust gas of an internal combustion engine having a lean air-fuel ratio with high space velocity and high efficiency, and a denitration method using the same.

【0002】[0002]

【従来の技術】自動車用エンジンなどの内燃機関や工場
などの大型燃焼装置から排出される各種の燃焼排気ガス
中には、燃焼生成物である水や二酸化炭素(CO)と
共に一酸化窒素(NO)や、二酸化窒素(NO)など
の窒素酸化物(NOx)が相当量含まれている。NOx
やSOxは、人体に悪影響を与えるばかりでなく、地球
環境保全上から問題視される酸性雨の原因の1つにもな
っている。そのためこれら各種の排気ガスから効率よく
窒素酸化物を除去するための脱硝触媒の開発が望まれて
いる。
2. Description of the Related Art In various kinds of combustion exhaust gas discharged from an internal combustion engine such as an automobile engine or a large combustion apparatus such as a factory, nitric oxide (CO 2 ) and nitrogen monoxide (CO 2 ) are produced. NO) and nitrogen oxides (NOx) such as nitrogen dioxide (NO 2 ) are contained in a considerable amount. NOx
Not only does SO and SOx adversely affect the human body, but they are also one of the causes of acid rain, which is a problem from the viewpoint of global environmental protection. Therefore, it is desired to develop a denitration catalyst for efficiently removing nitrogen oxides from these various exhaust gases.

【0003】NOx中のNOの理想的な除去方法は、下
記(1)式の反応式で示されるようなNOの直接分解を
行う方法である。該(1)式は、反応平衡論的には右辺
の生成系が圧倒的優位な反応である。
An ideal method of removing NO in NOx is a method of directly decomposing NO as shown by the following reaction formula (1). The equation (1) is a reaction in which the production system on the right side is overwhelmingly dominant in terms of reaction equilibrium.

【0004】 2NO=N+O (1) この反応に依存する脱硝技術として特開昭60−125
250号公報記載の方法が挙げられる。この脱硝技術
は、Cuをイオン交換法によりゼオライトに担持させた
触媒を用いるものであり、この触媒がNOの直接分解反
応を促進するとしている。しかしながら、この脱硝技術
では(1)式の反応によって生成した酸素が触媒活性点
に優先的に付着するために、脱硝効率が次第に低下して
しまうという問題があった。また、反応系内に過剰の酸
素が存在する条件(酸素過剰雰囲気) では、完全に
(1)式の反応が阻害されてしまうという欠点もあっ
た。
2NO = N 2 + O 2 (1) Japanese Patent Laid-Open No. 60-125 discloses a denitration technique that depends on this reaction.
The method described in Japanese Patent Publication No. 250 is cited. This denitration technique uses a catalyst in which Cu is supported on a zeolite by an ion exchange method, and this catalyst promotes the direct decomposition reaction of NO. However, this denitration technique has a problem that the denitration efficiency is gradually lowered because oxygen generated by the reaction of the formula (1) is preferentially attached to the catalyst active site. Further, there is a drawback that the reaction of the formula (1) is completely hindered under the condition that excess oxygen exists in the reaction system (oxygen excess atmosphere).

【0005】他方、地球温暖化防止の観点から近年希薄
燃焼方式の内燃機関が注目を集めている。従来の自動車
用ガソリンエンジンは、空燃比λ=1付近で制御された
化学量論的な燃焼を行うものであって、その排気ガス処
理に対しては排気ガス中の一酸化炭素(CO)、炭化水
素(HC)およびNOxを主として白金(Pt)、ロジ
ウム(Rh)、パラジウム(Pd)およびセリア(Ce
)を含むアルミナ触媒に接触させてこれらの有害成
分を同時に除去する三元触媒方式が採用されていた。し
かし、この三元触媒方式による方法では、希薄燃焼方式
のリーンバーンガソリンエンジンにおける排気ガスに対
する浄化には十分な効果が得られなかった。また、ディ
ーゼルエンジンは元来リーンバーンエンジンであるが、
最近その排気ガスについては、浮遊粒子状物質とNOx
の両者に対してかなり厳しい規制が行われるようになっ
てきた。
On the other hand, from the viewpoint of preventing global warming, an internal combustion engine of the lean burn type has recently been drawing attention. A conventional automobile gasoline engine performs controlled stoichiometric combustion in the vicinity of an air-fuel ratio λ = 1, and carbon monoxide (CO) in exhaust gas is used for exhaust gas treatment. Mainly hydrocarbons (HC) and NOx, platinum (Pt), rhodium (Rh), palladium (Pd) and ceria (Ce)
A three-way catalyst system has been adopted in which these harmful components are simultaneously removed by contacting with an alumina catalyst containing O 2 ). However, this three-way catalyst method has not been sufficiently effective in purifying exhaust gas in a lean burn gasoline engine of a lean burn method. Also, although the diesel engine is originally a lean burn engine,
Recently, regarding the exhaust gas, suspended particulate matter and NOx
Both of them have come under strict regulation.

【0006】従来、酸素過剰雰囲気下でNOxを還元除
去する方法としては、還元ガスとして僅かな量でも選択
的に触媒に吸着されるNHを使用して行う方法が既に
確立されており、いわゆる固定発生源であるボイラーや
ディーゼルエンジンからの排気ガスの脱硝触媒として工
業化されている。しかしこの方法においては、未反応の
還元剤の回収処理のために特別な装置を必要とし、これ
に臭気の強いアンモニアを用いることもあって、自動車
などの移動発生源からの排気ガスの脱硝技術には適用す
ることができない。
Conventionally, as a method for reducing and removing NOx in an oxygen-excess atmosphere, a method has been already established in which NH 3 which is selectively adsorbed by a catalyst even in a small amount as a reducing gas is used. It is industrialized as a NOx removal catalyst for exhaust gas from boilers and diesel engines, which are fixed sources. However, this method requires a special device for the recovery treatment of unreacted reducing agent, and ammonia with a strong odor may be used for this purpose, which is a denitration technology for exhaust gas from mobile sources such as automobiles. Cannot be applied to.

