JP2015206274A - Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine - Google Patents

Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Download PDF

Info

Publication number
JP2015206274A
JP2015206274A JP2014086057A JP2014086057A JP2015206274A JP 2015206274 A JP2015206274 A JP 2015206274A JP 2014086057 A JP2014086057 A JP 2014086057A JP 2014086057 A JP2014086057 A JP 2014086057A JP 2015206274 A JP2015206274 A JP 2015206274A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas purification
state
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014086057A
Other languages
Japanese (ja)
Inventor
鉄平 大堀
Teppei Ohori
鉄平 大堀
光 伊東
Hikari Ito
光 伊東
弘吉 前川
Kokichi Maekawa
弘吉 前川
伸匡 大橋
Nobumasa Ohashi
伸匡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014086057A priority Critical patent/JP2015206274A/en
Publication of JP2015206274A publication Critical patent/JP2015206274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification system for internal combustion engine and an exhaust gas purification method for internal combustion engine that can improve purification performance for a component to be purified in an exhaust gas discharged from an internal combustion engine, and also can prevent a component to be purified which temporarily has high concentration from being discharged to the atmosphere.SOLUTION: An exhaust gas purification system for internal combustion engine is provided with a first switching mechanism 21 which performs switching between a first state in which an exhaust gas G downstream from an exhaust gas purification device 12 flows to an exhaust passage 11 not through an adsorption device 20 and a second state in which the gas G flows to the exhaust passage 11 through the adsorption device 20, and also provided with a second switching mechanism 22 which performs switching between a third state in which an exhaust gas G upstream from the exhaust gas purification device 12 flows to the exhaust gas purification device 12 not through the adsorption device 20 and a fourth state in which the exhaust gas G flows to the exhaust gas purification device 12 through the adsorption device 20.

Description

本発明は、内燃機関より排出される排気ガス中の浄化対象成分に対する浄化能力を向上できて、一時的に高い濃度の浄化対象成分が大気中へ排出されることを防止できる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。   The present invention provides an exhaust gas for an internal combustion engine that can improve the purification capacity for the purification target component in the exhaust gas discharged from the internal combustion engine, and can temporarily prevent the high concentration concentration of the purification target component from being discharged into the atmosphere. The present invention relates to a purification system and an exhaust gas purification method for an internal combustion engine.

ディーゼルエンジン(内燃機関)を搭載したトラック等の車両では、酸化触媒装置(DOC)、微粒子捕集装置(DPD)、尿素系の選択還元型触媒装置(SCR)、アンモニアスリップ触媒装置(ASC)等を組み合わせた排気ガス浄化装置により、エンジンより排出される排気ガスに含有される窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)等の浄化対象成分を浄化している。   In vehicles such as trucks equipped with diesel engines (internal combustion engines), oxidation catalyst devices (DOC), particulate collection devices (DPD), urea-based selective reduction catalyst devices (SCR), ammonia slip catalyst devices (ASC), etc. The exhaust gas purifying device combined with the above purifies the components to be purified such as nitrogen oxide (NOx), hydrocarbon (HC), carbon monoxide (CO) contained in the exhaust gas discharged from the engine.

しかしながら、車両の発進時等のエンジンの暖機が不十分な期間(いわゆる低温始動時)では、排気ガス浄化装置に備えた酸化触媒装置や選択還元型触媒装置といった排気ガス浄化装置の触媒が十分に活性されていないとき(第1の状況)や、微粒子捕集装置の再生時に煤(Soot)燃焼で生じた炭化水素や一酸化炭素が高濃度で排出され、アンモニアスリップ触媒装置により十分に浄化しきれないとき(第2の状況)や、還元剤となるアンモニア(NH3)を供給して選択還元型触媒装置でNOxを浄化している最中に、余剰のアンモニアがアンモニアスリップ触媒装置でも十分に浄化されないとき(第3の状況)などでは、浄化対象成分が一時的に高い濃度で大気中に排出される場合が生じる可能性があるという問題がある。日本や欧米での排気ガス規制が強化される中では、この問題を克服することが必要になっている。 However, during a period when engine warm-up is insufficient, such as when the vehicle is started (so-called low temperature start), there is sufficient catalyst in the exhaust gas purification device such as an oxidation catalyst device or a selective reduction catalyst device provided in the exhaust gas purification device. The hydrocarbons and carbon monoxide generated by soot combustion when the particulate collection device is not activated (first situation) or when the particulate collection device is regenerated are discharged at a high concentration and sufficiently purified by the ammonia slip catalyst device When it cannot be exhausted (second situation), or when ammonia (NH 3 ) as a reducing agent is supplied and NOx is purified by the selective catalytic reduction catalytic converter, excess ammonia is also generated by the ammonia slip catalytic converter. When it is not sufficiently purified (third situation), there is a problem that there is a possibility that the purification target component may be temporarily discharged into the atmosphere at a high concentration. It is necessary to overcome this problem as exhaust gas regulations are strengthened in Japan, Europe and America.

これらの三つの状況に対して、これまでにいくつかの解決手段が提案されてきている。例えば、第1の状況に対しては、将来的にも有望なものとして、NOx吸蔵還元型触媒(NSR)等のリーンNOx低減触媒(LNT)やHCトラップ装置等のような装置を付加した排気ガス浄化システムが提案されていたり、第2の状況や第3の状況に対しては、貴金属を担持させたアンモニアスリップ触媒装置で対応したりすることが提案されている。   Several solutions have been proposed for these three situations. For example, for the first situation, as a promising thing in the future, an exhaust gas to which a device such as a lean NOx reduction catalyst (LNT) such as a NOx storage reduction catalyst (NSR) or an HC trap device is added is added. A gas purification system has been proposed, and it has been proposed to cope with the second situation and the third situation with an ammonia slip catalyst device carrying a noble metal.

しかしながら、このアンモニアスリップ触媒装置による対応では、一時的に浄化対象成分が高濃度で排出される場合には十分な浄化ができない懸念があり、また、高濃度排出に対しても十分な浄化が可能なまでに浄化性能を向上させようとすると、アンモニアスリップ触媒装置に貴金属を多量に担持させる必要があることから高価格になるという問題がある。上記のいずれの装置を使用した場合にも、これらの3つの状況に対して、総合的かつ低コストとなる解決手段は未だ提案されていない。   However, with this ammonia slip catalyst device, there is a concern that sufficient purification cannot be achieved if the component to be purified is temporarily discharged at a high concentration, and sufficient purification is possible even for high concentration discharge. In order to improve the purification performance, there is a problem that the ammonia slip catalyst device is required to carry a large amount of noble metal, which leads to a high price. No solution has been proposed for these three situations that would be comprehensive and cost-effective when using any of the above devices.

これに関連して、排気通路に上流側から順に、DOC、上流側NOx触媒、DPF,活性化温度の低い下流側NOx触媒を直列に配置し、下流側NOx触媒を迂回するバイパス通路を設けたバイパス構造において、バイパス通路の下流側の合流部に流路切換バルブを設けて、NOx触媒の温度に応じて、その流路を切り換えることで、排気ガスの浄化において、NOxの浄化と、エンジンの性能向上およびSOx被毒の防止とを両立させる排気通路のバイパス構造が提案されている(例えば、特許文献1参照)。   In this connection, a DOC, an upstream NOx catalyst, a DPF, and a downstream NOx catalyst having a low activation temperature are arranged in series in the exhaust passage in order from the upstream side, and a bypass passage that bypasses the downstream NOx catalyst is provided. In the bypass structure, a flow path switching valve is provided at the junction on the downstream side of the bypass path, and the flow path is switched according to the temperature of the NOx catalyst. An exhaust passage bypass structure that achieves both performance improvement and prevention of SOx poisoning has been proposed (see, for example, Patent Document 1).

しかしながら、この構成においては、高負荷運転時には排気ガスをバイパス通路に流して下流側NOx触媒への高温の排気ガスの流入を回避して、下流側NOx触媒の熱劣化を防止し、上流側NOx触媒のサルファ―パージのときにも排気ガスをバイパス通路に流して下流側NOx触媒へのサルファが含まれた排気ガスの流入を回避して、下流側NOx触媒の硫黄被毒を防止することができるが、下流側NOx触媒の再生を効率よく行うことができないという問題がある。   However, in this configuration, during high load operation, exhaust gas is allowed to flow through the bypass passage to avoid inflow of high-temperature exhaust gas to the downstream NOx catalyst, preventing thermal deterioration of the downstream NOx catalyst, and upstream NOx. It is possible to prevent sulfur poisoning of the downstream NOx catalyst by flowing exhaust gas through the bypass passage and avoiding the inflow of exhaust gas containing sulfur to the downstream NOx catalyst even during the sulfur purge of the catalyst. However, there is a problem that the downstream NOx catalyst cannot be regenerated efficiently.

特開2009−221904号公報JP 2009-221904 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関より排出される排気ガス中の浄化対象成分に対する浄化能力を向上できて、一時的に高い濃度の浄化対象成分が大気中へ排出されることを防止できる内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to improve the purification capacity for the purification target component in the exhaust gas discharged from the internal combustion engine, and temporarily increase the concentration of the purification target component. It is to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for the internal combustion engine that can prevent exhaust gas from being discharged into the atmosphere.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関より排出される排気ガスを浄化する排気ガス浄化装置を排気通路に備えた内燃機関の排気ガス浄化システムにおいて、低温時には排気ガスに含まれる浄化対象成分を吸着し、高温時は吸着した前記浄化対象成分を脱離する吸着剤を備えた吸着装置を、前記排気ガス浄化装置の下流側の排気通路に並列に設けたバイパス通路に配設して、前記排気ガス浄化装置の下流側の排気ガスを前記吸着装置を経由せずに排気通路に流す第1状態と前記吸着装置を経由して排気通路に流す第2状態に切り替える第1切替機構とを設けるとともに、前記排気ガス浄化装置の上流側の排気通路の第1分岐点から分岐した分岐通路を前記吸着装置の一方側の前記バイパス通路に接続し、前記吸着装置の他方側の前記バイパス通路を前記第1分岐点と前記排気ガス浄化装置との間の前記排気通路に接続し、前記排気ガス浄化装置の上流側の排気ガスの流れを前記吸着装置を経由せずに前記排気ガス浄化装置に流す第3状態と前記吸着装置を経由して前記排気ガス浄化装置に流す第4状態に切り替える第2切替機構と、前記第1切替機構と前記第2切替機構を制御する制御装置を設けて構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine of the present invention is an exhaust gas purification system for an internal combustion engine provided with an exhaust gas purification device for purifying exhaust gas exhausted from the internal combustion engine in an exhaust passage. An adsorption device having an adsorbent that adsorbs a purification target component contained in exhaust gas at a low temperature and desorbs the purified purification target component adsorbed at a high temperature is connected in parallel to an exhaust passage downstream of the exhaust gas purification device. A first state in which the exhaust gas on the downstream side of the exhaust gas purifying device is disposed in the provided bypass passage and flows into the exhaust passage without passing through the adsorption device; A first switching mechanism for switching between two states, and a branch passage branched from the first branch point of the exhaust passage on the upstream side of the exhaust gas purification device is in contact with the bypass passage on one side of the adsorption device. The bypass passage on the other side of the adsorption device is connected to the exhaust passage between the first branch point and the exhaust gas purification device, and the flow of exhaust gas upstream of the exhaust gas purification device is A second switching mechanism that switches between a third state that flows to the exhaust gas purification device without passing through the adsorption device and a fourth state that flows to the exhaust gas purification device via the adsorption device, the first switching mechanism, and the A control device for controlling the second switching mechanism is provided.

