WO2019172357A1 - Exhaust purification device, vehicle, and exhaust purification control device - Google Patents

Exhaust purification device, vehicle, and exhaust purification control device Download PDF

Info

Publication number
WO2019172357A1
WO2019172357A1 PCT/JP2019/009013 JP2019009013W WO2019172357A1 WO 2019172357 A1 WO2019172357 A1 WO 2019172357A1 JP 2019009013 W JP2019009013 W JP 2019009013W WO 2019172357 A1 WO2019172357 A1 WO 2019172357A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
nox
exhaust gas
reduction catalyst
amount
Prior art date
Application number
PCT/JP2019/009013
Other languages
French (fr)
Japanese (ja)
Inventor
洋 阿野田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201980017347.8A priority Critical patent/CN111819349A/en
Publication of WO2019172357A1 publication Critical patent/WO2019172357A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to an exhaust purification device, a vehicle, and an exhaust purification control device.
  • NOx nitrogen oxide
  • An apparatus is known (see, for example, Patent Document 1).
  • the NOx selective reduction catalyst adsorbs a reducing agent (for example, ammonia) generated from a precursor (for example, urea water) supplied into the exhaust pipe, and reduces the NOx contained in the exhaust gas by the adsorbed ammonia.
  • a reducing agent for example, ammonia
  • the NOx occlusion reduction type catalyst has a property of occluded NOx at a low temperature when the NOx selective reduction type catalyst is in an inactive region. Therefore, even when the temperature is low, NOx is occluded by the NOx occlusion reduction type catalyst and then reduced. Thus, when the NOx occlusion reduction type catalyst is used together with the NOx selective reduction type catalyst in the exhaust purification device, the exhaust purification processing in the exhaust purification device can be effectively performed.
  • the exhaust gas purification apparatus may be provided with a collection unit for collecting particulate matter.
  • a collection unit for collecting particulate matter.
  • the temperature of the exhaust purification device rises.
  • the temperature in the exhaust purification device exhaust pipe
  • ammonia from the NOx selective reduction catalyst can be as much as possible. It is preferable to decrease.
  • An object of the present disclosure is to provide an exhaust purification device, a vehicle, and an exhaust purification control device capable of suppressing a reducing agent from desorbing from a NOx selective reduction catalyst due to a temperature rise in an exhaust pipe. is there.
  • An exhaust emission control device includes: An exhaust pipe through which exhaust gas generated from the internal combustion engine flows; A NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent; An NOx occlusion reduction type catalyst which is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the exhaust direction in which the exhaust gas flows, and occludes nitrogen oxides in the exhaust gas; A recirculation path section for connecting the exhaust pipe and the exhaust pipe of the internal combustion engine from the exhaust pipe, and recirculating the exhaust gas in the exhaust pipe to the intake pipe; An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit; A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing agent of the NOx selective reduction catalyst; , Is provided.
  • the vehicle according to the present disclosure is The above-described exhaust purification device is provided.
  • An exhaust purification control apparatus includes: An exhaust pipe through which exhaust gas generated from an internal combustion engine flows, a NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent, and the exhaust gas includes An NOx occlusion reduction type catalyst that is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the flowing exhaust direction and occludes nitrogen oxides in the exhaust gas, and an intake pipe of the internal combustion engine from the exhaust pipe
  • An exhaust gas purification control device for an exhaust gas purification device comprising: a recirculation path portion that connects the exhaust pipe and the exhaust pipe, and recirculates the exhaust gas in the exhaust pipe to the intake pipe, An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit; A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present disclosure is applied.
  • FIG. 2 is a graph showing the temperature change of NOx storage efficiency in the NOx storage reduction catalyst.
  • FIG. 3 is a graph showing the temperature change of the NOx purification rate in the NOx selective reduction catalyst.
  • FIG. 4 is a flowchart showing an operation example of the purification control in the exhaust purification device.
  • FIG. 5 is a flowchart showing an operation example of the exhaust gas flow rate control in the recirculation path section.
  • FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine 1 to which an exhaust purification device 100 according to an embodiment of the present disclosure is applied.
  • the internal combustion engine 1 is, for example, a diesel engine mounted on a vehicle V, and is provided with an exhaust purification device 100 for guiding exhaust gas generated in the internal combustion engine 1 to the atmosphere.
  • the exhaust purification device 100 includes an intake pipe 110, an exhaust pipe 120, a first temperature detection unit 130, a second temperature detection unit 140, a urea water injection unit 150, a recirculation path unit 160, and a control unit 300. It has.
  • the intake pipe 110 is provided with an intake valve (not shown), and the intake pipe 110 sucks outside air into the internal combustion engine 1 by opening the intake valve under the control of the control unit 300.
  • Exhaust gas generated from the internal combustion engine 1 flows through the exhaust pipe 120.
  • a NOx occlusion reduction catalyst 210 and a DPF (capacitor) as an example of a collection unit are sequentially arranged from the upstream side in the direction in which the exhaust gas flows (the direction from the left to the right in the drawing, hereinafter referred to as “exhaust direction”).
  • the NOx occlusion reduction type catalyst 210 is disposed upstream of the DPF 220 and the NOx selective reduction type catalyst 230 in the exhaust pipe 120 in the exhaust direction, and occludes nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas.
  • NOx nitrogen oxides
  • the NOx occlusion reduction type catalyst 210 occludes NOx in the exhaust gas when the exhaust temperature is the occlusion temperature and the exhaust air-fuel ratio is in a lean state.
  • the range of the occlusion temperature includes a temperature at which the NOx selective reduction catalyst 230 is in a non-activated region.
  • the NOx occluded in the NOx occlusion reduction catalyst 210 is reduced by reacting with the hydrocarbons and carbon monoxide in the exhaust gas by setting the exhaust air-fuel ratio to a rich state under the control of the control unit 300. .
  • the DPF 220 collects particulate matter contained in the exhaust gas that passes through the DPF 220.
  • the particulate matter is removed by executing a regeneration process for burning the collected particulate matter under the control of the control unit 300.
  • a regeneration process for burning the collected particulate matter under the control of the control unit 300.
  • post injection into the cylinder of the internal combustion engine 1 and fuel supply into the exhaust pipe 120 are performed, for example, hydrocarbons are supplied to an oxidation catalyst (not shown)
  • An oxidation reaction occurs in the oxidation catalyst, and the temperature of the exhaust gas in the exhaust pipe 120 rises.
  • the particulate matter is burned by the exhaust gas whose temperature has risen flowing into the DPF 220.
  • the NOx selective reduction catalyst 230 is disposed downstream of the DPF 220 in the exhaust pipe 120 and adsorbs ammonia as an example of a reducing agent generated based on the urea water injected by the urea water injection unit 150.
  • the NOx selective reduction catalyst 230 reduces the NOx by reacting the adsorbed ammonia with NOx contained in the exhaust gas passing through the NOx selective reduction catalyst 230.
  • the first temperature detection unit 130 is arranged upstream of the NOx storage reduction catalyst 210 in the exhaust direction, and detects the temperature of the front portion of the NOx storage reduction catalyst 210 in the exhaust pipe 120.
  • the second temperature detection unit 140 is arranged upstream of the NOx selective reduction catalyst 230 in the exhaust direction, and detects the temperature of the front portion of the NOx selective reduction catalyst 230 in the exhaust pipe 120.
  • the urea water injection unit 150 is disposed upstream of the NOx selective reduction catalyst 230 in the exhaust pipe 120.
  • urea water is supplied into the exhaust pipe 120 by the urea water injection unit 150, the urea water is hydrolyzed by the temperature in the exhaust pipe 120, and ammonia is generated. Then, ammonia is adsorbed on the NOx selective reduction catalyst 230.
  • the recirculation path section 160 is a path that branches from the exhaust pipe 120 and recirculates the exhaust gas in the exhaust pipe 120 toward the intake pipe 110, and is connected to the intake pipe 110 and the exhaust pipe 120.
  • the recirculation path section 160 is provided with an adjustment section 161 that adjusts the flow rate of exhaust gas that is returned from the exhaust pipe 120 to the intake pipe 110 via the recirculation path section 160.
  • the adjustment unit 161 adjusts the flow rate of the exhaust gas returned from the exhaust pipe 120 to the intake pipe 110 by changing the flow path of the exhaust gas from the open state to the closed state under the control of the control unit 300.
  • the controller 300 is, for example, an electronic control unit (ECU), and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output circuit (not shown). .
  • the control unit 300 performs a regeneration process for burning the particulate matter collected in the DPF 220 based on a preset program, a rich process for making the exhaust air-fuel ratio in the exhaust pipe 120 rich, and a recirculation path unit 160. A process for adjusting the flow rate of the exhaust gas is executed.
  • the control unit 300 corresponds to the “exhaust gas purification control device” of the present disclosure.
  • the control unit 300 estimates the ammonia adsorption amount of the NOx selective reduction catalyst 230 when executing the regeneration process of the DPF 220. Then, the control unit 300 adjusts the adjustment unit 161 so that the reduction action of ammonia adsorbed on the NOx selective reduction catalyst 230 and NOx contained in the exhaust gas is accelerated according to the estimated amount of adsorption of ammonia. To control.
  • the control unit 300 corresponds to the “estimation unit” of the present disclosure.
  • the control unit 300 estimates the NOx occlusion amount of the NOx occlusion reduction type catalyst 210.
  • the control unit 300 controls the adjustment unit 161 based on the estimated occlusion amount. It is determined whether or not to control.
  • the control unit 300 controls the adjustment unit 161 so as to reduce the flow rate of the exhaust gas in the recirculation path unit 160.
  • the predetermined target amount is, for example, the amount of ammonia that causes the ammonia slip concentration in the NOx selective reduction catalyst 230 to be equal to or less than the target value during the regeneration process.
  • the supplied ammonia amount is the amount of ammonia supplied to the NOx selective reduction catalyst 230, and is calculated based on the amount of urea water injected by the urea water injection unit 150.
  • the consumed ammonia amount is the amount of ammonia consumed in the NOx purification reaction, the amount of NOx that has passed through the NOx selective reduction catalyst 230, the temperature detection result of the second temperature detection unit 140, the flow rate of exhaust gas, Is calculated based on the ratio of NO 2 and the amount of adsorbed ammonia.
  • the amount of NOx that has passed through the NOx selective reduction catalyst 230 is detected based on a sensor or the like (not shown).
  • the ratio of NO 2 in NOx is estimated by correcting the map based on the engine speed and the fuel injection amount based on the NOx storage amount and temperature of the NOx storage reduction catalyst 210.
  • the previous adsorption amount of ammonia is the current adsorption amount of ammonia calculated last time by the equation (1).
  • the ammonia desorption amount is the amount of ammonia desorbed from the NOx selective reduction catalyst 230, and is calculated based on the ammonia adsorption amount, the temperature detection result of the second temperature detection unit 140, and the exhaust gas flow rate.
  • the estimated storage amount of NOx is estimated by the following equation (2).
  • NOx occlusion amount A + B ⁇ CDE (2)
  • the stored amount of NOx is the amount of NOx already stored in the NOx storage-reduction catalyst 210.
  • the estimated value of the stored amount of NOx estimated last time is used.
  • the upstream NOx concentration of the NOx storage reduction catalyst 210 is the NOx concentration in the exhaust gas upstream of the NOx storage reduction catalyst 210 in the exhaust pipe 120.
  • the NOx concentration detected by a sensor (not shown). Is used.
  • the NOx occlusion efficiency of the NOx occlusion reduction catalyst 210 depends on the temperature detection result of the first temperature detector 130, the exhaust gas flow rate, the NOx concentration upstream of the NOx occlusion reduction catalyst 210, the NOx occlusion amount, and the like. Calculated based on The flow rate of the exhaust gas is the amount of exhaust gas flowing into the exhaust pipe 120 and is detected by a sensor or the like (not shown).
  • the amount of NOx discharged from the NOx storage reduction catalyst 210 is calculated based on the temperature detection result of the first temperature detection unit 130, the stored amount of NOx, and the like.
  • the amount of NOx reduced from the NOx storage reduction catalyst 210 is calculated based on the temperature detection result of the first temperature detection unit 130, the exhaust gas flow rate, the already stored storage amount of the NOx storage reduction catalyst 210, the exhaust air-fuel ratio, and the like. Is done.
  • the exhaust air-fuel ratio is calculated based on the fuel injection amount in the exhaust pipe 120 and the like.
  • the adjustment unit 161 is controlled so as to reduce the flow rate of the exhaust gas in the recirculation path unit 160, so the exhaust gas returned to the intake pipe 110 by the recirculation path unit 160. Gas is reduced. Since the exhaust gas contains NOx, the concentration of NOx in the exhaust gas flowing through the exhaust pipe 120 is increased by controlling the adjustment unit 161.
  • the NOx occlusion amount of the NOx occlusion reduction type catalyst 210 can be increased, and the ammonia adsorbed on the NOx selective reduction type catalyst 230 can be reduced by the purification reaction with NOx contained in the exhaust gas.
  • control unit 300 may determine whether to control the adjustment unit 161 based on the detection result of the first temperature detection unit 130.
  • FIG. 2 is a graph showing a change in the NOx storage efficiency with temperature in the NOx storage reduction catalyst 210.
  • the NOx occlusion efficiency of the NOx occlusion reduction type catalyst 210 is relatively high occlusion efficiency, for example, in the range of temperature T1 to temperature T2. For this reason, the control unit 300 determines to control the adjustment unit 161 in such a temperature range that the occlusion efficiency is higher than the predetermined efficiency.
  • the predetermined efficiency can be appropriately determined according to the storage amount of the NOx storage reduction catalyst 210 or the like. Thereby, the storage efficiency of the NOx storage reduction catalyst 210 can be improved, and ammonia in the NOx selective reduction catalyst 230 can be reduced by the NOx contained in the exhaust gas.
  • control unit 300 may determine whether to control the adjustment unit 161 based on the detection result of the second temperature detection unit 140.
  • FIG. 3 is a graph showing the temperature change of the NOx purification rate in the NOx selective reduction catalyst 230. As shown in FIG.
  • the control part 300 determines with controlling the adjustment part 161, when it is more than the activation temperature T3.
  • the ammonia reduction efficiency of the NOx selective reduction catalyst 230 can be improved, and as a result, the ammonia of the NOx selective reduction catalyst 230 can be easily reduced.
  • control unit 300 may control the adjustment unit 161 based on the temperature of the NOx storage reduction catalyst 210 and the temperature of the NOx selective reduction catalyst 230.
  • Table 1 is a graph showing the relationship between the estimated storage amount of NOx, the temperature of the NOx storage reduction catalyst 210, the temperature of the NOx selective reduction catalyst 230, and the exhaust gas flow rate in the recirculation path section 160.
  • Estimated storage amount indicates the estimated storage amount of the NOx storage reduction catalyst 210.
  • the “first temperature” in Table 1 indicates the temperature of the NOx storage reduction catalyst 210 (temperature detection result of the first temperature detection unit 130).
  • “Second temperature” in Table 1 indicates the temperature of the NOx selective reduction catalyst 230 (temperature detection result of the second temperature detection unit 140).
  • “Flow rate” in Table 1 indicates the exhaust gas flow rate of the recirculation path section 160.
  • “large” in the “estimated storage amount” in Table 1 indicates a case where the estimated storage amount of the NOx storage reduction catalyst 210 is larger than the predetermined storage amount, and “small” indicates that the NOx storage reduction catalyst 210.
  • the case where the estimated occlusion amount is smaller than the predetermined occlusion amount is shown.
  • control unit 300 controls the adjustment unit 161 by reading the relationship shown in Table 1 from a storage unit (not shown) or the like according to conditions. By doing in this way, control of the adjustment part 161 can be simplified.
  • the flow rate of the exhaust gas flows through the recirculation path unit 160.
  • the amount is “normal” in a fully open state.
  • the flow rate of the exhaust gas is a flow rate that is “reduced” from the “normal” flow rate.
  • the degree to which the amount is reduced is determined according to the estimated storage amount, the estimated adsorption amount of ammonia, and the like.
  • the temperature of the NOx storage reduction catalyst 210 is outside the storage temperature range, and the temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature (third line in Table 1), The flow rate of the exhaust gas is “decreased”.
  • the storage temperature range is, for example, a range from the temperature T1 to the temperature T2 in FIG.
  • the NOx storage reduction catalyst 210 cannot store NOx and is exhausted from the NOx storage reduction catalyst 210. This is a situation where NOx cannot be used. Therefore, in such a case, the exhaust gas in the recirculation path unit 160 can be reduced, the concentration of NOx contained in the exhaust gas in the exhaust pipe 120 can be increased, and ammonia can be reduced by using the NOx. As a result, the control as shown in the third row of Table 1 is effective.
  • the temperature of the NOx storage reduction catalyst 210 is outside the storage temperature range, and the temperature of the NOx selective reduction catalyst 230 is equal to or lower than the activation temperature (the fourth row of Table 1), The flow rate of the exhaust gas is set to “normal”.
  • the flow rate of the exhaust gas is set to “decrease”. In such a case, it is possible to promote the reduction action of NOx and ammonia contained in the exhaust gas while actively storing NOx in the NOx storage reduction catalyst 210. As a result, the control as shown in the fifth line of Table 1 is effective.
  • control unit 300 prohibits the rich process when the reproduction process is executed.
  • the NOx occlusion amount in the NOx occlusion reduction type catalyst 210 can be easily increased. That is, since the ammonia in the NOx selective reduction catalyst 230 can be easily reduced by NOx contained in the exhaust gas, the regeneration process can be executed quickly.
  • FIG. 4 is a flowchart showing an operation example of the purification control in the exhaust purification device 100. The process in FIG. 4 is appropriately executed while the vehicle V is traveling, for example.
  • the control unit 300 determines whether or not it is necessary to execute the reproduction process (step S101).
  • the determination as to whether the regeneration process in step S101 needs to be executed is based on, for example, the collected amount of particulate matter in the DPF 220. Specifically, when the trapped amount of the particulate matter in the DPF 220 reaches the amount to be burned, the control unit 300 determines that the regeneration process needs to be executed.
  • step S101 if it is not necessary to execute the reproduction process (step S101, NO), this control ends. On the other hand, when it is necessary to execute the reproduction process (step S101, YES), the control unit 300 prohibits the rich process (step S102).
  • the controller 300 estimates the ammonia adsorption amount of the NOx selective reduction catalyst 230 (step S103). Next, the control unit 300 determines whether or not the ammonia adsorption amount is larger than a predetermined target amount (step S104).
  • step S104 if the ammonia adsorption amount is larger than the predetermined target amount (step S104, YES), the control unit 300 performs exhaust gas flow rate control in the recirculation path unit 160 described later (step S105). After step S105, the process returns to step S103.
  • the control unit 300 determines whether or not the regeneration processing condition is satisfied (step S106).
  • the regeneration process condition includes, for example, the temperature condition of the NOx storage reduction catalyst 210 and the like.
  • step S106 if the reproduction processing condition is not satisfied (step S106, NO), the process returns to step S103.
  • NO in step S106, and the reason why the process returns to step S103 after step S105, the exhaust gas passes through the exhaust pipe 120 during the process from step S103 to step S106. This is because the NOx storage amount and the ammonia adsorption amount vary due to the flow.
  • step S106 when the reproduction process condition is satisfied (step S106, YES), the control unit 300 executes the reproduction process (step S107). After the reproduction process is finished, this control is finished. This control is repeatedly executed while the vehicle V is traveling.
  • FIG. 5 is a flowchart showing an operation example of the exhaust gas flow rate control in the recirculation path section 160. The process in FIG. 5 is executed when YES is determined in step S104 in FIG.
  • control unit 300 estimates the NOx occlusion amount of the NOx occlusion reduction type catalyst 210 (step S201). Next, the controller 300 determines whether or not the estimated storage amount of NOx is less than the predetermined storage amount (step S202).
  • step S202 determines whether or not the first temperature of the NOx storage reduction catalyst 210 is within a predetermined range (step S203).
  • the first temperature is, for example, a detection result of the first temperature detection unit 130.
  • the predetermined range is, for example, within the range of T1 and T2 in FIG.
  • step S203 determines whether or not the second temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature (step S204).
  • the second temperature is, for example, a detection result of the second temperature detection unit 140.
  • step S204 NO
  • step S204, YES the control unit 300 controls the adjustment unit 161 to decrease the exhaust gas flow rate in the recirculation path unit 160 (step S205). Thereafter, this control ends.
  • this control ends.
  • finished a process returns to step S103 in FIG.
  • control unit 300 promotes the reduction action of ammonia and NOx contained in the exhaust gas according to the estimated ammonia adsorption amount of the NOx selective reduction catalyst 230.
  • the adjustment unit 161 is controlled.
  • ammonia in the NOx selective reduction catalyst 230 is reduced using NOx contained in the exhaust gas. As a result, it is possible to suppress the desorption of ammonia from the NOx selective reduction catalyst 230 due to the temperature rise in the exhaust pipe 120 during the regeneration process.
  • the control unit 300 adjusts the adjustment unit 161 so as to decrease the flow rate of the exhaust gas. To control. As a result, the concentration of NOx contained in the exhaust gas is increased so that NOx is stored in the NOx storage reduction catalyst 210, and the ammonia in the NOx selective reduction catalyst 230 is reduced by the NOx by the NOx contained in the exhaust gas. Can do.
  • the NOx occlusion amount is estimated using the above-described equation (2).
  • the present disclosure is not limited to this, and the NOx occlusion amount may be estimated by other methods. good.
  • sensors for detecting NOx may be provided on the upstream side and the downstream side of the NOx storage reduction catalyst 210, respectively, and the NOx storage amount may be estimated using the difference value of the detection amount of each sensor.
  • the adjustment unit 161 is controlled when the regeneration process is executed.
  • the present disclosure is not limited to this, and the temperature inside the exhaust pipe 120 is increased due to a factor other than the regeneration process. At this time, the adjustment unit 161 may be controlled.
  • the estimation unit is exemplified as the control unit 300.
  • the present disclosure is not limited to this, and the estimation unit may be provided separately from the control unit 300.
  • the exhaust emission control device 100 in the above embodiment is mounted on the vehicle V equipped with a diesel engine
  • the present disclosure is not limited to this, and may be mounted on a vehicle equipped with a gasoline engine, for example. good.
  • DPF220 was illustrated as an example of a collection part, this indication is not limited to this, What kind of thing may be used if it is a filter which can collect a particulate matter. . Further, when the exhaust gas purification device 100 is mounted on a vehicle equipped with a gasoline engine, a GPF (gasoline particulate filter) may be the collection unit.
  • GPF gasoline particulate filter
  • the exhaust purification device of the present disclosure is useful as an exhaust purification device, a vehicle, and an exhaust purification control device capable of suppressing the reduction agent from desorbing from the NOx selective reduction catalyst due to the temperature rise in the exhaust pipe. is there.

Abstract

This exhaust purification device is provided with: an exhaust pipe through which exhaust gas generated from an internal combustion engine flows; a NOx selective reduction-type catalyst which is disposed in the exhaust pipe and which purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent; a NOx storage reduction-type catalyst that is disposed upstream of the NOx selective reduction-type catalyst in the exhaust pipe in an exhaust direction in which the exhaust gas flows, and that stores nitrogen oxides in the exhaust gas; an adjustment unit which adjusts the flow rate of exhaust gas returned from the exhaust pipe to an intake pipe of the internal combustion engine; and a control unit which controls the adjustment unit such that the reduction reaction between the reducing agent and the nitrogen oxides contained in the exhaust gas is promoted according to the adsorption amount of the reducing agent of the NOx selective reduction-type catalyst.

Description

排気浄化装置、車両および排気浄化制御装置Exhaust purification device, vehicle, and exhaust purification control device
 本開示は、排気浄化装置、車両および排気浄化制御装置に関する。 The present disclosure relates to an exhaust purification device, a vehicle, and an exhaust purification control device.
 従来、内燃機関で生じた排気ガスに含まれる窒素酸化物(以下、「NOx」という)を浄化処理するNOx吸蔵還元型触媒と、当該NOxを還元処理するNOx選択還元型触媒とを有する排気浄化装置が知られている(例えば、特許文献1参照)。NOx選択還元型触媒は、排気管内に供給された前駆体(例えば、尿素水)から発生した還元剤(例えば、アンモニア)を吸着し、吸着したアンモニアにより排気ガスに含まれるNOxを還元する。 Conventionally, exhaust gas purification having a NOx occlusion reduction type catalyst for purifying nitrogen oxide (hereinafter referred to as “NOx”) contained in exhaust gas generated in an internal combustion engine and a NOx selective reduction type catalyst for reducing the NOx. An apparatus is known (see, for example, Patent Document 1). The NOx selective reduction catalyst adsorbs a reducing agent (for example, ammonia) generated from a precursor (for example, urea water) supplied into the exhaust pipe, and reduces the NOx contained in the exhaust gas by the adsorbed ammonia.
 NOx吸蔵還元型触媒は、NOx選択還元型触媒が非活性化領域となる低温時においてNOxを吸蔵する性質を有する。そのため、当該低温時でもNOxが、NOx吸蔵還元型触媒により吸蔵され、その後還元される。このように、NOx選択還元型触媒とともにNOx吸蔵還元型触媒を排気浄化装置に用いた場合、当該排気浄化装置における排気浄化処理を効果的に行うことができる。 The NOx occlusion reduction type catalyst has a property of occluded NOx at a low temperature when the NOx selective reduction type catalyst is in an inactive region. Therefore, even when the temperature is low, NOx is occluded by the NOx occlusion reduction type catalyst and then reduced. Thus, when the NOx occlusion reduction type catalyst is used together with the NOx selective reduction type catalyst in the exhaust purification device, the exhaust purification processing in the exhaust purification device can be effectively performed.
日本国特開2016-125390号公報Japanese Unexamined Patent Publication No. 2016-125390
 ところで、排気浄化装置には、粒子状物質を捕集する捕集部が設けられる場合がある。この捕集部に流入する排気を昇温することで捕集された粒子状物質を燃焼させる再生処理を行うと、排気浄化装置内が昇温する。排気浄化装置(排気管)内が昇温すると、NOx選択還元型触媒からアンモニアが脱離するという問題が生じるので、排気浄化装置内を昇温する際に、NOx選択還元型触媒からアンモニアをできるだけ減少させることが好ましい。 By the way, the exhaust gas purification apparatus may be provided with a collection unit for collecting particulate matter. When the regeneration process for burning the particulate matter collected by raising the temperature of the exhaust gas flowing into the collection unit is performed, the temperature of the exhaust purification device rises. When the temperature in the exhaust purification device (exhaust pipe) rises, there arises a problem that ammonia is desorbed from the NOx selective reduction catalyst. Therefore, when the temperature in the exhaust purification device is raised, ammonia from the NOx selective reduction catalyst can be as much as possible. It is preferable to decrease.
 しかしながら、NOx吸蔵還元型触媒のNOx吸蔵量が少ない場合、排気ガスに含まれるNOxをNOx吸蔵還元型触媒に吸蔵されてしまうので、排気ガスに含まれるNOxにより、NOx選択還元型触媒のアンモニアを減少させることができない。その結果、NOx選択還元型触媒からアンモニアがなおも脱離してしまう問題が生じる。 However, when the NOx occlusion reduction amount of the NOx occlusion reduction catalyst is small, NOx contained in the exhaust gas is occluded in the NOx occlusion reduction catalyst, so the NOx selective reduction catalyst ammonia is absorbed by the NOx contained in the exhaust gas. It cannot be reduced. As a result, there arises a problem that ammonia still desorbs from the NOx selective reduction catalyst.
 本開示の目的は、排気管内の昇温に起因してNOx選択還元型触媒から還元剤が脱離することを抑制することが可能な排気浄化装置、車両および排気浄化制御装置を提供することである。 An object of the present disclosure is to provide an exhaust purification device, a vehicle, and an exhaust purification control device capable of suppressing a reducing agent from desorbing from a NOx selective reduction catalyst due to a temperature rise in an exhaust pipe. is there.
 本開示に係る排気浄化装置は、
 内燃機関から生じた排気ガスが流れる排気管と、
 前記排気管内に配置され、還元剤を吸着することで前記排気ガス中の窒素酸化物を浄化処理するNOx選択還元型触媒と、
 前記排気ガスが流れる排気方向において前記NOx選択還元型触媒よりも前記排気管内の上流側に配置され、前記排気ガス中の窒素酸化物を吸蔵するNOx吸蔵還元型触媒と、
 前記排気管から前記内燃機関の吸気管と前記排気管とを接続し、前記排気管内の前記排気ガスを前記吸気管に再循環させる再循環経路部と、
 前記再循環経路部で再循環する前記排気ガスの流量を調整する調整部と、
 前記NOx選択還元型触媒の前記還元剤の吸着量に応じて、前記還元剤と、前記排気ガスに含まれる窒素酸化物との還元作用が促進されるように前記調整部を制御する制御部と、
 を備える。
An exhaust emission control device according to the present disclosure includes:
An exhaust pipe through which exhaust gas generated from the internal combustion engine flows;
A NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent;
An NOx occlusion reduction type catalyst which is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the exhaust direction in which the exhaust gas flows, and occludes nitrogen oxides in the exhaust gas;
A recirculation path section for connecting the exhaust pipe and the exhaust pipe of the internal combustion engine from the exhaust pipe, and recirculating the exhaust gas in the exhaust pipe to the intake pipe;
An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit;
A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing agent of the NOx selective reduction catalyst; ,
Is provided.
 本開示に係る車両は、
 上記した排気浄化装置を備える。
The vehicle according to the present disclosure is
The above-described exhaust purification device is provided.
 本開示に係る排気浄化制御装置は、
 内燃機関から生じた排気ガスが流れる排気管と、前記排気管内に配置され、還元剤を吸着することで前記排気ガス中の窒素酸化物を浄化処理するNOx選択還元型触媒と、前記排気ガスが流れる排気方向において前記NOx選択還元型触媒よりも前記排気管内の上流側に配置され、前記排気ガス中の窒素酸化物を吸蔵するNOx吸蔵還元型触媒と、前記排気管から前記内燃機関の吸気管と前記排気管とを接続し、前記排気管内の前記排気ガスを前記吸気管に再循環させる再循環経路部と、を有する排気浄化装置の排気浄化制御装置であって、
 前記再循環経路部で再循環する前記排気ガスの流量を調整する調整部と、
 前記NOx選択還元型触媒の前記還元剤の吸着量に応じて、前記還元剤と、前記排気ガスに含まれる窒素酸化物との還元作用が促進されるように前記調整部を制御する制御部と、
 を備える。
An exhaust purification control apparatus according to the present disclosure includes:
An exhaust pipe through which exhaust gas generated from an internal combustion engine flows, a NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent, and the exhaust gas includes An NOx occlusion reduction type catalyst that is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the flowing exhaust direction and occludes nitrogen oxides in the exhaust gas, and an intake pipe of the internal combustion engine from the exhaust pipe An exhaust gas purification control device for an exhaust gas purification device, comprising: a recirculation path portion that connects the exhaust pipe and the exhaust pipe, and recirculates the exhaust gas in the exhaust pipe to the intake pipe,
An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit;
A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing agent of the NOx selective reduction catalyst; ,
Is provided.
 本開示によれば、排気管内の昇温に起因してNOx選択還元型触媒から還元剤が脱離することを抑制することができる。 According to the present disclosure, it is possible to prevent the reducing agent from desorbing from the NOx selective reduction catalyst due to the temperature rise in the exhaust pipe.
図1は、本開示の実施の形態に係る排気浄化装置が適用された内燃機関の排気系を示す概略構成図である。FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present disclosure is applied. 図2は、NOx吸蔵還元型触媒におけるNOx吸蔵効率の温度変化を示す図である。FIG. 2 is a graph showing the temperature change of NOx storage efficiency in the NOx storage reduction catalyst. 図3は、NOx選択還元型触媒におけるNOx浄化率の温度変化を示す図である。FIG. 3 is a graph showing the temperature change of the NOx purification rate in the NOx selective reduction catalyst. 図4は、排気浄化装置における浄化制御の動作例を示すフローチャートである。FIG. 4 is a flowchart showing an operation example of the purification control in the exhaust purification device. 図5は、再循環経路部における排気ガス流量制御の動作例を示すフローチャートである。FIG. 5 is a flowchart showing an operation example of the exhaust gas flow rate control in the recirculation path section.
 以下、本開示の実施の形態を図面に基づいて詳細に説明する。図1は、本開示の実施の形態に係る排気浄化装置100が適用された内燃機関1の排気系を示す概略構成図である。 Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine 1 to which an exhaust purification device 100 according to an embodiment of the present disclosure is applied.
 図1に示すように、内燃機関1は、車両Vに搭載される、例えばディーゼルエンジンであり、内燃機関1で生じた排気ガスを大気中に導くための排気浄化装置100が設けられている。排気浄化装置100は、吸気管110と、排気管120と、第1温度検出部130と、第2温度検出部140と、尿素水噴射部150と、再循環経路部160と、制御部300とを備えている。 As shown in FIG. 1, the internal combustion engine 1 is, for example, a diesel engine mounted on a vehicle V, and is provided with an exhaust purification device 100 for guiding exhaust gas generated in the internal combustion engine 1 to the atmosphere. The exhaust purification device 100 includes an intake pipe 110, an exhaust pipe 120, a first temperature detection unit 130, a second temperature detection unit 140, a urea water injection unit 150, a recirculation path unit 160, and a control unit 300. It has.
 吸気管110には、図示しない吸気バルブが設けられており、制御部300の制御の下、吸気バルブが開かれることにより、吸気管110は、内燃機関1に外気を吸気する。 The intake pipe 110 is provided with an intake valve (not shown), and the intake pipe 110 sucks outside air into the internal combustion engine 1 by opening the intake valve under the control of the control unit 300.
 排気管120は、内燃機関1から生じた排気ガスが流れる。排気管120には、排気ガスが流れる方向(図示左から右へ向かう方向、以下、「排気方向」という)の上流側から順に、NOx吸蔵還元型触媒210、捕集部の一例としてのDPF(ディーゼル・パーティキュレート・フィルタ)220、NOx選択還元型触媒230等が設けられている。 Exhaust gas generated from the internal combustion engine 1 flows through the exhaust pipe 120. In the exhaust pipe 120, a NOx occlusion reduction catalyst 210 and a DPF (capacitor) as an example of a collection unit are sequentially arranged from the upstream side in the direction in which the exhaust gas flows (the direction from the left to the right in the drawing, hereinafter referred to as “exhaust direction”). A diesel particulate filter) 220, a NOx selective reduction catalyst 230, and the like.
 NOx吸蔵還元型触媒210は、排気方向においてDPF220およびNOx選択還元型触媒230よりも排気管120内の上流側に配置され、排気ガス中の窒素酸化物(以下、NOxという)を吸蔵する。 The NOx occlusion reduction type catalyst 210 is disposed upstream of the DPF 220 and the NOx selective reduction type catalyst 230 in the exhaust pipe 120 in the exhaust direction, and occludes nitrogen oxides (hereinafter referred to as NOx) in the exhaust gas.
 具体的には、NOx吸蔵還元型触媒210は、排気温度が吸蔵温度であり、かつ、排気空燃比がリーン状態である場合、排気ガス中のNOxを吸蔵する。吸蔵温度の範囲は、NOx選択還元型触媒230が非活性化領域となる温度を含む。 Specifically, the NOx occlusion reduction type catalyst 210 occludes NOx in the exhaust gas when the exhaust temperature is the occlusion temperature and the exhaust air-fuel ratio is in a lean state. The range of the occlusion temperature includes a temperature at which the NOx selective reduction catalyst 230 is in a non-activated region.
 NOx吸蔵還元型触媒210に吸蔵されたNOxは、制御部300の制御の下、排気空燃比がリッチ状態とされることにより、排気ガス中の炭化水素および一酸化炭素と反応して還元される。 The NOx occluded in the NOx occlusion reduction catalyst 210 is reduced by reacting with the hydrocarbons and carbon monoxide in the exhaust gas by setting the exhaust air-fuel ratio to a rich state under the control of the control unit 300. .
 DPF220は、自身を通過する排気ガスに含まれる粒子状物質を捕集する。DPF220では、制御部300の制御の下、捕集された粒子状物質を燃焼する再生処理が実行されることで、当該粒子状物質が除去される。具体的には、制御部300の制御により、内燃機関1のシリンダ内へのポスト噴射や排気管120内への燃料供給が行われることで、例えば図示しない酸化触媒に炭化水素が供給され、当該酸化触媒で酸化反応が生じ、排気管120の排気ガスの温度が上昇する。そして、温度が上昇した排気ガスがDPF220に流入することで粒子状物質が燃焼される。 The DPF 220 collects particulate matter contained in the exhaust gas that passes through the DPF 220. In the DPF 220, the particulate matter is removed by executing a regeneration process for burning the collected particulate matter under the control of the control unit 300. Specifically, under the control of the control unit 300, post injection into the cylinder of the internal combustion engine 1 and fuel supply into the exhaust pipe 120 are performed, for example, hydrocarbons are supplied to an oxidation catalyst (not shown) An oxidation reaction occurs in the oxidation catalyst, and the temperature of the exhaust gas in the exhaust pipe 120 rises. Then, the particulate matter is burned by the exhaust gas whose temperature has risen flowing into the DPF 220.
 NOx選択還元型触媒230は、排気管120におけるDPF220の下流側に配置され、尿素水噴射部150により噴射された尿素水に基づいて生成された還元剤の一例としてのアンモニアを吸着する。NOx選択還元型触媒230は、吸着したアンモニアと、自身を通過する排気ガス中に含まれるNOxとを反応させることで、当該NOxを還元する。 The NOx selective reduction catalyst 230 is disposed downstream of the DPF 220 in the exhaust pipe 120 and adsorbs ammonia as an example of a reducing agent generated based on the urea water injected by the urea water injection unit 150. The NOx selective reduction catalyst 230 reduces the NOx by reacting the adsorbed ammonia with NOx contained in the exhaust gas passing through the NOx selective reduction catalyst 230.
 第1温度検出部130は、排気方向におけるNOx吸蔵還元型触媒210よりも上流側に配置され、排気管120におけるNOx吸蔵還元型触媒210の手前部分の温度を検出する。 The first temperature detection unit 130 is arranged upstream of the NOx storage reduction catalyst 210 in the exhaust direction, and detects the temperature of the front portion of the NOx storage reduction catalyst 210 in the exhaust pipe 120.
 第2温度検出部140は、排気方向におけるNOx選択還元型触媒230よりも上流側に配置され、排気管120におけるNOx選択還元型触媒230の手前部分の温度を検出する。 The second temperature detection unit 140 is arranged upstream of the NOx selective reduction catalyst 230 in the exhaust direction, and detects the temperature of the front portion of the NOx selective reduction catalyst 230 in the exhaust pipe 120.
 尿素水噴射部150は、排気管120におけるNOx選択還元型触媒230よりも上流側に配置されている。尿素水噴射部150により、尿素水が排気管120内に供給されると、排気管120内の温度により尿素水が加水分解されて、アンモニアが生成される。そして、アンモニアがNOx選択還元型触媒230に吸着する。 The urea water injection unit 150 is disposed upstream of the NOx selective reduction catalyst 230 in the exhaust pipe 120. When urea water is supplied into the exhaust pipe 120 by the urea water injection unit 150, the urea water is hydrolyzed by the temperature in the exhaust pipe 120, and ammonia is generated. Then, ammonia is adsorbed on the NOx selective reduction catalyst 230.
 再循環経路部160は、排気管120から分岐して排気管120内の排気ガスを吸気管110に向けて再循環させる経路であり、吸気管110と排気管120とに接続されている。 The recirculation path section 160 is a path that branches from the exhaust pipe 120 and recirculates the exhaust gas in the exhaust pipe 120 toward the intake pipe 110, and is connected to the intake pipe 110 and the exhaust pipe 120.
 再循環経路部160には、再循環経路部160を介して排気管120から吸気管110に戻す排気ガスの流量を調整する調整部161が設けられている。調整部161は、制御部300の制御の下、排気ガスの流路を開放状態から閉塞状態に遷移させることで、排気管120から吸気管110へ戻す排気ガスの流量を調整する。 The recirculation path section 160 is provided with an adjustment section 161 that adjusts the flow rate of exhaust gas that is returned from the exhaust pipe 120 to the intake pipe 110 via the recirculation path section 160. The adjustment unit 161 adjusts the flow rate of the exhaust gas returned from the exhaust pipe 120 to the intake pipe 110 by changing the flow path of the exhaust gas from the open state to the closed state under the control of the control unit 300.
 制御部300は、例えば電子制御ユニット(ECU:Electronic Control Unit)であって、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力回路を備えている。制御部300は、予め設定されたプログラムに基づいて、DPF220に捕集された粒子状物質を燃焼させる再生処理、排気管120内の排気空燃比をリッチ状態にするリッチ処理、再循環経路部160の排気ガスの流量を調整する処理等を実行する。制御部300は、本開示の「排気浄化制御装置」に対応する。 The controller 300 is, for example, an electronic control unit (ECU), and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output circuit (not shown). . The control unit 300 performs a regeneration process for burning the particulate matter collected in the DPF 220 based on a preset program, a rich process for making the exhaust air-fuel ratio in the exhaust pipe 120 rich, and a recirculation path unit 160. A process for adjusting the flow rate of the exhaust gas is executed. The control unit 300 corresponds to the “exhaust gas purification control device” of the present disclosure.
 制御部300は、DPF220の再生処理を実行する際、NOx選択還元型触媒230のアンモニアの吸着量を推定する。そして、制御部300は、推定したアンモニアの推定吸着量に応じて、NOx選択還元型触媒230に吸着するアンモニアと、排気ガスに含まれるNOxとの還元作用が促進されるように、調整部161を制御する。制御部300は、本開示の「推定部」に対応する。 The control unit 300 estimates the ammonia adsorption amount of the NOx selective reduction catalyst 230 when executing the regeneration process of the DPF 220. Then, the control unit 300 adjusts the adjustment unit 161 so that the reduction action of ammonia adsorbed on the NOx selective reduction catalyst 230 and NOx contained in the exhaust gas is accelerated according to the estimated amount of adsorption of ammonia. To control. The control unit 300 corresponds to the “estimation unit” of the present disclosure.
 より詳細には、制御部300は、NOx吸蔵還元型触媒210のNOxの吸蔵量を推定し、アンモニアの吸着量が所定目標量より多い場合、推定した推定吸蔵量に基づいて、調整部161を制御するか否かについて判定する。推定吸蔵量がNOx吸蔵還元型触媒210の所定吸蔵量未満である場合、制御部300は、再循環経路部160における排気ガスの流量を減少させるように調整部161を制御する。所定目標量は、例えば再生処理時にNOx選択還元型触媒230におけるアンモニアのスリップ濃度が目標値以下となるアンモニアの量である。 More specifically, the control unit 300 estimates the NOx occlusion amount of the NOx occlusion reduction type catalyst 210. When the ammonia adsorption amount is larger than a predetermined target amount, the control unit 300 controls the adjustment unit 161 based on the estimated occlusion amount. It is determined whether or not to control. When the estimated storage amount is less than the predetermined storage amount of the NOx storage reduction catalyst 210, the control unit 300 controls the adjustment unit 161 so as to reduce the flow rate of the exhaust gas in the recirculation path unit 160. The predetermined target amount is, for example, the amount of ammonia that causes the ammonia slip concentration in the NOx selective reduction catalyst 230 to be equal to or less than the target value during the regeneration process.
 アンモニアの推定吸着量は、以下の式(1)により推定される。
 アンモニアの推定吸着量=アンモニアの前回吸着量+供給アンモニア量-消費アンモニア量-アンモニア脱離量・・・(1)
The estimated adsorption amount of ammonia is estimated by the following equation (1).
Estimated adsorption amount of ammonia = previous adsorption amount of ammonia + supply ammonia amount-consumption ammonia amount-ammonia desorption amount (1)
 供給アンモニア量は、NOx選択還元型触媒230に供給したアンモニアの量であり、尿素水噴射部150により噴射された尿素水の量に基づいて算出される。 The supplied ammonia amount is the amount of ammonia supplied to the NOx selective reduction catalyst 230, and is calculated based on the amount of urea water injected by the urea water injection unit 150.
 消費アンモニア量は、NOxの浄化反応で消費されたアンモニアの量であり、NOx選択還元型触媒230を通過したNOxの量、第2温度検出部140の温度検出結果、排気ガスの流量、NOx内におけるNOの比率、および、アンモニアの吸着量に基づいて算出される。 The consumed ammonia amount is the amount of ammonia consumed in the NOx purification reaction, the amount of NOx that has passed through the NOx selective reduction catalyst 230, the temperature detection result of the second temperature detection unit 140, the flow rate of exhaust gas, Is calculated based on the ratio of NO 2 and the amount of adsorbed ammonia.
 NOx選択還元型触媒230を通過したNOxの量は、図示しないセンサ等に基づいて検出される。NOx内におけるNOの比率は、エンジン回転数と燃料噴射量に基づいたマップにNOx吸蔵還元型触媒210のNOx吸蔵量や温度による補正を行うことで推定される。アンモニアの前回吸着量は、式(1)により前回算出されたアンモニアの現在吸着量である。 The amount of NOx that has passed through the NOx selective reduction catalyst 230 is detected based on a sensor or the like (not shown). The ratio of NO 2 in NOx is estimated by correcting the map based on the engine speed and the fuel injection amount based on the NOx storage amount and temperature of the NOx storage reduction catalyst 210. The previous adsorption amount of ammonia is the current adsorption amount of ammonia calculated last time by the equation (1).
 アンモニア脱離量は、NOx選択還元型触媒230から脱離したアンモニアの量であり、アンモニアの吸着量、第2温度検出部140の温度検出結果、排気ガスの流量に基づいて算出される。 The ammonia desorption amount is the amount of ammonia desorbed from the NOx selective reduction catalyst 230, and is calculated based on the ammonia adsorption amount, the temperature detection result of the second temperature detection unit 140, and the exhaust gas flow rate.
 NOxの推定吸蔵量は、以下の式(2)により推定される。
 NOxの吸蔵量=A+B×C-D-E・・・(2)
 A:NOxの既吸蔵量
 B:NOx吸蔵還元型触媒210の上流側のNOx濃度
 C:NOx吸蔵還元型触媒210のNOx吸蔵効率
 D:NOx吸蔵還元型触媒210から排出されるNOxの量
 E:NOx吸蔵還元型触媒210から還元されるNOxの量
The estimated storage amount of NOx is estimated by the following equation (2).
NOx occlusion amount = A + B × CDE (2)
A: NOx stored amount B: NOx concentration upstream of the NOx storage reduction catalyst 210 C: NOx storage efficiency of the NOx storage reduction catalyst 210 D: NOx amount discharged from the NOx storage reduction catalyst 210 E: Amount of NOx reduced from the NOx occlusion reduction type catalyst 210
 NOxの既吸蔵量は、NOx吸蔵還元型触媒210に既に吸蔵されているNOxの量であり、例えば前回推定されたNOxの吸蔵量の推定値が用いられる。 The stored amount of NOx is the amount of NOx already stored in the NOx storage-reduction catalyst 210. For example, the estimated value of the stored amount of NOx estimated last time is used.
 NOx吸蔵還元型触媒210の上流側のNOx濃度は、排気管120内におけるNOx吸蔵還元型触媒210の上流側の、排気ガス中のNOx濃度であり、例えば、図示しないセンサにより検出されたNOx濃度が用いられる。 The upstream NOx concentration of the NOx storage reduction catalyst 210 is the NOx concentration in the exhaust gas upstream of the NOx storage reduction catalyst 210 in the exhaust pipe 120. For example, the NOx concentration detected by a sensor (not shown). Is used.
 NOx吸蔵還元型触媒210のNOx吸蔵効率は、第1温度検出部130の温度検出結果、排気ガスの流量、NOx吸蔵還元型触媒210の上流側のNOx濃度、および、NOxの既吸蔵量等に基づいて算出される。排気ガスの流量は、排気管120内に流れ込む排気ガスの量であり、図示しないセンサ等により検出される。 The NOx occlusion efficiency of the NOx occlusion reduction catalyst 210 depends on the temperature detection result of the first temperature detector 130, the exhaust gas flow rate, the NOx concentration upstream of the NOx occlusion reduction catalyst 210, the NOx occlusion amount, and the like. Calculated based on The flow rate of the exhaust gas is the amount of exhaust gas flowing into the exhaust pipe 120 and is detected by a sensor or the like (not shown).
 NOx吸蔵還元型触媒210から排出されるNOxの量は、第1温度検出部130の温度検出結果およびNOxの既吸蔵量等に基づいて算出される。 The amount of NOx discharged from the NOx storage reduction catalyst 210 is calculated based on the temperature detection result of the first temperature detection unit 130, the stored amount of NOx, and the like.
 NOx吸蔵還元型触媒210から還元されるNOxの量は、第1温度検出部130の温度検出結果、排気ガスの流量、NOx吸蔵還元型触媒210の既吸蔵量および排気空燃比等に基づいて算出される。排気空燃比は、排気管120内の燃料噴射量等に基づいて算出される。 The amount of NOx reduced from the NOx storage reduction catalyst 210 is calculated based on the temperature detection result of the first temperature detection unit 130, the exhaust gas flow rate, the already stored storage amount of the NOx storage reduction catalyst 210, the exhaust air-fuel ratio, and the like. Is done. The exhaust air-fuel ratio is calculated based on the fuel injection amount in the exhaust pipe 120 and the like.
 ここで、排気管120内が、再生処理等に起因して昇温すると、NOx選択還元型触媒230からアンモニアが脱離するという問題が生じるので、排気管120内が昇温する際に、NOx選択還元型触媒230からアンモニアをできるだけ減少させることが好ましい。 Here, when the temperature inside the exhaust pipe 120 rises due to regeneration processing or the like, there is a problem that ammonia is desorbed from the NOx selective reduction catalyst 230. Therefore, when the temperature inside the exhaust pipe 120 rises, NOx It is preferable to reduce ammonia from the selective catalytic reduction catalyst 230 as much as possible.
 しかしながら、NOx吸蔵還元型触媒210のNOx吸蔵量が少ない場合、排気ガスに含まれるNOxをNOx吸蔵還元型触媒210に吸蔵されてしまうので、排気ガスに含まれるNOxにより、NOx選択還元型触媒230のアンモニアを減少させることができない。その結果、NOx選択還元型触媒230からアンモニアがなおも脱離してしまう問題が生じる。 However, when the NOx occlusion amount of the NOx occlusion reduction type catalyst 210 is small, NOx contained in the exhaust gas is occluded in the NOx occlusion reduction type catalyst 210. Therefore, the NOx selective reduction type catalyst 230 is absorbed by the NOx contained in the exhaust gas. The ammonia can not be reduced. As a result, there arises a problem that ammonia is still desorbed from the NOx selective reduction catalyst 230.
 そこで、本実施の形態では、このような場合に、再循環経路部160における排気ガスの流量を減少させるように調整部161を制御するので、再循環経路部160によって吸気管110に戻される排気ガスが減少する。当該排気ガスには、NOxが含まれているので、調整部161を制御することで排気管120を流れる排気ガスのNOxの濃度が上昇する。 Therefore, in this embodiment, in such a case, the adjustment unit 161 is controlled so as to reduce the flow rate of the exhaust gas in the recirculation path unit 160, so the exhaust gas returned to the intake pipe 110 by the recirculation path unit 160. Gas is reduced. Since the exhaust gas contains NOx, the concentration of NOx in the exhaust gas flowing through the exhaust pipe 120 is increased by controlling the adjustment unit 161.
 これにより、NOx吸蔵還元型触媒210のNOxの吸蔵量を増大させつつ、NOx選択還元型触媒230に吸着されたアンモニアを排気ガスに含まれるNOxとの浄化反応によって減少させることができる。 Thereby, the NOx occlusion amount of the NOx occlusion reduction type catalyst 210 can be increased, and the ammonia adsorbed on the NOx selective reduction type catalyst 230 can be reduced by the purification reaction with NOx contained in the exhaust gas.
 その結果、再生処理等に起因して排気管120内の温度が昇温する際、排気ガスに含まれるNOxによって、NOx選択還元型触媒230のアンモニアを減少させることができ、ひいては昇温に起因したアンモニアの脱離を抑制することができる。 As a result, when the temperature in the exhaust pipe 120 rises due to regeneration processing or the like, ammonia in the NOx selective reduction catalyst 230 can be reduced by NOx contained in the exhaust gas, and as a result, the temperature rises. Desorption of ammonia can be suppressed.
 また、制御部300は、第1温度検出部130の検出結果に基づいて、調整部161を制御するか否かについて判定しても良い。図2は、NOx吸蔵還元型触媒210におけるNOx吸蔵効率の温度変化を示す図である。 Further, the control unit 300 may determine whether to control the adjustment unit 161 based on the detection result of the first temperature detection unit 130. FIG. 2 is a graph showing a change in the NOx storage efficiency with temperature in the NOx storage reduction catalyst 210.
 図2に示すように、NOx吸蔵還元型触媒210のNOx吸蔵効率は、例えば温度T1~温度T2の範囲内において、比較的高い吸蔵効率となっている。そのため、制御部300は、このような吸蔵効率が所定効率より高くなる温度範囲のときに、調整部161を制御すると判定する。所定効率は、NOx吸蔵還元型触媒210の吸蔵量等に応じて適宜定めることができる。これにより、NOx吸蔵還元型触媒210の吸蔵効率を向上させ、排気ガスに含まれるNOxによりNOx選択還元型触媒230のアンモニアを減少させることができる。 As shown in FIG. 2, the NOx occlusion efficiency of the NOx occlusion reduction type catalyst 210 is relatively high occlusion efficiency, for example, in the range of temperature T1 to temperature T2. For this reason, the control unit 300 determines to control the adjustment unit 161 in such a temperature range that the occlusion efficiency is higher than the predetermined efficiency. The predetermined efficiency can be appropriately determined according to the storage amount of the NOx storage reduction catalyst 210 or the like. Thereby, the storage efficiency of the NOx storage reduction catalyst 210 can be improved, and ammonia in the NOx selective reduction catalyst 230 can be reduced by the NOx contained in the exhaust gas.
 また、制御部300は、第2温度検出部140の検出結果に基づいて、調整部161を制御するか否かについて判定しても良い。図3は、NOx選択還元型触媒230におけるNOx浄化率の温度変化を示す図である。 Further, the control unit 300 may determine whether to control the adjustment unit 161 based on the detection result of the second temperature detection unit 140. FIG. 3 is a graph showing the temperature change of the NOx purification rate in the NOx selective reduction catalyst 230. As shown in FIG.
 図3に示すように、NOx選択還元型触媒230が活性領域となる活性温度T3以上になると、NOx浄化率が比較的高い浄化率となることが確認できる。そのため、制御部300は、活性温度T3以上のときに、調整部161を制御すると判定する。これにより、NOx選択還元型触媒230のアンモニアの還元効率を向上させることができ、ひいてはNOx選択還元型触媒230のアンモニアを減少させやすくすることができる。 As shown in FIG. 3, it can be confirmed that the NOx purification rate becomes a relatively high purification rate when the NOx selective reduction catalyst 230 reaches or exceeds the activation temperature T3 that becomes the active region. Therefore, the control part 300 determines with controlling the adjustment part 161, when it is more than the activation temperature T3. As a result, the ammonia reduction efficiency of the NOx selective reduction catalyst 230 can be improved, and as a result, the ammonia of the NOx selective reduction catalyst 230 can be easily reduced.
 また、制御部300は、NOx吸蔵還元型触媒210の温度と、NOx選択還元型触媒230の温度とに基づいて、調整部161を制御しても良い。表1は、NOxの推定吸蔵量、NOx吸蔵還元型触媒210の温度およびNOx選択還元型触媒230の温度と、再循環経路部160の排気ガス流量との関係を示す図である。 Further, the control unit 300 may control the adjustment unit 161 based on the temperature of the NOx storage reduction catalyst 210 and the temperature of the NOx selective reduction catalyst 230. Table 1 is a graph showing the relationship between the estimated storage amount of NOx, the temperature of the NOx storage reduction catalyst 210, the temperature of the NOx selective reduction catalyst 230, and the exhaust gas flow rate in the recirculation path section 160.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1における「推定吸蔵量」は、NOx吸蔵還元型触媒210の推定吸蔵量を示す。表1における「第1温度」は、NOx吸蔵還元型触媒210の温度(第1温度検出部130の温度検出結果)を示す。表1における「第2温度」は、NOx選択還元型触媒230の温度(第2温度検出部140の温度検出結果)を示す。表1における「流量」は、再循環経路部160の排気ガス流量を示す。 “Estimated storage amount” in Table 1 indicates the estimated storage amount of the NOx storage reduction catalyst 210. The “first temperature” in Table 1 indicates the temperature of the NOx storage reduction catalyst 210 (temperature detection result of the first temperature detection unit 130). “Second temperature” in Table 1 indicates the temperature of the NOx selective reduction catalyst 230 (temperature detection result of the second temperature detection unit 140). “Flow rate” in Table 1 indicates the exhaust gas flow rate of the recirculation path section 160.
 また、表1の「推定吸蔵量」における「多い」は、NOx吸蔵還元型触媒210の推定吸蔵量が、所定吸蔵量よりも多い場合を示し、「少ない」は、NOx吸蔵還元型触媒210の推定吸蔵量が、所定吸蔵量よりも少ない場合を示している。 Further, “large” in the “estimated storage amount” in Table 1 indicates a case where the estimated storage amount of the NOx storage reduction catalyst 210 is larger than the predetermined storage amount, and “small” indicates that the NOx storage reduction catalyst 210. The case where the estimated occlusion amount is smaller than the predetermined occlusion amount is shown.
 例えば、制御部300は、条件に応じて、表1に示す関係を図示しない記憶部等から読み出すことで、調整部161を制御する。このようにすることで、調整部161の制御を簡素化することができる。 For example, the control unit 300 controls the adjustment unit 161 by reading the relationship shown in Table 1 from a storage unit (not shown) or the like according to conditions. By doing in this way, control of the adjustment part 161 can be simplified.
 具体的には、推定吸蔵量が多く、NOx選択還元型触媒230の温度が活性温度以下である場合(表1の1行目)、排気ガスの流量が、再循環経路部160における流路を完全に開放した状態である「通常」の量とされる。 Specifically, when the estimated amount of occlusion is large and the temperature of the NOx selective reduction catalyst 230 is equal to or lower than the activation temperature (the first line of Table 1), the flow rate of the exhaust gas flows through the recirculation path unit 160. The amount is “normal” in a fully open state.
 NOx選択還元型触媒230の温度が活性温度以下である場合、NOxとアンモニアとが還元されにくく、NOxが外部に排出されやすくなる。そのため、排気ガスに含まれるNOxの量を、再循環経路部160を利用して低減する必要性が高まるので、表1の1行目のような制御が有効となる。 When the temperature of the NOx selective reduction catalyst 230 is equal to or lower than the activation temperature, NOx and ammonia are not easily reduced, and NOx is easily discharged to the outside. Therefore, the necessity of reducing the amount of NOx contained in the exhaust gas by using the recirculation path unit 160 is increased, so that the control as in the first row of Table 1 is effective.
 推定吸蔵量が多く、NOx選択還元型触媒230の温度が活性温度以上である場合(表1の2行目)、排気ガスの流量が、「通常」の流量よりも「減量」した流量とされる。減量される度合いは、推定吸蔵量やアンモニアの推定吸着量等に応じて決められる。 When the estimated amount of occlusion is large and the temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature (the second row in Table 1), the flow rate of the exhaust gas is a flow rate that is “reduced” from the “normal” flow rate. The The degree to which the amount is reduced is determined according to the estimated storage amount, the estimated adsorption amount of ammonia, and the like.
 再循環経路部160の排気ガスの流量が減量されると、排気管120内を流れる排気ガスに含まれるNOxが増大する。しかし、NOx選択還元型触媒230の温度が活性温度以上であるとき、NOxとアンモニアとが還元されやすいので、効率よくアンモニアを減少させることができる。その結果、表1の2行目のような制御が有効となる。 When the flow rate of the exhaust gas in the recirculation path section 160 is reduced, NOx contained in the exhaust gas flowing through the exhaust pipe 120 increases. However, when the temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature, NOx and ammonia are easily reduced, so that ammonia can be efficiently reduced. As a result, the control as shown in the second row of Table 1 is effective.
 また、推定吸蔵量が少なく、NOx吸蔵還元型触媒210の温度が吸蔵温度範囲外であり、かつ、NOx選択還元型触媒230の温度が活性温度以上である場合(表1の3行目)、排気ガスの流量が「減量」とされる。吸蔵温度範囲とは、例えば、図2における温度T1から温度T2の範囲である。 Further, when the estimated storage amount is small, the temperature of the NOx storage reduction catalyst 210 is outside the storage temperature range, and the temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature (third line in Table 1), The flow rate of the exhaust gas is “decreased”. The storage temperature range is, for example, a range from the temperature T1 to the temperature T2 in FIG.
 NOx吸蔵還元型触媒210の温度が吸蔵温度範囲外であり、かつ、推定吸蔵量が少ない場合、NOx吸蔵還元型触媒210にNOxを吸蔵できず、かつ、NOx吸蔵還元型触媒210から排出されるNOxを利用できない状況である。そのため、このような場合、再循環経路部160の排気ガスを減量して、排気管120内の排気ガスに含まれるNOxの濃度を増やし、当該NOx利用してアンモニアを減少させることができる。その結果、表1の3行目のような制御が有効となる。 When the temperature of the NOx storage reduction catalyst 210 is outside the storage temperature range and the estimated storage amount is small, the NOx storage reduction catalyst 210 cannot store NOx and is exhausted from the NOx storage reduction catalyst 210. This is a situation where NOx cannot be used. Therefore, in such a case, the exhaust gas in the recirculation path unit 160 can be reduced, the concentration of NOx contained in the exhaust gas in the exhaust pipe 120 can be increased, and ammonia can be reduced by using the NOx. As a result, the control as shown in the third row of Table 1 is effective.
 また、推定吸蔵量が少なく、NOx吸蔵還元型触媒210の温度が吸蔵温度範囲外であり、かつ、NOx選択還元型触媒230の温度が活性温度以下である場合(表1の4行目)、排気ガスの流量が「通常」とされる。 Further, when the estimated storage amount is small, the temperature of the NOx storage reduction catalyst 210 is outside the storage temperature range, and the temperature of the NOx selective reduction catalyst 230 is equal to or lower than the activation temperature (the fourth row of Table 1), The flow rate of the exhaust gas is set to “normal”.
 この場合、NOx選択還元型触媒230のアンモニアを減らしにくく、かつ、NOx吸蔵還元型触媒210にNOxを吸蔵しにくい状況であるので、排気管120内のNOxを可能な限り減少させるのが望ましい。そのため、表1の4行目のような制御をすることで、再循環経路部160を利用して排気管120内を流れる排気ガスに含まれるNOxを減少させることができる。その結果、表1の4行目のような制御が有効となる。 In this case, it is difficult to reduce ammonia in the NOx selective reduction catalyst 230 and it is difficult to store NOx in the NOx storage reduction catalyst 210. Therefore, it is desirable to reduce NOx in the exhaust pipe 120 as much as possible. Therefore, by performing the control as shown in the fourth row of Table 1, NOx contained in the exhaust gas flowing in the exhaust pipe 120 can be reduced using the recirculation path section 160. As a result, the control as shown in the fourth row of Table 1 is effective.
 また、推定吸蔵量が少なく、NOx吸蔵還元型触媒210の温度が吸蔵温度範囲内である場合(表1の5行目)、排気ガスの流量が「減量」とされる。このような場合、NOx吸蔵還元型触媒210に積極的にNOxを吸蔵させつつ、排気ガスに含まれるNOxとアンモニアとの還元作用を促進させることができる。その結果、表1の5行目のような制御が有効となる。 Further, when the estimated storage amount is small and the temperature of the NOx storage reduction catalyst 210 is within the storage temperature range (line 5 in Table 1), the flow rate of the exhaust gas is set to “decrease”. In such a case, it is possible to promote the reduction action of NOx and ammonia contained in the exhaust gas while actively storing NOx in the NOx storage reduction catalyst 210. As a result, the control as shown in the fifth line of Table 1 is effective.
 また、制御部300は、再生処理が実行される際、リッチ処理を禁止する。 Further, the control unit 300 prohibits the rich process when the reproduction process is executed.
 リッチ処理を禁止することにより、NOx吸蔵還元型触媒210におけるNOx吸蔵量を増やしやすくすることができる。すなわち、NOx選択還元型触媒230のアンモニアを排気ガスに含まれるNOxにより減少させやすくできるので、再生処理を迅速に実行することができる。 By prohibiting the rich process, the NOx occlusion amount in the NOx occlusion reduction type catalyst 210 can be easily increased. That is, since the ammonia in the NOx selective reduction catalyst 230 can be easily reduced by NOx contained in the exhaust gas, the regeneration process can be executed quickly.
 以上のように構成された排気浄化装置100における浄化制御の動作例について説明する。図4は、排気浄化装置100における浄化制御の動作例を示すフローチャートである。図4における処理は、例えば、車両Vの走行中において、適宜実行される。 An operation example of the purification control in the exhaust purification apparatus 100 configured as described above will be described. FIG. 4 is a flowchart showing an operation example of the purification control in the exhaust purification device 100. The process in FIG. 4 is appropriately executed while the vehicle V is traveling, for example.
 図4に示すように、制御部300は、再生処理を実行する必要があるか否かについて判定する(ステップS101)。ステップS101における再生処理を実行する必要があるかの判定は、例えば、DPF220における粒子状物質の捕集量等を基準になされる。具体的には、DPF220における粒子状物質の捕集量が燃焼させるべき量まで達した場合、制御部300は、再生処理を実行する必要があると判定する。 As shown in FIG. 4, the control unit 300 determines whether or not it is necessary to execute the reproduction process (step S101). The determination as to whether the regeneration process in step S101 needs to be executed is based on, for example, the collected amount of particulate matter in the DPF 220. Specifically, when the trapped amount of the particulate matter in the DPF 220 reaches the amount to be burned, the control unit 300 determines that the regeneration process needs to be executed.
 判定の結果、再生処理を実行する必要がない場合(ステップS101、NO)、本制御は終了する。一方、再生処理を実行する必要がある場合(ステップS101、YES)、制御部300は、リッチ処理を禁止する(ステップS102)。 As a result of the determination, if it is not necessary to execute the reproduction process (step S101, NO), this control ends. On the other hand, when it is necessary to execute the reproduction process (step S101, YES), the control unit 300 prohibits the rich process (step S102).
 次に、制御部300は、NOx選択還元型触媒230のアンモニアの吸着量を推定する(ステップS103)。次に、制御部300は、アンモニアの吸着量が所定目標量より多いか否かについて判定する(ステップS104)。 Next, the controller 300 estimates the ammonia adsorption amount of the NOx selective reduction catalyst 230 (step S103). Next, the control unit 300 determines whether or not the ammonia adsorption amount is larger than a predetermined target amount (step S104).
 判定の結果、アンモニアの吸着量が所定目標量より多い場合(ステップS104、YES)、制御部300は、後述する再循環経路部160における排気ガス流量制御を実行する(ステップS105)。ステップS105の後、処理はステップS103に戻る。 As a result of the determination, if the ammonia adsorption amount is larger than the predetermined target amount (step S104, YES), the control unit 300 performs exhaust gas flow rate control in the recirculation path unit 160 described later (step S105). After step S105, the process returns to step S103.
 一方、アンモニアの吸着量が所定目標量以下である場合(ステップS104、NO)、制御部300は、再生処理条件が成立しているか否かについて判定する(ステップS106)。再生処理条件は、例えば、NOx吸蔵還元型触媒210の温度条件等が含まれる。 On the other hand, when the ammonia adsorption amount is equal to or smaller than the predetermined target amount (step S104, NO), the control unit 300 determines whether or not the regeneration processing condition is satisfied (step S106). The regeneration process condition includes, for example, the temperature condition of the NOx storage reduction catalyst 210 and the like.
 判定の結果、再生処理条件が成立していない場合(ステップS106、NO)、処理はステップS103に戻る。ここで、ステップS106でNOの場合、および、ステップS105の後、処理がステップS103に戻る理由としては、ステップS103からステップS106までの処理をしている間に、排気ガスが排気管120内を流れることで、NOxの吸蔵量やアンモニアの吸着量が変動するからである。 As a result of the determination, if the reproduction processing condition is not satisfied (step S106, NO), the process returns to step S103. Here, in the case of NO in step S106, and the reason why the process returns to step S103 after step S105, the exhaust gas passes through the exhaust pipe 120 during the process from step S103 to step S106. This is because the NOx storage amount and the ammonia adsorption amount vary due to the flow.
 一方、再生処理条件が成立した場合(ステップS106、YES)、制御部300は、再生処理を実行する(ステップS107)。再生処理が終了した後、本制御は終了する。なお、本制御は、車両Vの走行中に繰り返し実行される。 On the other hand, when the reproduction process condition is satisfied (step S106, YES), the control unit 300 executes the reproduction process (step S107). After the reproduction process is finished, this control is finished. This control is repeatedly executed while the vehicle V is traveling.
 次に、図4におけるステップS105の排気ガス流量制御の動作例について説明する。図5は、再循環経路部160における排気ガス流量制御の動作例を示すフローチャートである。図5における処理は、図4におけるステップS104でYESの場合に実行される。 Next, an operation example of the exhaust gas flow rate control in step S105 in FIG. 4 will be described. FIG. 5 is a flowchart showing an operation example of the exhaust gas flow rate control in the recirculation path section 160. The process in FIG. 5 is executed when YES is determined in step S104 in FIG.
 図5に示すように、制御部300は、NOx吸蔵還元型触媒210のNOx吸蔵量を推定する(ステップS201)。次に、制御部300は、NOxの推定吸蔵量が所定吸蔵量未満であるか否かについて判定する(ステップS202)。 As shown in FIG. 5, the control unit 300 estimates the NOx occlusion amount of the NOx occlusion reduction type catalyst 210 (step S201). Next, the controller 300 determines whether or not the estimated storage amount of NOx is less than the predetermined storage amount (step S202).
 判定の結果、推定吸蔵量が所定吸蔵量以上である場合(ステップS202、NO)、処理はステップS204に遷移する。一方、推定吸蔵量が所定吸蔵量未満である場合(ステップS202、YES)、制御部300は、NOx吸蔵還元型触媒210の第1温度が所定範囲内であるか否かについて判定する(ステップS203)。第1温度は、例えば第1温度検出部130の検出結果である。また、所定範囲内は、例えば図2におけるT1とT2の範囲内である。 As a result of the determination, if the estimated occlusion amount is equal to or greater than the predetermined occlusion amount (step S202, NO), the process transitions to step S204. On the other hand, when the estimated storage amount is less than the predetermined storage amount (step S202, YES), the control unit 300 determines whether or not the first temperature of the NOx storage reduction catalyst 210 is within a predetermined range (step S203). ). The first temperature is, for example, a detection result of the first temperature detection unit 130. Further, the predetermined range is, for example, within the range of T1 and T2 in FIG.
 判定の結果、第1温度が所定範囲内である場合(ステップS203、YES)、処理はステップS205に遷移する。一方、第1温度が所定範囲内ではない場合(ステップS203、NO)、制御部300は、NOx選択還元型触媒230の第2温度が活性温度以上であるか否かについて判定する(ステップS204)。第2温度は、例えば第2温度検出部140の検出結果である。 As a result of the determination, if the first temperature is within the predetermined range (step S203, YES), the process transitions to step S205. On the other hand, when the first temperature is not within the predetermined range (step S203, NO), the controller 300 determines whether or not the second temperature of the NOx selective reduction catalyst 230 is equal to or higher than the activation temperature (step S204). . The second temperature is, for example, a detection result of the second temperature detection unit 140.
 判定の結果、第2温度が活性温度未満である場合(ステップS204、NO)、本制御は終了する。一方、第2温度が活性温度以上である場合(ステップS204、YES)、制御部300は、再循環経路部160の排気ガス流量を減量させるように調整部161を制御する(ステップS205)。その後、本制御は終了する。なお、本制御が終了した後、処理は図4におけるステップS103に戻る。 As a result of the determination, when the second temperature is lower than the activation temperature (step S204, NO), this control ends. On the other hand, when the second temperature is equal to or higher than the activation temperature (step S204, YES), the control unit 300 controls the adjustment unit 161 to decrease the exhaust gas flow rate in the recirculation path unit 160 (step S205). Thereafter, this control ends. In addition, after this control is complete | finished, a process returns to step S103 in FIG.
 以上のように構成された本実施の形態によれば、制御部300がNOx選択還元型触媒230のアンモニアの推定吸着量に応じて、アンモニアと排気ガスに含まれるNOxとの還元作用が促進されるように、調整部161を制御する。 According to the present embodiment configured as described above, the control unit 300 promotes the reduction action of ammonia and NOx contained in the exhaust gas according to the estimated ammonia adsorption amount of the NOx selective reduction catalyst 230. Thus, the adjustment unit 161 is controlled.
 すなわち、排気ガスに含まれるNOxを利用して、NOx選択還元型触媒230のアンモニアを減少させる。その結果、再生処理時のような排気管120内の昇温に起因してNOx選択還元型触媒230からアンモニアが脱離することを抑制することができる。 That is, ammonia in the NOx selective reduction catalyst 230 is reduced using NOx contained in the exhaust gas. As a result, it is possible to suppress the desorption of ammonia from the NOx selective reduction catalyst 230 due to the temperature rise in the exhaust pipe 120 during the regeneration process.
 また、アンモニアの吸着量が所定目標量より多く、かつ、推定吸蔵量がNOx吸蔵還元型触媒210の所定吸蔵量未満である場合、制御部300が排気ガスの流量を減少させるように調整部161を制御する。これにより、排気ガスに含まれるNOxの濃度を増大させて、NOx吸蔵還元型触媒210にNOxを吸蔵させつつ、排気ガスに含まれるNOxによりNOx選択還元型触媒230のアンモニアを当該NOxによって減らすことができる。 Further, when the ammonia adsorption amount is larger than the predetermined target amount and the estimated storage amount is less than the predetermined storage amount of the NOx storage reduction catalyst 210, the control unit 300 adjusts the adjustment unit 161 so as to decrease the flow rate of the exhaust gas. To control. As a result, the concentration of NOx contained in the exhaust gas is increased so that NOx is stored in the NOx storage reduction catalyst 210, and the ammonia in the NOx selective reduction catalyst 230 is reduced by the NOx by the NOx contained in the exhaust gas. Can do.
 なお、上記実施の形態では、上述の式(2)を用いてNOxの吸蔵量を推定していたが、本開示はこれに限定されず、その他の方法によりNOxの吸蔵量を推定しても良い。例えば、NOx吸蔵還元型触媒210の上流側および下流側に、それぞれNOxを検出するセンサを設け、各センサの検出量の差分値を用いてNOxの吸蔵量が推定されても良い。 In the above embodiment, the NOx occlusion amount is estimated using the above-described equation (2). However, the present disclosure is not limited to this, and the NOx occlusion amount may be estimated by other methods. good. For example, sensors for detecting NOx may be provided on the upstream side and the downstream side of the NOx storage reduction catalyst 210, respectively, and the NOx storage amount may be estimated using the difference value of the detection amount of each sensor.
 また、上記実施の形態では、再生処理を実行する際に、調整部161の制御を行っていたが、本開示はこれに限定されず、排気管120内が再生処理以外の要因で昇温した際に、調整部161の制御を行っても良い。 In the above embodiment, the adjustment unit 161 is controlled when the regeneration process is executed. However, the present disclosure is not limited to this, and the temperature inside the exhaust pipe 120 is increased due to a factor other than the regeneration process. At this time, the adjustment unit 161 may be controlled.
 また、上記実施の形態では、推定部を制御部300として例示したが、本開示はこれに限定されず、推定部が制御部300とは別に設けられていても良い。 In the above embodiment, the estimation unit is exemplified as the control unit 300. However, the present disclosure is not limited to this, and the estimation unit may be provided separately from the control unit 300.
 また、上記実施の形態における排気浄化装置100は、ディーゼルエンジンを搭載した車両Vに搭載されていたが、本開示はこれに限定されず、例えば、ガソリンエンジンを搭載した車両に搭載されていても良い。 Moreover, although the exhaust emission control device 100 in the above embodiment is mounted on the vehicle V equipped with a diesel engine, the present disclosure is not limited to this, and may be mounted on a vehicle equipped with a gasoline engine, for example. good.
 また、上記実施の形態では、DPF220を捕集部の一例として例示したが、本開示はこれに限定されず、粒子状物質を捕集可能なフィルタであればどのようなものであっても良い。また、ガソリンエンジンを搭載した車両に排気浄化装置100が搭載される場合、GPF(ガソリン・パティキュレート・フィルタ)が捕集部であっても良い。 Moreover, in the said embodiment, although DPF220 was illustrated as an example of a collection part, this indication is not limited to this, What kind of thing may be used if it is a filter which can collect a particulate matter. . Further, when the exhaust gas purification device 100 is mounted on a vehicle equipped with a gasoline engine, a GPF (gasoline particulate filter) may be the collection unit.
 その他、上記実施の形態は、何れも本開示を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。 In addition, each of the above-described embodiments is merely an example of implementation in carrying out the present disclosure, and the technical scope of the present disclosure should not be interpreted in a limited manner. That is, the present disclosure can be implemented in various forms without departing from the gist or the main features thereof.
 本出願は、2018年3月8日付で出願された日本特許出願(特願2018-041868)に基づくものであり、その内容は、ここに参照として全て取り込まれる。 This application is based on a Japanese patent application filed on March 8, 2018 (Japanese Patent Application No. 2018-041868), the contents of which are incorporated herein by reference.
 本開示の排気浄化装置は、排気管内の昇温に起因してNOx選択還元型触媒から還元剤が脱離することを抑制することが可能な排気浄化装置、車両および排気浄化制御装置として有用である。 The exhaust purification device of the present disclosure is useful as an exhaust purification device, a vehicle, and an exhaust purification control device capable of suppressing the reduction agent from desorbing from the NOx selective reduction catalyst due to the temperature rise in the exhaust pipe. is there.
 1 内燃機関
 100 排気浄化装置
 110 吸気管
 120 排気管
 130 第1温度検出部
 140 第2温度検出部
 150 尿素水噴射部
 160 再循環経路部
 161 調整部
 210 NOx吸蔵還元型触媒
 220 DPF
 230 NOx選択還元型触媒
 300 制御部
 V 車両
 
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 100 Exhaust gas purification device 110 Intake pipe 120 Exhaust pipe 130 1st temperature detection part 140 2nd temperature detection part 150 Urea water injection part 160 Recirculation path | route part 161 Adjustment part 210 NOx storage reduction type catalyst 220 DPF
230 NOx selective reduction type catalyst 300 control unit V vehicle

Claims (10)

  1.  内燃機関から生じた排気ガスが流れる排気管と、
     前記排気管内に配置され、還元剤を吸着することで前記排気ガス中の窒素酸化物を浄化処理するNOx選択還元型触媒と、
     前記排気ガスが流れる排気方向において前記NOx選択還元型触媒よりも前記排気管内の上流側に配置され、前記排気ガス中の窒素酸化物を吸蔵するNOx吸蔵還元型触媒と、
     前記排気管から前記内燃機関の吸気管と前記排気管とを接続し、前記排気管内の前記排気ガスを前記吸気管に再循環させる再循環経路部と、
     前記再循環経路部で再循環する前記排気ガスの流量を調整する調整部と、
     前記NOx選択還元型触媒の前記還元剤の吸着量に応じて、前記還元剤と、前記排気ガスに含まれる窒素酸化物との還元作用が促進されるように前記調整部を制御する制御部と、
     を備える排気浄化装置。
    An exhaust pipe through which exhaust gas generated from the internal combustion engine flows;
    A NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent;
    An NOx occlusion reduction type catalyst which is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the exhaust direction in which the exhaust gas flows, and occludes nitrogen oxides in the exhaust gas;
    A recirculation path section for connecting the exhaust pipe and the exhaust pipe of the internal combustion engine from the exhaust pipe, and recirculating the exhaust gas in the exhaust pipe to the intake pipe;
    An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit;
    A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing agent of the NOx selective reduction catalyst; ,
    An exhaust purification device comprising:
  2.  前記NOx選択還元型触媒の前記還元剤の吸着量を推定する推定部を備える、
     請求項1に記載の排気浄化装置。
    An estimation unit for estimating the amount of adsorption of the reducing agent of the NOx selective reduction catalyst;
    The exhaust emission control device according to claim 1.
  3.  前記推定部は、前記NOx吸蔵還元型触媒の窒素酸化物の吸蔵量を推定し、
     前記制御部は、前記還元剤の吸着量が所定目標量より多い場合、前記推定部により推定された前記窒素酸化物の推定吸蔵量に基づいて、前記調整部を調整するか否かについて判定する、
     請求項2に記載の排気浄化装置。
    The estimation unit estimates a storage amount of nitrogen oxides of the NOx storage reduction catalyst,
    The control unit determines whether or not to adjust the adjustment unit based on the estimated storage amount of the nitrogen oxide estimated by the estimation unit when the reducing agent adsorption amount is greater than a predetermined target amount. ,
    The exhaust emission control device according to claim 2.
  4.  前記制御部は、前記推定吸蔵量が前記NOx吸蔵還元型触媒の所定吸蔵量未満である場合、前記排気ガスの前記吸気管側に戻す流量を減少させる、
     請求項3に記載の排気浄化装置。
    The controller reduces the flow rate of the exhaust gas returned to the intake pipe when the estimated storage amount is less than a predetermined storage amount of the NOx storage reduction catalyst;
    The exhaust emission control device according to claim 3.
  5.  前記排気ガスに含まれる粒子状物質を捕集する捕集部を備え、
     前記制御部は、前記粒子状物質を燃焼させる再生処理が実行される際、前記調整部を制御する、
     請求項1に記載の排気浄化装置。
    A collection unit for collecting particulate matter contained in the exhaust gas;
    The control unit controls the adjustment unit when a regeneration process for burning the particulate matter is performed.
    The exhaust emission control device according to claim 1.
  6.  前記制御部は、前記再生処理が実行される際、前記排気管内の排気空燃比をリッチ状態にするリッチ処理を禁止する、
     請求項5に記載の排気浄化装置。
    The control unit prohibits a rich process to bring the exhaust air-fuel ratio in the exhaust pipe into a rich state when the regeneration process is executed;
    The exhaust emission control device according to claim 5.
  7.  前記制御部は、前記NOx吸蔵還元型触媒の温度に基づいて、前記調整部を制御するか否かについて判定する、
     請求項1に記載の排気浄化装置。
    The control unit determines whether to control the adjustment unit based on the temperature of the NOx storage reduction catalyst.
    The exhaust emission control device according to claim 1.
  8.  前記制御部は、前記NOx選択還元型触媒の温度に基づいて、前記調整部を制御するか否かについて判定する、
     請求項1に記載の排気浄化装置。
    The control unit determines whether to control the adjustment unit based on the temperature of the NOx selective reduction catalyst.
    The exhaust emission control device according to claim 1.
  9.  請求項1に記載の排気浄化装置を備える、
     車両。
    The exhaust emission control device according to claim 1 is provided.
    vehicle.
  10.  内燃機関から生じた排気ガスが流れる排気管と、前記排気管内に配置され、還元剤を吸着することで前記排気ガス中の窒素酸化物を浄化処理するNOx選択還元型触媒と、前記排気ガスが流れる排気方向において前記NOx選択還元型触媒よりも前記排気管内の上流側に配置され、前記排気ガス中の窒素酸化物を吸蔵するNOx吸蔵還元型触媒と、前記排気管から前記内燃機関の吸気管と前記排気管とを接続し、前記排気管内の前記排気ガスを前記吸気管に再循環させる再循環経路部と、を有する排気浄化装置の排気浄化制御装置であって、
     前記再循環経路部で再循環する前記排気ガスの流量を調整する調整部と、
     前記NOx選択還元型触媒の前記還元剤の吸着量に応じて、前記還元剤と、前記排気ガスに含まれる窒素酸化物との還元作用が促進されるように前記調整部を制御する制御部と、
     を備える排気浄化制御装置。
     
    An exhaust pipe through which exhaust gas generated from an internal combustion engine flows, a NOx selective reduction catalyst that is disposed in the exhaust pipe and purifies nitrogen oxides in the exhaust gas by adsorbing a reducing agent, and the exhaust gas includes An NOx occlusion reduction type catalyst that is disposed upstream of the NOx selective reduction type catalyst in the exhaust pipe in the flowing exhaust direction and occludes nitrogen oxides in the exhaust gas, and an intake pipe of the internal combustion engine from the exhaust pipe An exhaust gas purification control device for an exhaust gas purification device, comprising: a recirculation path portion that connects the exhaust pipe and the exhaust pipe, and recirculates the exhaust gas in the exhaust pipe to the intake pipe,
    An adjustment unit for adjusting the flow rate of the exhaust gas recirculated in the recirculation path unit;
    A control unit that controls the adjusting unit so that a reduction action of the reducing agent and nitrogen oxides contained in the exhaust gas is promoted according to the amount of adsorption of the reducing agent of the NOx selective reduction catalyst; ,
    An exhaust purification control apparatus comprising:
PCT/JP2019/009013 2018-03-08 2019-03-07 Exhaust purification device, vehicle, and exhaust purification control device WO2019172357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980017347.8A CN111819349A (en) 2018-03-08 2019-03-07 Exhaust gas purification device, vehicle, and exhaust gas purification control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-041868 2018-03-08
JP2018041868A JP2019157667A (en) 2018-03-08 2018-03-08 Exhaust emission control device, vehicle and exhaust purification control device

Publications (1)

Publication Number Publication Date
WO2019172357A1 true WO2019172357A1 (en) 2019-09-12

Family

ID=67846517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009013 WO2019172357A1 (en) 2018-03-08 2019-03-07 Exhaust purification device, vehicle, and exhaust purification control device

Country Status (3)

Country Link
JP (1) JP2019157667A (en)
CN (1) CN111819349A (en)
WO (1) WO2019172357A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003248A (en) * 2020-06-23 2022-01-11 いすゞ自動車株式会社 Emission control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274844A (en) * 2005-03-28 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
JP2010112345A (en) * 2008-11-10 2010-05-20 Mitsubishi Motors Corp Exhaust emission control device
JP2015014215A (en) * 2013-07-03 2015-01-22 トヨタ自動車株式会社 Internal combustion engine exhaust emission controller
JP2018021475A (en) * 2016-08-02 2018-02-08 マツダ株式会社 Exhaust emission control device for engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265497B2 (en) * 2004-07-05 2009-05-20 トヨタ自動車株式会社 Exhaust purification device control method
JP4905327B2 (en) * 2007-11-13 2012-03-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2013241859A (en) * 2012-05-18 2013-12-05 Isuzu Motors Ltd Exhaust gas purification system and method for purifying exhaust gas
JP6323354B2 (en) * 2015-01-30 2018-05-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274844A (en) * 2005-03-28 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device of internal combustion engine
JP2010112345A (en) * 2008-11-10 2010-05-20 Mitsubishi Motors Corp Exhaust emission control device
JP2015014215A (en) * 2013-07-03 2015-01-22 トヨタ自動車株式会社 Internal combustion engine exhaust emission controller
JP2018021475A (en) * 2016-08-02 2018-02-08 マツダ株式会社 Exhaust emission control device for engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022003248A (en) * 2020-06-23 2022-01-11 いすゞ自動車株式会社 Emission control device
JP7310730B2 (en) 2020-06-23 2023-07-19 いすゞ自動車株式会社 Purification control device

Also Published As

Publication number Publication date
CN111819349A (en) 2020-10-23
JP2019157667A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6508229B2 (en) Abnormality diagnosis device for exhaust gas purification device for internal combustion engine
USRE48658E1 (en) Exhaust gas purification apparatus for an internal combustion engine
EP3051089B1 (en) Exhaust purifying apparatus for internal combustion engine
US8978367B2 (en) Exhaust gas purifying system of internal combustion engine
US7565799B2 (en) Controlling lean NOx trap (LNT) catalyst performance
JP2009264181A (en) Exhaust emission control device for internal combustion engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
WO2019172356A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP2010209737A (en) Exhaust emission control device for internal combustion engine
JP5983438B2 (en) Exhaust gas purification device for internal combustion engine
JP4935929B2 (en) Exhaust gas purification device for internal combustion engine
WO2019172357A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP5761255B2 (en) Exhaust gas purification device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP5488493B2 (en) Exhaust gas purification device for internal combustion engine
JP2008121555A (en) Exhaust emission control device for internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
JP2016205351A (en) Exhaust emission control system of internal combustion engine
JP5052208B2 (en) Exhaust gas purification device for internal combustion engine
JP6500636B2 (en) Engine exhaust purification system
JP4765685B2 (en) Exhaust gas purification system for internal combustion engine
JP2009264311A (en) Exhaust emission control device for internal combustion engine
JP4720748B2 (en) Exhaust gas purification system for internal combustion engine
JP6686516B2 (en) Exhaust gas treatment method and device using LNT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19764548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19764548

Country of ref document: EP

Kind code of ref document: A1