【0007】近年、酸素過剰雰囲気の希薄燃焼ガス中に
残存する未燃炭化水素を還元剤としてNOxの還元反応
を進行させることができることが報告されて以来、該反
応を促進させるための触媒について種々の提案がなされ
ている。例えば、アルミナやアルミナに遷移金属を担持
させた触媒が、炭化水素を還元剤として用いたNOx還
元反応に有効であるとする数多くの報告がなされてい
る。また、特開平4−282848号公報には、0.1
〜4重量%のCu、Fe、Cr、Zn、Ni、V等を含
有するアルミナまたはシリカ−アルミナをNOx還元用
触媒として使用した例が記載されている。
[0007] In recent years, since it has been reported that unburned hydrocarbons remaining in a lean combustion gas in an oxygen excess atmosphere can be used as a reducing agent to promote the reduction reaction of NOx, various catalysts for promoting the reaction have been developed. Has been made. For example, many reports have been made that alumina or a catalyst in which a transition metal is supported on alumina is effective for NOx reduction reaction using hydrocarbon as a reducing agent. Further, in Japanese Unexamined Patent Publication No. 4-282828, there is 0.1
An example is described in which alumina or silica-alumina containing 4 wt% of Cu, Fe, Cr, Zn, Ni, V, etc. is used as a catalyst for NOx reduction.

【0008】またさらに、Ptをアルミナに担持させた
触媒を用いると、NOx還元反応を200〜300℃の
低温領域で進行させることができることが特開平4−2
67946号公報、特開平5−68855号公報および
特開平5−103949号公報に記載されている。しか
しながら、これらの貴金属担持触媒を用いた場合には還
元剤である炭化水素の燃焼反応が過度に促進されるため
にNOx還元反応の選択性が乏しくなるという欠点があ
った。
Furthermore, by using a catalyst in which Pt is supported on alumina, the NOx reduction reaction can proceed in a low temperature range of 200 to 300 ° C.
67946, JP-A-5-68855, and JP-A-5-103949. However, when these noble metal-supported catalysts are used, there is a drawback that the selectivity of the NOx reduction reaction becomes poor because the combustion reaction of hydrocarbon as a reducing agent is excessively promoted.

【0009】本発明者らは、先に酸素過剰雰囲気下で炭
化水素を還元剤として銀を含有する触媒を用いるとNO
x還元反応が選択的に優位に進行することを見出し、こ
れについて特許出願を行った(特開平4−281844
号)。その後においても、このように銀を用いた類似の
NOx還元触媒によるNOx除去技術について特開平4
−354536号公報や特開平5−92124号公報な
ど数多くの特許出願が見受けられるが、これらの従来の
アルミナを担体とした銀担持触媒の脱硝性能は未だ不十
分であった。
The present inventors have previously found that when a catalyst containing silver as a reducing agent with hydrocarbon as a reducing agent is used under an oxygen-excessive atmosphere, NO.
It was found that the x reduction reaction selectively and preferentially proceeded, and a patent application was filed for this (Japanese Patent Laid-Open No. 4-281844).
issue). Even after that, the technique for removing NOx by using a similar NOx reduction catalyst using silver in this manner is disclosed in Japanese Patent Laid-Open No. HEI 4
Although many patent applications such as JP-A-354536 and JP-A-5-92124 are found, the denitration performance of these conventional silver-supported silver-supported catalysts is still insufficient.

【0010】一方、従来よりアルミナを担体として用い
た触媒は空間速度依存性が大きいことが知られており、
例えばSV:1000〜10000hr−1程度の空間
速度においては十分にNOx還元性能を発揮するが、S
V:10000hr−1以上の空間速度においては、N
Oxの浄化性能は大きく低下することが報告されている
(「触媒」:33、61(1991)参照)ことからも
分かるように、このような現象は当業界では周知の事実
であった。例えば、特開平5−92124号公報に開示
されている排ガス処理方法において、排気ガスと触媒と
の接触時間を0. 03g.sec/cm以上、好まし
くは0.1g.sec/cm以上と限定しているのは
このためである。
On the other hand, it has been known that a catalyst using alumina as a carrier has a large space velocity dependency.
For example, at a space velocity of SV: 1000 to 10000 hr -1 , the NOx reduction performance is sufficiently exhibited, but S
V: N at a space velocity of 10000 hr −1 or more
As can be seen from the fact that the purification performance of Ox is significantly reduced (see “Catalyst”: 33, 61 (1991)), such a phenomenon was a well-known fact in the art. For example, in the exhaust gas treatment method disclosed in JP-A-5-92124, the contact time between the exhaust gas and the catalyst is 0.03 g. sec / cm 3 or more, preferably 0.1 g. This is the reason why it is limited to sec / cm 3 or more.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、希薄空
燃比で運転される代表的な内燃機関である自動車等の車
両用リーンバーンエンジンの排ガス処理において、実用
上欠くことのできない他の重要な要素は、触媒層ないし
は触媒で被覆された支持基質からなる構造体(以下、こ
れらを本明細書においては触媒含有層と称する)の所要
スペースと重量の両者である。即ち、エンジンの排気量
と仕事量とを勘案するときにエンジン排気量の数倍以上
の容量の触媒含有層を搭載することは実用的でなく、触
媒含有層の容量をエンジンの排気量以下にすることが望
ましいからである。
However, in the exhaust gas treatment of a lean burn engine for vehicles such as automobiles, which is a typical internal combustion engine operated at a lean air-fuel ratio, other important factors which are indispensable for practical use are , Both the required space and the weight of the catalyst layer or the structure consisting of the supporting substrate coated with the catalyst (hereinafter, these are referred to as catalyst-containing layer in the present specification). That is, it is not practical to mount a catalyst-containing layer having a capacity of several times or more of the engine displacement when considering the engine displacement and work, and the capacity of the catalyst-containing layer is set to be equal to or less than the engine displacement. It is desirable to do so.

【0012】そしてこれは、実用性のある触媒含有層を
構成するには触媒含有層を通過する排気ガスの空間速度
を高くすること(これは接触時間が短かくなることを意
味する)、即ちガス空間速度を7000hr−1以上、
好ましくは10000hr−1以上とすること、つまり
接触時間では0.03g.sec/cm未満、好まし
くは0.02g.sec/cm未満であることが要求
されることを意味するものである。しかし、従来のアル
ミナを担体とする銀担持アルミナ触媒は、このような高
空間速度(短い接触時間)では、水蒸気共存排気ガスに
対する脱硝性能が今ひとつ不十分であった。
This means that in order to form a practical catalyst-containing layer, the space velocity of the exhaust gas passing through the catalyst-containing layer is made high (which means that the contact time becomes short), that is, Gas space velocity of 7,000 hr −1 or more,
It is preferably 10,000 hr −1 or more, that is, the contact time is 0.03 g. sec / cm 3 or less, preferably 0.02 g. It means that it is required to be less than sec / cm 3 . However, the conventional silver-supported alumina catalyst using alumina as a carrier is still insufficient in denitrification performance for exhaust gas coexisting with steam at such a high space velocity (short contact time).