この構成によれば、NOx、HC,CO等の浄化対象成分を吸着する吸着装置は、この吸着装置に流入する排気ガスの温度が低温(例えば、150℃以下)であると、吸着装置に浄化対象成分を吸着し、また、吸着装置に流入する排気ガスの温度が高温(例えば、250℃以上)になると、吸着した浄化対象成分を脱離する性質を持っているので、排気ガス浄化システムの状態に応じて、排気ガスを吸着装置を通過させずに排出したり、排気ガスを吸着装置を通過させて浄化対象成分を一時的に吸着装置に吸着したりすることができると共に、脱離温度以上の排気ガスを吸着装置に流入させて吸着した浄化対象成分を脱離させて吸着装置を再生し、この再生に使用した排気ガスを排気ガス浄化装置を通過させて、脱離した浄化対象成分を排気ガス浄化装置で浄化したりすることが容易にでき、一時的に高い濃度の浄化対象成分が大気中に排出されるのを防止できるようになる。   According to this configuration, the adsorption device that adsorbs the purification target components such as NOx, HC, and CO purifies the adsorption device when the temperature of the exhaust gas flowing into the adsorption device is low (for example, 150 ° C. or less). When the target component is adsorbed and the temperature of the exhaust gas flowing into the adsorption device becomes high (for example, 250 ° C. or higher), the adsorbed target component is desorbed. Depending on the state, the exhaust gas can be discharged without passing through the adsorption device, or the exhaust gas can be passed through the adsorption device to temporarily adsorb the component to be purified to the adsorption device, and the desorption temperature. The above exhaust gas is allowed to flow into the adsorption device, the adsorbed device is desorbed by desorbing the adsorbed device, and the exhaust gas used for this regeneration is passed through the exhaust gas purifying device and desorbed. Exhaust gas purification It can be easily purified by the gasification device, and it is possible to temporarily prevent the high concentration component to be purified from being discharged into the atmosphere.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記制御装置が、前記内燃機関の低温始動のとき、前記排気ガス浄化装置が微粒子捕集装置を備えていて該微粒子捕集装置の再生のとき、前記排気ガス浄化装置の下流側に配置したNOx濃度センサで検出されたNOxの量が予め設定されたNOx排出許容量を超えたときのいずれかの第1条件下の場合には、前記第1切替機構で前記第2状態にするとともに、前記第2切替機構で前記第3状態にし、前記吸着装置を再生する第2条件下の場合には、前記第1切替機構で前記第1状態にするとともに、前記第2切替機構で前記第4状態にし、前記第1条件下でも前記第2条件下でもない第3条件下の状態では、前記第1切替機構で前記第1状態にするとともに、前記第2切替機構で前記第3状態にする制御を行うように構成される。   In the exhaust gas purification system for an internal combustion engine, when the control device starts the internal combustion engine at a low temperature, the exhaust gas purification device includes a particulate collection device, and the particulate collection device is regenerated. In the case of any of the first conditions when the amount of NOx detected by the NOx concentration sensor arranged on the downstream side of the exhaust gas purification device exceeds a preset allowable NOx emission amount, In the second condition in which the first switching mechanism sets the second state, the second switching mechanism sets the third state, and the adsorbing device is regenerated, the first switching mechanism sets the first state. In addition, in the state under the third condition that is neither the first condition nor the second condition, the first switching mechanism is set to the first state in the fourth state by the second switching mechanism, and Front with the second switching mechanism Configured to perform control of the third state.

この構成によれば、排気ガス浄化装置での浄化対象成分の十分な浄化が見込めない第1条件下の場合には、第2状態と第3状態で、排気ガス浄化装置を通過した後の排気ガスを吸着装置を通過させることで、排気ガス浄化装置で浄化しきれなかった浄化対象成分を吸着装置に一時的に吸着することができるので、大気中への浄化対象成分の排出量を確実に低減することができる。   According to this configuration, in the case of the first condition where sufficient purification of the component to be purified by the exhaust gas purification device cannot be expected, the exhaust gas after passing through the exhaust gas purification device in the second state and the third state. By passing the gas through the adsorption device, the purification target component that could not be purified by the exhaust gas purification device can be temporarily adsorbed to the adsorption device, so the amount of emission of the purification target component to the atmosphere can be ensured. Can be reduced.

また、吸着装置に吸着した浄化対象成分の量が飽和量に達すると、それ以上は吸着しなくなるために、一時的に吸着した浄化対象成分の量が飽和量に達する前に吸着装置の再生を行う必要があるが、この再生のときの第2条件下の場合には、第1状態と第4状態で、高温の排気ガスを吸着装置を通過させてから排気ガス浄化装置を通過させて大気中に排出することで、高い温度の排気ガスの排熱を利用して、吸着装置に吸着された浄化対象成分を脱離し、この脱離した浄化対象成分を排気ガス浄化装置で浄化することができるため、吸着装置の再生を確実に行うことができるとともに、エネルギー利用の効率化を図ることができる。   In addition, if the amount of the purification target component adsorbed on the adsorption device reaches the saturation amount, it will not be adsorbed any more, so the adsorption device must be regenerated before the amount of the purification target component temporarily adsorbed reaches the saturation amount. In the case of the second condition at the time of regeneration, it is necessary to carry out the high temperature exhaust gas through the adsorption device and then through the exhaust gas purification device in the first state and the fourth state. It is possible to desorb the purification target component adsorbed by the adsorption device using the exhaust heat of the high-temperature exhaust gas and purify the desorbed purification target component with the exhaust gas purification device. Therefore, the adsorption device can be reliably regenerated and the efficiency of energy utilization can be improved.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記制御装置が、前記内燃機関の低温始動のときを、前記排気ガス浄化装置に設けた選択還元型触媒装置の入口の排気ガス温度が予め設定した設定温度未満のときとすることを特徴とする。なお、この設定温度は、実験などにより予め設定される温度であり、150℃以上300℃以下、好ましくは200℃に設定される。   In the exhaust gas purification system for an internal combustion engine, the exhaust gas temperature at the inlet of the selective catalytic reduction device provided in the exhaust gas purification device is preset when the control device starts the internal combustion engine at a low temperature. The temperature is lower than the set temperature. The set temperature is a temperature set in advance by experiment or the like, and is set to 150 ° C. or higher and 300 ° C. or lower, preferably 200 ° C.

この構成によれば、選択還元型触媒装置が活性化したか否かを温度で判定して、低温時は、吸着装置で浄化対象成分を一時的に吸着することができ、浄化対象成分の大気中への排出量を低減できる。   According to this configuration, it is determined by temperature whether or not the selective catalytic reduction device has been activated, and at a low temperature, the purification target component can be temporarily adsorbed by the adsorption device, and the purification target component air Emissions into the inside can be reduced.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記制御装置が、前記吸着装置を再生する第2条件下の場合に、前記第1切替機構で前記第2状態から前記第1状態に移行し、前記第2切替機構で前記第3状態から前記第4状態に移行する際に、前記吸着装置に流入する排気ガスの量を徐々に増加する制御を行うように構成されると、次のような効果を奏することができる。   In the exhaust gas purification system for an internal combustion engine, the control device shifts from the second state to the first state by the first switching mechanism when the control device is under a second condition for regenerating the adsorption device. When the second switching mechanism is configured to control to gradually increase the amount of exhaust gas flowing into the adsorption device when shifting from the third state to the fourth state, the following is performed. Can produce various effects.

つまり、吸着装置の再生のときは、高温の排気ガスが上流側の分岐通路を経由して吸着装置に流れ込むことで、吸着装置の吸着剤の温度が上昇し、吸着していた浄化対象成分が脱離する。この吸着剤は排気ガスによって高温になり、脱離した浄化対象成分を含む排気ガスは、下流側の分岐通路を通り、排気ガス浄化装置に流入して浄化される。このとき、完全に第2状態から第1状態へ、及び、第3状態から第4状態に切り替えて、急激に排気ガスの流れを切り替えると、吸着剤が急激に暖められ、高濃度の浄化対象成分が一過的に放出されてしまうので、これを回避するために、吸着装置に流入する排気ガスの流量を徐々に増加させて、吸着剤が徐々に暖められるようにする。   That is, at the time of regeneration of the adsorption device, high-temperature exhaust gas flows into the adsorption device via the upstream branch passage, so that the temperature of the adsorbent of the adsorption device rises and the adsorbed purification target component is Detach. The adsorbent becomes high temperature by the exhaust gas, and the exhaust gas containing the decontaminated component to be purified passes through the downstream branch passage and flows into the exhaust gas purification device to be purified. At this time, if the exhaust gas flow is switched suddenly by completely switching from the second state to the first state and from the third state to the fourth state, the adsorbent is rapidly warmed and the high concentration purification target Since the components are temporarily released, in order to avoid this, the flow rate of the exhaust gas flowing into the adsorption device is gradually increased so that the adsorbent is gradually warmed.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記第1切替機構が、前記バイパス通路の分岐点と合流点のそれぞれに設けられた第1三方弁及び第2三方弁で構成され、前記第2切替機構が、前記排気ガス浄化装置の上流側の前記排気通路の分岐点と合流点のそれぞれに設けられた第3三方弁と第4三方弁で構成されると、確実に排気ガスの流路を切り換えることができる。   In the exhaust gas purification system for an internal combustion engine, the first switching mechanism includes a first three-way valve and a second three-way valve provided at each of a branch point and a junction point of the bypass passage, When the 2 switching mechanism is constituted by the third three-way valve and the fourth three-way valve provided at the branch point and the junction point of the exhaust passage on the upstream side of the exhaust gas purification device, the flow of exhaust gas is ensured. The path can be switched.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化装置を、上流側酸化触媒装置、選択還元型触媒装置、アンモニアスリップ触媒装置の何れか又はこれらのいくつかの組み合わせを備えて構成すると、次のような効果を奏することができる。   Further, in the exhaust gas purification system for an internal combustion engine, the exhaust gas purification device includes any one of an upstream oxidation catalyst device, a selective reduction catalyst device, an ammonia slip catalyst device, or some combination thereof. Then, the following effects can be achieved.

この構成によれば、この排気ガス浄化装置に、酸化触媒装置(DOC)、選択還元型触媒装置(SCR)、アンモニアスリップ触媒装置(ASC)等で触媒装置を備える場合、この吸着装置を設けることで、これらの触媒装置の浄化能力を従来の触媒装置よりも低く設計することも可能となるため、各触媒装置の容量の低減や貴金属量の低減を行うことができ、コストダウンを図ることができる。   According to this configuration, when the exhaust gas purification device is provided with a catalyst device such as an oxidation catalyst device (DOC), a selective reduction catalyst device (SCR), an ammonia slip catalyst device (ASC), etc., this adsorption device is provided. Therefore, the purification capacity of these catalytic devices can be designed to be lower than that of conventional catalytic devices, so that the capacity of each catalytic device and the amount of noble metals can be reduced, thereby reducing costs. it can.

また、排気ガス浄化装置にアンモニアスリップ触媒装置(ASC)を備える場合、このアンモニアスリップ触媒装置に多量の貴金属を担持させる必要がないため、貴金属に要するコストを低減することができ、また、吸着装置は貴金属を含まない素材(ゼオライト等)で構成してもよいため、吸着装置自体のコストも低減することができるので、結果として、排気ガス浄化システム全体での製造コストを低減することができる。   Further, when the exhaust gas purifying device is provided with an ammonia slip catalyst device (ASC), it is not necessary to carry a large amount of noble metal on the ammonia slip catalyst device, so that the cost required for the noble metal can be reduced, and the adsorption device Can be made of a material (zeolite or the like) that does not contain a noble metal, so that the cost of the adsorption device itself can be reduced. As a result, the manufacturing cost of the entire exhaust gas purification system can be reduced.

さらに、この吸着装置は、比較的劣化しにくい素材を使用可能であり、再生時を除いては流入する排気ガスの温度は低温であり、比較的低温の環境にさらされていることから劣化しにくく、優れた耐久性を有することができる。   In addition, this adsorption device can use materials that are relatively difficult to deteriorate, and the exhaust gas that flows in is low temperature except during regeneration, and it deteriorates because it is exposed to a relatively low temperature environment. It is difficult to have excellent durability.

また、上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関より排出される排気ガスを浄化する排気ガス浄化装置を排気通路に備えると共に、低温時には排気ガスに含まれる浄化対象成分を吸着し、高温時は吸着した前記浄化対象成分を脱離する吸着剤を備えた吸着装置を、前記排気ガス浄化装置の下流側の排気通路に並列に設けたバイパス通路に配設して、前記排気ガス浄化装置の上流側の排気通路の第1分岐点から分岐した分岐通路を前記吸着装置の一方側の前記バイパス通路に接続し、前記吸着装置の他方側の前記バイパス通路を前記第1分岐点と前記排気ガス浄化装置との間の前記排気通路に接続した内燃機関の排気ガス浄化方法において、前記内燃機関の低温始動のとき、前記排気ガス浄化装置が微粒子捕集装置を備えていて該微粒子捕集装置の再生のとき、前記排気ガス浄化装置の下流側に配置したNOx濃度センサで検出されたNOxの量が予め設定されたNOx排出許容量を超えたときのいずれかの第1条件下の場合には、前記排気ガス浄化装置の下流側の排気ガスを前記吸着装置を経由せずに排気通路に流す第1状態と前記吸着装置を経由して排気通路に流す第2状態に切り替えると共に、前記吸着装置を再生する第2条件下の場合には、前記排気ガス浄化装置の上流側の排気ガスの流れを前記吸着装置を経由せずに前記排気ガス浄化装置に流す第3状態と前記吸着装置を経由して前記排気ガス浄化装置に流す第4状態に切り替え、更に、前記第1条件下でも前記第2条件下でもない第3条件下の状態では、前記第1状態と前記第3状態に切り替えることを特徴とする方法である。   An exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object includes an exhaust gas purification device for purifying exhaust gas discharged from the internal combustion engine in the exhaust passage, and is included in the exhaust gas at a low temperature. An adsorption device having an adsorbent that adsorbs the component to be purified and adsorbs the component to be purified adsorbed at a high temperature is disposed in a bypass passage provided in parallel with the exhaust passage downstream of the exhaust gas purification device. A branch passage branched from the first branch point of the exhaust passage upstream of the exhaust gas purification device is connected to the bypass passage on one side of the adsorption device, and the bypass passage on the other side of the adsorption device In the exhaust gas purification method for an internal combustion engine connected to the exhaust passage between the first branch point and the exhaust gas purification device, when the internal combustion engine is cold started, the exhaust gas purification device When the particulate collection device is provided and the particulate collection device is regenerated, the amount of NOx detected by the NOx concentration sensor disposed downstream of the exhaust gas purification device exceeds a preset allowable NOx emission amount In the case of any of the first conditions, a first state in which exhaust gas downstream of the exhaust gas purification device flows into the exhaust passage without passing through the adsorption device, and an exhaust passage through the adsorption device When the second condition for regenerating the adsorption device is switched to the second state, the exhaust gas flow upstream of the exhaust gas purification device is not purified via the adsorption device. Switch to a third state flowing through the apparatus and a fourth state flowing through the adsorption device to the exhaust gas purification device, and further under a third condition that is neither the first condition nor the second condition, The first state and the third state A method characterized by switching to.

この方法によれば、上記の内燃機関の排気ガス浄化システムと同様の効果を奏することができる。   According to this method, the same effect as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム及びその排気ガス浄化方法によれば、NOx、HC,CO等の浄化対象成分を吸着する吸着装置は、この吸着装置に流入する排気ガスの温度が低温であると、吸着装置に浄化対象成分を吸着し、また、吸着装置に流入する排気ガスの温度が高温になると、吸着した浄化対象成分を脱離する性質を持っているので、排気ガス浄化システムの状態に応じて、排気ガスを吸着装置を通過させずに排出したり、排気ガスを吸着装置を通過させて浄化対象成分を一時的に吸着装置に吸着したりすることができると共に、脱離温度以上の排気ガスを吸着装置に流入させて吸着した浄化対象成分を脱離させて吸着装置を再生し、この再生に使用した排気ガスを排気ガス浄化装置を通過させて、脱離した浄化対象成分を排気ガス浄化装置で浄化したりすることが容易にでき、一時的に高い濃度の浄化対象成分が大気中に排出されるのを防止できる。   According to the exhaust gas purification system for an internal combustion engine and the exhaust gas purification method of the present invention, the adsorption device that adsorbs the purification target component such as NOx, HC, CO, etc. has a low temperature of the exhaust gas flowing into the adsorption device. If so, it has the property of adsorbing the purification target component to the adsorption device and desorbing the adsorbed purification target component when the temperature of the exhaust gas flowing into the adsorption device becomes high. Depending on the state, the exhaust gas can be discharged without passing through the adsorption device, or the exhaust gas can be passed through the adsorption device to temporarily adsorb the component to be purified to the adsorption device, and the desorption temperature. The above exhaust gas is allowed to flow into the adsorption device, the adsorbed device is desorbed by desorbing the adsorbed device, and the exhaust gas used for this regeneration is passed through the exhaust gas purifying device and desorbed. Exhaust gas purifying device can be easily be or cleaned with, it is possible to prevent the cleaning target component temporarily high concentration is discharged to the atmosphere.

本発明に係る実施の形態の排気ガス浄化システムを備えた内燃機関の構成の一例を模式的に示す図である。It is a figure showing typically an example of composition of an internal-combustion engine provided with an exhaust-gas purification system of an embodiment concerning the present invention. 図1の模式図における、第1条件下の排気ガスの流路を示す図である。It is a figure which shows the flow path of the exhaust gas of 1st conditions in the schematic diagram of FIG. 図1の構成図における、第2条件下の排気ガスの流路を示す図である。It is a figure which shows the flow path of the exhaust gas of 2nd conditions in the block diagram of FIG. 図1の構成図における、第3条件下の排気ガスの流路を示す図である。It is a figure which shows the flow path of the exhaust gas of 3rd conditions in the block diagram of FIG. 本発明に係る内燃機関の排気ガス浄化方法における、制御フローの一例を示す図である。It is a figure which shows an example of the control flow in the exhaust gas purification method of the internal combustion engine which concerns on this invention.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について、図面を参照しながら説明する。図1に示すように、この実施の形態の内燃機関の排気ガス浄化システム2は、次のように構成される。   Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine according to an embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, an exhaust gas purification system 2 for an internal combustion engine according to this embodiment is configured as follows.

エンジン(内燃機関)10の排気通路11には、エンジン10より排出される排気ガスGに含まれている窒素酸化物(NOx)、炭化水素(HC)、一酸化炭素(CO)、微粒子物質(PM)等の浄化対象成分を除去する排気ガス浄化装置12が設けられている。この排気ガス浄化装置12は、この図1の構成では、上流側より順に、酸化触媒装置(DOC)12a、微粒子捕集装置(DPD)12b、選択還元型触媒装置(SCR)12c、アンモニアスリップ触媒装置(ASC)12dを備えている。   In the exhaust passage 11 of the engine (internal combustion engine) 10, nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), particulate matter contained in the exhaust gas G exhausted from the engine 10 ( An exhaust gas purification device 12 that removes a purification target component such as (PM) is provided. In the configuration of FIG. 1, the exhaust gas purification device 12 includes an oxidation catalyst device (DOC) 12a, a particulate collection device (DPD) 12b, a selective reduction catalyst device (SCR) 12c, an ammonia slip catalyst in this order from the upstream side. A device (ASC) 12d is provided.

なお、上記の4つの触媒又はフィルタの装置12a〜12dを排気ガス浄化装置12に備えているが、この構成に限定するものではなく、NOx吸蔵還元型触媒装置(NSR)等のリーンNOx低減触媒装置(LNT)、酸化触媒装置、微粒子捕集装置、尿素系のSCR触媒装置(Urea−SCR)、HCを還元剤とするSCR触媒装置(HC−SCR)、アンモニアスリップ触媒装置(ASC)や複合的な機能を併せ持つ触媒装置(例えば、微粒子捕集装置と選択還元型触媒装置の複合装置である選択触媒化燃焼フィルタ(SCRF))と任意の組合せをした構成でもよい。   Although the exhaust gas purification device 12 includes the four catalyst or filter devices 12a to 12d described above, the present invention is not limited to this configuration, and a lean NOx reduction catalyst such as a NOx storage reduction catalyst device (NSR). Equipment (LNT), oxidation catalyst equipment, particulate collection equipment, urea-based SCR catalyst equipment (Urea-SCR), SCR catalyst equipment using HC as a reducing agent (HC-SCR), ammonia slip catalyst equipment (ASC) and composites It is also possible to adopt a configuration in which any combination with a catalytic device having a specific function (for example, a selective catalytic combustion filter (SCRF) which is a combined device of a particulate collecting device and a selective catalytic reduction device) is possible.

この酸化触媒装置12aは、例えば、コージェライトハニカム等の多孔質のセラミックのハニカム構造体の担持体もしくは金属製の触媒担体に、ロジウム、酸化セリウム、白金、パラジウム等の酸化触媒を分散した酸化アルミニウムやゼオライト等をコーティングして形成される。この酸化触媒装置12aは、排気ガスG中に未燃燃料である炭化水素(HC)や一酸化炭素(CO)等があるとこれを酸化し、この酸化で発生する熱により排気ガスGを昇温して、この昇温した排気ガスGで下流側の微粒子捕集装置12bを昇温させる。   The oxidation catalyst device 12a includes, for example, an aluminum oxide in which an oxidation catalyst such as rhodium, cerium oxide, platinum, or palladium is dispersed in a porous ceramic honeycomb structure carrier such as a cordierite honeycomb or a metal catalyst carrier. It is formed by coating with zeolite. The oxidation catalyst device 12a oxidizes hydrocarbon (HC), carbon monoxide (CO), etc., which are unburned fuel, in the exhaust gas G, and raises the exhaust gas G by heat generated by this oxidation. The temperature of the exhaust gas G thus raised is raised, and the temperature of the particulate collection device 12b on the downstream side is raised.

また、この微粒子捕集装置12bは、一般的に、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルタ等で形成され、このフィルタの部分に、白金や酸化セリウム等の酸化触媒やPM酸化触媒を担持する場合が多い。この微粒子捕集装置12bにより、排気ガスG中のPMは、多孔質のセラミックの壁で捕集される。   The particulate collection device 12b is generally formed of a monolith honeycomb wall flow type filter or the like in which the inlet and outlet of a porous ceramic honeycomb channel are alternately sealed, and the filter portion In many cases, an oxidation catalyst such as platinum or cerium oxide or a PM oxidation catalyst is supported. By the particulate collection device 12b, PM in the exhaust gas G is collected by a porous ceramic wall.

また、この選択還元型触媒装置12cは、例えば、コージェライトハニカム構造体に、バナジウム系触媒、ゼオライト系触媒、白金等の貴金属触媒、遷移金属酸化物及びこれらの混合物をコーティングし形成する。この選択還元型触媒装置12cでは、一酸化窒素(NO)や二酸化窒素(NO2)等の窒素酸化物(NOx)を、還元反応により、窒素(N2)と水(H2O)に還元する。このとき、NO:NO2が50:50の場合に窒素酸化物を窒素に最も効率よく還元できる。 The selective reduction catalyst device 12c is formed, for example, by coating a cordierite honeycomb structure with a vanadium catalyst, a zeolite catalyst, a noble metal catalyst such as platinum, a transition metal oxide, and a mixture thereof. In the selective catalytic reduction device 12c, nitrogen oxides (NOx) such as nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ) are reduced to nitrogen (N 2 ) and water (H 2 O) by a reduction reaction. To do. At this time, when NO: NO 2 is 50:50, nitrogen oxides can be most efficiently reduced to nitrogen.

また、このアンモニアスリップ触媒装置12dは、上述の酸化触媒装置12aと同様もしくは上述の酸化触媒装置12aに選択還元型触媒装置12cの触媒を複層化した構成で、選択還元型触媒装置12cで使用されなかったアンモニアを酸化・分解して、アンモニアの排出を防止する装置である。   The ammonia slip catalyst device 12d is the same as the above-described oxidation catalyst device 12a, or has a configuration in which the catalyst of the selective reduction catalyst device 12c is formed into a multilayer in the above-described oxidation catalyst device 12a, and is used in the selective reduction catalyst device 12c. It is a device that prevents the discharge of ammonia by oxidizing and decomposing ammonia that has not been used.

本発明においては、更に、排気ガス浄化装置12の下流側の排気通路11に並列に設けたバイパス通路13に、吸着装置20が配設される。この吸着装置20は、低温であるほど流入する排気ガスGに含まれる浄化対象成分を良く吸着し、高温時には吸着した浄化対象成分を脱離する性質を持つ吸着剤20aを備えて形成されている。   In the present invention, the adsorption device 20 is further disposed in the bypass passage 13 provided in parallel with the exhaust passage 11 on the downstream side of the exhaust gas purification device 12. The adsorption device 20 is formed with an adsorbent 20a that has a property of adsorbing the purification target component contained in the exhaust gas G that flows in as the temperature becomes lower and desorbing the adsorbed purification target component at a higher temperature. .

また、この吸着装置20が備える吸着剤20aの素材としては、ゼオライト、鉄(Fe)や銅(Cu)等の遷移金属をイオン交換したゼオライト、粘土鉱物、多孔質シリカ、活性炭、アルミナ、チタニア、ジルコニア等の表面積が大きく、NOx、HC、CO等の浄化対象成分を吸着し、高温で安定な素材や、NOx吸着量を増加する成分であるアルカリ金属やアルカリ土類金属酸化物等及び、これらの混合物や複層物を使用することができる。これらの素材を、コージェライトや炭化ケイ素(SiC)基材のモノリスにコーティングするか、担体に練り込んで製造した吸着剤20aを吸着装置20に用いる。   Moreover, as a raw material of the adsorbent 20a with which this adsorption | suction apparatus 20 is equipped, the zeolite which carried out the ion exchange of zeolite, transition metals, such as iron (Fe) and copper (Cu), clay mineral, porous silica, activated carbon, alumina, titania, Large surface area such as zirconia, adsorbs components to be purified such as NOx, HC, CO, etc., stable materials at high temperatures, alkali metals and alkaline earth metal oxides that increase NOx adsorption amount, etc. Mixtures and multilayers can be used. An adsorbent 20a produced by coating these materials on a cordierite or silicon carbide (SiC) -based monolith or kneading them into a carrier is used in the adsorbing device 20.

この吸着装置20は、比較的劣化しにくい素材を使用でき、その上、吸着装置20の再生時を除いては流入する排気ガスGの温度は低温であり、比較的低温の環境にさらされている場合が多いことから劣化しにくく、優れた耐久性を有することができる。   The adsorption device 20 can use a material that is relatively difficult to deteriorate. In addition, the temperature of the exhaust gas G that flows in is low except when the adsorption device 20 is regenerated, and is exposed to a relatively low temperature environment. Since there are many cases, it is hard to deteriorate and it can have the outstanding durability.

また、このバイパス通路13の排気通路11とのバイパス分岐点13Aとバイパス合流点13Bのそれぞれには、第1三方弁21a及び第2三方弁21bが配設され、この第1三方弁21a及び第2三方弁21bで第1切替機構21が構成される。すなわち、排気ガス浄化装置12の下流側に第1三方弁21aを介して分岐したバイパス通路13を設け、そのバイパス通路13に吸着剤20aを備えた吸着装置20が配設される。これらの第1三方弁21a、第2三方弁21b、第3三方弁22a及び第4三方弁22bを設けることで、確実に排気ガスGの流路を切り換えることができる。   In addition, a first three-way valve 21a and a second three-way valve 21b are disposed at the bypass branch point 13A and the bypass junction 13B of the bypass passage 13 with the exhaust passage 11, respectively. The first switching mechanism 21 is constituted by the two three-way valve 21b. That is, the bypass passage 13 branched via the first three-way valve 21a is provided on the downstream side of the exhaust gas purification device 12, and the adsorption device 20 provided with the adsorbent 20a is disposed in the bypass passage 13. By providing the first three-way valve 21a, the second three-way valve 21b, the third three-way valve 22a, and the fourth three-way valve 22b, the flow path of the exhaust gas G can be switched reliably.

この第1切替機構21は、排気ガス浄化装置12の下流側の排気ガスGを、図3に示すような、吸着装置20を経由せずに第1三方弁21a及び第2三方弁21bを経由して排気通路11に流す第1状態と、図2に示すような、第1三方弁21a、吸着装置20及び第2三方弁21bを経由して排気通路11に流す第2状態に切り替える機構である。   The first switching mechanism 21 allows the exhaust gas G downstream of the exhaust gas purification device 12 to pass through the first three-way valve 21a and the second three-way valve 21b without passing through the adsorption device 20 as shown in FIG. And a mechanism for switching between a first state that flows through the exhaust passage 11 and a second state that flows through the exhaust passage 11 via the first three-way valve 21a, the adsorption device 20, and the second three-way valve 21b as shown in FIG. is there.

この構成においては、吸着装置20に浄化対象成分をより多く吸着させるためには、バイパス通路13から吸着装置20に流入する排気ガスGの温度を150℃以下の低温とすることが好ましい。そのために、排気ガス浄化装置12と第1三方弁21aの間の排気通路11の配管に関して、排気ガスGが通過している間にこの排気ガスGが十分に冷却される構成、例えば、この配管の配管長を十分長くする、この配管の表面に凹凸形状を設けて表面積を大きくする、この配管に走行風が良く当たるようにレイアウトする、この配管を冷却するファン等の冷却装置を設ける等を行うことが好ましい。   In this configuration, in order to make the adsorption device 20 adsorb more purification target components, the temperature of the exhaust gas G flowing into the adsorption device 20 from the bypass passage 13 is preferably set to a low temperature of 150 ° C. or lower. Therefore, regarding the piping of the exhaust passage 11 between the exhaust gas purification device 12 and the first three-way valve 21a, a configuration in which the exhaust gas G is sufficiently cooled while the exhaust gas G is passing, for example, this piping The pipe length of the pipe is sufficiently long, the surface of the pipe is provided with an uneven shape to increase the surface area, the pipe is laid out so that the running air is well applied, and a cooling device such as a fan for cooling the pipe is provided. Preferably it is done.

更に、排気ガス浄化装置12の上流側の排気通路11の分岐点14Aから分岐した分岐通路14を吸着装置20の一方側のバイパス通路13に接続し、吸着装置20の他方側のバイパス通路13を分岐点14Aと排気ガス浄化装置12との間の排気通路11の合流点14Bに接続する。そして、この分岐点14Aと合流点14Bには、それぞれ第3三方弁22a及び第4三方弁22bが配設され、この第3三方弁22a及び第4三方弁22bで第2切替機構22が構成される。   Further, the branch passage 14 branched from the branch point 14A of the exhaust passage 11 upstream of the exhaust gas purification device 12 is connected to the bypass passage 13 on one side of the adsorption device 20, and the bypass passage 13 on the other side of the adsorption device 20 is connected. Connected to the junction 14B of the exhaust passage 11 between the branch point 14A and the exhaust gas purification device 12. A third three-way valve 22a and a fourth three-way valve 22b are disposed at the branch point 14A and the junction point 14B, respectively, and the second switching mechanism 22 is configured by the third three-way valve 22a and the fourth three-way valve 22b. Is done.

すなわち、排気ガス浄化装置12の上流側に第3三方弁22aを介して分岐した分岐通路14を設け、その分岐通路14に吸着剤20aを備えた吸着装置20が配設される構成となる。図1〜図4の構成では、分岐通路14とバイパス通路13は吸着装置20の上流側と下流側で共通の通路となるが、分岐通路14とバイパス通路13がそれぞれ個別に吸着装置20の上流側と下流側に接続され、吸着装置20の内部で排気ガスが合流するように構成してもよい。   That is, the branch passage 14 branched via the third three-way valve 22a is provided on the upstream side of the exhaust gas purification device 12, and the adsorption device 20 including the adsorbent 20a is disposed in the branch passage 14. 1 to 4, the branch passage 14 and the bypass passage 13 are common to the upstream side and the downstream side of the adsorption device 20, but the branch passage 14 and the bypass passage 13 are individually upstream of the adsorption device 20. The exhaust gas may be connected to the side and the downstream side so that the exhaust gas merges inside the adsorption device 20.

この第2切替機構22は、図2に示すような、排気ガス浄化装置12の上流側の排気ガスGの流れを、吸着装置20を経由せずに第3三方弁22a及び第4三方弁22bを経由して排気ガス浄化装置12に流す第3状態と、図3に示すような、第3三方弁22a、吸着装置20及び第4三方弁22bを経由して排気ガス浄化装置12に流す第4状態に切り替える機構である。   As shown in FIG. 2, the second switching mechanism 22 allows the flow of the exhaust gas G on the upstream side of the exhaust gas purification device 12 without passing through the adsorption device 20, and the third three-way valve 22a and the fourth three-way valve 22b. The third state of flowing to the exhaust gas purification device 12 via the first and the second state flowing to the exhaust gas purification device 12 via the third three-way valve 22a, the adsorption device 20 and the fourth three-way valve 22b as shown in FIG. It is a mechanism for switching to 4 states.

この構成においては、吸着装置20から浄化対象成分をより多く脱離させるためには、分岐通路14から吸着装置20に流入する排気ガスGの温度を250℃以上の高温とすることが好ましい。そのため、分岐点14Aと吸着装置20の間の排気通路11の配管に関して、排気ガスGが通過している間にこの排気ガスGの温度を維持する構成、例えば、この配管の配管長を十分短くする、この配管を二重管構造にする、この配管に走行風が当たりにくいレイアウトにする等を行うことが好ましい。   In this configuration, in order to desorb more components to be purified from the adsorption device 20, it is preferable that the temperature of the exhaust gas G flowing into the adsorption device 20 from the branch passage 14 is a high temperature of 250 ° C. or higher. Therefore, with regard to the piping of the exhaust passage 11 between the branch point 14A and the adsorption device 20, a configuration for maintaining the temperature of the exhaust gas G while the exhaust gas G is passing, for example, the piping length of the piping is sufficiently short. It is preferable to make the pipe into a double pipe structure, or to make a layout in which the running wind does not easily hit the pipe.

なお、この実施形態では、第1切替機構21として第1三方弁21a及び第2三方弁21bを設けたが、この構成に限定されることなく、排気ガス浄化システム2の状態に応じて、第1切替機構21が第1状態と第2状態を切り換えることができればよく、また、第2切替機構22として第3三方弁22a及び第4三方弁22bを設けたが、この構成に限定されることなく、排気ガス浄化システム2の状態に応じて、第2切替機構22が第3状態と第4状態を切り替えることができればよい。   In this embodiment, the first three-way valve 21a and the second three-way valve 21b are provided as the first switching mechanism 21, but the first switching mechanism 21 is not limited to this configuration. The first switching mechanism 21 only needs to be able to switch between the first state and the second state, and the third three-way valve 22a and the fourth three-way valve 22b are provided as the second switching mechanism 22, but the present invention is limited to this configuration. Instead, it is only necessary that the second switching mechanism 22 can switch between the third state and the fourth state according to the state of the exhaust gas purification system 2.

また、第1切替機構21の流路切替と第2切替機構22の流路切替を制御する制御装置41を備えて構成する。この制御装置41は、アクセル開度センサ(図示しない)等の各種センサの情報に基づいて、エンジン10の全般の制御を行う全体システム制御装置(ECU)40に組み込んでもよいし、独立して設けてもよい。   Further, the control device 41 is configured to control the flow path switching of the first switching mechanism 21 and the flow path switching of the second switching mechanism 22. The control device 41 may be incorporated into an overall system control device (ECU) 40 that performs overall control of the engine 10 based on information from various sensors such as an accelerator opening sensor (not shown), or provided independently. May be.

さらに、図1に示すように、第2三方弁21bより下流側の排気通路11に、NOx濃度センサ30を設ける。このNOx濃度センサ30は、排気ガスGに含有されるNOxの量Nを検出するセンサである。   Further, as shown in FIG. 1, a NOx concentration sensor 30 is provided in the exhaust passage 11 downstream from the second three-way valve 21b. The NOx concentration sensor 30 is a sensor that detects the amount N of NOx contained in the exhaust gas G.

なお、図1では、NOx濃度センサ30を、第2三方弁21bより下流側に設けると、NOx濃度センサ30の検出値を、排気ガス浄化装置12におけるNOx再生の時期の判断用にも使用できると共に、吸着装置20の吸着剤20aにおける浄化対象成分の堆積状態も推定できるので、この位置での配置が好ましいが、NOx浄化の状態やNOx再生時期の判断用であれば、必ずしも、この位置に限定されることなく、排気ガス浄化装置12より下流側の排気通路11であればどの位置に設けてもよい。   In FIG. 1, when the NOx concentration sensor 30 is provided downstream of the second three-way valve 21b, the detected value of the NOx concentration sensor 30 can also be used for determining the timing of NOx regeneration in the exhaust gas purification device 12. At the same time, since the accumulation state of the purification target component in the adsorbent 20a of the adsorption device 20 can be estimated, the arrangement at this position is preferable. Without being limited, the exhaust passage 11 may be provided at any position as long as it is on the downstream side of the exhaust gas purification device 12.

そして、本発明では、この制御装置41が、第1切替機構21と第2切替機構22を制御して、エンジン10の低温始動のとき、排気ガス浄化装置12が微粒子捕集装置12bを備えていてこの微粒子捕集装置12bの再生のとき、排気ガス浄化装置12の下流側に配置したNOx濃度センサ30で検出されたNOxの量が予め設定されたNOx排出許容量を超えたときのいずれかの第1条件下の場合には、図2で示すように、第1切替機構21で第2状態にするともに、第2切替機構22で第3状態にする制御を行うように構成される。ここで、このNOx排出許容量は、予め実験等により設定され、制御装置41に記憶されている値である。   In the present invention, the control device 41 controls the first switching mechanism 21 and the second switching mechanism 22, and the exhaust gas purification device 12 includes the particulate collection device 12 b when the engine 10 is started at a low temperature. Any one of the cases where the amount of NOx detected by the NOx concentration sensor 30 disposed on the downstream side of the exhaust gas purification device 12 exceeds a preset allowable NOx emission amount during the regeneration of the fine particle collecting device 12b. In the case of the first condition, as shown in FIG. 2, the first switching mechanism 21 controls the second state and the second switching mechanism 22 controls the third state. Here, this NOx discharge allowable amount is a value that is set in advance by experiments or the like and stored in the control device 41.

また、このエンジン10の低温始動のときを、選択還元型触媒装置12cの入口の排気ガス温度が予め設定した設定温度未満のときとする。この設定温度は、実験などにより予め設定される温度であり、150℃以上300℃以下、好ましくは200℃に設定される。この構成によれば、選択還元型触媒装置12cが活性化したか否かを温度で判定して、低温時は、吸着装置20で浄化対象成分を一時的に吸着することができ、浄化対象成分の大気中への排出量を低減できる。   The low temperature start of the engine 10 is assumed to be when the exhaust gas temperature at the inlet of the selective catalytic reduction device 12c is lower than a preset temperature. This set temperature is a temperature set in advance by experiments or the like, and is set to 150 ° C. or higher and 300 ° C. or lower, preferably 200 ° C. According to this configuration, whether or not the selective catalytic reduction catalyst device 12c has been activated is determined based on the temperature, and the purification target component can be temporarily adsorbed by the adsorption device 20 when the temperature is low. Emissions into the atmosphere can be reduced.

また、吸着装置20を再生する第2条件下の場合には、図3に示すように、第1切替機構21で第1状態にするとともに、第2切替機構22で第4状態にする制御を行い、更に、第1条件下でも第2条件下でもない第3条件下の状態では、図4に示すように、第1切替機構21で第1状態にするとともに、第2切替機構22で第3状態にする制御を行うように構成される。   In the second condition for regenerating the adsorption device 20, as shown in FIG. 3, the first switching mechanism 21 controls the first state and the second switching mechanism 22 controls the fourth state. Further, in a state under a third condition that is neither the first condition nor the second condition, as shown in FIG. 4, the first switching mechanism 21 sets the first state and the second switching mechanism 22 sets the first condition. It is configured to perform control to be in three states.

なお、制御装置41が、吸着装置20を再生する第2条件下の場合に、第1切替機構21で第2状態から第1状態に移行し、第2切替機構22で第3状態から第4状態に移行する際に、吸着装置20に流入する排気ガスGの量を徐々に増加する制御を行うことが好ましい。つまり、吸着装置20の再生時に、分岐通路14から吸着装置20に流入する排気ガスGの流量を段階的に増加させて、吸着装置20が徐々に昇温するように制御することが好ましく、これにより、吸着装置20の急激な昇温による高濃度の浄化対象成分の一過的な大量脱離を防止することができる。   When the control device 41 is in the second condition for regenerating the adsorption device 20, the first switching mechanism 21 shifts from the second state to the first state, and the second switching mechanism 22 shifts from the third state to the fourth state. When shifting to the state, it is preferable to perform control to gradually increase the amount of the exhaust gas G flowing into the adsorption device 20. That is, at the time of regeneration of the adsorption device 20, it is preferable to control the adsorption device 20 to gradually increase the temperature by gradually increasing the flow rate of the exhaust gas G flowing into the adsorption device 20 from the branch passage 14. Thus, it is possible to prevent a temporary large-scale desorption of a high concentration target component due to a rapid temperature increase of the adsorption device 20.

つまり、吸着装置20の再生のときは、高温の排気ガスGが上流側の分岐通路14を経由して吸着装置20に流れ込むことで、吸着装置20の吸着剤20aの温度が上昇し、吸着していた浄化対象成分が脱離する。この吸着剤20aは排気ガスGによって高温になり、脱離した浄化対象成分を含む排気ガスGは、下流側の分岐通路14を通り、排気ガス浄化装置12に流入して浄化される。このとき、完全に第2状態から第1状態へ、及び、第3状態から第4状態に切り替えて、急激に排気ガスGの流れを切り替えると、吸着剤20aが急激に暖められ、高濃度の浄化対象成分が一過的に放出されてしまうので、これを回避するために、吸着装置20に流入する排気ガスGの流量を徐々に増加させて、吸着剤20aが徐々に暖められるようにする。   That is, when the adsorber 20 is regenerated, the high-temperature exhaust gas G flows into the adsorber 20 via the upstream branch passage 14, so that the temperature of the adsorbent 20 a of the adsorber 20 rises and is adsorbed. The component to be purified that had been removed is desorbed. The adsorbent 20a is heated to a high temperature by the exhaust gas G, and the exhaust gas G including the desorbed component to be purified passes through the downstream branch passage 14 and flows into the exhaust gas purification device 12 to be purified. At this time, when the flow of the exhaust gas G is suddenly switched from the second state to the first state and from the third state to the fourth state, the adsorbent 20a is suddenly warmed, and the high concentration Since the component to be purified is temporarily released, in order to avoid this, the flow rate of the exhaust gas G flowing into the adsorption device 20 is gradually increased so that the adsorbent 20a is gradually warmed. .

次に、本発明の実施の形態の内燃機関の排気ガス浄化方法について、図5の制御フローを参照しながら説明する。図5の制御フローは、エンジン10の運転中に一定の制御時間間隔毎に、上級の制御フローから呼ばれてスタートし、制御フローの制御を実施しては、リターンして、上級の制御フローに戻る制御フローであり、エンジン10の運転中は繰り返し実施される制御フローである。そして、エンジン10が運転停止すると、割り込みが生じて、上級の制御フローにリターンし、この上級の制御フローと共に終了する。   Next, an exhaust gas purification method for an internal combustion engine according to an embodiment of the present invention will be described with reference to the control flow of FIG. The control flow of FIG. 5 is called from the advanced control flow at regular control time intervals during the operation of the engine 10 and is started. After the control flow is controlled, the process returns to return to the advanced control flow. Is a control flow that is repeatedly performed while the engine 10 is in operation. When the operation of the engine 10 is stopped, an interruption occurs, the process returns to the advanced control flow, and the process is terminated together with the advanced control flow.

図5の制御フローがスタートすると、ステップS11では、第1条件が成立しているか否かを判定する。この第1条件が成立しているか否かは、エンジン10が低温始動のときであるか否か、あるいは、排気ガス浄化装置12が微粒子捕集装置12bを備えていてこの微粒子捕集装置12bの再生のときであるか否か、あるいは、排気ガス浄化装置12の下流側に配置したNOx濃度センサ30で検出されたNOxの量Eが予め設定されたNOx排出許容量E1を超えたときであるか否かで判定し、いずれかひとつが成立する場合、即ち「である」場合に(YES)、ステップS12にいき、何れも不成立の場合、即ち「ではない」場合には(NO)、ステップS21に行く。   When the control flow of FIG. 5 starts, in step S11, it is determined whether or not the first condition is satisfied. Whether or not the first condition is satisfied is whether or not the engine 10 is at a low temperature start, or the exhaust gas purification device 12 includes a particulate collection device 12b, and the particulate collection device 12b Whether or not it is a time of regeneration, or when the NOx amount E detected by the NOx concentration sensor 30 disposed downstream of the exhaust gas purification device 12 exceeds a preset allowable NOx emission amount E1. If any one of them is established, ie, “is” (YES), the process goes to step S12. If none of them is established, that is, “not” (NO), step Go to S21.

ここで、エンジン10の低温始動のときの判定を、選択還元型触媒装置12cの入口の排気ガスGの温度Taが予め設定した設定温度Ta1(例えば、200℃)未満のときとしたり、あるいは、選択還元型触媒装置12cの出口の排気ガスGの温度Tbが予め設定した設定温度Ta2(例えば、200℃)未満のときとしたりすることができる。   Here, the determination at the time of starting the engine 10 at a low temperature is made when the temperature Ta of the exhaust gas G at the inlet of the selective catalytic reduction catalyst device 12c is lower than a preset set temperature Ta1 (for example, 200 ° C.), or For example, the temperature Tb of the exhaust gas G at the outlet of the selective catalytic reduction device 12c may be less than a preset temperature Ta2 (for example, 200 ° C.).

また、微粒子捕集装置12bの再生のときに関しては、再生開始時を、微粒子捕集装置12bの前後差圧ΔPdが予め設定した再生開始差圧閾値ΔP1以上となった時としてもよいし、あるいは、微粒子捕集装置12bへの微粒子(PM:Particulate Matter)の堆積量PMcmを推定算出して、この推定堆積量PMcmが予め設定した再生開始堆積量閾値PMcm1以上となった時としてもよい。そして、再生終了時を、微粒子捕集装置12bの前後差圧ΔPdが予め設定した再生終了差圧閾値ΔP2以下となった時としてもよいし、あるいは、推定堆積量PMcmが予め設定した再生終了堆積量閾値PMcm2以下となった時としてもよい。   Further, regarding the regeneration of the particulate collection device 12b, the regeneration start time may be a time when the differential pressure ΔPd before and after the particulate collection device 12b becomes equal to or higher than a preset regeneration start differential pressure threshold ΔP1. Alternatively, the deposition amount PMcm of particulates (PM) in the particulate collection device 12b may be estimated and calculated, and the estimated deposition amount PMcm may be equal to or greater than a preset regeneration start deposition amount threshold value PMcm1. The regeneration end time may be a time when the differential pressure ΔPd before and after the particulate collection device 12b becomes equal to or lower than a preset regeneration end differential pressure threshold ΔP2, or the estimated deposition amount PMcm is set to a preset regeneration end deposition. It may be when the quantity threshold value is equal to or less than PMcm2.

また、このNOx排出許容量E1は、予め実験等により設定しておく閾値であり、制御装置41に記憶してある数値である。   The allowable NOx emission amount E1 is a threshold value set in advance through experiments or the like, and is a numerical value stored in the control device 41.

このステップS12では、第1切替機構21で、排気ガス浄化装置12の下流側の低温の排気ガスGの流れを吸着装置20を経由して排気通路11に流す第2状態に切り替えるとともに、第2切替機構22で、排気ガス浄化装置12の上流側の高温の排気ガスGの流れを吸着装置20を経由せずに排気ガス浄化装置12に流す第3状態に切り替えた状態の「吸着時制御」を行う。そして、一定の予め設定された制御時間が経過した後、ステップS11に戻る。   In step S12, the first switching mechanism 21 switches the flow of the low-temperature exhaust gas G on the downstream side of the exhaust gas purification device 12 to the second state in which the flow passes through the adsorption device 20 to the exhaust passage 11, and the second state. “Adsorption control” in a state in which the switching mechanism 22 switches the flow of the high-temperature exhaust gas G upstream of the exhaust gas purification device 12 to the third state to flow to the exhaust gas purification device 12 without passing through the adsorption device 20. I do. Then, after a certain preset control time has elapsed, the process returns to step S11.

ステップS21では、吸着装置20を再生する第2条件が成立しているか否かを判定する。この吸着装置20の再生は、前回の再生の終了からの経過時間tが実験等により予め設定した再生開始時間t1を経過したか否か、あるいは、「吸着時制御」を行っているときの、NOx濃度センサ30の検出値を元に推定した浄化対象成分の推定堆積量が、予め設定した再生開始用判定値を超えているか否か等の判定で行う。   In step S21, it is determined whether or not the second condition for regenerating the adsorption device 20 is satisfied. The regeneration of the adsorption device 20 is performed when the elapsed time t from the end of the previous regeneration has passed a regeneration start time t1 set in advance by experiment or the like, or when “adsorption control” is being performed. This is performed by determining whether or not the estimated accumulation amount of the purification target component estimated based on the detection value of the NOx concentration sensor 30 exceeds a preset regeneration start determination value.

このステップS21の判定で、成立である場合は(YES)、ステップS22に進み、第1切替機構21で、排気ガス浄化装置12の下流側の低温の排気ガスGの流れを吸着装置20を経由せずに排気通路11に流す第1状態に切り替えるとともに、第2切替機構22で、排気ガス浄化装置12の上流側の高温の排気ガスGの流れを吸着装置20を経由して排気ガス浄化装置12に流す第4状態に切り替えた状態の「再生時制御」を行う。そして、一定の予め設定された制御時間が経過した後、ステップS11に戻る。   If the determination in step S21 is true (YES), the process proceeds to step S22, and the flow of the low-temperature exhaust gas G on the downstream side of the exhaust gas purification device 12 is passed through the adsorption device 20 by the first switching mechanism 21. Without switching to the first state that flows through the exhaust passage 11, and the second switching mechanism 22 causes the flow of the hot exhaust gas G upstream of the exhaust gas purification device 12 to pass through the adsorption device 20. The “reproduction control” in the state switched to the fourth state is performed. Then, after a certain preset control time has elapsed, the process returns to step S11.

ここで、第2切替機構22で、排気ガス浄化装置12の上流側の高温の排気ガスの流れを第3状態から第4状態に切り替える際に、吸着装置20に流入する排気ガスGの流量を段階的に増加させて、吸着装置20が徐々に昇温するように切り替えることが好ましい。これにより、吸着装置20の急激な昇温による高濃度の浄化対象成分の一過的な大量脱離を防止することができ、下流側の排気ガス浄化装置12での確実な浄化処理を図ることができる。   Here, when the second switching mechanism 22 switches the flow of the hot exhaust gas upstream of the exhaust gas purification device 12 from the third state to the fourth state, the flow rate of the exhaust gas G flowing into the adsorption device 20 is changed. It is preferable to increase the temperature gradually and switch the adsorption device 20 so that the temperature gradually increases. As a result, it is possible to prevent a temporary large-scale desorption of the high-concentration purification target component due to the rapid temperature rise of the adsorption device 20, and to achieve a reliable purification process in the exhaust gas purification device 12 on the downstream side. Can do.

また、ステップS21の判定で、不成立である場合は(NO)、ステップS31に進み、第1条件下でも第2条件下でもない第3条件が成立しているとして、第1切替機構21で、排気ガス浄化装置12の下流側の低温の排気ガスGの流れを吸着装置20を経由せずに排気通路11に流す第1状態に切り替えるとともに、第2切替機構22で、排気ガス浄化装置12の上流側の高温の排気ガスGの流れを吸着装置20を経由せずに排気ガス浄化装置12に流す第3状態に切り替えた状態の「通常時制御」を行う。そして、一定の予め設定された制御時間が経過した後、ステップS11に戻る。   If the determination in step S21 is not satisfied (NO), the process proceeds to step S31, where the first switching mechanism 21 determines that the third condition that is neither the first condition nor the second condition is satisfied. The flow of the low-temperature exhaust gas G on the downstream side of the exhaust gas purification device 12 is switched to the first state in which the flow to the exhaust passage 11 without passing through the adsorption device 20, and the second switching mechanism 22 “Normal control” is performed in a state where the flow of the upstream high-temperature exhaust gas G is switched to the third state in which the flow of the high-temperature exhaust gas G flows to the exhaust gas purification device 12 without passing through the adsorption device 20. Then, after a certain preset control time has elapsed, the process returns to step S11.

そして、このステップS11からステップS12,S22,S31のいずれかに行く制御を繰り返し行い、本制御フローの途中で、エンジン10を運転停止した場合に、割り込みを発生して、上級の制御フローにリターンして、上級の制御フローと共に本制御フローを終了する。   Then, the control from step S11 to any of steps S12, S22, and S31 is repeated, and when the engine 10 is stopped during this control flow, an interrupt is generated and the process returns to the advanced control flow. Then, this control flow is completed together with the advanced control flow.

この制御により、エンジン10の低温始動のとき、排気ガス浄化装置12が微粒子捕集装置12bを備えていてこの微粒子捕集装置12bの再生のとき、排気ガス浄化装置12の下流側に配置したNOx濃度センサ30で検出されたNOxの量Eが予め設定されたNOx排出許容量E1を超えたときのいずれかの第1条件下の場合には、排気ガス浄化装置12の下流側の排気ガスGを吸着装置20を経由せずに排気通路11に流す第1状態と吸着装置20を経由して排気通路11に流す第2状態に切り替えることができる。   With this control, when the engine 10 is started at a low temperature, the exhaust gas purification device 12 includes the particulate collection device 12b. When the particulate collection device 12b is regenerated, the NOx disposed on the downstream side of the exhaust gas purification device 12 is used. In the case of any of the first conditions when the NOx amount E detected by the concentration sensor 30 exceeds a preset allowable NOx emission amount E1, the exhaust gas G on the downstream side of the exhaust gas purification device 12 is used. Can be switched between a first state in which the gas flows into the exhaust passage 11 without passing through the adsorption device 20 and a second state in which the gas flows into the exhaust passage 11 through the adsorption device 20.

それと共に、吸着装置20を再生する第2条件下の場合には、排気ガス浄化装置12の上流側の排気ガスGの流れを吸着装置20を経由せずに排気ガス浄化装置12に流す第3状態と吸着装置20を経由して排気ガス浄化装置12に流す第4状態に切り替えることがきる。   At the same time, in the case of the second condition for regenerating the adsorption device 20, the flow of the exhaust gas G upstream of the exhaust gas purification device 12 flows to the exhaust gas purification device 12 without passing through the adsorption device 20. It is possible to switch to the fourth state that flows to the exhaust gas purification device 12 via the state and the adsorption device 20.

更に、第1条件下でも第2条件下でもない第3条件下の状態では、第1状態と第3状態に切り替えることができる。   Furthermore, in a state under a third condition that is neither the first condition nor the second condition, the state can be switched between the first state and the third state.

上記の構成の内燃機関の排気ガス浄化システム2及び内燃機関の排気ガス浄化方法によれば、NOx、HC,CO等の浄化対象成分を吸着する吸着装置20は、この吸着装置20に流入する排気ガスGの温度が低温であると、吸着装置20に浄化対象成分を吸着し、また、吸着装置20に流入する排気ガスGの温度が高温になると、吸着した浄化対象成分を脱離する性質を持っているので、排気ガス浄化システム2の状態に応じて、排気ガスGを吸着装置20を通過させずに排出したり、排気ガスGを吸着装置20を通過させて浄化対象成分を一時的に吸着装置20に吸着したりすることができる。   According to the exhaust gas purification system 2 for an internal combustion engine and the exhaust gas purification method for an internal combustion engine configured as described above, the adsorption device 20 that adsorbs a purification target component such as NOx, HC, and CO is exhaust gas that flows into the adsorption device 20. When the temperature of the gas G is low, the purification target component is adsorbed to the adsorption device 20, and when the temperature of the exhaust gas G flowing into the adsorption device 20 becomes high, the adsorbed purification target component is desorbed. Therefore, depending on the state of the exhaust gas purification system 2, the exhaust gas G is discharged without passing through the adsorption device 20, or the exhaust gas G is passed through the adsorption device 20 to temporarily remove the components to be purified. It can be adsorbed to the adsorption device 20.

それと共に、脱離温度以上の排気ガスGを吸着装置20に流入させて吸着した浄化対象成分を脱離させて吸着装置20を再生し、この再生に使用した排気ガスGを排気ガス浄化装置12を通過させて、脱離した浄化対象成分を排気ガス浄化装置12で浄化したりすることが容易にでき、一時的に高い濃度の浄化対象成分が大気中に排出されるのを防止できる。   At the same time, exhaust gas G having a temperature equal to or higher than the desorption temperature is caused to flow into the adsorption device 20 to desorb the components to be purified, and the adsorption device 20 is regenerated. The exhaust gas G used for this regeneration is regenerated. It is possible to easily purify the desorbed purification target component with the exhaust gas purification device 12 and to prevent the high concentration purification target component from being temporarily discharged into the atmosphere.

また、排気ガス浄化装置12での浄化対象成分の十分な浄化が見込めない第1条件下の場合には、第2状態と第3状態で、排気ガス浄化装置12を通過した後の排気ガスGを吸着装置20を通過させることで、排気ガス浄化装置12で浄化しきれなかった浄化対象成分を吸着装置20に一時的に吸着することができるので、大気中への浄化対象成分の排出量を確実に低減することができる。   Further, in the case of the first condition in which the exhaust gas purification device 12 is not expected to sufficiently purify the purification target component, the exhaust gas G after passing through the exhaust gas purification device 12 in the second state and the third state. By allowing the adsorption device 20 to pass through, the purification target component that could not be completely purified by the exhaust gas purification device 12 can be temporarily adsorbed to the adsorption device 20, so the amount of the purification target component discharged into the atmosphere can be reduced. It can be surely reduced.

この構成によれば、排気ガス浄化装置12での浄化対象成分の十分な浄化が見込めない第1条件下の場合には、第2状態と第3状態で、排気ガス浄化装置12を通過した後の排気ガスGを吸着装置20を通過させることで、排気ガス浄化装置12で浄化しきれなかった浄化対象成分を吸着装置20に一時的に吸着することができるので、大気中への浄化対象成分の排出量を確実に低減することができる。   According to this configuration, after the exhaust gas purification device 12 passes through the exhaust gas purification device 12 in the second state and the third state in the first condition where sufficient purification of the component to be purified cannot be expected in the exhaust gas purification device 12. By passing the exhaust gas G of the exhaust gas G through the adsorption device 20, it is possible to temporarily adsorb the purification target component that could not be purified by the exhaust gas purification device 12 to the adsorption device 20. Can be reliably reduced.

また、吸着装置20に吸着した浄化対象成分の量が飽和量に達すると、それ以上は吸着しなくなるために、一時的に吸着した浄化対象成分の量が飽和量に達する前に吸着装置20の再生を行う必要があるが、この再生のときの第2条件下の場合には、第1状態と第4状態で、高温の排気ガスGを吸着装置20を通過させてから排気ガス浄化装置12を通過させて大気中に排出することで、高い温度の排気ガスGの排熱を利用して、吸着装置20に吸着された浄化対象成分を脱離し、この脱離した浄化対象成分を排気ガス浄化装置12で浄化することができるため、吸着装置20の再生を確実に行うことができるとともに、エネルギー利用の効率化を図ることができる。   In addition, when the amount of the purification target component adsorbed on the adsorption device 20 reaches the saturation amount, no more adsorption is performed, so the amount of the purification target component temporarily adsorbed before the amount of the purification target component reaches the saturation amount. In the second condition at the time of this regeneration, it is necessary to perform regeneration. In the first state and the fourth state, the exhaust gas purification apparatus 12 is passed after passing the hot exhaust gas G through the adsorption device 20. Is exhausted to the atmosphere by using the exhaust heat of the high-temperature exhaust gas G to desorb the purification target component adsorbed by the adsorption device 20, and the desorbed purification target component is exhausted to the exhaust gas. Since it can purify | clean with the purification apparatus 12, while the reproduction | regeneration of the adsorption | suction apparatus 20 can be performed reliably, efficiency improvement of energy utilization can be achieved.

また、上記の内燃機関の排気ガス浄化システムにおいて、排気ガス浄化装置12を、上流側酸化触媒装置12a、微粒子捕集装置12b、選択還元型触媒装置12c、アンモニアスリップ触媒装置12dで構成しているが、上流側酸化触媒装置12a、選択還元型触媒装置12c、アンモニアスリップ触媒装置12dの何れか又はこれらのいくつかの組み合わせを備えて構成すると、次のような効果を奏することができる。   In the exhaust gas purification system for an internal combustion engine, the exhaust gas purification device 12 includes an upstream oxidation catalyst device 12a, a particulate collection device 12b, a selective reduction catalyst device 12c, and an ammonia slip catalyst device 12d. However, if any one of the upstream oxidation catalyst device 12a, the selective reduction catalyst device 12c, the ammonia slip catalyst device 12d, or some combination thereof is provided, the following effects can be obtained.

この構成によれば、吸着装置20を設けることで、これらの触媒装置12a、12c、12dの浄化能力を従来の触媒装置よりも低く設計することも可能となるため、各触媒装置12a、12c、12dの容量の低減や貴金属量の低減を行うことができ、コストダウンを図ることができる。   According to this configuration, by providing the adsorption device 20, it becomes possible to design the purification capacity of these catalyst devices 12a, 12c, and 12d to be lower than that of the conventional catalyst device, so that each of the catalyst devices 12a, 12c, The capacity can be reduced by 12d and the amount of noble metal can be reduced, and the cost can be reduced.

また、排気ガス浄化装置12にアンモニアスリップ触媒装置(ASC)12dを備える場合、このアンモニアスリップ触媒装置12dに多量の貴金属を担持させる必要がないため、貴金属に要するコストを低減することができ、また、吸着装置20は貴金属を含まない素材(ゼオライト等)で構成してもよいため、吸着装置20自体のコストも低減することができるので、結果として、排気ガス浄化システム2の全体での製造コストを低減することができる。   Further, when the exhaust gas purification device 12 includes the ammonia slip catalyst device (ASC) 12d, it is not necessary to carry a large amount of noble metal on the ammonia slip catalyst device 12d, so that the cost required for the noble metal can be reduced. In addition, since the adsorption device 20 may be made of a material (zeolite or the like) that does not contain a noble metal, the cost of the adsorption device 20 itself can be reduced. As a result, the manufacturing cost of the exhaust gas purification system 2 as a whole is reduced. Can be reduced.

2 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
12 排気ガス浄化装置
12a 酸化触媒装置(DOC)
12b 微粒子捕集装置
12c 選択還元型触媒装置(SCR)
12d アンモニアスリップ触媒装置(ASC)
13 バイパス通路
13A バイパス分岐点
13B バイパス合流点
14 分岐通路
14A 分岐点
14B 合流点
20 吸着装置
20a 吸着剤
21 第1切替機構
21a 第1三方弁
21b 第2三方弁
22 第2切替機構
22a 第3三方弁
22b 第4三方弁
30 NOx濃度センサ
40 全体システム制御装置(ECU)
41 制御装置
G 排気ガス
2 Exhaust gas purification system for internal combustion engine 10 Engine (internal combustion engine)
11 Exhaust passage 12 Exhaust gas purification device 12a Oxidation catalyst device (DOC)
12b Fine particle collecting device 12c Selective reduction type catalyst device (SCR)
12d Ammonia slip catalyst device (ASC)
13 bypass passage 13A bypass junction 13B bypass junction 14 branch passage 14A junction 14B junction 20 adsorber 20a adsorbent 21 first switching mechanism 21a first three-way valve 21b second three-way valve 22 second switching mechanism 22a third three-way Valve 22b Fourth three-way valve 30 NOx concentration sensor 40 Overall system controller (ECU)
41 Control device G Exhaust gas

Claims (7)

内燃機関より排出される排気ガスを浄化する排気ガス浄化装置を排気通路に備えた内燃機関の排気ガス浄化システムにおいて、
低温時には排気ガスに含まれる浄化対象成分を吸着し、高温時は吸着した前記浄化対象成分を脱離する吸着剤を備えた吸着装置を、前記排気ガス浄化装置の下流側の排気通路に並列に設けたバイパス通路に配設して、前記排気ガス浄化装置の下流側の排気ガスを前記吸着装置を経由せずに排気通路に流す第1状態と前記吸着装置を経由して排気通路に流す第2状態に切り替える第1切替機構とを設けるとともに、
前記排気ガス浄化装置の上流側の排気通路の第1分岐点から分岐した分岐通路を前記吸着装置の一方側の前記バイパス通路に接続し、前記吸着装置の他方側の前記バイパス通路を前記第1分岐点と前記排気ガス浄化装置との間の前記排気通路に接続し、前記排気ガス浄化装置の上流側の排気ガスの流れを前記吸着装置を経由せずに前記排気ガス浄化装置に流す第3状態と前記吸着装置を経由して前記排気ガス浄化装置に流す第4状態に切り替える第2切替機構と、前記第1切替機構と前記第2切替機構を制御する制御装置を設けたことを特徴とする内燃機関の排気ガス浄化システム。
In an exhaust gas purification system of an internal combustion engine provided with an exhaust gas purification device in an exhaust passage for purifying exhaust gas discharged from the internal combustion engine,
An adsorption device having an adsorbent that adsorbs a purification target component contained in exhaust gas at a low temperature and desorbs the purified purification target component adsorbed at a high temperature is connected in parallel to an exhaust passage downstream of the exhaust gas purification device. A first state in which the exhaust gas on the downstream side of the exhaust gas purifying device is disposed in the provided bypass passage and flows into the exhaust passage without passing through the adsorption device; A first switching mechanism that switches between two states;
A branch passage branched from a first branch point of the exhaust passage upstream of the exhaust gas purification device is connected to the bypass passage on one side of the adsorption device, and the bypass passage on the other side of the adsorption device is connected to the first passage. A third point connected to the exhaust passage between the branch point and the exhaust gas purification device, and causing the flow of the exhaust gas upstream of the exhaust gas purification device to flow to the exhaust gas purification device without passing through the adsorption device; And a control device for controlling the first switching mechanism and the second switching mechanism, and a second switching mechanism for switching to a fourth state that flows to the exhaust gas purification device via the adsorption device. An exhaust gas purification system for an internal combustion engine.
前記制御装置が、前記内燃機関の低温始動のとき、前記排気ガス浄化装置が微粒子捕集装置を備えていて該微粒子捕集装置の再生のとき、前記排気ガス浄化装置の下流側に配置したNOx濃度センサで検出されたNOxの量が予め設定されたNOx排出許容量を超えたときのいずれかの第1条件下の場合には、前記第1切替機構で前記第2状態にするとともに、前記第2切替機構で前記第3状態にし、
前記吸着装置を再生する第2条件下の場合には、前記第1切替機構で前記第1状態にするとともに、前記第2切替機構で前記第4状態にし、
前記第1条件下でも前記第2条件下でもない第3条件下の状態では、前記第1切替機構で前記第1状態にするとともに、前記第2切替機構で前記第3状態にする制御を行うように構成されたことを特徴とする請求項1記載の内燃機関の排気ガス浄化システム。
When the control device starts the internal combustion engine at a low temperature, the exhaust gas purification device is provided with a particulate collection device, and when the particulate collection device is regenerated, NOx disposed downstream of the exhaust gas purification device In the case of any of the first conditions when the amount of NOx detected by the concentration sensor exceeds a preset allowable NOx emission amount, the first switching mechanism sets the second state, and In the third state by the second switching mechanism,
In the case of the second condition for regenerating the adsorption device, the first switching mechanism is set to the first state, the second switching mechanism is set to the fourth state,
In a state under a third condition that is neither the first condition nor the second condition, the first switching mechanism controls the first state, and the second switching mechanism controls the third state. The exhaust gas purification system for an internal combustion engine according to claim 1, wherein the exhaust gas purification system is configured as described above.
前記制御装置が、前記内燃機関の低温始動のときを、前記排気ガス浄化装置に設けた選択還元型触媒装置の入口の排気ガス温度が予め設定した設定温度未満のときとすることを特徴とする請求項1又は2に記載の内燃機関の排気ガス浄化システム。   The control device is characterized in that the low temperature start of the internal combustion engine is when the exhaust gas temperature at the inlet of the selective catalytic reduction device provided in the exhaust gas purification device is lower than a preset set temperature. The exhaust gas purification system for an internal combustion engine according to claim 1 or 2. 前記制御装置が、前記吸着装置を再生する第2条件下の場合に、前記第1切替機構で前記第2状態から前記第1状態に移行し、前記第2切替機構で前記第3状態から前記第4状態に移行する際に、前記吸着装置に流入する排気ガスの量を徐々に増加する制御を行うことを特徴とする請求項1〜3のいずれか1項に記載の内燃機関の排気ガス浄化システム。   When the control device is in a second condition for regenerating the adsorption device, the first switching mechanism shifts from the second state to the first state, and the second switching mechanism moves from the third state to the first state. The exhaust gas of the internal combustion engine according to any one of claims 1 to 3, wherein when shifting to the fourth state, control is performed to gradually increase the amount of exhaust gas flowing into the adsorption device. Purification system. 前記第1切替機構が、前記バイパス通路の分岐点と合流点のそれぞれに設けられた第1三方弁及び第2三方弁で構成され、前記第2切替機構が、前記排気ガス浄化装置の上流側の前記排気通路の分岐点と合流点のそれぞれに設けられた第3三方弁と第4三方弁で構成されたことを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の排気ガス浄化システム。   The first switching mechanism is composed of a first three-way valve and a second three-way valve provided at each of a branch point and a merging point of the bypass passage, and the second switching mechanism is located upstream of the exhaust gas purification device. The internal combustion engine according to any one of claims 1 to 4, comprising a third three-way valve and a fourth three-way valve provided at each of a branch point and a confluence of the exhaust passage. Exhaust gas purification system. 前記排気ガス浄化装置を、上流側酸化触媒装置、選択還元型触媒装置、アンモニアスリップ触媒装置の何れか又はこれらのいくつかの組み合わせを備えて構成されたことを特徴とする請求項1〜5のいずれか1項に記載の内燃機関の排気ガス浄化システム。   6. The exhaust gas purification device according to claim 1, wherein the exhaust gas purification device comprises any one of an upstream oxidation catalyst device, a selective reduction catalyst device, an ammonia slip catalyst device, or some combination thereof. An exhaust gas purification system for an internal combustion engine according to any one of the preceding claims. 内燃機関より排出される排気ガスを浄化する排気ガス浄化装置を排気通路に備えると共に、低温時には排気ガスに含まれる浄化対象成分を吸着し、高温時は吸着した前記浄化対象成分を脱離する吸着剤を備えた吸着装置を、前記排気ガス浄化装置の下流側の排気通路に並列に設けたバイパス通路に配設して、前記排気ガス浄化装置の上流側の排気通路の第1分岐点から分岐した分岐通路を前記吸着装置の一方側の前記バイパス通路に接続し、前記吸着装置の他方側の前記バイパス通路を前記第1分岐点と前記排気ガス浄化装置との間の前記排気通路に接続した内燃機関の排気ガス浄化方法において、
前記内燃機関の低温始動のとき、前記排気ガス浄化装置が微粒子捕集装置を備えていて該微粒子捕集装置の再生のとき、前記排気ガス浄化装置の下流側に配置したNOx濃度センサで検出されたNOxの量が予め設定されたNOx排出許容量を超えたときのいずれかの第1条件下の場合には、前記排気ガス浄化装置の下流側の排気ガスを前記吸着装置を経由せずに排気通路に流す第1状態と前記吸着装置を経由して排気通路に流す第2状態に切り替えると共に、
前記吸着装置を再生する第2条件下の場合には、前記排気ガス浄化装置の上流側の排気ガスの流れを前記吸着装置を経由せずに前記排気ガス浄化装置に流す第3状態と前記吸着装置を経由して前記排気ガス浄化装置に流す第4状態に切り替え、
更に、前記第1条件下でも前記第2条件下でもない第3条件下の状態では、前記第1状態と前記第3状態に切り替えることを特徴とする内燃機関の排気ガス浄化方法。
An exhaust gas purification device for purifying exhaust gas exhausted from an internal combustion engine is provided in the exhaust passage, and adsorbs a purification target component contained in the exhaust gas at a low temperature and desorbs the adsorbed purification target component at a high temperature. An adsorbing device having an agent is disposed in a bypass passage provided in parallel with an exhaust passage on the downstream side of the exhaust gas purification device, and branches from a first branch point of the exhaust passage on the upstream side of the exhaust gas purification device The branched passage is connected to the bypass passage on one side of the adsorption device, and the bypass passage on the other side of the adsorption device is connected to the exhaust passage between the first branch point and the exhaust gas purification device. In an exhaust gas purification method for an internal combustion engine,
When the internal combustion engine is started at a low temperature, the exhaust gas purification device is provided with a particulate collection device, and when the particulate collection device is regenerated, it is detected by a NOx concentration sensor arranged downstream of the exhaust gas purification device. In the case of any of the first conditions when the amount of NOx exceeds a preset allowable NOx emission amount, the exhaust gas on the downstream side of the exhaust gas purification device is not passed through the adsorption device. While switching between a first state flowing through the exhaust passage and a second state flowing through the adsorption device into the exhaust passage,
In the case of the second condition for regenerating the adsorption device, the third state in which the flow of the exhaust gas upstream of the exhaust gas purification device flows to the exhaust gas purification device without passing through the adsorption device and the adsorption Switch to the fourth state to flow to the exhaust gas purification device via the device,
Further, the exhaust gas purifying method for an internal combustion engine is characterized in that the state is switched between the first state and the third state under a third condition that is neither the first condition nor the second condition.
JP2014086057A 2014-04-18 2014-04-18 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine Pending JP2015206274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086057A JP2015206274A (en) 2014-04-18 2014-04-18 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086057A JP2015206274A (en) 2014-04-18 2014-04-18 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2015206274A true JP2015206274A (en) 2015-11-19

Family

ID=54603276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086057A Pending JP2015206274A (en) 2014-04-18 2014-04-18 Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2015206274A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223135A (en) * 2016-06-14 2017-12-21 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, and exhaust emission control method for internal combustion engine
JP2017223134A (en) * 2016-06-14 2017-12-21 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, and exhaust emission control method for internal combustion engine
JP2018091259A (en) * 2016-12-06 2018-06-14 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
CN113015572A (en) * 2018-11-19 2021-06-22 住友精化株式会社 Gas separation device and gas separation method
JP7392786B1 (en) 2022-09-16 2023-12-06 いすゞ自動車株式会社 exhaust control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223135A (en) * 2016-06-14 2017-12-21 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, and exhaust emission control method for internal combustion engine
JP2017223134A (en) * 2016-06-14 2017-12-21 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine, and exhaust emission control method for internal combustion engine
JP2018091259A (en) * 2016-12-06 2018-06-14 いすゞ自動車株式会社 Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
CN113015572A (en) * 2018-11-19 2021-06-22 住友精化株式会社 Gas separation device and gas separation method
CN113015572B (en) * 2018-11-19 2023-11-21 住友精化株式会社 Gas separation device and gas separation method
JP7392786B1 (en) 2022-09-16 2023-12-06 いすゞ自動車株式会社 exhaust control device
JP2024043077A (en) * 2022-09-16 2024-03-29 いすゞ自動車株式会社 exhaust control device

Similar Documents

Publication Publication Date Title
JP4140636B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4608347B2 (en) Exhaust gas purification device
JP4972914B2 (en) Exhaust gas purification system regeneration control method and exhaust gas purification system
JP5256881B2 (en) Exhaust gas purification device
WO2006123510A1 (en) Exhaust gas purification method and exhaust gas purification system
CN102016252B (en) Exhaust gas purification method and exhaust gas purification system
JP2010120008A (en) Diesel oxidation catalyst and exhaust system provided with the same
JP2005207281A (en) Emission control device and its control method
JP2015206274A (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2009013932A (en) Exhaust emission control device
JP2007023997A (en) Exhaust emission control device
WO2014118951A1 (en) Fault detection device for internal combustion engine
JP4767909B2 (en) Exhaust gas purification device
JP2008175136A (en) Exhaust emission control system
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP3843746B2 (en) Continuous regeneration type diesel particulate filter system and its regeneration control method
JP2016094894A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
JP4567968B2 (en) Exhaust gas purification device and exhaust gas purification method
JP2013245606A (en) Exhaust gas purification system
JP5003042B2 (en) Exhaust gas purification system
JP6743498B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP2019157739A (en) Exhaust purifying device for internal combustion engine
JP2016094897A (en) Exhaust emission control system of internal combustion engine and exhaust emission control method of internal combustion engine
JP2012087703A (en) Exhaust gas treating device of internal combustion engine
JP6252375B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine