JP3137497B2 - Adsorbent and adsorption removal method for hydrocarbon - Google Patents

Adsorbent and adsorption removal method for hydrocarbon

Info

Publication number
JP3137497B2
JP3137497B2 JP05102188A JP10218893A JP3137497B2 JP 3137497 B2 JP3137497 B2 JP 3137497B2 JP 05102188 A JP05102188 A JP 05102188A JP 10218893 A JP10218893 A JP 10218893A JP 3137497 B2 JP3137497 B2 JP 3137497B2
Authority
JP
Japan
Prior art keywords
adsorbent
crystalline silicate
exhaust gas
hydrocarbons
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05102188A
Other languages
Japanese (ja)
Other versions
JPH06312132A (en
Inventor
野島  繁
耕三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05102188A priority Critical patent/JP3137497B2/en
Publication of JPH06312132A publication Critical patent/JPH06312132A/en
Application granted granted Critical
Publication of JP3137497B2 publication Critical patent/JP3137497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関などより排出
される炭化水素(以下、HCと略称)を浄化する吸着剤
及びHCの吸着除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorbent for purifying hydrocarbons (hereinafter abbreviated as HC) discharged from an internal combustion engine or the like and a method for adsorbing and removing HC.

【0002】[0002]

【従来の技術】近年、触媒コンバータの開発により、ガ
ソリン自動車からの排ガスはますます浄化される方向に
ある。しかし、触媒が作用する温度は200℃以上の高
温であり、始動時などの低温時では内燃機関から発生す
る未燃のHCなどがそのまま大気中に排出される問題は
依然として残っている。
2. Description of the Related Art In recent years, with the development of catalytic converters, exhaust gas from gasoline vehicles has been increasingly purified. However, the temperature at which the catalyst acts is as high as 200 ° C. or more, and there is still a problem that unburned HC and the like generated from the internal combustion engine are directly discharged into the atmosphere at a low temperature such as at the time of starting.

【0003】[0003]

【発明が解決しようとする課題】上記状況を鑑み、低温
時で発生するHCなどを吸着剤を用いて吸着除去する試
みはこれまで多くの研究機関にて実施されてきた。例え
ば、活性炭を吸着剤として用いた場合、低温域では未燃
のHCを多く吸着するが高温域では活性炭そのものに酸
化作用がないため、吸着したHCがそのまま脱離して大
気中に放出されてしまう問題点がある。さらに活性炭は
有機系吸着剤であるので高温域で活性炭自身が燃焼発火
してしまう危険が残っている。一方、無機系の吸着剤と
してはアルミナ、シリカなどがあげられるが、HCを吸
着する容量が少ないため多量の吸着剤を必要とする不具
合が生じている。そのため、低温にてHCを多量に吸着
し、高温にて吸着したHCを燃焼除去して自己再生する
ことが可能な吸着剤の適用が待ち望まれていた。
In view of the above-mentioned situation, attempts to adsorb and remove HC and the like generated at low temperatures by using an adsorbent have been carried out by many research institutions. For example, when activated carbon is used as an adsorbent, a large amount of unburned HC is adsorbed in a low temperature region, but the activated carbon itself has no oxidizing effect in a high temperature region, so the adsorbed HC is desorbed and released into the atmosphere. There is a problem. Furthermore, since activated carbon is an organic adsorbent, there is a danger that the activated carbon itself will burn and ignite at high temperatures. On the other hand, examples of the inorganic adsorbent include alumina and silica, but there is a problem that a large amount of adsorbent is required due to a small capacity of adsorbing HC. Therefore, application of an adsorbent capable of adsorbing a large amount of HC at a low temperature and burning and removing the HC adsorbed at a high temperature to self-regenerate has been desired.

【0004】本発明は上記技術水準に鑑み、低温にてH
Cを多量に吸着し、高温にて吸着したHCを燃焼除去し
て自己再生することが可能な吸着剤及びそれらの吸着剤
を用いて内燃機関などから発生するHCを吸着除去しう
る方法を提供しようとするものである。
The present invention has been made in view of the above-mentioned state of the art,
Provided is an adsorbent capable of adsorbing a large amount of C and burning and removing the adsorbed HC at a high temperature to be able to self-regenerate, and a method capable of adsorbing and removing HC generated from an internal combustion engine or the like using the adsorbent. What you want to do.

【0005】[0005]

【課題を解決するための手段】本発明者らは、これまで
前記目的に合った吸着剤の開発の検討を行ってきたとこ
ろ、銀を担持した特殊の分子篩構造をもつ結晶性シリケ
ートが好ましい吸着剤であることを見い出し、本発明を
完成するに至った。
The present inventors have studied the development of an adsorbent suitable for the above-mentioned purpose. As a result, a crystalline silicate having a special molecular sieve structure carrying silver is preferred. The present invention has been found to be an agent.

【0006】すなわち本発明は (1)銀を担持してなる分子篩構造をもつ結晶性シリケ
ートよりなり、かつ分子篩構造をもつ結晶性シリケート
が脱水された状態において酸化物のモル比で表わして、 (1±0.6)R2 O・〔aM2 3 ・bAl2 3
cMeO〕・ySiO2 (上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族金属、希土類金属、チタン、バナジウ
ム、クロム、ニオブ、アンチモン及びガリウムからなる
群から選ばれた1種以上の金属、Meはアルカリ土類金
属、a≧0,b≧0,c≧0,a+b=1,y/c>1
2,y>12)の化学式を有し、かつ下記で詳記する表
Aに示されるX線回折パターンを有する結晶性シリケー
トであることを特徴とする炭化水素の吸着剤 (2)分子篩構造をもつ結晶性シリケートが予め合成し
た結晶性シリケートを母結晶とし、その外表面に母結晶
と同一の結晶構造を有するSiとOよりなる結晶性シリ
ケートを成長してなり、かつ本文で詳記する表Aに示さ
れるX線パターンを有する層状複合結晶性シリケートで
あることを特徴とする上記(1)記載の炭化水素の吸着
剤、 (3)分子篩構造をもつ結晶性シリケートがY型ゼオラ
イト、モルデナイト、L型ゼオライト、クリノプチロラ
イト、A型ゼオライト、フェリエライト、ZSM−5型
ゼオライトであることを特徴とする上記(1)記載の炭
化水素の吸着剤、 (4)上記(1)〜(3)いずれかの銀を担持してなる
分子篩構造をもつ結晶性シリケートに、さらにコバル
ト、ニッケル、クロム、鉄、マンガン、イリジウム、
金、白金、パラジウム、ルテニウム、ロジウム及びバナ
ジウムからなる群から選ばれた1種以上の金属を担持し
てなることを特徴とする炭化水素の吸着剤、 (5)内燃機関などの起動時における排ガス中の炭化水
素を除去するにあたり、低温時の排ガスを上記(1)〜
(4)いずれかの炭化水素の吸着剤と接触させて該排ガ
ス中の炭化水素を吸着除去させ、その後該吸着剤を高温
条件にして吸着炭化水素を燃焼除去すると共に、吸着剤
を再生することを特徴とする炭化水素の吸着除去方法、 (6)炭化水素の吸着剤の内部を切り抜き、切り抜き箇
所に切り換え弁を設置し、低温時の排ガス中の炭化水素
を吸着剤に吸着させる場合は該切り換え弁を閉めて排ガ
スと吸着剤を接触させて吸着剤に炭化水素を吸着させ、
吸着炭化水素を燃焼除去する場合は切り換え弁を開けて
高温排ガスを切り抜き箇所を通してパージさせて吸着剤
を高温条件にすることを特徴とする上記(5)記載の炭
化水素の吸着除去方法、である。
That is, the present invention relates to (1) a crystalline silicate having a molecular sieve structure carrying silver, and the crystalline silicate having a molecular sieve structure is expressed by a molar ratio of an oxide in a dehydrated state; 1 ± 0.6) R 2 O. [aM 2 O 3 .bAl 2 O 3.
cMeO] · ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is one selected from the group consisting of group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony and gallium. The above metals and Me are alkaline earth metals, a ≧ 0, b ≧ 0, c ≧ 0, a + b = 1, y / c> 1
2,2>y> 12) and a crystalline silicate having an X-ray diffraction pattern shown in Table A described in detail below. A crystalline silicate having a crystalline silicate previously synthesized is used as a mother crystal, and a crystalline silicate composed of Si and O having the same crystal structure as the mother crystal is grown on the outer surface of the mother crystal. A. The hydrocarbon adsorbent according to the above (1), which is a layered composite crystalline silicate having an X-ray pattern shown in A. (3) The crystalline silicate having a molecular sieve structure is a Y-type zeolite, mordenite, A hydrocarbon adsorbent according to the above (1), which is an L-type zeolite, a clinoptilolite, an A-type zeolite, a ferrierite, or a ZSM-5-type zeolite; A crystalline silicate having the above (1) to (3) molecular sieve structure formed by carrying one of silver, further cobalt, nickel, chromium, iron, manganese, iridium,
A hydrocarbon adsorbent, which carries one or more metals selected from the group consisting of gold, platinum, palladium, ruthenium, rhodium and vanadium; (5) exhaust gas when starting an internal combustion engine or the like When removing hydrocarbons in the wastewater, the exhaust gas at low temperature is used for the above (1) to
(4) Contacting any of the hydrocarbon adsorbents to adsorb and remove the hydrocarbons in the exhaust gas, and then burning the adsorbed hydrocarbons under the high temperature condition of the adsorbent and regenerating the adsorbent. (6) cutting out the inside of the hydrocarbon adsorbent, installing a switching valve at the cut-out point, and adsorbing the hydrocarbons in the exhaust gas at low temperature to the adsorbent. Close the switching valve and contact the exhaust gas with the adsorbent to allow the adsorbent to adsorb hydrocarbons,
(5) The method for adsorbing and removing hydrocarbons according to the above (5), wherein, when the adsorbed hydrocarbons are burned and removed, the switching valve is opened and the high-temperature exhaust gas is purged through a cut-out portion to bring the adsorbent to a high temperature condition. .

【0007】[0007]

【表1】 W:弱 M:中級 S:強 VS:非常に強 (照射は銅のKα線) (I0 は最も強いピーク強度でI/I0 は相対強度)[Table 1] W: Weak M: Intermediate S: Strong VS: Very strong (Irradiation is copper Kα ray) (I 0 is the strongest peak intensity and I / I 0 is the relative intensity)

【0008】[0008]

【作用】本発明における分子篩構造をもつ結晶性シリケ
ートは前記表Aで示されるX線回折パターンを有し、脱
水された状態において酸化物のモル比で表わして (1±0.6)R2 O・〔aM2 3 ・bAl2 3
cMeO〕・ySiO2 (上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族元素、希土類元素、チタン、バナジウ
ム、クロム、ニオブ、アンチモン及びガリウムからなる
群より選ばれた少なくとも1種以上の金属、Meはマグ
ネシウム、カルシウム、ストロンチウム、バリウムのア
ルカリ土類金属、a≧0,b≧0,c≧0,a+b=
1,y/c>12,y>12)なる化学式を有する結晶
性シリケートがあげられる。
The crystalline silicate having a molecular sieve structure according to the present invention has an X-ray diffraction pattern as shown in Table A above, and is expressed as a molar ratio of oxide (1 ± 0.6) R 2 in a dehydrated state. O. [aM 2 O 3 .bAl 2 O 3.
cMeO] .ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is at least one selected from the group consisting of group VIII elements, rare earth elements, titanium, vanadium, chromium, niobium, antimony and gallium. More than one kind of metal, Me is an alkaline earth metal of magnesium, calcium, strontium, barium, a ≧ 0, b ≧ 0, c ≧ 0, a + b =
1, y / c> 12, y> 12).

【0009】また、結晶性シリケートが予め合成した上
記結晶性シリケートを母結晶とし、その母結晶の外表面
に母結晶と同一の結晶構造を有するSiとOよりなる結
晶性シリケートを成長させた層状複合結晶性シリケート
であり、耐熱、耐スチーム安定性を高めた結晶性シリケ
ートでもよく、さらに結晶性シリケートがY型ゼオライ
ト、モルデナイト、L型ゼオライト、クリノプチロライ
ト、A型ゼオライト、フェリエライト、ZSM−5型ゼ
オライトでも十分吸着剤として有効である。
Further, a layered structure in which a crystalline silicate previously synthesized from a crystalline silicate is used as a mother crystal and a crystalline silicate made of Si and O having the same crystal structure as the mother crystal is grown on the outer surface of the mother crystal. It is a composite crystalline silicate, and may be a crystalline silicate having improved heat resistance and steam resistance. Further, the crystalline silicate may be Y-type zeolite, mordenite, L-type zeolite, clinoptilolite, A-type zeolite, ferrierite, ZSM. Even a -5 type zeolite is sufficiently effective as an adsorbent.

【0010】さらに上記結晶性シリケートに担持する金
属として銀のみ、または銀とコバルト、ニッケル、クロ
ム、鉄、マンガン、イリジウム、金、白金、パラジウ
ム、ルテニウム、ロジウム及びバナジウムからなる群か
ら選ばれた1種以上の金属を担持共存させた吸着剤を用
いてHCの吸着力、酸化力を制御させることもできる。
Further, the metal supported on the crystalline silicate is silver alone or a metal selected from the group consisting of silver and cobalt, nickel, chromium, iron, manganese, iridium, gold, platinum, palladium, ruthenium, rhodium and vanadium. HC adsorbing power and oxidizing power can be controlled by using an adsorbent in which at least one kind of metal is supported and coexisted.

【0011】分子篩構造を有する結晶性シリケートに銀
を含有させる方法としては硝酸銀などの水溶液を用いて
イオン交換法あるいは含浸法を用いて担持する方法が好
ましい。
As a method of incorporating silver into a crystalline silicate having a molecular sieve structure, a method of supporting silver by using an aqueous solution such as silver nitrate by an ion exchange method or an impregnation method is preferable.

【0012】なお、銀とコバルト、ニッケル、クロム、
鉄、マンガン、イリジウム、金、白金、パラジウム、ル
テニウム、ロジウム、バナジウムを結晶性シリケートに
担持させる方法としては、各金属の硝酸塩などの水溶液
を用いて共イオン交換法あるいは共含浸法によって行う
方法があげられる。
In addition, silver and cobalt, nickel, chromium,
As a method of supporting iron, manganese, iridium, gold, platinum, palladium, ruthenium, rhodium, and vanadium on crystalline silicate, a method of performing coion exchange or co-impregnation using an aqueous solution such as nitrate of each metal is used. can give.

【0013】本発明のHC吸着剤をガソリンエンジンの
三元触媒(通常、Pt,Rh系の貴金属を含有した触媒
で、理論空燃比付近でNOx,CO,HCを同時に除去
できる触媒)の後流に据え付ける場合、起動時の排ガス
の温度は通常室温〜約100℃であり、この温度域にて
多量のHCを吸着することができる。三元触媒が作用す
る温度は約200℃以上であり、排ガス温度が250℃
以上ではHCは三元触媒によって除去できる。そこで三
元触媒の後流に本発明HC吸着剤を設置し、三元触媒が
作用しない200℃以下でのHCを吸着させて系外への
HCの排出を防ぐ。暖気が進み、吸着剤の温度が約15
0℃以上になると吸着したHCが燃焼されてH2 O,C
2 となり、脱離されてHC吸着剤は再生され、再び低
温域にて未燃のHCを吸着するようになる。
The HC adsorbent of the present invention is downstream of a three-way catalyst for a gasoline engine (usually a catalyst containing a Pt, Rh-based noble metal and capable of simultaneously removing NOx, CO, and HC near the stoichiometric air-fuel ratio). When installed, the temperature of the exhaust gas at the time of startup is usually from room temperature to about 100 ° C., and a large amount of HC can be adsorbed in this temperature range. The temperature at which the three-way catalyst operates is about 200 ° C. or more, and the exhaust gas temperature is 250 ° C.
In the above, HC can be removed by the three-way catalyst. Therefore, the HC adsorbent of the present invention is installed downstream of the three-way catalyst to adsorb HC at a temperature of 200 ° C. or lower where the three-way catalyst does not act, thereby preventing HC from being discharged out of the system. As the warm air progresses, the temperature of the adsorbent becomes about 15
When the temperature rises to 0 ° C. or higher, the adsorbed HC is burned and H 2 O, C
It becomes O 2 , is desorbed and the HC adsorbent is regenerated, and again adsorbs unburned HC in a low temperature range.

【0014】また、本発明のHC吸着剤を用いて、HC
を吸着除去するシステムを考える場合、ガス量の大小に
よる圧力損失を考慮に入れる必要がある。通常、低温起
動時はガス量が少ないため、HCを含有する排ガスを全
量HC吸着剤に流通させてもよいが、高温時ではガス量
も多くなるので、吸着剤に全量ガスを流して吸着したH
Cを燃焼除去してHC吸着剤を再生させると、圧損失や
吸着剤寿命に影響を与えることもある。この場合、HC
吸着剤の内部を切り抜き、この切り抜き場所に弁を設置
し、低温時でHCを吸着させる時は弁を閉め、HC吸着
剤にHCを含むガスを流してHCを吸着させ、一方、高
温時でガス量が多い時は圧力損失を少なくするため、弁
を開け排ガスをそのままパージする方法をとり、この場
合、吸着したHCはHC吸着剤の酸化作用により燃焼除
去されるが、生じたCO2 ,H2Oは自己拡散によりパ
ージされ系外へ排出され、HC吸着剤が再生される方法
を採用することが好ましい。
Further, the HC adsorbent of the present invention is used to
When considering a system that adsorbs and removes gas, it is necessary to take into account the pressure loss due to the magnitude of the gas amount. Normally, when starting at low temperature, the amount of gas is small, so that the entire amount of exhaust gas containing HC may be circulated to the HC adsorbent. However, at high temperatures, the amount of gas increases, so that the entire amount of gas is flowed through the adsorbent and adsorbed. H
Regeneration of the HC adsorbent by burning and removing C may affect pressure loss and adsorbent life. In this case, HC
Cut out the inside of the adsorbent, install a valve at this cutout location, close the valve when adsorbing HC at low temperature, flow HC-containing gas to the HC adsorbent to adsorb HC, while at high temperature because when the amount of gas is large to reduce the pressure loss, taking a method of directly purging exhaust gas opened valve, in this case, adsorbed HC but is burned off by the oxidation action of the HC adsorbent, the resulting CO 2, It is preferable to adopt a method in which H 2 O is purged by self-diffusion and discharged out of the system to regenerate the HC adsorbent.

【0015】[0015]

【実施例】【Example】

(実施例1)水ガラス1号(SiO2 :30%):56
16gを水:5429gに溶解し、この溶液を溶液Aと
する。一方、水:4175gに硫酸アルミニウム:71
8.9g、塩化第二鉄:110g、酢酸カルシウム:4
7.2g、塩化ナトリウム:262g、濃塩酸:202
0gを溶解し、この溶液を溶液Bとする。溶液Aと溶液
Bを一定割合で供給して沈殿を生成させ、十分攪拌して
pH=8.0のスラリを得る。このスラリを20リット
ルのオートクレーブに仕込み、さらにテトラプロピルア
ンモニウムブロマイドを500g添加し、160℃にて
72時間水熱合成を行い、合成後水洗して乾燥させ、さ
らに500℃、3時間焼成させ結晶性シリケート1を得
る。この結晶性シリケートは酸化物のモル比で(結晶水
を省く)下記の組成式で表され、結晶構造はX線回折で
前記表Aにて表示されるものである。 0.5Na2 O・0.5H2 O・〔0.8Al2 3
0.2Fe2 3 ・0.25CaO〕・25SiO2
(Example 1) Water glass No. 1 (SiO 2 : 30%): 56
16 g was dissolved in 5429 g of water, and this solution was designated as solution A. On the other hand, water: 4175 g and aluminum sulfate: 71
8.9 g, ferric chloride: 110 g, calcium acetate: 4
7.2 g, sodium chloride: 262 g, concentrated hydrochloric acid: 202
0 g is dissolved, and this solution is referred to as solution B. The solution A and the solution B are supplied at a constant ratio to form a precipitate, and the mixture is sufficiently stirred to obtain a slurry having a pH of 8.0. This slurry was charged into a 20-liter autoclave, and 500 g of tetrapropylammonium bromide was further added. Hydrothermal synthesis was performed at 160 ° C. for 72 hours. After the synthesis, the resultant was washed with water and dried. Obtain silicate 1. This crystalline silicate is represented by the following composition formula in terms of the molar ratio of the oxide (omitting the crystallization water), and the crystal structure is represented by X-ray diffraction in Table A above. 0.5Na 2 O.0.5H 2 O. [0.8Al 2 O 3.
0.2Fe 2 O 3 .0.25CaO] .25SiO 2

【0016】上記結晶性シリケート1を用いて、0.0
4M硝酸銀水溶液に浸漬して、24時間攪拌してAgイ
オン交換を実施した。洗浄後乾燥して粉末吸着剤1を得
た。
Using the above crystalline silicate 1, 0.0
It was immersed in a 4M silver nitrate aqueous solution and stirred for 24 hours to carry out Ag ion exchange. After washing and drying, powder adsorbent 1 was obtained.

【0017】次に、上記粉末吸着剤1の100部に対し
てバインダとしてアルミナゾル3部、シリカゾル55部
(SiO2 :20%)に水を200部加え、充分攪拌を
行いウォッシュコート用スラリとした。次にコージェラ
イト用モノリス基材(400セルの格子目)を上記スラ
リに浸漬し、取り出した後余分なスラリを吹きはらい2
00℃で乾燥させた。コート量は基材1リットルあたり
200g担持し、このコート物をハニカム吸着剤1とす
る。
Next, 3 parts of alumina sol as a binder and 200 parts of water were added to 55 parts of silica sol (SiO 2 : 20%) with respect to 100 parts of the powder adsorbent 1 and sufficiently stirred to obtain a slurry for wash coating. . Next, a cordierite monolith substrate (400-cell grid) is immersed in the slurry, taken out, and then sprayed with excess slurry.
Dried at 00 ° C. The coated amount is 200 g per liter of the base material.

【0018】(実施例2)実施例1の結晶性シリケート
の合成において、塩化第二鉄の代わりに塩化コバルト、
塩化ルテニウム、塩化ロジウム、塩化ランタン、塩化セ
リウム、塩化チタン、塩化バナジウム、塩化クロム、塩
化アンチモン、塩化ガリウム及び塩化ニオブを各々酸化
物換算でFe2 3 と同じモル数だけ添加した以外は結
晶性シリケート1と同様の操作を繰り返して結晶性シリ
ケート2〜12を調製した。これらの結晶性シリケート
の結晶構造はX線回折で前記表Aに表示されるものであ
り、その組成は酸化物のモル比(脱水された形態)で表
わして0.5Na2 O・0.5H2 O・〔0.2M2
3 ・0.8Al2 3 ・0.25CaO〕・25SiO
2 である。ここでMはCo,Ru,Rh,La,Ce,
Ti,V,Cr,Sb,Ga,Nbで結晶性シリケート
2〜12である。
Example 2 In the synthesis of the crystalline silicate of Example 1, cobalt chloride was used instead of ferric chloride.
Crystallinity except that ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride, chromium chloride, antimony chloride, gallium chloride and niobium chloride are each added in the same mole number as Fe 2 O 3 in terms of oxide. The same operation as in silicate 1 was repeated to prepare crystalline silicates 2 to 12. The crystal structures of these crystalline silicates are shown in Table A above by X-ray diffraction, and their compositions are represented by the molar ratio of oxides (dehydrated form) of 0.5Na 2 O · 0.5H 2 O ・ [0.2M 2 O
3 · 0.8Al 2 O 3 · 0.25CaO] · 25SiO
2 Where M is Co, Ru, Rh, La, Ce,
It is a crystalline silicate of Ti, V, Cr, Sb, Ga, Nb.

【0019】又、結晶性シリケート1の合成法において
酢酸カルシウムの代わりに酢酸マグネシウム、酢酸スト
ロンチウム、酢酸バリウムを各々酸化物換算でCaOと
同じモル数だけ添加した以外は結晶性シリケート1と同
様の操作を繰り返して結晶性シリケート13〜15を調
製した。これらの母結晶の結晶構造はX線回折で前記表
Aにて表示されるものであり、その組成は酸化物のモル
比(脱水された形態)で表わして0.5Na2 O・0.
5H2 O・〔0.2Fe2 3 ・0.8Al23
0.25MeO〕・25SiO2 である。ここでMeは
Mg,Sr,Baである。
The same operation as that of the crystalline silicate 1 was carried out except that magnesium acetate, strontium acetate and barium acetate were added in the same manner as in the case of CaO in terms of oxide in place of calcium acetate in the method for synthesizing the crystalline silicate 1. Was repeated to prepare crystalline silicates 13 to 15. The crystal structures of these mother crystals are shown in Table A by X-ray diffraction, and the composition is represented by a molar ratio of oxide (dehydrated form) of 0.5Na 2 O.O.
5H 2 O · [0.2Fe 2 O 3 · 0.8Al 2 O 3 ·
0.25MeO] is a · 25SiO 2. Here, Me is Mg, Sr, and Ba.

【0020】上記結晶性シリケート2〜15を実施例1
と同様な方法でAgイオン交換し粉末吸着剤2〜15を
得、さらに上記粉末吸着剤を実施例1と同様にハニカム
化し、ハニカム吸着剤2〜15を得た。
The above crystalline silicates 2 to 15 were used in Example 1.
Ag ion exchange was performed in the same manner as in Example 1 to obtain powder adsorbents 2 to 15, and the powder adsorbent was formed into a honeycomb in the same manner as in Example 1 to obtain honeycomb adsorbents 2 to 15.

【0021】(実施例3)実施例1で得た結晶性シリケ
ート1の1000gを母結晶とし、これを水:2160
gに添加し、さらにコロイダルシリカ(SiO2 :20
%):4590gを添加して十分攪拌を行い、この溶液
を溶液aとする。一方、水:2008gに水酸化ナトリ
ウム:105.8gを溶解させ溶液bを得る。溶液aを
攪拌しながら溶液bを徐々に滴下し、沈殿を生成させて
スラリを得る。このスラリをオートクレーブに入れ、テ
トラプロピルアンモニウムブロマイド:568gを水:
2106gに溶解させた溶液を上記オートクレーブに添
加する。このオートクレーブで160℃、72時間水熱
合成を行い(200rpm にて攪拌)、攪拌後、洗浄して
乾燥後、500℃、3時間焼成を行い層状複合結晶性シ
リケート1を得る。この表層の層状シリケートはシリカ
ライトと呼ばれる。
(Example 3) 1000 g of the crystalline silicate 1 obtained in Example 1 was used as a mother crystal, and this was mixed with water: 2160
g of colloidal silica (SiO 2 : 20)
%): 4590 g was added and sufficiently stirred, and this solution was designated as solution a. On the other hand, 105.8 g of sodium hydroxide is dissolved in 2008 g of water to obtain a solution b. While stirring the solution a, the solution b is gradually added dropwise to form a precipitate to obtain a slurry. The slurry was placed in an autoclave, and 568 g of tetrapropylammonium bromide was added to water:
The solution dissolved in 2106 g is added to the autoclave. Hydrothermal synthesis is performed in this autoclave at 160 ° C. for 72 hours (stirring at 200 rpm), and after stirring, washing and drying, baking is performed at 500 ° C. for 3 hours to obtain a layered composite crystalline silicate 1. This surface layered silicate is called silicalite.

【0022】上記層状複合結晶性シリケート1を実施例
1と同様にAgイオン交換及びハニカム化し、粉末吸着
剤16及びハニカム吸着剤16を得た。
The layered composite crystalline silicate 1 was subjected to Ag ion exchange and honeycomb formation in the same manner as in Example 1 to obtain a powder adsorbent 16 and a honeycomb adsorbent 16.

【0023】(実施例4)Na型のY型ゼオライト(S
iO2 /Al2 3 比:5)、モルデナイト(SiO2
/Al2 3 比:15)、L型ゼオライト(SiO2
Al2 3 比:6)、クリノプチロライト(SiO2
Al2 3 比:5)、A型ゼオライト(SiO2 /Al
2 3 比:1)、フェリエライト(SiO2 /Al2
3 比:5)、ZSM−5型ゼオライト(SiO2 /Al
2 3 比:30)のゼオライトを実施例1の結晶性シリ
ケート1と同様にAgイオン交換及びハニカム化し、粉
末吸着剤17〜23及びハニカム吸着剤17〜23を得
た。
Example 4 Na-type Y-type zeolite (S
iO 2 / Al 2 O 3 ratio: 5), mordenite (SiO 2
/ Al 2 O 3 ratio: 15), L-type zeolite (SiO 2 /
Al 2 O 3 ratio: 6), clinoptilolite (SiO 2 /
Al 2 O 3 ratio: 5), A-type zeolite (SiO 2 / Al)
2 O 3 ratio: 1), ferrierite (SiO 2 / Al 2 O)
3 ratio: 5), ZSM-5 type zeolite (SiO 2 / Al
2 O 3 ratio: 30) zeolite was likewise Ag ion exchange and honeycomb of the crystalline silicate 1 in Example 1 to obtain a powder sorbent 17 through 23 and the honeycomb adsorbent 17 to 23.

【0024】(実施例5)実施例1で得た結晶性シリケ
ート1を(0.04M硝酸銀+0.04M硝酸コバル
ト)水溶液、(0.04M硝酸銀+0.04M硝酸ニッ
ケル)水溶液、(0.04M硝酸銀+0.04M硝酸第
二鉄)水溶液、(0.04M硝酸銀+0.04M硝酸マ
ンガン)水溶液、(0.04M硝酸銀+0.01Mバナ
ジン酸アンモニウム)水溶液に浸漬攪拌し、各々共イオ
ン交換を実施例1と同様に実施し、粉末吸着剤24〜2
8を得、さらにハニカム吸着剤24〜28を得た。
Example 5 The crystalline silicate 1 obtained in Example 1 was treated with an aqueous solution of (0.04 M silver nitrate + 0.04 M cobalt nitrate), an aqueous solution of (0.04 M silver nitrate + 0.04 M nickel nitrate), and (0.04 M silver nitrate). +0.04 M ferric nitrate) aqueous solution, (0.04 M silver nitrate + 0.04 M manganese nitrate) aqueous solution, and (0.04 M silver nitrate + 0.01 M ammonium vanadate) aqueous solution and agitated. Similarly, the powder adsorbents 24-2
8 and honeycomb adsorbents 24-28.

【0025】また、実施例1で得た粉末吸着剤1に対し
て塩化イリジウム、塩化金酸、塩化白金酸、塩化パラジ
ウム、塩化ルテニウム、塩化ロジウムの各水溶液を含浸
させ、粉末吸着剤あたりIr,Au,Pt,Pd,R
u,Rhを約1%担持させて、蒸発乾固させて粉末吸着
剤29〜34を得た。さらに、これらの粉末吸着剤をウ
ォッシュコートしてハニカム吸着剤29〜34を得た。
The powder adsorbent 1 obtained in Example 1 was impregnated with an aqueous solution of iridium chloride, chloroauric acid, chloroplatinic acid, palladium chloride, ruthenium chloride, and rhodium chloride. Au, Pt, Pd, R
About 1% of u and Rh were supported and evaporated to dryness to obtain powder adsorbents 29 to 34. Further, these powder adsorbents were wash-coated to obtain honeycomb adsorbents 29 to 34.

【0026】(実施例6)実施例3で得た層状複合結晶
性シリケート1を実施例5と同様の方法で(0.04M
硝酸銀+0.04M硝酸コバルト)水溶液、(0.04
M硝酸銀+0.04M硝酸ニッケル)水溶液、(0.0
4M硝酸銀+0.04M硝酸第二鉄)水溶液、(0.0
4M硝酸銀+0.04M硝酸マンガン)水溶液、(0.
04M硝酸銀+0.01Mバナジン酸アンモニウム)水
溶液に浸漬攪拌し、共イオン交換法により粉末吸着剤3
5〜39、さらにハニカム吸着剤35〜39を得た。
Example 6 The layered composite crystalline silicate 1 obtained in Example 3 was prepared in the same manner as in Example 5 (0.04M
Aqueous solution of silver nitrate + 0.04M cobalt nitrate), (0.04
M silver nitrate + 0.04 M nickel nitrate) aqueous solution, (0.0
4M silver nitrate + 0.04M ferric nitrate aqueous solution, (0.0
4M silver nitrate + 0.04M manganese nitrate) aqueous solution, (0.
04M silver nitrate + 0.01M ammonium vanadate) aqueous solution and stirred, and powder adsorbent 3
5 to 39, and further, honeycomb adsorbents 35 to 39 were obtained.

【0027】また実施例4で得た粉末吸着剤17(Ag
/Y型ゼオライト)に対して、塩化イリジウム、塩化金
酸、塩化白金酸、塩化パラジウム、塩化ルテニウム、塩
化ロジウムの各水溶液を含浸させ粉末吸着剤あたりI
r,Au,Pt,Pd,Ru,Rhを0.6wt%担持さ
せて、蒸発乾固後、粉末吸着剤40〜45を得、さら
に、ハニカム40〜45を得た。
The powder adsorbent 17 obtained in Example 4 (Ag
/ Y-type zeolite) is impregnated with an aqueous solution of iridium chloride, chloroauric acid, chloroplatinic acid, palladium chloride, ruthenium chloride, or rhodium chloride to obtain I per powder adsorbent.
0.6 wt% of r, Au, Pt, Pd, Ru, and Rh were supported, and after evaporating to dryness, powder adsorbents 40 to 45 were obtained, and further, honeycombs 40 to 45 were obtained.

【0028】(比較例1)粉末の活性炭及び銀を担持し
たγ−Al2 3 (Ag2 O:10wt%)をウォッシュ
コート法によりハニカム基材にコートし、実施例1と同
様な方法で比較ハニカム吸着剤46、47を得た。
(Comparative Example 1) Powdered activated carbon and silver-supported γ-Al 2 O 3 (Ag 2 O: 10 wt%) were coated on a honeycomb substrate by a wash coat method, and the same method as in Example 1 was applied. Comparative honeycomb adsorbents 46 and 47 were obtained.

【0029】実施例1〜6、比較例1であげたハニカム
吸着剤1〜47を後記表Bにまとめる。
The honeycomb adsorbents 1 to 47 described in Examples 1 to 6 and Comparative Example 1 are summarized in Table B below.

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】(実験例1)1リットルのハニカム吸着剤
1〜47を吸着塔に設置し、炭化水素の吸着試験を実施
した。試験条件は下記のとおりである。 ○ ガス組成 C2 4 : 2000ppm C3 6 : 2000ppm (THC=10,000ppm ) O2 : 5% CO2 : 10% H2 O : 10% NO : 50ppm N2 : 残 ○ GHSV : 30,000h-1 ○ 吸着温度 : 50℃ ○ 脱離温度 : 150℃
(Experimental Example 1) One liter of honeycomb adsorbents 1 to 47 were set in an adsorption tower, and a hydrocarbon adsorption test was carried out. The test conditions are as follows. ○ Gas composition C 2 H 4 : 2000 ppm C 3 H 6 : 2000 ppm (THC = 10,000 ppm) O 2 : 5% CO 2 : 10% H 2 O: 10% NO: 50 ppm N 2 : balance ○ GHSV: 30, 000h -1 ○ Adsorption temperature: 50 ℃ ○ Desorption temperature: 150 ℃

【0034】試験装置を図1に、排ガス及び吸着剤の温
度パターンを図2に示す。吸着したHCはFID計で検
出する。なお、脱離温度150℃に設定した場合、HC
を除き、その他のガスはそのまゝ供給させた。上記ガス
組成にて吸着温度と脱離温度を交互に繰り返しながら平
衡になった時のHCの吸着量及び脱離量を下記表Cに示
す。
FIG. 1 shows the test apparatus, and FIG. 2 shows the temperature patterns of the exhaust gas and the adsorbent. The adsorbed HC is detected by the FID meter. When the desorption temperature is set to 150 ° C., HC
Other gases, except for, were supplied as they were. Table C below shows the amounts of HC adsorbed and desorbed when the equilibrium is reached while alternately repeating the adsorption temperature and the desorption temperature with the above gas composition.

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】この結果より、本発明のハニカム吸着剤1
〜45を用いることにより、50℃において相当量のH
Cを吸着し、150℃において吸着したHCが燃焼除去
されるためHCは排出されず、繰り返し実施しても安定
な吸着挙動を示すことがわかった。一方、活性炭(ハニ
カム吸着剤46)はある程度50℃で吸着するものの1
50℃においては吸着したHCがそのまま脱離し、Ag
を担持したγ−Al2 3(ハニカム吸着剤47)は5
0℃においてもほとんど炭化水素を吸着しない。ことが
わかった。
From these results, it can be seen that the honeycomb adsorbent 1 of the present invention was used.
By using ~ 45, a considerable amount of H
It was found that C was adsorbed and the adsorbed HC was burned and removed at 150 ° C., so that HC was not exhausted. On the other hand, activated carbon (honeycomb adsorbent 46) adsorbs at 50 ° C.
At 50 ° C., the adsorbed HC is desorbed as it is and Ag
Γ-Al 2 O 3 (honeycomb adsorbent 47) carrying
Almost no hydrocarbon is adsorbed even at 0 ° C. I understand.

【0039】(実験例2)実験例1の類似の試験とし
て、ハニカム吸着剤1を図3のように設置し、中間部を
切り抜き、該切り抜き部後方に切り換え弁を設けた。ガ
ス組成は実験例1と同様であるが、吸着温度50℃はG
HSV:30,000h-1、脱離温度150℃はGHS
V:100,000h-1において実施した。前述した図
1の試験装置方法ではGHSV:100,000h-1
脱離条件では圧力損失が大となる不具合点が生じるが、
図3のように中間部をそのまま通過させることにより、
脱離条件の時は全く圧力損失がかからない。脱離条件の
時はハニカム吸着剤1の中へは殆んどガスは流れない
が、吸着したHCは150℃で十分燃焼除去され、生成
したH2 O,CO2 は自己拡散によりパージされるの
で、再生も安定にできることがわかった。
(Experimental Example 2) As a test similar to Experimental Example 1, the honeycomb adsorbent 1 was installed as shown in FIG. 3, an intermediate portion was cut out, and a switching valve was provided behind the cutout portion. The gas composition was the same as in Experimental Example 1, except that the adsorption temperature of 50 ° C.
HSV: 30,000h -1 , desorption temperature 150 ° C is GHS
V: carried out at 100,000 h -1 . In the test apparatus method of FIG. 1 described above, there is a disadvantage that the pressure loss becomes large under the desorption condition of GHSV: 100,000 h −1 ,
By passing the intermediate part as it is as shown in FIG.
No pressure loss is applied under the desorption condition. Under the desorption conditions, almost no gas flows into the honeycomb adsorbent 1, but the adsorbed HC is sufficiently burned off at 150 ° C., and the generated H 2 O and CO 2 are purged by self-diffusion. Therefore, it was found that the reproduction was stable.

【0040】[0040]

【発明の効果】本発明により、HCを低温域で吸着除去
し、高温域では吸着HCが速かに燃焼除去されるHCの
吸着剤が提供され、該吸着剤を使用することによって排
ガス中のHCが有効に除去できるようになり、その効果
は工業的に顕著なものである。
According to the present invention, there is provided an adsorbent for HC in which HC is adsorbed and removed in a low temperature range, and the adsorbed HC is quickly burned and removed in a high temperature range. HC can be effectively removed, and the effect is industrially remarkable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の炭化水素吸着剤の吸着試験装置の説明
図。
FIG. 1 is an explanatory view of an adsorption test device for a hydrocarbon adsorbent of the present invention.

【図2】本発明の炭化水素吸着剤の試験における温度変
化のパターンを示す図。
FIG. 2 is a diagram showing a temperature change pattern in a test of the hydrocarbon adsorbent of the present invention.

【図3】本発明の炭化水素吸着剤の一使用態様の説明
図。
FIG. 3 is an explanatory diagram of one mode of use of the hydrocarbon adsorbent of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−126165(JP,A) 特開 平6−63394(JP,A) 特開 平5−317701(JP,A) 特開 平5−293369(JP,A) 特開 平5−285378(JP,A) 特開 平5−31359(JP,A) 特開 昭64−34440(JP,A) 特公 昭46−10064(JP,B1) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-126165 (JP, A) JP-A-6-63394 (JP, A) JP-A-5-317701 (JP, A) JP-A-5-317701 293369 (JP, A) JP-A-5-285378 (JP, A) JP-A-5-31359 (JP, A) JP-A-64-34440 (JP, A) JP-B-46-10064 (JP, B1) (58) Field surveyed (Int. Cl. 7 , DB name) B01J 20/00-20/34

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 銀を担持してなる分子篩構造をもつ結晶
性シリケートよりなり、かつ分子篩構造をもつ結晶性シ
リケートが脱水された状態において酸化物のモル比で表
わして、 (1±0.6)R2 O・〔aM2 3 ・bAl2 3
cMeO〕・ySiO2 (上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族金属、希土類金属、チタン、バナジウ
ム、クロム、ニオブ、アンチモン及びガリウムからなる
群から選ばれた1種以上の金属、Meはアルカリ土類金
属、a≧0,b≧0,c≧0,a+b=1,y/c>1
2,y>12)の化学式を有し、かつ本文で詳記する表
Aに示されるX線回折パターンを有する結晶性シリケー
トであることを特徴とする炭化水素の吸着剤。
1. A crystalline silicate having a molecular sieve structure carrying silver, wherein the crystalline silicate having a molecular sieve structure is dehydrated and expressed as a molar ratio of oxides: (1 ± 0.6 ) R 2 O · [aM 2 O 3 · bAl 2 O 3 ·
cMeO] · ySiO 2 (wherein R is an alkali metal ion and / or hydrogen ion, M is one selected from the group consisting of group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony and gallium. The above metals and Me are alkaline earth metals, a ≧ 0, b ≧ 0, c ≧ 0, a + b = 1, y / c> 1
2, y> 12) and a crystalline silicate having an X-ray diffraction pattern shown in Table A described in detail in the text.
【請求項2】 分子篩構造をもつ結晶性シリケートが予
め合成した結晶性シリケートを母結晶とし、その外表面
に母結晶と同一の結晶構造を有するSiとOよりなる結
晶性シリケートを成長してなり、かつ本文で詳記する表
Aに示されるX線パターンを有する層状複合結晶性シリ
ケートであることを特徴とする請求項1記載の炭化水素
の吸着剤。
2. A crystalline silicate having a molecular sieving structure and a crystalline silicate synthesized in advance is used as a mother crystal, and a crystalline silicate made of Si and O having the same crystal structure as the mother crystal is grown on an outer surface thereof. The hydrocarbon adsorbent according to claim 1, which is a layered composite crystalline silicate having an X-ray pattern shown in Table A described in detail in the text.
【請求項3】 分子篩構造をもつ結晶性シリケートがY
型ゼオライト、モルデナイト、L型ゼオライト、クリノ
プチロライト、A型ゼオライト、フェリエライト、ZS
M−5型ゼオライトであることを特徴とする請求項1記
載の炭化水素の吸着剤。
3. The crystalline silicate having a molecular sieve structure is Y
Zeolite, mordenite, zeolite L, clinoptilolite, zeolite A, ferrierite, ZS
The hydrocarbon adsorbent according to claim 1, wherein the adsorbent is an M-5 type zeolite.
【請求項4】 請求項1〜3いずれかの銀を担持してな
る分子篩構造をもつ結晶性シリケートに、さらにコバル
ト、ニッケル、クロム、鉄、マンガン、イリジウム、
金、白金、パラジウム、ルテニウム、ロジウム及びバナ
ジウムからなる群から選ばれた1種以上の金属を担持し
てなることを特徴とする炭化水素の吸着剤。
4. A crystalline silicate having a molecular sieve structure carrying any one of claims 1 to 3, further comprising cobalt, nickel, chromium, iron, manganese, iridium,
A hydrocarbon adsorbent comprising one or more metals selected from the group consisting of gold, platinum, palladium, ruthenium, rhodium and vanadium.
【請求項5】 内燃機関などの起動時における排ガス中
の炭化水素を除去するにあたり、低温時の排ガスを請求
項1〜4いずれかの炭化水素の吸着剤と接触させて該排
ガス中の炭化水素を吸着除去させ、その後該吸着剤を高
温条件にして吸着炭化水素を燃焼除去すると共に、吸着
剤を再生することを特徴とする炭化水素の吸着除去方
法。
5. When removing hydrocarbons in exhaust gas at the time of starting an internal combustion engine or the like, the exhaust gas at a low temperature is brought into contact with a hydrocarbon adsorbent according to any one of claims 1 to 4, and the hydrocarbons in the exhaust gas are removed. And removing the adsorbent by burning the adsorbent under high-temperature conditions and regenerating the adsorbent.
【請求項6】 炭化水素の吸着剤の内部を切り抜き、切
り抜き箇所に切り換え弁を設置し、低温時の排ガス中の
炭化水素を吸着剤に吸着させる場合は該切り換え弁を閉
めて排ガスと吸着剤を接触させて吸着剤に炭化水素を吸
着させ、吸着炭化水素を燃焼除去する場合は切り換え弁
を開けて高温排ガスを切り抜き箇所を通してパージさせ
て吸着剤を高温条件にすることを特徴とする請求項5記
載の炭化水素の吸着除去方法。
6. A method for cutting out the interior of a hydrocarbon adsorbent, installing a switching valve at the cut-out point, and closing the switching valve when adsorbing hydrocarbons in exhaust gas at a low temperature to the exhaust gas and the adsorbent. Contacting the adsorbent to adsorb the hydrocarbons, and burning and removing the adsorbed hydrocarbons, the switching valve is opened and the high-temperature exhaust gas is purged through a cut-out portion to bring the adsorbent to high-temperature conditions. 5. The method for adsorbing and removing hydrocarbons according to 5.
JP05102188A 1993-04-28 1993-04-28 Adsorbent and adsorption removal method for hydrocarbon Expired - Lifetime JP3137497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05102188A JP3137497B2 (en) 1993-04-28 1993-04-28 Adsorbent and adsorption removal method for hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05102188A JP3137497B2 (en) 1993-04-28 1993-04-28 Adsorbent and adsorption removal method for hydrocarbon

Publications (2)

Publication Number Publication Date
JPH06312132A JPH06312132A (en) 1994-11-08
JP3137497B2 true JP3137497B2 (en) 2001-02-19

Family

ID=14320695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05102188A Expired - Lifetime JP3137497B2 (en) 1993-04-28 1993-04-28 Adsorbent and adsorption removal method for hydrocarbon

Country Status (1)

Country Link
JP (1) JP3137497B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042797A (en) 1997-07-02 2000-03-28 Tosoh Corporation Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
FR2735992B1 (en) * 1995-06-29 1997-08-14 Inst Francais Du Petrole ADSORBENTS FOR USE IN PROCESSES OF PURIFYING ETHYLENE POLLUTED ATMOSPHERES
JPH10328561A (en) 1997-06-03 1998-12-15 Honda Motor Co Ltd Heat resistant hc adsorbent
US6096674A (en) * 1997-06-03 2000-08-01 Honda Giken Kogyo Kabushiki Kaisha Heat-resistant HC adsorbent
JP3417309B2 (en) * 1997-10-28 2003-06-16 トヨタ自動車株式会社 Hydrocarbon adsorbent
US6074973A (en) * 1998-03-20 2000-06-13 Engelhard Corporation Catalyzed hydrocarbon trap material and method of making the same
JP4774569B2 (en) * 2000-03-21 2011-09-14 株式会社明電舎 Exhaust gas treatment method and apparatus
WO2006054718A1 (en) * 2004-11-19 2006-05-26 Takenori Masada Zeolitic composition and, utilizing the same, porous firing product and building material
CN115477311B (en) * 2022-09-27 2023-12-01 洛阳建龙微纳新材料股份有限公司 Ag/M-MSX molecular sieve dehydrogenation agent and preparation method and application thereof

Also Published As

Publication number Publication date
JPH06312132A (en) 1994-11-08

Similar Documents

Publication Publication Date Title
EP3261746B1 (en) Passive nox adsorber
EP0888815B1 (en) Adsorbent for ethylene, method for adsorbing and removing ethylene and method for purifying an exhaust gas
JP2005514551A (en) Exhaust system and method for removing particulate matter from diesel engine exhaust
JPH07144128A (en) Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JPH0910601A (en) Catalyst for purification of exhaust gas and its production
JP2016508441A (en) NOx collection composition
WO1998000223A1 (en) Nitrogen oxide adsorbing material
JP3137497B2 (en) Adsorbent and adsorption removal method for hydrocarbon
JP3207577B2 (en) Hydrocarbon adsorbent and adsorption purification method
JPH11104493A (en) Catalyst for purifying exhaust gas and its use
JPH0796178A (en) Adsorbent of hydrocarbon in exhaust gas from internal combustion engine
JP3219480B2 (en) Exhaust gas treatment method and catalyst
JPH07332073A (en) Exhaust emission control device
JPH07213910A (en) Adsorbing catalyst for purifying exhaust gas
JP3197090B2 (en) Hydrocarbon adsorbent and adsorption purification method
JPH0899033A (en) Adsorbent for hydrocarbon
JP3157555B2 (en) Exhaust gas purification catalyst
JP3975557B2 (en) Ethylene adsorption removal method
JPH09192486A (en) Exhaust gas purifying catalyst for engine
JPH09225265A (en) Exhaust gas purifying device
JP3513934B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JPH08257407A (en) Catalyst for cleaning exhaust gas from internal combustion engine
JP2004322022A (en) Catalyst for cleaning exhaust gas
JP2000135419A (en) Exhaust gas purifying system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131208

Year of fee payment: 13

EXPY Cancellation because of completion of term