【0013】本発明は、上記した従来方法による問題点
を解決することを課題とするものであり、希薄空燃比の
内燃機関の排気ガス中のNOxを十分高いガス空間速度
(短い接触時間)で効率よく除去することができるよう
な脱硝触媒と、該触媒を使用しての希薄空燃比の内燃機
関の排気ガス中のNOxの高効率で高信頼性を持った脱
硝方法を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned problems caused by the conventional method. NOx in exhaust gas of an internal combustion engine having a lean air-fuel ratio can be maintained at a sufficiently high gas space velocity (short contact time). An object of the present invention is to provide a denitration catalyst that can be efficiently removed, and a denitration method with high efficiency and reliability of NOx in the exhaust gas of an internal combustion engine with a lean air-fuel ratio using the catalyst. It is what

【0014】[0014]

【課題を解決するための手段】本発明者らは、水蒸気が
共存する酸素過剰雰囲気下においても、炭化水素による
NOx還元反応を高効率で進行させることのできるよう
な脱硝触媒およびこれを用いての脱硝方法について鋭意
研究を重ねた結果、比表面積が120m/g以上であ
って、且つ特定の細孔特性を有し、さらに硫酸イオンが
低含有率であるような活性アルミナを担体として使用
し、これに特定量の銀および/または酸化銀とを担持さ
せた触媒を用いることにより上記の課題を解決すること
ができることを見出し本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The present inventors have used a denitration catalyst capable of advancing the NOx reduction reaction by hydrocarbon with high efficiency even in an oxygen-excess atmosphere in which water vapor coexists, and by using the same. As a result of earnest studies on the denitration method, the activated alumina having a specific surface area of 120 m 2 / g or more, specific pore characteristics, and a low sulfate ion content was used as a carrier. However, they have found that the above problems can be solved by using a catalyst in which a specific amount of silver and / or silver oxide is supported, and have completed the present invention.

【0015】即ち、本発明は、活性アルミナを担体と
し、これに銀および/または酸化銀とを担持させてなる
触媒であって、該活性アルミナが、窒素ガス吸着法によ
り測定された比表面積が120m/g以上であり、且
つ細孔半径と細孔容積との関係が、細孔半径300オン
グストローム以下の細孔の占める細孔容積の合計値をA
とし、細孔半径50オングストローム以下の細孔の占め
る細孔容積の合計値をBとし、細孔半径100〜300
オングストロームの範囲の細孔の占める細孔容積の合計
値をCとしたとき、BがAの30%以上で、CがAの1
5%以下であり、さらに該アルミナ担体中に含まれる硫
酸イオンの含有率が0.9%未満であることを特徴とす
る脱硝触媒。および希薄空燃比で運転される内燃機関に
おける排気ガスを脱硝触媒層を通過接触させるようにし
た該排気ガスの脱硝方法において、該脱硝触媒層を構成
する脱硝触媒が請求項1記載の脱硝触媒であり、且つ脱
硝触媒層を通過する排気ガスが該脱硝触媒層入口におい
て200〜600℃の温度範囲とすることを特徴とする
脱硝方法である。
That is, the present invention is a catalyst in which activated alumina is used as a carrier and silver and / or silver oxide is supported on the activated alumina, and the activated alumina has a specific surface area measured by a nitrogen gas adsorption method. The relationship between the pore radius and the pore volume is 120 m 2 / g or more, and the total volume of the pores occupied by the pores having a pore radius of 300 Å or less is A
And the total value of the pore volume occupied by pores having a pore radius of 50 Å or less is B, and the pore radius is 100 to 300.
When the total value of the pore volume occupied by pores in the Angstrom range is C, B is 30% or more of A and C is 1 of A.
A denitration catalyst having a content of 5% or less and a sulfate ion content of less than 0.9% in the alumina carrier. And a denitration method for exhaust gas in an internal combustion engine operated at a lean air-fuel ratio, wherein the exhaust gas is brought into contact with the denitration catalyst layer through contact, wherein the denitration catalyst constituting the denitration catalyst layer is the denitration catalyst according to claim 1. The denitration method is characterized in that the exhaust gas passing through the denitration catalyst layer has a temperature range of 200 to 600 ° C. at the denitration catalyst layer inlet.

【0016】そして上記本発明の脱硝方法によるとき
は、脱硝触媒層を通過する排気ガスの空間速度(SV)
を10,000hr−1以上にして脱硝反応を行わせて
も排気ガスの脱硝浄化を十分に行うことが可能である
し、水蒸気が共存する酸素過剰雰囲気の下においても効
果的に排気ガス中のNOxの還元除去を行うことが可能
である。
When the denitration method of the present invention is used, the space velocity (SV) of the exhaust gas passing through the denitration catalyst layer
Even if the denitration reaction is carried out at 10,000 hr -1 or more, the denitration purification of the exhaust gas can be sufficiently performed, and the exhaust gas can be effectively treated even under an oxygen excess atmosphere in which water vapor coexists. It is possible to reduce and remove NOx.

【0017】[0017]

【作用】以下に本発明の詳細およびその作用について説
明する。
The operation of the present invention will be described in detail below.

【0018】本発明の脱硝触媒の製造に用いる活性アル
ミナは、その内に存在する細孔を窒素ガス吸着法により
測定した場合に得られる細孔半径と細孔容積との関係
が、細孔半径300オングストローム以下の細孔の占め
る細孔容積の合計値をAとし、細孔半径50オングスト
ローム以下の細孔の占める細孔容積の合計値をBとし、
細孔半径100〜300オングストロームの範囲の細孔
の占める細孔容積の合計値をCとしたとき、BがAの3
0%以上であり、CがAの15%以下であるような細孔
特性を有するものである。また該活性アルミナは、結晶
学的にはγ−型、η−型あるいはその混合型に分類され
るものであり、これらの活性アルミナは、一般的には鉱
物学的にベーマイト、擬ベーマイト、バイアライトおよ
びノルストランダライトとして分類される水酸化アルミ
ニウムの粉末またはゲルを、空気中あるいは真空中で加
熱温度300〜800℃、好ましくは400〜600℃
で加熱脱水することによって得られるものである。
The activated alumina used in the production of the denitration catalyst of the present invention has a relationship between the pore radius and the pore volume obtained when the pores present therein are measured by the nitrogen gas adsorption method. Let A be the total value of the pore volumes occupied by the pores of 300 angstroms or less, and B be the total value of the pore volumes occupied by the pores of 50 angstroms or less in radius.
When C is the total value of the pore volume occupied by pores having a pore radius of 100 to 300 angstroms, B is 3
It has pore characteristics such that it is 0% or more and C is 15% or less of A. Further, the activated alumina is crystallographically classified into γ-type, η-type, or a mixed type thereof, and these activated aluminas are generally mineralogy of boehmite, pseudo-boehmite, and via-type. Aluminum hydroxide powder or gel classified as wright and norstrandalite is heated in air or vacuum at a heating temperature of 300 to 800 ° C, preferably 400 to 600 ° C.
It is obtained by heating and dehydrating at.

