JP2009013932A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2009013932A
JP2009013932A JP2007178713A JP2007178713A JP2009013932A JP 2009013932 A JP2009013932 A JP 2009013932A JP 2007178713 A JP2007178713 A JP 2007178713A JP 2007178713 A JP2007178713 A JP 2007178713A JP 2009013932 A JP2009013932 A JP 2009013932A
Authority
JP
Japan
Prior art keywords
nox
catalyst
temperature
exhaust
urea water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007178713A
Other languages
Japanese (ja)
Inventor
Masahiko Yabe
正彦 矢部
Haruyuki Yokota
治之 横田
Takaharu Shimizu
隆治 清水
Hiroyuki Ninomiya
弘行 二宮
Shinya Sato
信也 佐藤
Takeshi Kaneda
健 金田
Toshisuke Toshioka
俊祐 利岡
Satoru Watabe
哲 渡部
Tomihisa Oda
富久 小田
Yutaka Tauchi
豊 田内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyota Motor Corp
Original Assignee
Hino Motors Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyota Motor Corp filed Critical Hino Motors Ltd
Priority to JP2007178713A priority Critical patent/JP2009013932A/en
Priority to PCT/JP2008/001797 priority patent/WO2009008150A1/en
Publication of JP2009013932A publication Critical patent/JP2009013932A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain excellent NOx reducing effect from an exhaust temperature lower than a conventional one without causing a trouble in engine starting or the like after long time engine stop. <P>SOLUTION: An exhaust emission control device which includes at some midpoint of an exhaust pipe 4 a selective reduction type catalyst 5 capable of selectively reacting NOx with ammonia even in the presence of oxygen, and which reduces and controls NOx by adding urea water 6 as a reducing agent in the exhaust pipe 4 on the upstream side from the selective reduction type catalyst 5, is provided with a particulate filter 10 attaching an oxidation catalyst 9 to a front stage thereof in the exhaust pipe 4 on the upstream side from an adding position of the urea water 6, and NOx adsorbing catalyst 17 having a property in which NOx in the exhaust 3 is physically adsorbed at a temperature lower than an active lower limit temperature of the selective reduction type catalyst 5 and the absorbed NOx is discharged at a temperature near an active lower limit temperature of the selective reduction type catalyst 5, between the particulate filter 10 and an adding position of the urea water 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied.

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガス中で尿素水がアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる(例えば特許文献1参照)。   That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and NOx in the exhaust gas is converted into the selective catalytic reduction catalyst. It is reduced and purified well by ammonia (see, for example, Patent Document 1).

他方、ディーゼルエンジンの排気浄化を図る場合、排気ガス中のNOxを除去するだけでは十分ではなく、排気ガス中に含まれるパティキュレート(Particulate Matter:粒子状物質)についてもパティキュレートフィルタを通して捕集する必要があるが、この種のパティキュレートフィルタを採用する場合には、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要がある。   On the other hand, when purifying exhaust gas from a diesel engine, it is not enough to remove NOx in the exhaust gas, and particulates contained in the exhaust gas are also collected through the particulate filter. However, when this type of particulate filter is employed, it is necessary to regenerate the particulate filter by appropriately burning and removing the particulate before the exhaust resistance increases due to clogging.

このため、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流の排気ガス中に燃料を添加してパティキュレートフィルタを強制再生することが考えられている。   For this reason, a flow-through type oxidation catalyst is attached to the preceding stage of the particulate filter, and fuel is added to the exhaust gas upstream from the oxidation catalyst when the amount of particulate accumulation increases. It is considered to force playback.

つまり、酸化触媒より上流の排気ガス中に燃料を添加すれば、その添加燃料(HC)が前段の酸化触媒を通過する間に酸化反応するので、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, if fuel is added to the exhaust gas upstream of the oxidation catalyst, the added fuel (HC) undergoes an oxidation reaction while passing through the preceding oxidation catalyst. The catalyst bed temperature of the particulate filter immediately after that is raised, the particulates are burned out, and the particulate filter is regenerated.

一般的に、前述した如き燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実行して排気ガス中に燃料を添加することが考えられているが、その添加燃料を効率良く強制再生に活用し且つ排気ガスが極力温度降下しないうちに添加燃料を酸化処理するためには、前記パティキュレートフィルタ及びその前段の酸化触媒を選択還元型触媒より上流側に配置することが好ましいものと考えられている。   In general, as a specific means for performing the fuel addition as described above, the post-injection is executed at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. It is considered that the fuel is added to the exhaust gas, but in order to efficiently utilize the added fuel for forced regeneration and oxidize the added fuel before the temperature of the exhaust gas drops as much as possible, It is considered preferable to dispose the particulate filter and the preceding oxidation catalyst upstream of the selective reduction catalyst.

ただし、前述の如き尿素水を還元剤として使用する選択還元型触媒にあっては、その還元反応時における十分な触媒活性を得るのに約200℃以上の排気温度が必要となるので、排気温度が200℃を下まわるような低い運転状態(一般的に低負荷運転領域に排気温度が低い領域が拡がっている)が続くと、NOx低減率がなかなか高まらないという問題があり、例えば、都市部の路線バス等のように渋滞路ばかりを走行するような運行形態の車両では、必要な所定温度以上での運転が長く継続しないため、NOx低減率が低いまま推移してしまって良好なNOx低減効果を得ることができない虞れがあった。   However, in the selective reduction type catalyst using urea water as a reducing agent as described above, an exhaust temperature of about 200 ° C. or higher is required to obtain sufficient catalytic activity during the reduction reaction. If the operation condition is low such that the temperature is below 200 ° C. (generally, the low exhaust temperature range extends to the low load operation range), there is a problem that the NOx reduction rate does not increase easily. For vehicles that run only on congested roads such as local buses, etc., the operation above the required predetermined temperature does not continue for a long time, so the NOx reduction rate remains low and good NOx reduction There was a possibility that the effect could not be obtained.

そこで、本発明者らは、パティキュレートフィルタの前段に装備される酸化触媒に、排気ガス中のNOxを物理的に吸着する性質を持たせ、排気ガスの温度が選択還元型触媒の活性下限温度(約200℃程度)よりも低い運転領域で酸化触媒にNOxを吸着させることでNOx低減を図り得るようにすることを検討している。
特開2004−218475号公報
Therefore, the inventors of the present invention have given the oxidation catalyst provided in the preceding stage of the particulate filter the property of physically adsorbing NOx in the exhaust gas, and the temperature of the exhaust gas is the lower limit temperature of the selective catalytic reduction catalyst. We are studying NOx reduction by adsorbing NOx to the oxidation catalyst in an operating region lower than (about 200 ° C.).
JP 2004-218475 A

しかしながら、前述の如きNOx吸着能を備えた酸化触媒をゼオライト等を主体として構成して検証してみたところ、この種の酸化触媒は、選択還元型触媒の活性下限温度である約200℃よりも低い触媒床温度で排気ガス中のNOxを物理的に吸着する一方、この約200℃近辺から吸着NOxを放出することが確認されたが、長時間のエンジン停止後の始動時(コールドスタート時)等においては、上流側の酸化触媒の触媒床温度が約200℃程度まで先行して上昇しても、該酸化触媒と選択還元型触媒との間にパティキュレートフィルタが介在する関係で該パティキュレートフィルタの熱容量分だけ選択還元型触媒の触媒床温度の上昇が遅くなり、該選択還元型触媒の触媒床温度が所要の時間遅れをもって緩慢に約200℃程度まで上昇してくるため、この触媒床温度の上昇の時間遅れによって、酸化触媒から吸着NOxの放出が開始されても選択還元型触媒でNOxを還元浄化できない時間帯が生じてしまい、この時間帯でのNOx排出量が増加してしまうという問題が起こり得ることが判明した。   However, when the oxidation catalyst having NOx adsorption ability as described above is mainly composed of zeolite or the like and verified, this kind of oxidation catalyst is lower than about 200 ° C. which is the lower limit active temperature of the selective catalytic reduction catalyst. While NOx in exhaust gas is physically adsorbed at a low catalyst bed temperature, it has been confirmed that adsorbed NOx is released from around 200 ° C, but at the start after a long engine stop (cold start) In this case, even if the upstream catalyst bed temperature of the upstream oxidation catalyst rises to about 200 ° C., the particulate filter is interposed by the particulate filter between the oxidation catalyst and the selective reduction catalyst. The increase in the catalyst bed temperature of the selective reduction catalyst is delayed by the heat capacity of the filter, and the catalyst bed temperature of the selective reduction catalyst slowly rises to about 200 ° C. with a required time delay. Therefore, due to the time delay of the rise in the catalyst bed temperature, there occurs a time zone in which NOx cannot be reduced and purified by the selective catalytic reduction catalyst even if the release of adsorbed NOx from the oxidation catalyst is started, and NOx emission in this time zone It has been found that the problem of increasing amounts can occur.

本発明は上述の実情に鑑みてなしたもので、長時間のエンジン停止後の始動時等に支障をきたすことなく、従来より低い排気温度から良好なNOx低減効果が得られるようにすることを目的としている。   The present invention has been made in view of the above-described circumstances, and is intended to obtain a good NOx reduction effect from an exhaust temperature lower than that of the conventional one without causing any trouble at the time of starting after a long engine stop. It is aimed.

本発明は、排気管の途中に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を設け且つ該選択還元型触媒より上流側の排気管内に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置より上流の排気管に、酸化触媒を前段に付帯装備したパティキュレートフィルタを配設すると共に、該パティキュレートフィルタと前記尿素水の添加位置との間に、前記選択還元型触媒の活性下限温度よりも低い温度で排気ガス中のNOxを物理的に吸着し且つその吸着NOxを前記選択還元型触媒の活性下限温度に近い温度で放出する性質を備えたNOx吸着触媒を配設したことを特徴とするものである。   The present invention provides a selective reduction catalyst capable of selectively reacting NOx with ammonia even in the presence of oxygen in the middle of an exhaust pipe, and urea water is added as a reducing agent in the exhaust pipe upstream of the selective reduction catalyst. An exhaust gas purification device that reduces and purifies NOx, and in the exhaust pipe upstream from the urea water addition position, a particulate filter with an oxidation catalyst attached to the preceding stage is disposed, and the particulate filter and Between the addition position of the urea water, NOx in the exhaust gas is physically adsorbed at a temperature lower than the activity lower limit temperature of the selective reduction catalyst, and the adsorbed NOx is adsorbed to the activity lower limit temperature of the selective reduction catalyst. The NOx adsorption catalyst having the property of releasing at a temperature close to is disposed.

而して、このようにすれば、選択還元型触媒の触媒床温度が活性下限温度に達していない時でも、排気ガス中のNOxがNOx吸着触媒に物理的に吸着されるので、前記選択還元型触媒でNOxを還元浄化できない低排気温度条件でもNOx排出量が抑制されることになり、また、選択還元型触媒の触媒床温度が活性下限温度に達した後は、NOxを尿素水添加により還元浄化することが可能となる。   Thus, in this way, even when the catalyst bed temperature of the selective catalytic reduction catalyst does not reach the lower activity limit temperature, NOx in the exhaust gas is physically adsorbed by the NOx adsorption catalyst. NOx emissions will be suppressed even under low exhaust temperature conditions where NOx cannot be reduced and purified by the type catalyst, and after the catalyst bed temperature of the selective reduction type catalyst reaches the activation lower limit temperature, NOx is added by adding urea water. Reduction and purification can be performed.

即ち、選択還元型触媒の上流側に尿素水を添加すると、該尿素水が排気ガス中でアンモニアと炭酸ガスに熱分解され、活性下限温度以上の温度条件下で活性状態となっている選択還元型触媒上で排気ガス中のNOxがアンモニアと効果的に反応して良好に還元浄化されることになる。   That is, when urea water is added to the upstream side of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and the selective reduction is in an active state under a temperature condition that is equal to or higher than the activation lower limit temperature. The NOx in the exhaust gas effectively reacts with ammonia on the type catalyst and is favorably reduced and purified.

他方、長時間のエンジン停止後の始動時(コールドスタート時)等において、パティキュレートフィルタの後段に配置されるNOx吸着触媒は、その前段のパティキュレートフィルタの熱容量分(酸化触媒の熱容量分も含まれ得る)だけ触媒床温度が上がり難くなり、パティキュレートフィルタの前段の酸化触媒にNOx吸着能を持たせた場合よりも放出温度に達するのが遅くなる。   On the other hand, when starting after a long engine stop (cold start), etc., the NOx adsorption catalyst placed at the latter stage of the particulate filter includes the heat capacity of the preceding particulate filter (including the heat capacity of the oxidation catalyst). As a result, the catalyst bed temperature becomes difficult to rise, and the release temperature is reached later than when the oxidation catalyst in the previous stage of the particulate filter has NOx adsorption ability.

このため、NOx吸着触媒が放出温度に達して吸着NOxの放出が開始されるタイミングと、選択還元型触媒が前記NOx吸着触媒の放出温度に近い活性下限温度に達してNOxを尿素水添加により還元浄化できる条件が整うタイミングとが近づき、NOx吸着触媒から吸着NOxの放出が開始されても選択還元型触媒でNOxを還元浄化できない時間帯が大幅に短縮され、この時間帯でNOx排出量が増加してしまうといった事態が極力回避されることになる。   For this reason, the timing at which the NOx adsorption catalyst reaches the release temperature and the release of the adsorbed NOx starts, and the selective catalytic reduction catalyst reaches the activation lower limit temperature close to the release temperature of the NOx adsorption catalyst, and NOx is reduced by adding urea water. Even when the timing for purifying conditions approaches, the time period during which NOx cannot be reduced and purified by the selective reduction catalyst even if the release of adsorbed NOx from the NOx adsorption catalyst is started is greatly shortened, and the amount of NOx emissions increases during this time period. The situation of doing so will be avoided as much as possible.

上記した本発明の排気浄化装置によれば、選択還元型触媒の触媒床温度が活性下限温度に達していない時でも、排気ガス中のNOxをNOx吸着触媒に物理的に吸着させてNOx排出量を抑制することができるので、排気温度の低い運転状態が長く続くような運行形態の車両であっても、従来より低い排気温度から良好なNOx低減効果が得られるようにすることができ、しかも、長時間のエンジン停止後の始動時(コールドスタート時)等でNOx吸着触媒から放出されるNOxを選択還元型触媒で還元浄化できない時間帯が極めて短いものとなるため、この時間帯でNOx排出量が増加してしまう事態を極力回避することができるという優れた効果を奏し得る。   According to the above-described exhaust purification apparatus of the present invention, even when the catalyst bed temperature of the selective catalytic reduction catalyst has not reached the activation lower limit temperature, NOx in the exhaust gas is physically adsorbed by the NOx adsorption catalyst, and the NOx emission amount As a result, even if the vehicle is operated in such a manner that the operation state with a low exhaust temperature continues for a long time, it is possible to obtain a good NOx reduction effect from the exhaust temperature lower than before, and Because NOx released from the NOx adsorption catalyst, such as when starting after a long engine stop (cold start), cannot be reduced and purified by the selective catalytic reduction catalyst, the time period during which NOx is discharged is extremely short. The outstanding effect that the situation which quantity increases can be avoided as much as possible can be produced.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒5が装備されている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, the exhaust pipe 4 through which the exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows is shown. In addition, a selective catalytic reduction catalyst 5 having the property of selectively reacting NOx with ammonia even in the presence of oxygen is provided.

また、この選択還元型触媒5より上流側の排気管4に、尿素水6を還元剤として噴射する尿素水添加用インジェクタ7(尿素水添加手段)が設置されていると共に、前記選択還元型触媒5の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒8が装備されている。 A urea water addition injector 7 (urea water addition means) for injecting urea water 6 as a reducing agent is installed in the exhaust pipe 4 upstream of the selective reduction catalyst 5 and the selective reduction catalyst. Immediately after 5, an NH 3 slip catalyst 8 that oxidizes excess ammonia as a countermeasure against leaked ammonia is provided.

更に、前記尿素水添加用インジェクタ7による尿素水6の添加位置より上流側の排気管4に、排気ガス3中の未燃燃料分を酸化処理する機能を高めた酸化触媒9が装備されていると共に、該酸化触媒9の直後には、自身にも酸化触媒を一体的に担持したパティキュレートフィルタ10が装備されている。   Further, an oxidation catalyst 9 having an enhanced function of oxidizing unburned fuel in the exhaust gas 3 is provided in the exhaust pipe 4 upstream of the urea water 6 addition position by the urea water addition injector 7. In addition, immediately after the oxidation catalyst 9, a particulate filter 10 that integrally carries the oxidation catalyst is also provided.

そして、前記パティキュレートフィルタ10の直後には、前記選択還元型触媒5の活性下限温度である約200℃よりも低い約150℃以下の温度で排気ガス3中のNOxを物理的に吸着し且つその吸着NOxを前記選択還元型触媒5の活性下限温度に近い温度(約200℃程度)で放出する性質を備えたNOx吸着触媒17が装備されている。   Immediately after the particulate filter 10, NOx in the exhaust gas 3 is physically adsorbed at a temperature of about 150 ° C. or lower which is lower than about 200 ° C. which is the lower limit activation temperature of the selective catalytic reduction catalyst 5, and A NOx adsorption catalyst 17 having a property of releasing the adsorbed NOx at a temperature close to the lower limit temperature of the selective catalytic reduction catalyst 5 (about 200 ° C.) is provided.

尚、ここで言うNOx吸着触媒17とは、既に実用化が進められているNOx吸蔵還元触媒(排気空燃比がリーンの時に排気ガス3中のNOxを酸化して硝酸塩の状態で一時的に吸蔵し且つ排気ガス3中のO2濃度が低下した時に未燃の炭化水素やCO等の介在によりNOxを分解放出して還元浄化する性質を持つもの)とは全く異なる性質のものであり、排気ガス3中のNOxや炭化水素を物理的に吸着する能力に優れたゼオライトから成るフロースルー型の触媒のことを意味している。 The NOx adsorption catalyst 17 referred to here is a NOx occlusion reduction catalyst that has already been put into practical use (NOx in the exhaust gas 3 is oxidized and temporarily occluded in the form of nitrate when the exhaust air-fuel ratio is lean). In addition, when the O 2 concentration in the exhaust gas 3 is lowered, it has a property that is completely different from that having the property of decomposing and releasing NOx through the inclusion of unburned hydrocarbons, CO, etc. This means a flow-through type catalyst made of zeolite having excellent ability to physically adsorb NOx and hydrocarbons in gas 3.

ゼオライトはアルミナケイ酸塩質の多孔性結晶材料であり、結晶中に均一な分子レベルの細孔を規則正しく配向して備えていることを特徴とし、この細孔を通じて各種の分子を空洞又は孔路内に吸着する性質を備えており、このような性質以外にも、細孔が均一であることに基づく分子ふるい作用を持つ性質(細孔の孔径より小さい分子しか吸着しない)、結晶構造中のカチオンとアニオンの作用により極性物質を強く吸着する性質、触媒作用を持つ性質も兼ね備えている。   Zeolite is an alumina silicate porous crystal material, characterized by having uniform molecular level pores oriented regularly in the crystal, through which various molecules are inserted into cavities or channels. In addition to these properties, it has a molecular sieving action based on the uniform pores (only adsorbs molecules smaller than the pore diameter), It also has the property of strongly adsorbing polar substances by the action of cations and anions, and the property of having a catalytic action.

また、この種のゼオライトは、その骨格構造の型に基づき多種類に分類されるが、低排気温度条件下で細孔内へNOxと炭化水素を吸着する能力と、吸着した炭化水素を低排気温度条件下で緩慢に排気ガス中の酸素と反応させて亜酸化炭化水素とする能力と、高耐熱性、高耐久性とに優れたものを適宜に選定すれば良く、同様の性質を備えたゼオライト類縁化合物の中から選定することも可能である。   In addition, this type of zeolite is classified into many types based on the type of its skeletal structure, but it has the ability to adsorb NOx and hydrocarbons into the pores under low exhaust temperature conditions, and the adsorbed hydrocarbons are low exhaust. What is necessary is just to select the thing which was excellent in the ability to make it react with oxygen in exhaust gas slowly under temperature conditions, and to make it a sub-oxide hydrocarbon, and high heat resistance and high durability. It is also possible to select from zeolite-related compounds.

一方、図示しない運転席のアクセルには、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ11(負荷センサ)が備えられていると共に、ディーゼルエンジン1の適宜位置には、その回転数を検出する回転センサ12が装備されており、これらアクセルセンサ11及び回転センサ12からのアクセル開度信号11a及び回転数信号12aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置13に対し入力されるようになっている。   On the other hand, the accelerator of the driver's seat (not shown) is provided with an accelerator sensor 11 (load sensor) that detects the accelerator opening as a load of the diesel engine 1, and the rotational speed is set at an appropriate position of the diesel engine 1. The rotation sensor 12 to detect is equipped, The accelerator opening signal 11a and the rotation speed signal 12a from these accelerator sensor 11 and the rotation sensor 12 are input into the control apparatus 13 which comprises an engine control computer (ECU: Electronic Control Unit). It has come to be.

また、前記制御装置13においては、アクセル開度信号11a及び回転数信号12aから判断される現在の運転状態に応じ、各気筒内に燃料を噴射する燃料噴射装置14に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号14aが出力されるようになっている。   Further, in the control device 13, the fuel injection timing and injection toward the fuel injection device 14 that injects the fuel into each cylinder according to the current operation state determined from the accelerator opening signal 11 a and the rotational speed signal 12 a. A fuel injection signal 14a for commanding the amount is output.

ここで、前記燃料噴射装置14は、各気筒毎に装備される図示しない複数のインジェクタにより構成されており、これら各インジェクタの電磁弁が前記制御装置13からの燃料噴射信号14aにより適宜に開弁制御されて燃料の噴射タイミング及び噴射量(開弁時間)が適切に制御されるようになっている。   Here, the fuel injection device 14 is constituted by a plurality of injectors (not shown) provided for each cylinder, and the electromagnetic valves of these injectors are appropriately opened by a fuel injection signal 14a from the control device 13. Thus, the fuel injection timing and the injection amount (valve opening time) are appropriately controlled.

ただし、本形態例においては、制御装置13でアクセル開度信号11a及び回転数信号12aに基づき通常モードの燃料噴射信号14aが決定されるようになっている一方、パティキュレートフィルタ10の強制再生を行う必要が生じた際に、通常モードから再生モードに切り替わり、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミング(開始時期がクランク角90゜〜130゜の範囲)でポスト噴射を行うような燃料噴射信号14aが決定されるようになっている。   However, in the present embodiment, the control device 13 determines the fuel injection signal 14a in the normal mode based on the accelerator opening signal 11a and the rotation speed signal 12a, while the forced regeneration of the particulate filter 10 is performed. When it is necessary to perform this, the normal mode is switched to the regeneration mode, and the non-ignition timing (start timing) later than the compression top dead center following the main injection of fuel performed near the compression top dead center (crank angle 0 °). The fuel injection signal 14a is determined so as to perform post-injection at a crank angle of 90 ° to 130 °.

つまり、このようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス3中に未燃の燃料(主としてHC:炭化水素)が添加されることになり、この未燃の燃料が酸化触媒9を通過する間に酸化反応し、その反応熱で昇温した排気ガス3の流入により直後のパティキュレートフィルタ10の触媒床温度が上げられてパティキュレートが燃焼除去されることになる。   That is, when post-injection is performed at a non-ignition timing later than the compression top dead center following main injection, unburned fuel (mainly HC: hydrocarbon) is added to the exhaust gas 3 by this post-injection. The unburned fuel undergoes an oxidation reaction while passing through the oxidation catalyst 9, and the catalyst bed temperature of the particulate filter 10 immediately after that rises due to the inflow of the exhaust gas 3 heated by the reaction heat. Thus, the particulates are burned off.

また、この制御装置13においては、ディーゼルエンジン1の回転数と燃料噴射信号14aの出力値から判る燃料の噴射量とを抽出し、これら回転数と噴射量とによるパティキュレートの発生量マップからディーゼルエンジン1の現在の運転状態に基づくパティキュレートの基本的な発生量を推定し、この基本的な発生量に対しパティキュレートの発生にかかわる各種の条件を考慮した補正係数を掛け且つ現在の運転状態におけるパティキュレートの処理量を減算して最終的な発生量を求め、この最終的な発生量を時々刻々積算してパティキュレートの堆積量を推定し、その堆積量が所定の設定値に達した時にパティキュレートフィルタ10に強制再生を行う必要が生じたものと判定し、温度センサ15からの検出信号15aに基づき排気温度が酸化触媒9の活性下限温度(約150℃程度)以上となるのを待って通常モードから昇温モードに切り替わるようになっている。   Further, in the control device 13, the number of revolutions of the diesel engine 1 and the amount of fuel injection determined from the output value of the fuel injection signal 14a are extracted, and diesel is generated from the particulate generation map based on the number of revolutions and the amount of injection. The basic generation amount of particulates based on the current operation state of the engine 1 is estimated, and the basic generation amount is multiplied by a correction coefficient considering various conditions relating to the generation of particulates, and the current operation state The final generation amount is obtained by subtracting the particulate processing amount at, and the final generation amount is accumulated momentarily to estimate the particulate deposition amount, and the deposition amount reaches a predetermined set value. Sometimes, it is determined that the particulate filter 10 needs to be forcibly regenerated, and the exhaust temperature is determined based on the detection signal 15 a from the temperature sensor 15. There has been a switch from the normal mode to the heating mode waiting to become active lower limit temperature of the oxidation catalyst 9 (about 150 about ° C.) or higher.

尚、このようなパティキュレートの堆積量を推定する方法には各種の考え方があり、ここに例示した推定方法以外の手法を用いてパティキュレートの堆積量を推定することも勿論可能であり、パティキュレートフィルタ10の前後の差圧に基づいてパティキュレートの堆積量を推定したり、運転時間や走行距離を目安としてパティキュレートの堆積量を推定したりすることも可能である。   There are various ways of estimating the amount of particulate deposition, and it is of course possible to estimate the amount of particulate deposition using a method other than the estimation method exemplified here. It is also possible to estimate the accumulated amount of particulates based on the differential pressure before and after the curate filter 10, or to estimate the accumulated amount of particulates based on the operation time and travel distance.

また、前記制御装置13においては、ディーゼルエンジン1の回転数と燃料の噴射量等に基づきNOxの発生量も推定され、このNOxの発生量に見合う必要量の尿素水6の添加が尿素水添加用インジェクタ7に向け尿素水噴射信号7aとして指示されるようになっているが、温度センサ16からの検出信号16aから判断される選択還元型触媒5直前の排気温度に応じて尿素水6の添加量が適宜に修正されるようにもなっている。   The control device 13 also estimates the amount of NOx generated based on the rotational speed of the diesel engine 1 and the amount of fuel injected, and the addition of a required amount of urea water 6 commensurate with the amount of NOx generated is the addition of urea water. The urea water injection signal 7 a is directed to the injector 7, but the urea water 6 is added according to the exhaust gas temperature immediately before the selective catalytic reduction catalyst 5 determined from the detection signal 16 a from the temperature sensor 16. The amount can be modified accordingly.

而して、このようにすれば、選択還元型触媒5の触媒床温度が活性下限温度(約200℃程度)に達していない時でも、排気ガス3中のNOxがNOx吸着触媒17に物理的に吸着されるので、前記選択還元型触媒5でNOxを還元浄化できない低排気温度条件でもNOx排出量が抑制されることになる。   Thus, in this way, even when the catalyst bed temperature of the selective catalytic reduction catalyst 5 does not reach the lower limit of activation temperature (about 200 ° C.), NOx in the exhaust gas 3 is physically transferred to the NOx adsorption catalyst 17. Therefore, the NOx emission amount is suppressed even under low exhaust temperature conditions where NOx cannot be reduced and purified by the selective catalytic reduction catalyst 5.

また、温度センサ16からの検出信号16aに基づき制御装置13にて排気ガス3の温度が選択還元型触媒5の活性下限温度(約200℃程度)以上となったことが確認されたら、制御装置13から尿素水添加用インジェクタ7に向け尿素水噴射信号7aが出力され、この尿素水添加用インジェクタ7から尿素水6が噴射されて排気ガス3中でアンモニアと炭酸ガスに熱分解され、活性下限温度(約200℃程度)以上の温度条件下で活性状態となっている選択還元型触媒5上で排気ガス3中のNOxがアンモニアと効果的に反応して良好に還元浄化されることになる。   When it is confirmed by the control device 13 based on the detection signal 16a from the temperature sensor 16 that the temperature of the exhaust gas 3 is equal to or higher than the lower limit temperature of the selective catalytic reduction catalyst 5 (about 200 ° C.), the control device. 13 outputs a urea water injection signal 7a to the urea water addition injector 7 and the urea water 6 is injected from the urea water addition injector 7 and is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas 3, thereby lowering the lower limit of activity. The NOx in the exhaust gas 3 reacts effectively with ammonia on the selective catalytic reduction catalyst 5 that is in an active state under temperature conditions (about 200 ° C.) or higher, and is reduced and purified well. .

しかも、長時間のエンジン停止後の始動時(コールドスタート時)等において、パティキュレートフィルタ10の後段に配置されるNOx吸着触媒17は、その前段のパティキュレートフィルタ10の熱容量分(酸化触媒9の熱容量分も含まれ得る)だけ触媒床温度が上がり難くなり、パティキュレートフィルタ10の前段の酸化触媒9にNOx吸着能を持たせた場合よりも放出温度(約200℃程度)に達するのが遅くなる。   Moreover, at the time of starting after a long engine stop (during cold start) or the like, the NOx adsorption catalyst 17 arranged at the subsequent stage of the particulate filter 10 is equivalent to the heat capacity of the preceding particulate filter 10 (of the oxidation catalyst 9). The catalyst bed temperature is difficult to rise as much as the heat capacity can be included), and the release temperature (about 200 ° C.) is reached later than when the oxidation catalyst 9 in the previous stage of the particulate filter 10 has NOx adsorption ability. Become.

このため、NOx吸着触媒17が放出温度(約200℃程度)に達して吸着NOxの放出が開始されるタイミングと、選択還元型触媒5が前記NOx吸着触媒17の放出温度に近い活性下限温度(約200℃程度)に達してNOxを尿素水6の添加により還元浄化できる条件が整うタイミングとが近づき、NOx吸着触媒17から吸着NOxの放出が開始されても選択還元型触媒5でNOxを還元浄化できない時間帯が大幅に短縮され、この時間帯でNOx排出量が増加してしまうといった事態が極力回避されることになる。   For this reason, the timing at which the NOx adsorption catalyst 17 reaches the release temperature (about 200 ° C.) and the release of the adsorbed NOx starts, and the selective lower limit catalyst 5 has a lower activation limit temperature (close to the release temperature of the NOx adsorption catalyst 17). NOx is reduced by the selective catalytic reduction catalyst 5 even when the release of adsorbed NOx from the NOx adsorbing catalyst 17 starts when the conditions for reducing and purifying NOx by the addition of urea water 6 are approached. The time zone that cannot be purified is greatly shortened, and the situation where the amount of NOx emission increases during this time zone is avoided as much as possible.

ここで、本発明者らが行った実験結果によれば、図2に長時間のエンジン停止後の始動時(コールドスタート時)における排気温度の推移をグラフで示す如く、酸化触媒9の触媒床温度が曲線Aで示すように推移し、NOx吸着触媒17の触媒床温度が曲線Bで示すように推移し、選択還元型触媒5の触媒床温度が曲線Cで示すように推移するが、このグラフから判る通り、酸化触媒9の触媒床温度の上昇に対しNOx吸着触媒17の触媒床温度が大幅な時間遅れをもって追従する一方、このNOx吸着触媒17の触媒床温度の上昇に対し選択還元型触媒5の触媒床温度は僅かな時間遅れをもって追従することになる。   Here, according to the results of experiments conducted by the present inventors, the catalyst bed of the oxidation catalyst 9 is shown in FIG. 2 as a graph showing the transition of the exhaust gas temperature at the start after a long engine stop (cold start). The temperature changes as shown by curve A, the catalyst bed temperature of the NOx adsorption catalyst 17 changes as shown by curve B, and the catalyst bed temperature of the selective catalytic reduction catalyst 5 changes as shown by curve C. As can be seen from the graph, the catalyst bed temperature of the NOx adsorption catalyst 17 follows the rise of the catalyst bed temperature of the oxidation catalyst 9 with a significant time delay, while the selective reduction type against the rise of the catalyst bed temperature of the NOx adsorption catalyst 17. The catalyst bed temperature of the catalyst 5 follows with a slight time delay.

このため、パティキュレートフィルタ10の前段の酸化触媒9にNOx吸着能を持たせたならば、該酸化触媒9の触媒床温度がt1の段階で約150℃程度に達してNOxの吸着が終了し、ここからそれほど時間が経過しないt2の段階で約200℃程度に達して吸着NOxの放出が始まると、ここからかなり時間が経過したt5の段階で選択還元型触媒5の触媒床温度が活性下限温度の約200℃程度に達するまで放出NOxを還元浄化できない時間帯x’ができてしまうことになる。 For this reason, if the oxidation catalyst 9 in the previous stage of the particulate filter 10 has the NOx adsorption ability, the catalyst bed temperature of the oxidation catalyst 9 reaches about 150 ° C. at the stage of t 1 and the adsorption of NOx is completed. and, when the release of adsorbed NOx starts reaches here about much time is about 200 ° C. at the stage of t 2 has not yet passed, the catalyst bed temperature of the selective reduction catalyst 5 at the stage of t 5 a lapse of considerable time from here Therefore, a time zone x ′ in which the released NOx cannot be reduced and purified until the lower limit of activation temperature reaches about 200 ° C. is formed.

これに対し、本形態例のように、パティキュレートフィルタ10の後段にNOx吸着触媒17を配置したならば、その触媒床温度がt1よりかなり後のt3の段階までNOxを吸着し続けることが可能となり、しかも、このNOx吸着触媒17がNOxを放出し始める約200℃程度に達するのは、前記選択還元型触媒5が活性下限温度の約200℃程度に達するt5より少し前のt4の段階となるため、NOx吸着触媒17から吸着NOxの放出が開始されても選択還元型触媒5でNOxを還元浄化できない時間帯xは、パティキュレートフィルタ10の前段の酸化触媒9にNOx吸着能を持たせた場合よりも大幅に短縮されることになる。 In contrast, as in this embodiment, if you place the NOx adsorption catalyst 17 downstream of the particulate filter 10, that the catalyst bed temperature continues to adsorb NOx until the stage of t 3 after considerably from t 1 In addition, the NOx adsorption catalyst 17 reaches about 200 ° C. at which NOx starts to be released. The t5 slightly before t 5 when the selective catalytic reduction catalyst 5 reaches about 200 ° C., which is the lowest activity temperature. since the fourth stage, the time period x which can not reduce and purify the NOx emission in the selective reduction catalyst 5 be initiated adsorption NOx from the NOx adsorption catalyst 17, NOx adsorbed in the oxidation catalyst 9 in front of the particulate filter 10 It will be greatly shortened compared with the case of having the ability.

従って、上記形態例によれば、選択還元型触媒5の触媒床温度が活性下限温度の約200℃程度に達していない時でも、排気ガス3中のNOxをNOx吸着触媒17に物理的に吸着させてNOx排出量を抑制することができるので、排気温度の低い運転状態が長く続くような運行形態の車両であっても、従来より低い排気温度から良好なNOx低減効果が得られるようにすることができ、しかも、長時間のエンジン停止後の始動時(コールドスタート時)等でNOx吸着触媒17から放出されるNOxを選択還元型触媒5で還元浄化できない時間帯xが極めて短いものとなるため、この時間帯xでNOx排出量が増加してしまう事態を極力回避することができる。   Therefore, according to the above embodiment, NOx in the exhaust gas 3 is physically adsorbed to the NOx adsorption catalyst 17 even when the catalyst bed temperature of the selective catalytic reduction catalyst 5 has not reached about the activation lower limit temperature of about 200 ° C. Therefore, even if the vehicle is operated in such a manner that the operation state with a low exhaust temperature continues for a long time, a favorable NOx reduction effect can be obtained from a lower exhaust temperature than before. In addition, the time zone x during which NOx released from the NOx adsorption catalyst 17 cannot be reduced and purified by the selective reduction catalyst 5 at the start after a long engine stop (during cold start) or the like becomes extremely short. Therefore, it is possible to avoid as much as possible the situation in which the NOx emission amount increases in this time zone x.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 酸化触媒とNOx吸着触媒と選択還元型触媒の温度推移を示すグラフである。It is a graph which shows the temperature transition of an oxidation catalyst, a NOx adsorption catalyst, and a selective reduction catalyst.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
3 排気ガス
4 排気管
5 選択還元型触媒
6 尿素水
7 尿素水添加用インジェクタ
9 酸化触媒
10 パティキュレートフィルタ
17 NOx吸着触媒
1 Diesel engine (engine)
DESCRIPTION OF SYMBOLS 3 Exhaust gas 4 Exhaust pipe 5 Selective reduction type catalyst 6 Urea water 7 Injector for urea water addition 9 Oxidation catalyst 10 Particulate filter 17 NOx adsorption catalyst

Claims (1)

排気管の途中に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を設け且つ該選択還元型触媒より上流側の排気管内に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置より上流の排気管に、酸化触媒を前段に付帯装備したパティキュレートフィルタを配設すると共に、該パティキュレートフィルタと前記尿素水の添加位置との間に、前記選択還元型触媒の活性下限温度よりも低い温度で排気ガス中のNOxを物理的に吸着し且つその吸着NOxを前記選択還元型触媒の活性下限温度に近い温度で放出する性質を備えたNOx吸着触媒を配設したことを特徴とする排気浄化装置。   A selective reduction catalyst that can selectively react NOx with ammonia even in the presence of oxygen is provided in the middle of the exhaust pipe, and urea water is added as a reducing agent in the exhaust pipe upstream of the selective reduction catalyst to reduce NOx. An exhaust purification device for purification, wherein a particulate filter having an oxidation catalyst attached to the upstream stage is disposed in an exhaust pipe upstream from a urea water addition position, and the particulate filter and the urea water Between the addition position, NOx in the exhaust gas is physically adsorbed at a temperature lower than the lower limit active temperature of the selective catalytic reduction catalyst, and the adsorbed NOx is at a temperature close to the lower active limit temperature of the selective catalytic reduction catalyst. An exhaust gas purification apparatus comprising a NOx adsorption catalyst having a releasing property.
JP2007178713A 2007-07-06 2007-07-06 Exhaust emission control device Pending JP2009013932A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007178713A JP2009013932A (en) 2007-07-06 2007-07-06 Exhaust emission control device
PCT/JP2008/001797 WO2009008150A1 (en) 2007-07-06 2008-07-04 Exhaust purification apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007178713A JP2009013932A (en) 2007-07-06 2007-07-06 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2009013932A true JP2009013932A (en) 2009-01-22

Family

ID=40228343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007178713A Pending JP2009013932A (en) 2007-07-06 2007-07-06 Exhaust emission control device

Country Status (2)

Country Link
JP (1) JP2009013932A (en)
WO (1) WO2009008150A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892891A (en) * 2009-05-18 2010-11-24 三菱自动车工业株式会社 Exhaust emission control device
JP2011017335A (en) * 2009-06-12 2011-01-27 Denso Corp Device for controlling waste heat of engine
JP2011094482A (en) * 2009-10-27 2011-05-12 Hino Motors Ltd Exhaust gas post-processing device of diesel engine
US8612117B2 (en) 2009-06-12 2013-12-17 Denso Corporation Apparatus for controlling the amount of waste heat of an engine
JP2016050523A (en) * 2014-08-29 2016-04-11 日野自動車株式会社 Exhaust emission control system
JP2019157739A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Exhaust purifying device for internal combustion engine
JP2019190417A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle
US10519829B2 (en) 2016-02-22 2019-12-31 Hino Motors, Ltd. Exhaust purification system
CN114375367A (en) * 2019-07-15 2022-04-19 弗劳恩霍夫应用研究促进协会 Device and method for exhaust gas aftertreatment and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953442A (en) * 1995-08-14 1997-02-25 Toyota Motor Corp Exhaust emission control method of diesel engine
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953442A (en) * 1995-08-14 1997-02-25 Toyota Motor Corp Exhaust emission control method of diesel engine
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892891B (en) * 2009-05-18 2014-04-02 三菱自动车工业株式会社 Exhaust emission control device
JP2010265873A (en) * 2009-05-18 2010-11-25 Mitsubishi Motors Corp Exhaust emission control device
CN101892891A (en) * 2009-05-18 2010-11-24 三菱自动车工业株式会社 Exhaust emission control device
JP4711006B2 (en) * 2009-05-18 2011-06-29 三菱自動車工業株式会社 Exhaust purification device
JP2011017335A (en) * 2009-06-12 2011-01-27 Denso Corp Device for controlling waste heat of engine
US8612117B2 (en) 2009-06-12 2013-12-17 Denso Corporation Apparatus for controlling the amount of waste heat of an engine
JP2011094482A (en) * 2009-10-27 2011-05-12 Hino Motors Ltd Exhaust gas post-processing device of diesel engine
JP2016050523A (en) * 2014-08-29 2016-04-11 日野自動車株式会社 Exhaust emission control system
US10519829B2 (en) 2016-02-22 2019-12-31 Hino Motors, Ltd. Exhaust purification system
JP2019157739A (en) * 2018-03-12 2019-09-19 いすゞ自動車株式会社 Exhaust purifying device for internal combustion engine
JP2019190417A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle
CN114375367A (en) * 2019-07-15 2022-04-19 弗劳恩霍夫应用研究促进协会 Device and method for exhaust gas aftertreatment and use thereof
JP7462730B2 (en) 2019-07-15 2024-04-05 フラウンホファー ゲセルシャフト ツール フェールデルンク ダー アンゲヴァンテン フォルシュンク エー.ファオ. Device and method for exhaust gas aftertreatment and use thereof

Also Published As

Publication number Publication date
WO2009008150A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
JP5000405B2 (en) Exhaust purification device
JP4785766B2 (en) Exhaust purification device
CN107023355B (en) Exhaust gas purification system and control method thereof
JP4274270B2 (en) NOx purification system and control method of NOx purification system
KR101091627B1 (en) Exhaust system
JP2009013932A (en) Exhaust emission control device
KR101048144B1 (en) Exhaust system
JP5062539B2 (en) Exhaust gas purification device for internal combustion engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2011033018A (en) Method for eliminating nitrogen oxide in exhaust gas and exhaust device for performing the same
JP2010261331A (en) Exhaust purification device
JP2007002697A (en) Exhaust emission control device
JP2010038034A (en) Control method of exhaust emission control device
WO2011148818A1 (en) Exhaust gas purification device for internal combustion engine
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same
WO2014112311A1 (en) Exhaust purification device for internal combustion engine
JP6707289B2 (en) Regeneration method of selective reduction catalyst
JP2008075620A (en) Exhaust emission control device
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP2012087703A (en) Exhaust gas treating device of internal combustion engine
JP5053134B2 (en) Exhaust purification device
JP2010261387A (en) Exhaust emission control device of internal combustion engine
JP2008133760A (en) Exhaust emission control device
JP2009013930A (en) Exhaust emission control device
JP6252375B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225