JP2019190417A - Exhaust emission control device and vehicle - Google Patents

Exhaust emission control device and vehicle Download PDF

Info

Publication number
JP2019190417A
JP2019190417A JP2018085991A JP2018085991A JP2019190417A JP 2019190417 A JP2019190417 A JP 2019190417A JP 2018085991 A JP2018085991 A JP 2018085991A JP 2018085991 A JP2018085991 A JP 2018085991A JP 2019190417 A JP2019190417 A JP 2019190417A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
nox
exhaust
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018085991A
Other languages
Japanese (ja)
Inventor
遊大 景山
Yudai Kageyama
遊大 景山
和貴 大石
Kazuki Oishi
和貴 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018085991A priority Critical patent/JP2019190417A/en
Publication of JP2019190417A publication Critical patent/JP2019190417A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

To provide an exhaust emission control device and a vehicle capable of surely desorbing NOx from a NOx adsorption catalyst of a bypass passage portion.SOLUTION: An exhaust emission control device includes an exhaust pipe, a turbine constituting a part of a supercharger, a NOx selective reduction type catalyst disposed at a downstream side with respect to the turbine in an exhausting direction of the exhaust gas and reducing nitrogen oxide in the exhaust gas in a case when a temperature of the exhaust gas is an active temperature, a bypass passage portion connecting a region at an upstream side in the exhausting direction with respect to the turbine, and a region between the turbine and the NOx selective reduction type catalyst in the exhaust pipe, a NOx adsorption catalyst disposed in the bypass passage portion and desorbing adsorbed nitrogen oxide in a case when the temperature of the exhaust gas is a desorption temperature higher than the active temperature, an adjustment portion for adjusting a flow rate of the exhaust gas flowing in the bypass passage portion, and a control portion for controlling the adjustment portion so that nitrogen oxide adsorbed to the NOx adsorption catalyst is desorbed according to a temperature of the exhaust gas.SELECTED DRAWING: Figure 1

Description

本開示は、排気浄化装置および車両に関する。   The present disclosure relates to an exhaust purification device and a vehicle.

従来、内燃機関の排気系において、排気管に設けられたタービンと、タービンの下流側に設けられた排気浄化触媒とを有する排気浄化装置が知られている。例えば、特許文献1には、排気管のタービンよりも上流側の部位から、タービンと排気浄化触媒との間の部位に接続されるバイパス経路部が設けられた構成が開示されている。このバイパス経路部には、内燃機関で生じた排気ガスに含まれる窒素酸化物(以下、「NOx」という)を吸着するNOx吸着触媒が設けられている。   Conventionally, in an exhaust system of an internal combustion engine, an exhaust purification device having a turbine provided in an exhaust pipe and an exhaust purification catalyst provided downstream of the turbine is known. For example, Patent Document 1 discloses a configuration in which a bypass path portion connected to a portion between the turbine and the exhaust purification catalyst is provided from a portion upstream of the turbine of the exhaust pipe. The bypass passage is provided with a NOx adsorption catalyst that adsorbs nitrogen oxide (hereinafter referred to as “NOx”) contained in exhaust gas generated in the internal combustion engine.

この技術では、排気浄化触媒を活性温度に昇温させるまで、バイパス経路部に排気ガスを流して、NOx吸着触媒にNOxを吸着させ、排気浄化触媒が活性温度まで昇温させた後、NOx吸着触媒からNOxを脱離させる制御を行う。   In this technology, the exhaust gas is allowed to flow through the bypass passage until the exhaust purification catalyst is heated to the activation temperature, NOx is adsorbed to the NOx adsorption catalyst, and after the exhaust purification catalyst is heated to the activation temperature, the NOx adsorption is performed. Control to desorb NOx from the catalyst is performed.

また、排気浄化触媒として、内燃機関で生じた排気ガスに含まれる窒素酸化物(以下、「NOx」という)を還元処理するNOx選択還元型触媒が知られている。NOx選択還元型触媒は、排気管内に供給された前駆体(例えば、尿素水)から発生した還元剤(例えば、アンモニア)を吸着し、吸着したアンモニアにより排気ガスに含まれるNOxを還元する。   As an exhaust purification catalyst, a NOx selective reduction type catalyst that performs a reduction treatment of nitrogen oxides (hereinafter referred to as “NOx”) contained in exhaust gas generated in an internal combustion engine is known. The NOx selective reduction catalyst adsorbs a reducing agent (for example, ammonia) generated from a precursor (for example, urea water) supplied into the exhaust pipe, and reduces the NOx contained in the exhaust gas by the adsorbed ammonia.

再表2010/116541号Table 2010/116541

しかしながら、NOx選択還元型触媒の活性温度が、NOx吸着触媒の脱離温度よりも低い場合、NOx選択還元型触媒が活性温度まで昇温しても、NOx吸着触媒からNOxを脱離させることができないという問題が生じる。   However, when the activation temperature of the NOx selective reduction catalyst is lower than the desorption temperature of the NOx adsorption catalyst, NOx can be desorbed from the NOx adsorption catalyst even if the NOx selective reduction catalyst is heated to the activation temperature. The problem that it is not possible arises.

本開示の目的は、バイパス経路部のNOx吸着触媒からNOxを確実に脱離させることが可能な排気浄化装置および車両を提供することである。   An object of the present disclosure is to provide an exhaust purification device and a vehicle that can reliably desorb NOx from a NOx adsorption catalyst in a bypass passage.

本開示に係る排気浄化装置は、
内燃機関で発生した排気ガスが流れる排気管と、
前記排気管に設けられ、過給機の一部を構成するタービンと、
前記排気ガスの排気方向における前記タービンよりも下流側に設けられ、前記排気ガスの温度が活性温度である場合に前記排気ガス中の窒素酸化物の還元を促進するNOx選択還元型触媒と、
前記排気管において、前記タービンよりも前記排気方向の上流側の部位と、前記タービンと前記NOx選択還元型触媒との間の部位と、を接続するバイパス経路部と、
前記バイパス経路部に設けられ、前記排気ガスの温度が前記活性温度より高い脱離温度である場合、吸着した窒素酸化物を脱離させるNOx吸着触媒と、
前記バイパス経路部に流れる前記排気ガスの流量を調整する調整部と、
前記排気ガスの温度に応じて、前記NOx吸着触媒に吸着されている前記窒素酸化物が脱離するように、前記調整部を制御する制御部と、
を備える。
An exhaust emission control device according to the present disclosure includes:
An exhaust pipe through which exhaust gas generated in the internal combustion engine flows;
A turbine provided in the exhaust pipe and constituting a part of the supercharger;
A NOx selective reduction catalyst that is provided downstream of the turbine in the exhaust direction of the exhaust gas and promotes reduction of nitrogen oxides in the exhaust gas when the temperature of the exhaust gas is an active temperature;
In the exhaust pipe, a bypass path portion that connects a portion upstream of the turbine in the exhaust direction and a portion between the turbine and the NOx selective reduction catalyst;
A NOx adsorption catalyst that is provided in the bypass passage part and desorbs the adsorbed nitrogen oxide when the temperature of the exhaust gas is a desorption temperature higher than the activation temperature;
An adjusting unit that adjusts the flow rate of the exhaust gas flowing through the bypass path unit;
A control unit that controls the adjustment unit so that the nitrogen oxides adsorbed on the NOx adsorption catalyst are desorbed according to the temperature of the exhaust gas;
Is provided.

本開示に係る車両は、
上記した排気浄化装置を備える。
The vehicle according to the present disclosure is
The above-described exhaust purification device is provided.

本開示によれば、バイパス経路部のNOx吸着触媒からNOxを確実に脱離させることができる。   According to the present disclosure, NOx can be reliably desorbed from the NOx adsorption catalyst in the bypass passage.

本開示の実施の形態に係る排気浄化装置が適用された内燃機関の排気系を示す概略構成図である。1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present disclosure is applied. 排気浄化装置における調整制御の動作例を示すフローチャートである。It is a flowchart which shows the operation example of adjustment control in an exhaust gas purification apparatus.

以下、本開示の実施の形態を図面に基づいて詳細に説明する。図1は、本開示の実施の形態に係る排気浄化装置100が適用された内燃機関1の排気系を示す概略構成図である。   Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine 1 to which an exhaust purification device 100 according to an embodiment of the present disclosure is applied.

図1に示すように、内燃機関1は、車両Vに搭載される、例えばディーゼルエンジンであり、内燃機関1で生じた排気ガスを大気中に導くための排気浄化装置100が設けられている。排気浄化装置100は、排気管110と、タービン120と、バイパス経路部130と、調整部140と、温度検出部150と、制御部300とを備えている。   As shown in FIG. 1, the internal combustion engine 1 is a diesel engine, for example, mounted on a vehicle V, and is provided with an exhaust purification device 100 for guiding exhaust gas generated in the internal combustion engine 1 into the atmosphere. The exhaust emission control device 100 includes an exhaust pipe 110, a turbine 120, a bypass path unit 130, an adjustment unit 140, a temperature detection unit 150, and a control unit 300.

排気管110では、内燃機関1から生じた排気ガスが流れる。排気管110には、排気ガスが流れる方向(図示左から右へ向かう方向、以下、「排気方向」という)の上流側から順に、タービン120、酸化触媒210、NOx選択還元型触媒220、アンモニアスリップ触媒230等が設けられている。   In the exhaust pipe 110, exhaust gas generated from the internal combustion engine 1 flows. In the exhaust pipe 110, the turbine 120, the oxidation catalyst 210, the NOx selective reduction catalyst 220, the ammonia slip are sequentially arranged from the upstream side in the direction in which the exhaust gas flows (the direction from the left to the right in the drawing, hereinafter referred to as “exhaust direction”) A catalyst 230 and the like are provided.

酸化触媒210は、排気ガス中の一酸化窒素(NO)等を酸化させて二酸化窒素(NO)を生成することで、NOx選択還元型触媒220の浄化性能を向上させる。 The oxidation catalyst 210 improves the purification performance of the NOx selective reduction catalyst 220 by oxidizing nitrogen monoxide (NO) or the like in the exhaust gas to generate nitrogen dioxide (NO 2 ).

NOx選択還元型触媒220は、排気管110における酸化触媒210の下流側に配置され、図示しない尿素水噴射部により噴射された尿素水に基づいて生成されたアンモニアを吸着する。NOx選択還元型触媒220は、排気ガスの温度が活性温度のとき、吸着したアンモニアと、自身を通過する排気ガス中に含まれるNOxとを反応させることで、当該NOxを還元する。活性温度は、NOx選択還元型触媒220が活性化領域となる温度である。   The NOx selective reduction catalyst 220 is disposed downstream of the oxidation catalyst 210 in the exhaust pipe 110 and adsorbs ammonia generated based on urea water injected by a urea water injection unit (not shown). When the temperature of the exhaust gas is the activation temperature, the NOx selective reduction catalyst 220 reduces the NOx by causing the adsorbed ammonia to react with NOx contained in the exhaust gas passing through the NOx selective reduction catalyst 220. The activation temperature is a temperature at which the NOx selective reduction catalyst 220 becomes an activation region.

アンモニアスリップ触媒230は、排気方向におけるNOx選択還元型触媒220の下流側に位置しており、NOx選択還元型触媒220で使用されず、スリップしたアンモニアを分解して、アンモニアが車両V外に排出されるのを防止する。なお、本実施の形態では、アンモニアスリップ触媒230は、排気管110において、NOx選択還元型触媒220とは別のケースに収容されているが、本開示はこれに限定されず、NOx選択還元型触媒220と同じケースに収容されていても良い。   The ammonia slip catalyst 230 is located downstream of the NOx selective reduction catalyst 220 in the exhaust direction and is not used by the NOx selective reduction catalyst 220, but decomposes the slipped ammonia and discharges the ammonia out of the vehicle V. To be prevented. In the present embodiment, the ammonia slip catalyst 230 is accommodated in a case different from the NOx selective reduction catalyst 220 in the exhaust pipe 110, but the present disclosure is not limited to this, and the NOx selective reduction type. It may be accommodated in the same case as the catalyst 220.

タービン120は、過給機の一部を構成しており、排気管110に設けられている。タービン120は、図示しないタービンインペラが、内燃機関1から排出された排気ガスにより回転する。また、タービン120は、過給機の他部を構成する、図示しない圧縮機と接続されている。圧縮機のコンプレッサインペラとタービンインペラとがシャフトにより一体に回転することで、吸気管から送り込まれる外気がコンプレッサインペラの回転により過給されて内燃機関1に送り込まれる。   The turbine 120 constitutes a part of the supercharger and is provided in the exhaust pipe 110. In the turbine 120, a turbine impeller (not shown) is rotated by exhaust gas discharged from the internal combustion engine 1. The turbine 120 is connected to a compressor (not shown) that constitutes the other part of the supercharger. When the compressor impeller and the turbine impeller of the compressor are integrally rotated by the shaft, the outside air sent from the intake pipe is supercharged by the rotation of the compressor impeller and sent to the internal combustion engine 1.

バイパス経路部130は、排気管110における、タービン120よりも排気方向の上流側の部位111と、タービン120とNOx選択還元型触媒220との間の部位112とを接続する。バイパス経路部130には、NOx吸着触媒240が設けられている。   The bypass passage portion 130 connects a portion 111 of the exhaust pipe 110 upstream of the turbine 120 in the exhaust direction and a portion 112 between the turbine 120 and the NOx selective reduction catalyst 220. The bypass passage unit 130 is provided with a NOx adsorption catalyst 240.

NOx吸着触媒240は、排気ガスの温度が吸着温度である場合、排気ガス中のNOxを吸着する。吸着温度の範囲は、上述の活性温度の範囲のうち、最低温度となる活性温度未満の温度を含む範囲である。   The NOx adsorption catalyst 240 adsorbs NOx in the exhaust gas when the temperature of the exhaust gas is the adsorption temperature. The range of the adsorption temperature is a range including the temperature below the activation temperature that is the lowest temperature among the above-described activation temperature ranges.

NOx吸着触媒240に吸着されたNOxは、排気ガスの温度が脱離温度以上である場合、NOx吸着触媒240から脱離する。脱離温度は、上述の活性温度の範囲のうち、最低温度となる活性温度より高い温度である。   The NOx adsorbed on the NOx adsorption catalyst 240 is desorbed from the NOx adsorption catalyst 240 when the temperature of the exhaust gas is equal to or higher than the desorption temperature. The desorption temperature is a temperature higher than the activation temperature that is the lowest temperature in the above-described range of the activation temperature.

調整部140は、バイパス経路部130に流れる排気ガスのバイパス流量を調整可能なバルブである。調整部140が制御部300によって制御されることで、排気管110の排気ガスがバイパス経路部130に流れる。   The adjustment unit 140 is a valve capable of adjusting the bypass flow rate of the exhaust gas flowing through the bypass path unit 130. As the adjustment unit 140 is controlled by the control unit 300, the exhaust gas in the exhaust pipe 110 flows into the bypass path unit 130.

温度検出部150は、排気管110のタービン120とNOx選択還元型触媒220との間の部位112に設けられ、排気方向におけるNOx選択還元型触媒220よりも上流側の排気ガスの温度を検出する。   The temperature detection unit 150 is provided in a portion 112 between the turbine 120 of the exhaust pipe 110 and the NOx selective reduction catalyst 220, and detects the temperature of the exhaust gas upstream of the NOx selective reduction catalyst 220 in the exhaust direction. .

制御部300は、例えば電子制御ユニットであり、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力回路を備えている。制御部300は、予め設定されたプログラムに基づいて、調整部140における排気ガスのバイパス流量を制御するように構成されている。   The control unit 300 is, for example, an electronic control unit, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output circuit (not shown). The control unit 300 is configured to control the exhaust gas bypass flow rate in the adjustment unit 140 based on a preset program.

制御部300は、排気ガスの温度、および、NOx吸着触媒240におけるNOxの吸着量に応じて、排気ガスの一部がバイパス経路部130に流れるように調整部140を制御する。   The control unit 300 controls the adjustment unit 140 so that a part of the exhaust gas flows into the bypass path unit 130 according to the temperature of the exhaust gas and the NOx adsorption amount in the NOx adsorption catalyst 240.

排気ガスの温度は、上述の温度検出部150により検出された温度である。また、NOx吸着触媒240におけるNOxの吸着量は、例えば、バイパス経路部130に流れる排気ガスの流量や、NOx吸着触媒240から脱離したNOx量等に基づいて算出される方法等、公知の方法により推定される。また、NOxの吸着量は、NOx吸着触媒240の上流側および下流側に、それぞれNOxを検出するセンサを設け、各センサの検出量の差分値を用いて推定されても良い。   The temperature of the exhaust gas is the temperature detected by the temperature detection unit 150 described above. Further, the NOx adsorption amount in the NOx adsorption catalyst 240 is, for example, a known method such as a method calculated based on the flow rate of the exhaust gas flowing through the bypass passage 130, the NOx amount desorbed from the NOx adsorption catalyst 240, or the like. Is estimated by Further, the NOx adsorption amount may be estimated using a sensor for detecting NOx on the upstream side and the downstream side of the NOx adsorption catalyst 240, respectively, and using the difference value of the detection amount of each sensor.

具体的には、制御部300は、排気ガスの温度がNOx選択還元型触媒220の活性温度未満であり、かつ、NOx吸着触媒240におけるNOxの吸着量が最大量未満である場合、バイパス経路部130に排気ガスの一部が流れるように調整部140を制御する。このとき、制御部300は、バイパス経路部130に流れる排気ガスの流量が、タービン120側に流れる排気ガスの流量より多くなるように調整部140を制御する。   Specifically, when the temperature of the exhaust gas is lower than the activation temperature of the NOx selective reduction catalyst 220 and the NOx adsorption amount in the NOx adsorption catalyst 240 is less than the maximum amount, the control unit 300 determines that the bypass path unit The adjusting unit 140 is controlled so that a part of the exhaust gas flows through 130. At this time, the control unit 300 controls the adjustment unit 140 so that the flow rate of the exhaust gas flowing through the bypass path unit 130 is larger than the flow rate of the exhaust gas flowing toward the turbine 120 side.

排気ガスの温度が活性温度未満である場合、NOx選択還元型触媒220における還元処理が行われにくいので、NOxが大気に排出されやすくなる。特に、タービン120を有する構成の場合、タービン120を排気ガスが通過することで、排気ガスの排熱エネルギーがタービンインペラの回転エネルギーに変換されるので、排気ガスの温度が低下しやすい。   When the temperature of the exhaust gas is lower than the activation temperature, it is difficult for the NOx selective reduction catalyst 220 to perform the reduction process, so that NOx is easily discharged to the atmosphere. In particular, in the case of the configuration having the turbine 120, exhaust gas passes through the turbine 120, so that exhaust heat energy of the exhaust gas is converted into rotational energy of the turbine impeller, so that the temperature of the exhaust gas is likely to decrease.

そのため、本実施の形態では、排気ガスの温度が活性温度未満である場合、NOx吸着触媒240によってバイパス経路部130を流れる排気ガス中に含まれるNOxを吸着する。これにより、排気ガスの温度が、NOx選択還元型触媒220で還元処理が行われにくい温度である場合に、NOxがNOx吸着触媒240に吸着されるので、NOxが大気に排出されることを抑制することができる。   Therefore, in the present embodiment, when the temperature of the exhaust gas is lower than the activation temperature, NOx contained in the exhaust gas flowing through the bypass passage 130 is adsorbed by the NOx adsorption catalyst 240. As a result, when the temperature of the exhaust gas is a temperature at which the reduction process is difficult to be performed by the NOx selective reduction catalyst 220, NOx is adsorbed by the NOx adsorption catalyst 240, so that NOx is prevented from being discharged into the atmosphere. can do.

制御部300は、NOx吸着触媒240におけるNOxの吸着量が最大量に達した場合、バイパス経路部130に排気ガスが流れないように調整部140を制御する。NOx吸着触媒240におけるNOxの吸着量が最大量であると、排気ガス中のNOxが吸着されないので、バイパス経路部130に排気ガスを流す必要がなくなる。そのため、上記のように制御することで、無駄にバイパス経路部130に排気ガスが流されることを抑制することができる。また、バイパス経路部130に排気ガスの一部が流れることによるタービン120の回転駆動力の低下を抑制することができる。   The control unit 300 controls the adjustment unit 140 so that the exhaust gas does not flow through the bypass path unit 130 when the NOx adsorption amount in the NOx adsorption catalyst 240 reaches the maximum amount. When the NOx adsorption amount in the NOx adsorption catalyst 240 is the maximum amount, NOx in the exhaust gas is not adsorbed, so that it is not necessary to flow the exhaust gas through the bypass passage portion 130. Therefore, by controlling as described above, it is possible to prevent the exhaust gas from flowing unnecessarily through the bypass path portion 130. In addition, it is possible to suppress a decrease in the rotational driving force of the turbine 120 due to a part of the exhaust gas flowing through the bypass path portion 130.

制御部300は、排気ガスの温度がNOx選択還元型触媒220の活性温度以上である場合、バイパス経路部130に排気ガスを流さないように調整部140を制御する。NOx選択還元型触媒220が活性温度以上である場合、NOx選択還元型触媒220でNOxの還元処理が行われるので、NOx吸着触媒240にNOxを吸着させておく必要がなくなる。そのため、上記のように制御することで、無駄にバイパス経路部130に排気ガスが流されることを抑制することができる。また、バイパス経路部130に排気ガスの一部が流れることによるタービン120の回転駆動力の低下を抑制することができる。   When the temperature of the exhaust gas is equal to or higher than the activation temperature of the NOx selective reduction catalyst 220, the control unit 300 controls the adjustment unit 140 so that the exhaust gas does not flow through the bypass path unit 130. When the NOx selective reduction catalyst 220 is at or above the activation temperature, NOx reduction processing is performed by the NOx selective reduction catalyst 220, so that it is not necessary for the NOx adsorption catalyst 240 to adsorb NOx. Therefore, by controlling as described above, it is possible to prevent the exhaust gas from flowing unnecessarily through the bypass path portion 130. In addition, it is possible to suppress a decrease in the rotational driving force of the turbine 120 due to a part of the exhaust gas flowing through the bypass path portion 130.

また、制御部300は、排気ガスの温度、および、NOx吸着触媒240におけるNOxの吸着量に応じて、NOx吸着触媒240からNOxを脱離(パージ)させるように、調整部140を制御する。   Further, the control unit 300 controls the adjustment unit 140 so that NOx is desorbed (purged) from the NOx adsorption catalyst 240 according to the temperature of the exhaust gas and the NOx adsorption amount in the NOx adsorption catalyst 240.

具体的には、制御部300は、排気ガスの温度が脱離温度以上であり、かつ、NOx吸着触媒240にNOxが吸着されている場合、バイパス経路部130に排気ガスが流れるように調整部140を制御する。このとき、制御部300は、バイパス経路部130における排気ガスの流量が、タービン120側に流れる排気ガスの流量よりも少なくなるように調整部140を制御する。   Specifically, the control unit 300 adjusts the exhaust gas so that the exhaust gas flows through the bypass passage unit 130 when the temperature of the exhaust gas is equal to or higher than the desorption temperature and NOx is adsorbed by the NOx adsorption catalyst 240. 140 is controlled. At this time, the control unit 300 controls the adjustment unit 140 so that the flow rate of the exhaust gas in the bypass passage unit 130 is smaller than the flow rate of the exhaust gas flowing to the turbine 120 side.

このようにすることで、排気ガスの温度上昇に伴い、NOx吸着触媒240に吸着されたNOxをNOx吸着触媒240から脱離させることができる。そのため、排気ガスの温度が低下した際に、再度NOx吸着触媒240にNOxを吸着させることができる。また、NOx吸着触媒240から脱離したNOxは、NOx選択還元型触媒220によって還元処理される。   In this way, NOx adsorbed on the NOx adsorption catalyst 240 can be desorbed from the NOx adsorption catalyst 240 as the exhaust gas temperature rises. Therefore, when the temperature of the exhaust gas decreases, NOx can be adsorbed again by the NOx adsorption catalyst 240. Further, NOx desorbed from the NOx adsorption catalyst 240 is reduced by the NOx selective reduction catalyst 220.

また、制御部300は、NOx吸着触媒240からNOxが脱離しきった場合や、排気ガスの温度が脱離温度以上であり、かつ、NOx吸着触媒240にNOxが吸着されていない場合、バイパス経路部130に排気ガスが流れないように調整部140を制御する。   Further, the control unit 300 determines that when NOx has been completely desorbed from the NOx adsorption catalyst 240, or when the exhaust gas temperature is equal to or higher than the desorption temperature and NOx is not adsorbed by the NOx adsorption catalyst 240, the bypass path The adjustment unit 140 is controlled so that the exhaust gas does not flow through the unit 130.

このような状態では、NOx吸着触媒240にNOxが全く吸着されてない状態であり、バイパス経路部130に排気ガスを流しても、NOx吸着触媒240でNOxを吸着できない温度(脱離温度)であるので、バイパス経路部130に排気ガスを流す必要が無い。そのため、上記のように制御することで、無駄にバイパス経路部130に排気ガスが流されることを抑制することができる。また、バイパス経路部130に排気ガスの一部が流れることによるタービン120の回転駆動力の低下を抑制することができる。   In such a state, NOx is not adsorbed at all by the NOx adsorption catalyst 240, and even when exhaust gas flows through the bypass passage 130, the NOx adsorption catalyst 240 cannot adsorb NOx (desorption temperature). Therefore, there is no need to flow exhaust gas through the bypass path 130. Therefore, by controlling as described above, it is possible to prevent the exhaust gas from flowing unnecessarily through the bypass path portion 130. In addition, it is possible to suppress a decrease in the rotational driving force of the turbine 120 due to a part of the exhaust gas flowing through the bypass path portion 130.

また、制御部300は、排気ガスの温度が活性温度以上で、かつ、脱離温度未満である場合、バイパス経路部130に排気ガスが流れないように調整部140を制御する。このようにすることで、NOx選択還元型触媒220における還元処理を促進させることができる。   In addition, when the temperature of the exhaust gas is equal to or higher than the activation temperature and lower than the desorption temperature, the control unit 300 controls the adjustment unit 140 so that the exhaust gas does not flow through the bypass path unit 130. By doing in this way, the reduction process in the NOx selective reduction catalyst 220 can be promoted.

以上のように構成された排気浄化装置100における調整制御の動作例について説明する。図2は、排気浄化装置100における調整制御の動作例を示すフローチャートである。図2の処理は、例えば、車両Vの走行中において、適宜実行される。   An operation example of the adjustment control in the exhaust emission control device 100 configured as described above will be described. FIG. 2 is a flowchart showing an operation example of adjustment control in the exhaust purification apparatus 100. The process of FIG. 2 is appropriately executed while the vehicle V is traveling, for example.

図2に示すように、制御部300は、排気ガスの温度が活性温度未満であるか否かについて判定する(ステップS101)。判定の結果、排気ガスの温度が活性温度以上である場合(ステップS101、NO)、処理はステップS104に遷移する。一方、排気ガスの温度が活性温度未満である場合(ステップS101、YES)、制御部300は、NOx吸着触媒240におけるNOxの吸着量が最大量未満であるか否かについて判定する(ステップS102)。   As shown in FIG. 2, the controller 300 determines whether or not the temperature of the exhaust gas is lower than the activation temperature (step S101). As a result of the determination, when the temperature of the exhaust gas is equal to or higher than the activation temperature (step S101, NO), the process transitions to step S104. On the other hand, when the temperature of the exhaust gas is lower than the activation temperature (step S101, YES), the controller 300 determines whether or not the NOx adsorption amount in the NOx adsorption catalyst 240 is less than the maximum amount (step S102). .

判定の結果、NOx吸着触媒240におけるNOxの吸着量が最大量である場合(ステップS102、NO)、処理はステップS104に遷移する。一方、NOx吸着触媒240におけるNOxの吸着量が最大量未満である場合(ステップS102、YES)、制御部300は、排気ガスの一部をバイパス経路部130に流すように調整部140を制御する(ステップS103)。ステップS103の後、処理はステップS101に戻る。   As a result of the determination, when the NOx adsorption amount in the NOx adsorption catalyst 240 is the maximum amount (step S102, NO), the process transitions to step S104. On the other hand, when the NOx adsorption amount in the NOx adsorption catalyst 240 is less than the maximum amount (step S102, YES), the control unit 300 controls the adjustment unit 140 so that a part of the exhaust gas flows through the bypass path unit 130. (Step S103). After step S103, the process returns to step S101.

ステップS101又はステップS102でNOと判定された場合、制御部300は、排気ガスをバイパス経路部130に流さないように調整部140を制御する(ステップS104)。   When it is determined NO in step S101 or step S102, the control unit 300 controls the adjustment unit 140 so that the exhaust gas does not flow through the bypass path unit 130 (step S104).

次に、制御部300は、排気ガスの温度が脱離温度以上であるか否かについて判定する(ステップS105)。判定の結果、排気ガスの温度が脱離温度未満である場合(ステップS105、NO)、本制御は終了する。   Next, the controller 300 determines whether or not the temperature of the exhaust gas is equal to or higher than the desorption temperature (step S105). As a result of the determination, when the temperature of the exhaust gas is lower than the desorption temperature (step S105, NO), this control ends.

一方、排気ガスの温度が脱離温度以上である場合(ステップS105、YES)、制御部300は、NOx吸着触媒240にNOxが吸着されているか否かについて判定する(ステップS106)。   On the other hand, when the temperature of the exhaust gas is equal to or higher than the desorption temperature (step S105, YES), the control unit 300 determines whether NOx is adsorbed on the NOx adsorption catalyst 240 (step S106).

判定の結果、NOx吸着触媒240にNOxが吸着されていない場合(ステップS106、NO)、本制御は終了する。一方、NOx吸着触媒240にNOxが吸着されている場合(ステップS106、YES)、制御部300は、排気ガスの一部をバイパス経路部130に流すように調整部140を制御する(ステップS107)。ステップS107の後、本制御は終了する。   As a result of the determination, when NOx is not adsorbed on the NOx adsorption catalyst 240 (step S106, NO), this control is finished. On the other hand, when NOx is adsorbed on the NOx adsorption catalyst 240 (step S106, YES), the control unit 300 controls the adjustment unit 140 so that a part of the exhaust gas flows through the bypass path unit 130 (step S107). . After step S107, this control ends.

以上のように構成された本実施の形態によれば、NOx吸着触媒240にNOxが吸着されており、かつ、排気ガスの温度が脱離温度以上である場合、バイパス経路部130に排気ガスが流される。これにより、NOx吸着触媒240からNOxが脱離して、後段に位置するNOx選択還元型触媒220によって還元処理される。   According to the present embodiment configured as described above, when NOx is adsorbed on the NOx adsorption catalyst 240 and the temperature of the exhaust gas is equal to or higher than the desorption temperature, the exhaust gas is present in the bypass passage 130. Washed away. As a result, NOx is desorbed from the NOx adsorption catalyst 240 and is reduced by the NOx selective reduction catalyst 220 located in the subsequent stage.

すなわち、本実施の形態では、バイパス経路部130のNOx吸着触媒240からNOxを確実に脱離させることができる。その結果、次に、排気ガスの温度が活性温度未満となった場合、バイパス経路部130のNOx吸着触媒240によってNOxを吸着することができるので、NOxが大気に放出されることを抑制することができる。   That is, in the present embodiment, NOx can be reliably desorbed from the NOx adsorption catalyst 240 of the bypass path portion 130. As a result, when the temperature of the exhaust gas becomes lower than the activation temperature next, NOx can be adsorbed by the NOx adsorption catalyst 240 of the bypass passage portion 130, so that NOx is prevented from being released to the atmosphere. Can do.

また、バイパス経路部130の下流側のNOx選択還元型触媒220に対してもより高温な排気ガスを導くことが可能となり、NOx選択還元型触媒220における還元効率を向上させることができる。   Further, it becomes possible to guide the exhaust gas having a higher temperature to the NOx selective reduction catalyst 220 on the downstream side of the bypass passage 130, and the reduction efficiency in the NOx selective reduction catalyst 220 can be improved.

また、排気ガスの温度が脱離温度以上の場合、バイパス経路部130における排気ガスの流量は、タービン120側に流れる排気ガスの流量よりも少ない。このようにすることで、NOx吸着触媒240からNOxを脱離させつつ、当該NOxをNOx選択還元型触媒220に運ぶ排気ガスを必要最低限の量とすることができる。そのため、NOx選択還元型触媒220による還元効率を維持しつつ、NOx吸着触媒240からNOxを効率よく脱離させることができる。   Further, when the temperature of the exhaust gas is equal to or higher than the desorption temperature, the flow rate of the exhaust gas in the bypass passage 130 is smaller than the flow rate of the exhaust gas flowing to the turbine 120 side. By doing so, it is possible to reduce the amount of exhaust gas that carries NOx to the NOx selective reduction catalyst 220 while desorbing NOx from the NOx adsorption catalyst 240. Therefore, NOx can be efficiently desorbed from the NOx adsorption catalyst 240 while maintaining the reduction efficiency of the NOx selective reduction catalyst 220.

なお、上記実施の形態では、温度検出部150によって排気ガスの温度を検出していたが、本開示はこれに限定されず、例えば、内燃機関1にかかる負荷に基づいて温度を推定するようにしても良い。   In the above-described embodiment, the temperature of the exhaust gas is detected by the temperature detection unit 150. However, the present disclosure is not limited to this, and for example, the temperature is estimated based on a load applied to the internal combustion engine 1. May be.

また、上記実施の形態では、排気ガスの一部をバイパス経路部130に流していたが、本開示はこれに限定されず、過給機における過給が必要ないようなとき等、必要に応じて排気ガスの全部をバイパス経路部130に流すようにしても良い。   Further, in the above embodiment, a part of the exhaust gas is allowed to flow to the bypass passage portion 130. However, the present disclosure is not limited to this, and when necessary, for example, when supercharging in the supercharger is not necessary. Thus, all of the exhaust gas may be passed through the bypass path 130.

また、上記実施の形態における排気浄化装置100は、ディーゼルエンジンを搭載した車両Vに搭載されていたが、本開示はこれに限定されず、例えば、ガソリンエンジンを搭載した車両に搭載されていても良い。   Moreover, although the exhaust emission control device 100 in the above embodiment is mounted on the vehicle V equipped with a diesel engine, the present disclosure is not limited to this, and may be mounted on a vehicle equipped with a gasoline engine, for example. good.

その他、上記実施の形態は、何れも本開示を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。   In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present disclosure, and the technical scope of the present disclosure should not be construed in a limited manner. That is, the present disclosure can be implemented in various forms without departing from the gist or the main features thereof.

本開示の排気浄化装置は、バイパス経路部のNOx吸着触媒からNOxを確実に脱離させることが可能な排気浄化装置および車両として有用である。   The exhaust purification device of the present disclosure is useful as an exhaust purification device and a vehicle that can reliably desorb NOx from the NOx adsorption catalyst in the bypass passage.

1 内燃機関
100 排気浄化装置
110 排気管
120 タービン
130 バイパス経路部
140 調整部
150 温度検出部
210 酸化触媒
220 NOx選択還元型触媒
230 アンモニアスリップ触媒
240 NOx吸着触媒
300 制御部
V 車両
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 100 Exhaust gas purification apparatus 110 Exhaust pipe 120 Turbine 130 Bypass path part 140 Adjustment part 150 Temperature detection part 210 Oxidation catalyst 220 NOx selective reduction type catalyst 230 Ammonia slip catalyst 240 NOx adsorption catalyst 300 Control part V Vehicle

Claims (7)

内燃機関で発生した排気ガスが流れる排気管と、
前記排気管に設けられ、過給機の一部を構成するタービンと、
前記排気ガスの排気方向における前記タービンよりも下流側に設けられ、前記排気ガスの温度が活性温度である場合に前記排気ガス中の窒素酸化物の還元を促進するNOx選択還元型触媒と、
前記排気管において、前記タービンよりも前記排気方向の上流側の部位と、前記タービンと前記NOx選択還元型触媒との間の部位と、を接続するバイパス経路部と、
前記バイパス経路部に設けられ、前記排気ガスの温度が前記活性温度より高い脱離温度である場合、吸着した窒素酸化物を脱離させるNOx吸着触媒と、
前記バイパス経路部に流れる前記排気ガスの流量を調整する調整部と、
前記排気ガスの温度に応じて、前記NOx吸着触媒に吸着されている前記窒素酸化物が脱離するように、前記調整部を制御する制御部と、
を備える排気浄化装置。
An exhaust pipe through which exhaust gas generated in the internal combustion engine flows;
A turbine provided in the exhaust pipe and constituting a part of the supercharger;
A NOx selective reduction catalyst that is provided downstream of the turbine in the exhaust direction of the exhaust gas and promotes reduction of nitrogen oxides in the exhaust gas when the temperature of the exhaust gas is an active temperature;
In the exhaust pipe, a bypass path portion that connects a portion upstream of the turbine in the exhaust direction and a portion between the turbine and the NOx selective reduction catalyst;
A NOx adsorption catalyst that is provided in the bypass passage part and desorbs the adsorbed nitrogen oxide when the temperature of the exhaust gas is a desorption temperature higher than the activation temperature;
An adjusting unit that adjusts the flow rate of the exhaust gas flowing through the bypass path unit;
A control unit that controls the adjustment unit so that the nitrogen oxides adsorbed on the NOx adsorption catalyst are desorbed according to the temperature of the exhaust gas;
An exhaust purification device comprising:
前記制御部は、前記排気ガスの温度が前記脱離温度以上であり、かつ、前記NOx吸着触媒に前記窒素酸化物が吸着されている場合、前記バイパス経路部に前記排気ガスが流れるように前記調整部を制御する、
請求項1に記載の排気浄化装置。
When the temperature of the exhaust gas is equal to or higher than the desorption temperature and the nitrogen oxide is adsorbed on the NOx adsorption catalyst, the control unit is configured to cause the exhaust gas to flow through the bypass path. Control the adjuster,
The exhaust emission control device according to claim 1.
前記制御部は、前記NOx吸着触媒に吸着されている前記窒素酸化物が完全に脱離した場合、前記バイパス経路部に前記排気ガスが流れないように前記調整部を制御する、
請求項2に記載の排気浄化装置。
The control unit controls the adjustment unit so that the exhaust gas does not flow through the bypass path when the nitrogen oxides adsorbed on the NOx adsorption catalyst are completely desorbed.
The exhaust emission control device according to claim 2.
前記制御部は、前記排気ガスの温度が前記脱離温度以上であり、かつ、前記NOx吸着触媒に前記窒素酸化物が吸着されていない場合、前記バイパス経路部に前記排気ガスが流れないように前記調整部を制御する、
請求項1に記載の排気浄化装置。
When the temperature of the exhaust gas is equal to or higher than the desorption temperature and the nitrogen oxide is not adsorbed on the NOx adsorption catalyst, the control unit prevents the exhaust gas from flowing into the bypass path portion. Controlling the adjusting unit;
The exhaust emission control device according to claim 1.
前記制御部は、前記排気ガスの温度が前記活性温度以上で、かつ、前記脱離温度未満である場合、前記バイパス経路部に前記排気ガスが流れないように前記調整部を制御する、
請求項1〜4の何れか1項に記載の排気浄化装置。
The control unit controls the adjusting unit so that the exhaust gas does not flow to the bypass path when the temperature of the exhaust gas is equal to or higher than the activation temperature and lower than the desorption temperature;
The exhaust emission control device according to any one of claims 1 to 4.
前記制御部は、前記バイパス経路部に前記排気ガスの一部が流れ、かつ、前記タービンに残りの前記排気ガスが流れるように前記調整部を制御し、
前記バイパス経路部に流れる前記排気ガスの流量は、前記タービンに流れる前記排気ガスの流量よりも少ない、
請求項1〜5の何れか1項に記載の排気浄化装置。
The control unit controls the adjustment unit so that a part of the exhaust gas flows through the bypass path and the remaining exhaust gas flows through the turbine.
The flow rate of the exhaust gas flowing through the bypass path is less than the flow rate of the exhaust gas flowing through the turbine.
The exhaust emission control device according to any one of claims 1 to 5.
請求項1〜6の何れか1項に記載の排気浄化装置を備える、
車両。
The exhaust emission control device according to any one of claims 1 to 6, comprising:
vehicle.
JP2018085991A 2018-04-27 2018-04-27 Exhaust emission control device and vehicle Pending JP2019190417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085991A JP2019190417A (en) 2018-04-27 2018-04-27 Exhaust emission control device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085991A JP2019190417A (en) 2018-04-27 2018-04-27 Exhaust emission control device and vehicle

Publications (1)

Publication Number Publication Date
JP2019190417A true JP2019190417A (en) 2019-10-31

Family

ID=68387828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085991A Pending JP2019190417A (en) 2018-04-27 2018-04-27 Exhaust emission control device and vehicle

Country Status (1)

Country Link
JP (1) JP2019190417A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272545A (en) * 1993-03-17 1994-09-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH11311118A (en) * 1998-04-27 1999-11-09 Fuji Heavy Ind Ltd Exhaust emission control device of turbocharged engine and control method thereof
JP2000265828A (en) * 1999-03-11 2000-09-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
DE10324013A1 (en) * 2003-05-27 2004-12-16 Robert Bosch Gmbh Exhaust gas cleaning system, from internal combustion motor, has storage catalyst to hold nitrogen oxide in buffer until selective reduction catalyst has reached its working temperature
JP2009013932A (en) * 2007-07-06 2009-01-22 Hino Motors Ltd Exhaust emission control device
JP2009257231A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US20100031642A1 (en) * 2008-03-04 2010-02-11 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
WO2010116541A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Control device for internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272545A (en) * 1993-03-17 1994-09-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JPH11311118A (en) * 1998-04-27 1999-11-09 Fuji Heavy Ind Ltd Exhaust emission control device of turbocharged engine and control method thereof
JP2000265828A (en) * 1999-03-11 2000-09-26 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
DE10324013A1 (en) * 2003-05-27 2004-12-16 Robert Bosch Gmbh Exhaust gas cleaning system, from internal combustion motor, has storage catalyst to hold nitrogen oxide in buffer until selective reduction catalyst has reached its working temperature
JP2009013932A (en) * 2007-07-06 2009-01-22 Hino Motors Ltd Exhaust emission control device
US20100031642A1 (en) * 2008-03-04 2010-02-11 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
JP2009257231A (en) * 2008-04-17 2009-11-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2010116541A1 (en) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4706659B2 (en) Method for estimating N2O generation amount in ammonia oxidation catalyst and exhaust gas purification system for internal combustion engine
JP2009197728A (en) Exhaust emission control device of internal combustion engine
JP2006274844A (en) Exhaust emission control device of internal combustion engine
WO2010079592A1 (en) Exhaust gas purifying apparatus for internal combustion engine
JP6287924B2 (en) Exhaust gas purification device for internal combustion engine
JP5158214B2 (en) Exhaust gas purification device for internal combustion engine
JP5146547B2 (en) Exhaust gas purification device for internal combustion engine
JP2011102573A (en) Exhaust emission control device
WO2019172356A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP2010209737A (en) Exhaust emission control device for internal combustion engine
US10125647B2 (en) Exhaust gas purification apparatus for an internal combustion engine
JP6586944B2 (en) Exhaust gas purification device for internal combustion engine
JP5407288B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP2019190417A (en) Exhaust emission control device and vehicle
WO2019172357A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
EP2556226B1 (en) Exhaust gas control apparatus and method for internal combustion engine
JP2019190416A (en) Exhaust emission control device and vehicle
JP2016121547A (en) System and method of purifying exhaust gas of internal combustion engine
JP2008121555A (en) Exhaust emission control device for internal combustion engine
JP2019190414A (en) Exhaust emission control device and vehicle
JP2019190415A (en) Exhaust emission control device and vehicle
JP7063088B2 (en) Exhaust purification equipment and vehicles
JP7063089B2 (en) Exhaust purification equipment and vehicles
JP6052146B2 (en) Exhaust gas purification device for internal combustion engine
JP2019190420A (en) Exhaust emission control device and vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221004