【0019】この場合に、触媒担体としての活性アルミ
ナに他の結晶構造形態を採るもの、例えばα−アルミナ
を使用すると、このα−型のアルミナは極端に比表面積
が小さくまた固体酸性にも乏しいので本発明の指向する
脱硝触媒担体としては不適当であり、またδ−アルミナ
も比表面積が100m/gと比較的小さいので、これ
も脱硝触媒担体としては、γ−アルミナやη−アルミナ
に及ばない。また、β−アルミナやχ−アルミナもほぼ
同様の理由により、本発明の脱硝触媒担体として不適当
である。
In this case, when the activated alumina as the catalyst carrier has another crystal structure, for example, α-alumina, the α-type alumina has an extremely small specific surface area and poor solid acidity. Therefore, δ-alumina is unsuitable as the denitration catalyst carrier of the present invention, and δ-alumina has a relatively small specific surface area of 100 m 2 / g. It does not reach. Further, β-alumina and χ-alumina are also unsuitable as the denitration catalyst carrier of the present invention for almost the same reason.

【0020】本発明において、活性アルミナの細孔特性
が上記した本発明の範囲を外れるとき、即ち細孔半径5
0オングストローム以下の細孔容積の合計値Bが、細孔
半径300オングストローム以下の細孔の占める細孔容
積の合計値Aの30%未満であり、また細孔半径100
〜300オングストロームの細孔の占める細孔容積の合
計値Cが前記Aの値の15%を超えるような場合には、
得られた触媒の水蒸気存在下での脱硝性能が不十分とな
るので好ましくない。即ち、本発明のインジウムと銀お
よび/または酸化銀とを担持するアルミナ触媒において
担体として有効なアルミナは、BがAの30%以上であ
り、且つCがAの15%以下であるような細孔分布を有
する活性アルミナに限られるのである。さらにこれに加
えて本発明のアルミナ担体中に含まれる硫酸イオンの含
有率を0.9%未満に限定した。これは0.9%以上の
硫酸イオンが含まれると、これにより得られた触媒は乾
燥条件下では高い脱硝性能を発揮することができるが、
水蒸気共存下では活性が低下し、特に低温活性が著しく
低下するからである。
In the present invention, when the pore characteristics of activated alumina are out of the range of the present invention described above, that is, the pore radius is 5
The total value B of the pore volume of 0 angstroms or less is less than 30% of the total value A of the pore volume of the pores of 300 angstrom or less, and the pore radius of 100
When the total value C of the pore volume occupied by the pores of ˜300 Å exceeds 15% of the value of A,
The denitration performance of the obtained catalyst in the presence of water vapor becomes insufficient, which is not preferable. That is, the alumina effective as a carrier in the alumina catalyst supporting indium and silver and / or silver oxide of the present invention is such that B is 30% or more of A and C is 15% or less of A. It is limited to activated alumina having a pore distribution. In addition to this, the content of sulfate ions contained in the alumina carrier of the present invention is limited to less than 0.9%. When the content of sulfate ion is 0.9% or more, the catalyst thus obtained can exhibit high denitration performance under dry conditions,
This is because the activity decreases in the presence of water vapor, and particularly the low temperature activity decreases remarkably.

【0021】本発明の触媒において、銀および/または
酸化銀を活性アルミナに担持させる方法は特に限定はな
く、一般的な担持法、例えば吸着法、ポアフィリング
法、インシピエントウエットネス法、蒸発乾固法、スプ
レー法などのような含浸法や混練法、またはこれらを組
み合わせる方法などを適宜採用すればよい。また銀およ
び/または酸化銀の担持率は、本発明の活性アルミナに
対し金属換算値で1〜10重量%の範囲であることが好
ましい。銀の担持率が1重量%未満であるときは満足し
得る脱硝活性が得られず、10重量%を超えるときは還
元剤としての炭化水素の燃焼反応が過度に進行し、触媒
活性および反応選択性が却って低下してしまう。
In the catalyst of the present invention, the method of supporting silver and / or silver oxide on activated alumina is not particularly limited, and a general supporting method such as an adsorption method, a pore filling method, an incipient wetness method, or evaporation is used. An impregnation method such as a dry solidification method or a spraying method, a kneading method, or a combination thereof may be employed as appropriate. Further, the supporting rate of silver and / or silver oxide is preferably in the range of 1 to 10% by weight in terms of metal, based on the activated alumina of the present invention. When the loading rate of silver is less than 1% by weight, satisfactory denitration activity cannot be obtained, and when it exceeds 10% by weight, the combustion reaction of hydrocarbon as a reducing agent proceeds excessively, resulting in catalytic activity and reaction selection. On the contrary, the sex declines.

【0022】また、乾燥温度についても特に限定されず
通常行われる80〜120℃の温度範囲で乾燥を行い、
しかる後、300〜800℃、好ましくは400〜60
0℃で焼成を行う。焼成温度が300℃未満では十分な
焼成が行われず、また800℃を超えるとアルミナの相
変体が起こるので好ましくない。
Further, the drying temperature is not particularly limited, and the drying is carried out in the temperature range of 80 to 120 ° C. which is usually performed.
After that, 300 to 800 ° C., preferably 400 to 60
Bake at 0 ° C. If the firing temperature is lower than 300 ° C, sufficient firing is not performed, and if it exceeds 800 ° C, a phase change of alumina occurs, which is not preferable.

【0023】本発明の触媒の形状は粉状、球状、円筒
状、ハニカム状、螺旋状など特に限定されることなく任
意の形状を採ることができ、大きさも使用条件に応じて
適当に定めればよい。特に、自動車用エンジン等の排気
ガス浄化を目的とする場合には、ガス空間速度が高いの
で圧力損失を最小限に抑えるために排気ガスの流れ方向
に対して多数の貫通孔を有する耐火性一体構造の支持基
体におけるチャンネル表面に被覆させたものが使用上好
適である。
The shape of the catalyst of the present invention is not particularly limited, such as powder, sphere, cylinder, honeycomb, and spiral, and the size can be appropriately determined according to the use conditions. Good. In particular, when purifying exhaust gas from an automobile engine, etc., since the gas space velocity is high, a fire-resistant integrated body having a large number of through holes in the exhaust gas flow direction in order to minimize pressure loss. A structure in which the channel surface of the supporting substrate is coated is suitable for use.

【0024】本発明の触媒は、排気ガス中のCO、HC
およびHといった還元性の成分をNOxおよびO
いった酸化性成分で完全に酸化するに要する化学量論量
よりも過剰の酸素を含有する排気ガス、より具体的には
希薄空燃比の内燃機関からの排気ガス中のNOxの浄化
に適用される。
The catalyst of the present invention is used for CO, HC in exhaust gas.
And exhaust gas containing oxygen in excess of the stoichiometric amount required to completely oxidize reducing components such as H 2 with oxidizing components such as NOx and O 2 , and more specifically, an internal combustion engine having a lean air-fuel ratio It is applied to the purification of NOx in exhaust gas from.

【0025】このような排気ガスを本発明の脱硝触媒と
接触させることによって、NOxはHC等の排気ガス中
に微量に存在する還元剤成分によって、N2、CO
よびHOに還元されると同時にHC等の還元剤もCO
とHOに酸化される。ディーゼルエンジンの排気ガ
スのように、排気ガスそのもののHC/NOx比が低い
場合には、排気ガス中に還元剤成分としてメタン換算濃
度で数百〜数千ppm程度の燃料HCを追加して添加し
た後、本発明の触媒を接触させる方式を採用すればさら
に効果的にNOxの浄化を行うことができる。
[0025] By contacting the denitration catalyst of the present invention to such an exhaust gas, NOx by the reducing agent component present in trace amounts in the exhaust gas such as HC, is reduced to N2, CO 2 and H 2 O At the same time, reducing agents such as HC are also CO
2 and H 2 O. When the HC / NOx ratio of the exhaust gas itself is low, such as the exhaust gas of a diesel engine, several hundred to several thousand ppm of fuel HC as a reducing agent component is additionally added to the exhaust gas as a reducing agent component. After that, if the method of contacting the catalyst of the present invention is adopted, NOx can be purified more effectively.

【0026】還元剤の種類によって活性を示す温度域が
異なるが、本発明の触媒を用いて高い空間速度で酸素過
剰雰囲気下において、C以上のパラフィン、オレフィ
ンおよび芳香族HCによる排気ガス中のNOxの浄化を
効率的に行うためには、設置触媒層の入口温度を400
℃〜600℃に、またC10以上の場合には200℃〜
600℃にする必要がある。このように入口温度の調整
を行わねばならない理由は、本発明による銀および/ま
たは酸化銀担持アルミナ触媒が、脱硝性能を発揮するた
めには上記した還元剤の種類によって異なる最少の温度
を必要とし、これよりも低温であるときはHCが活性化
されないためであり、また、還元剤の種類によって若干
異なるが、触媒層の入口温度が600℃を超える高温に
なる場合には、副反応であるHCの燃焼が優勢になるた
めにHCによるNOxの還元活性が低下するので浄化能
力が劣化してしまう。
Although the temperature range in which the activity varies depends on the type of reducing agent, the catalyst of the present invention is used in an exhaust gas containing C 2 or more paraffins, olefins, and aromatic HCs in an oxygen excess atmosphere at a high space velocity. In order to efficiently purify NOx, the inlet temperature of the installed catalyst layer should be 400
℃ ~ 600 ℃, in the case of C 10 or more 200 ℃ ~
It needs to be 600 ° C. The reason why the inlet temperature must be adjusted in this way is that the silver and / or silver oxide-supported alumina catalyst according to the present invention requires a minimum temperature which varies depending on the type of the reducing agent described above in order to exert the denitration performance. This is because HC is not activated when the temperature is lower than this, and it is a side reaction when the inlet temperature of the catalyst layer becomes higher than 600 ° C., although it slightly varies depending on the kind of the reducing agent. Since the combustion of HC becomes predominant, the reducing activity of NOx by HC decreases, and the purification capacity deteriorates.

【0027】[0027]

【実施例】以下に実施例および比較例に基づいて本発明
を更に詳細に説明する。但し、本発明は、これらの実施
例に限定されるものでない。担体アルミナの準備 窒素ガス吸着法による細孔分布測定法を利用したカルロ
エルバ社のソープトマチックを使用し、水酸化アルミニ
ウムから一般的な製法によって得られたγ−アルミナの
細孔分布の測定を行い、細孔半径が300オングストロ
ーム以下の細孔の細孔容積の合計値をAとし、細孔半径
が50オングストローム以下の細孔の細孔容積の合計値
をBとし、細孔半径100〜300オングストロームの
細孔の細孔容積の合計値をCとしたとき、A、Bおよび
Cが次の関係を持つ細孔分布とそれぞれ異なる比表面積
と硫酸イオン含有率を持った9種類のγ−アルミナを得
た。
The present invention will be described in more detail based on the following examples and comparative examples. However, the present invention is not limited to these examples. Preparation of carrier alumina Using a Sorptomatic made by Carlo Erba Co., which uses a pore distribution measurement method by a nitrogen gas adsorption method, the pore distribution of γ-alumina obtained by a general production method from aluminum hydroxide was measured. , The total value of the pore volumes of the pores having a pore radius of 300 Å or less is A, the total value of the pore volumes of the pores having a pore radius of 50 Å or less is B, and the pore radius is 100 to 300 Å. Where C is the total value of the pore volumes of the pores, the nine types of γ-alumina having different specific surface areas and sulfate ion contents and the pore distributions in which A, B and C have the following relationships Obtained.

【0028】アルミナa:BがAの74.7%、CがA
の2.4%であるような細孔分布を有し、且つ比表面積
が241m/gであり、硫酸イオン含有率が0.1%
であるγ−アルミナ。
Alumina a: B is 74.7% of A, C is A
Has a pore size distribution of 2.4%, a specific surface area of 241 m 2 / g, and a sulfate ion content of 0.1%.
Is γ-alumina.

【0029】アルミナb:BがAの40.4%、CがA
の4.4%であるような細孔分布を有し、且つ比表面積
が174m/gであり、硫酸イオン含有率が0.1%
であるγ−アルミナ。
Alumina b: B is 40.4% of A, C is A
Has a pore distribution of 4.4%, a specific surface area of 174 m 2 / g, and a sulfate ion content of 0.1%.
Is γ-alumina.

【0030】アルミナc:BがAの57.8%、CがA
の3.9%であるような細孔分布を有し、且つ比表面積
が219m/gであり、硫酸イオン含有率が0.1%
であるγ−アルミナ。
Alumina c: B is 57.8% of A, C is A
Has a pore distribution such that the specific surface area is 219 m 2 / g, and the sulfate ion content is 0.1%.
Is γ-alumina.

【0031】アルミナd:BがAの32.1%、CがA
の10.8%であるような細孔分布を有し、且つ比表面
積が193m/gであり、硫酸イオン含有率が0.1
%であるγ−アルミナ。
Alumina d: B is 32.1% of A, C is A
Has a pore size distribution of 10.8%, a specific surface area of 193 m 2 / g, and a sulfate ion content of 0.1.
% Γ-alumina.

【0032】アルミナe:BがAの84.4%、CがA
の4.2%であるような細孔分布を有し、且つ比表面積
が265m/gであり、硫酸イオン含有率が0.3%
であるγ−アルミナ。
Alumina e: B is 84.4% of A, C is A
Has a pore size distribution of 4.2%, a specific surface area of 265 m 2 / g, and a sulfate ion content of 0.3%.
Is γ-alumina.

【0033】アルミナf:BがAの14.0%、CがA
の45.9%であるような細孔分布を有し、且つ比表面
積が241m/gであり、硫酸イオン含有率が1.3
%であるγ−アルミナ。
Alumina f: B is 14.0% of A, C is A
Has a pore size distribution of 45.9%, a specific surface area of 241 m 2 / g, and a sulfate ion content of 1.3.
% Γ-alumina.

【0034】アルミナg:BがAの31.0%、CがA
の22.7%であるような細孔分布を有し、且つ比表面
積が266m/gであり、硫酸イオン含有率が1.1
%であるγ−アルミナ。
Alumina g: B is 31.0% of A, C is A
Has a pore size distribution of 22.7%, a specific surface area of 266 m 2 / g, and a sulfate ion content of 1.1.
% Γ-alumina.

【0035】アルミナh:BがAの47.7%、CがA
の36.9%であるような細孔分布を有し、且つ比表面
積が149m/gであり、硫酸イオン含有率が0.4
%であるγ−アルミナ。A.触媒試料の調製 上記の各アルミナを担体として、これに銀を担持させて
脱硝性能評価のための触媒試料を調製した。実施例1〜
5および比較例1〜比較例3および比較例5において
は、Ag/Al触媒を、また、比較例4において
はAgを担持させずに、担体アルミナのみを触媒とし
た。 実施例1〜5、比較例1〜3 イ.4%Ag/Al触媒試料の調製 実施例1、実施例2、実施例3、実施例4および実施例
5には、それぞれアルミナa、アルミナb、アルミナ
c、アルミナdおよびアルミナeを、また比較例1、比
較例2および比較例3にはそれぞれアルミナf、アルミ
ナgおよびアルミナhを用い、各実施例および比較例に
おいて、それぞれアルミナ100gを6.6gの硝酸銀
を含む1,000ミリリットル水溶液中に浸漬し、撹拌
しながら100〜110℃に加熱して水分を蒸発させ、
空気中で500℃で3時間焼成することにより先ずAg
/Al触媒を調製した。これらの触媒におけるA
gの担持率は、全て金属換算でアルミナに対してそれぞ
れ4%である。 実施例6 ロ.5.8%Ag/Al触媒試料の調製 硝酸銀含有水溶液における硝酸銀含有量を9.6gとし
た以外は実施例1と同様の手順でAgの担持率が金属換
算でアルミナに対し5.8%のAg/Al触媒を
得た。 比較例4 ハ.Al触媒試料の調製 Agを担持させず、アルミナaのみを使用した触媒試料
を調製した。 比較例5 ニ.硫酸イオンを多量に含むアルミナ担体でのAg/A
触媒の調製 触媒担体としてアルミナaを使用した以外は、実施例1
と同様の手順によって4%Ag/Al触媒を調製
した。因に該アルミナ担体は、実施例1で用いたアルミ
ナ担体と比表面積および細孔分布は変わらないが、硫酸
イオン含有率が本発明の範囲を超えるものである。B.触媒性能の評価試験 a.評価試験1 実施例1〜6および比較例1〜5の各触媒試料を用い、
これらの触媒試料を所定の形状に加圧成型した後、粉砕
して粒度が250〜500μmになるように整粒し、次
にこれらの整粒物を内径12mmのステンレス製反応管
に充填して常圧固定床反応装置内に装着した。この触媒
層にモデル排気ガスとして、NOが1,000ppm、
が1,000ppm、Oが5%、HOが1
0%、残部Nからなる混合ガスを空間速度30,00
0hr−1で通過させた。
Alumina h: B is 47.7% of A, C is A
Has a pore size distribution of 36.9%, a specific surface area of 149 m 2 / g, and a sulfate ion content of 0.4.
% Γ-alumina. A. Preparation of Catalyst Sample Using each of the above-mentioned alumina as a carrier, silver was supported thereon to prepare a catalyst sample for denitration performance evaluation. Example 1
5 and Comparative Examples 1 to 3 and Comparative Example 5, Ag / Al 2 O 3 catalyst was used, and in Comparative Example 4, Ag was not supported and only carrier alumina was used as a catalyst. Examples 1-5, Comparative Examples 1-3 a. Preparation of 4% Ag / Al 2 O 3 Catalyst Samples Example 1, Example 2, Example 3, Example 4 and Example 5 contained alumina a, alumina b, alumina c, alumina d and alumina e, respectively. Alumina f, alumina g and alumina h were used for Comparative Example 1, Comparative Example 2 and Comparative Example 3, respectively, and in each Example and Comparative Example, 100 ml of alumina and 1,000 ml each containing 6.6 g of silver nitrate were used. Immerse in an aqueous solution, heat to 100-110 ° C. with stirring to evaporate water,
First, Ag was first burned for 3 hours at 500 ° C in air.
/ Al 2 O 3 catalyst was prepared. A in these catalysts
The supporting rate of g is 4% with respect to alumina in terms of metal. Example 6 b. Preparation of 5.8% Ag / Al 2 O 3 Catalyst Sample The procedure of Example 1 was repeated except that the silver nitrate content in the silver nitrate-containing aqueous solution was changed to 9.6 g. 8% Ag / Al 2 O 3 catalyst was obtained. Comparative Example 4 c. Preparation of Al 2 O 3 Catalyst Sample A catalyst sample was prepared using only alumina a without supporting Ag. Comparative Example 5 d. Ag / A on alumina carrier containing a large amount of sulfate ion
Preparation of l 2 O 3 catalyst Example 1 except that alumina a was used as the catalyst support.
A 4% Ag / Al 2 O 3 catalyst was prepared by the same procedure. Incidentally, the alumina carrier has the same specific surface area and pore distribution as the alumina carrier used in Example 1, but the sulfate ion content exceeds the range of the present invention. B. Evaluation test of catalyst performance a. Evaluation Test 1 Using the catalyst samples of Examples 1 to 6 and Comparative Examples 1 to 5,
These catalyst samples were pressure-molded into a predetermined shape, pulverized and sized to a particle size of 250 to 500 μm, and then the sized product was filled in a stainless steel reaction tube having an inner diameter of 12 mm. It was mounted in an atmospheric fixed bed reactor. NO is 1,000 ppm as model exhaust gas in this catalyst layer,
C 3 H 6 is 1,000 ppm, O 2 is 5%, H 2 O is 1
The space velocity of the mixed gas consisting of 0% and the balance N 2 was set to 30,00.
Passed at 0 hr -1 .

【0036】反応管出口ガス組成について、NOとNO
の濃度は化学発光式NOx計を用い、NOの濃度は
ポラパックQカラムを装着したガスクロマトグラフィー
熱伝導度検出器を用いてそれぞれを測定した。触媒層入
口温度を400〜600℃の範囲の所定温度に設定し、
各所定温度毎に反応管出口ガス組成が安定した時点の値
を測定値とした。
Regarding the gas composition at the outlet of the reaction tube, NO and NO
The concentration of 2 was measured using a chemiluminescence type NOx meter, and the concentration of N 2 O was measured using a gas chromatography thermal conductivity detector equipped with Porapack Q column. Set the catalyst layer inlet temperature to a predetermined temperature in the range of 400 to 600 ° C.,
The value at the time when the gas composition at the outlet of the reaction tube became stable at each predetermined temperature was taken as the measured value.

【0037】モデル排気ガスが触媒層を通過することに
より、反応ガス中のNOはNO、NOおよび/また
はNに転化されるが、本発明の触媒層を通過した場合
に殆どNOは生成しないことが判明したので、本発明
では脱硝率(NO転化率)は以下の式で表わされる。
When the model exhaust gas passes through the catalyst layer, NO in the reaction gas is converted into NO 2 , N 2 O and / or N 2 , but when passing through the catalyst layer of the present invention, almost no N is converted. Since it was found that 2 O was not produced, the denitration rate (NO conversion rate) is represented by the following formula in the present invention.

【0038】 表1に上記性能評価試験1における触媒層入口温度40
0℃から600℃の間での最大脱硝率Cmax(%)を
示す。
[0038] Table 1 shows the catalyst layer inlet temperature 40 in the above performance evaluation test 1.
The maximum denitration rate Cmax (%) between 0 degreeC and 600 degreeC is shown.

【0039】表1の結果から本発明の実施例1〜6の触
媒は、比較例1〜5の触媒に比べて高い空間速度でも著
しく高い脱硝性能を示すことが分かる。
From the results shown in Table 1, it can be seen that the catalysts of Examples 1 to 6 of the present invention show remarkably high denitration performance even at a high space velocity as compared with the catalysts of Comparative Examples 1 to 5.

【0040】[0040]

【表1】 ────────────────────────────────── 活 性 評価結果 実施番号 触 媒 アルミナ Cmax(%) ────────────────────────────────── 実施例1 4%Ag/Al a 91.9 実施例2 〃 b 87.8 実施例3 〃 c 91.0 実施例4 〃 d 90.0 実施例5 〃 e 89.6 実施例6 5.8%Ag/Al a 82.9 比較例1 4%Ag/Al f 62.4 比較例2 〃 g 69.8 比較例3 〃 h 56.2 比較例4 Al a 12.5 比較例5 4%Ag/Al a 62.0 ──────────────────────────────────b.評価試験2 次に、評価試験1における空間速度のみを60,000
hr−1に変えた以外は評価試験1と同様の手順で実施
例1の触媒試料の性能評価を行った。
[Table 1] ────────────────────────────────── Activity evaluation results Implementation number Catalyst Alumina Cmax (% ) ────────────────────────────────── Example 1 4% Ag / Al 2 O 3 a 91.9 Example 2 〃 b 87.8 Example 3 〃 c 91.0 Example 4 〃 d 90.0 Example 5 〃 e 89.6 Example 6 5.8% Ag / Al 2 O 3 a 82.9 Comparison Example 1 4% Ag / Al 2 O 3 f 62.4 Comparative Example 2 〃 g 69.8 Comparative Example 3 〃 h 56.2 Comparative Example 4 Al 2 O 3 a 12.5 Comparative Example 5 4% Ag / Al 2 O 3 a 62.0 ────────────────────────────────── b. Evaluation test 2 Next, only the space velocity in evaluation test 1 is 60,000.
The performance of the catalyst sample of Example 1 was evaluated by the same procedure as in Evaluation Test 1 except that the value was changed to hr −1 .

【0041】表2に上記空間速度における触媒層入口間
400〜600℃の間での最大脱硝率Cmax(%)を
示す。表2の結果により本発明の実施例1の触媒はより
短い接触時間、即ちより高い空間速度においても優れた
脱硝率を示すことが分かる。
Table 2 shows the maximum denitration rate Cmax (%) in the above space velocity between the catalyst layer inlets of 400 to 600 ° C. The results in Table 2 show that the catalyst of Example 1 of the present invention exhibits an excellent denitration rate even at a shorter contact time, that is, at a higher space velocity.

【0042】[0042]

【表2】 ─────────────────────── 評価結果 空間速度(h−1) Cmax(%) ─────────────────────── 60,000 96.6 ───────────────────────[Table 2] ─────────────────────── Evaluation results Space velocity (h −1 ) Cmax (%) ─────────── ───────────── 60,000 96.6 ───────────────────────

【0043】[0043]

【発明の効果】以上述べたように本発明による触媒を用
い、本発明の脱硝方法により排気ガスの脱硝を行うとき
は、水蒸気の共存する酸素過剰雰囲気下で、且つ高空間
速度において高い転化率で排気ガス中の窒素化合物の還
元浄化を行うことができるので、実用性が高い発明であ
ると言える。
As described above, when the exhaust gas is denitrated by the denitration method of the present invention using the catalyst of the present invention, a high conversion rate is obtained in an oxygen excess atmosphere in which water vapor coexists and at a high space velocity. Since it is possible to reduce and purify nitrogen compounds in exhaust gas, it can be said that the invention is highly practical.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 活性アルミナを担体とし、これに銀また
は酸化銀の少なくとも1種とを担持させてなる触媒であ
って、該活性アルミナが、窒素ガス吸着法により測定さ
れた比表面積が120m/g以上で、且つ細孔半径と
細孔容積との関係が、細孔半径300オングストローム
以下の細孔の占める細孔容積の合計値をAとし、細孔半
径50オングストローム以下の細孔の占める細孔容積の
合計値をBとし、細孔半径100〜300オングストロ
ームの範囲の細孔の占める細孔容積の合計値をCとした
とき、BがAの30%以上で、CがAの15%以下であ
り、さらに該アルミナ担体中に含まれる硫酸イオンの含
有率が0.9%未満であることを特徴とする脱硝触媒。
1. A catalyst comprising activated alumina as a carrier, and at least one of silver and silver oxide supported on the activated alumina, the activated alumina having a specific surface area of 120 m 2 measured by a nitrogen gas adsorption method. / G or more, and the relationship between the pore radius and the pore volume is A, and the total value of the pore volumes occupied by pores having a pore radius of 300 angstroms or less is A, and the pores having a pore radius of 50 angstroms or less occupy When the total value of the pore volume is B and the total value of the pore volume occupied by the pores in the range of the pore radius of 100 to 300 angstrom is C, B is 30% or more of A and C is 15 of A. %, And the content of sulfate ions contained in the alumina carrier is less than 0.9%.
【請求項2】 希薄空燃比で運転される内燃機関におけ
る排気ガスを脱硝触媒層を通過接触させるようにした該
排気ガスの脱硝方法において、該脱硝触媒層を構成する
脱硝触媒が請求項1記載の脱硝触媒であり、且つ脱硝触
媒層を通過する排気ガスが該脱硝触媒層入口において2
00〜600℃の温度範囲とすることを特徴とする脱硝
方法。
2. A denitration catalyst for forming the denitration catalyst layer in the denitration method for exhaust gas, wherein exhaust gas in an internal combustion engine operated at a lean air-fuel ratio is brought into contact with the denitration catalyst layer through contact. Exhaust gas which is the denitration catalyst of No. 2 and passes through the denitration catalyst layer is
A denitration method characterized in that the temperature range is from 00 to 600 ° C.
【請求項3】 脱硝触媒層を通過する排気ガスの空間速
度が10000hr−1以上であることを特徴とする請
求項2記載の脱硝方法。
3. The denitration method according to claim 2, wherein the space velocity of the exhaust gas passing through the denitration catalyst layer is 10,000 hr −1 or more.
JP25424594A 1994-09-22 1994-09-22 Denitration catalyst and denitration method using the same Expired - Fee Related JP3567998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25424594A JP3567998B2 (en) 1994-09-22 1994-09-22 Denitration catalyst and denitration method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25424594A JP3567998B2 (en) 1994-09-22 1994-09-22 Denitration catalyst and denitration method using the same

Publications (2)

Publication Number Publication Date
JPH0889813A true JPH0889813A (en) 1996-04-09
JP3567998B2 JP3567998B2 (en) 2004-09-22

Family

ID=17262304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25424594A Expired - Fee Related JP3567998B2 (en) 1994-09-22 1994-09-22 Denitration catalyst and denitration method using the same

Country Status (1)

Country Link
JP (1) JP3567998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013730A1 (en) * 2008-07-29 2010-02-04 バブコック日立株式会社 Catalyst for cleaning up nitrogen oxides and a method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010013730A1 (en) * 2008-07-29 2010-02-04 バブコック日立株式会社 Catalyst for cleaning up nitrogen oxides and a method for producing same
CN102123791A (en) * 2008-07-29 2011-07-13 巴布考克日立株式会社 Catalyst for cleaning up nitrogen oxides and a method for producing same
US8664141B2 (en) 2008-07-29 2014-03-04 Babcock-Hitachi Kabushiki Kaisha Catalyst for cleaning up nitrogen oxides and a method for producing same

Also Published As

Publication number Publication date
JP3567998B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
JP3567998B2 (en) Denitration catalyst and denitration method using the same
JPH09299763A (en) Denitration catalyst layer and denitrating method
JPH0824645A (en) Denitration catalyst and denitration method using the same
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH08131829A (en) Denitrification catalyst and denitrifying method using the same
JPH0871419A (en) Denitration catalyst and denitration method using same
JPH081014A (en) Denitration catalyst and denitrating method using that
JPH0824642A (en) Production of denitration catalyst and denitration method using obtained catalyst
JPH07289894A (en) Denitrification catalyst and denitrifying method using the same
JP3433500B2 (en) Denitration catalyst and denitration method
JP3358274B2 (en) Denitration catalyst and denitration method
JPH07328444A (en) Denitration catalyst and denitrating method using the same
JPH07256101A (en) Denitration catalyst and denitrating method
JPH0810618A (en) Denitration catalyst and method
JPH08131827A (en) Denitration catalyst and denitration method using the same
JPH07328443A (en) Denitration catalyst and denitrating method using that
JPH07256103A (en) Production of denitration catalyst and denitrating method
JP3682476B2 (en) NOx removal catalyst, method for producing the same, and exhaust gas NOx removal method using the same
KR100442769B1 (en) Silver Catalyst having the high performance and Manufacturing of the same
JPH07275707A (en) Production of denox catalyst and denitrification method
JPH07275708A (en) Denox catalyst and its production, and denitrification method
JPH10235156A (en) Exhaust gas purifying catalyst bed, exhaust gas purifying catalyst coated structure and exhaust gas purifying method using the same
JPH07275706A (en) Denox catalyst and denox method
JPH09253499A (en) Denitrification catalyst, denitrification catalyst-coated structure and method for denitrification by using it
JPH11557A (en) Catalyst layer for purification of exhaust gas, catalyst structural body for purification of exhaust gas and purifying method of exhaust gas using these

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees