JP6686516B2 - Exhaust gas treatment method and device using LNT - Google Patents

Exhaust gas treatment method and device using LNT Download PDF

Info

Publication number
JP6686516B2
JP6686516B2 JP2016031058A JP2016031058A JP6686516B2 JP 6686516 B2 JP6686516 B2 JP 6686516B2 JP 2016031058 A JP2016031058 A JP 2016031058A JP 2016031058 A JP2016031058 A JP 2016031058A JP 6686516 B2 JP6686516 B2 JP 6686516B2
Authority
JP
Japan
Prior art keywords
injector
injection
exhaust gas
lnt
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016031058A
Other languages
Japanese (ja)
Other versions
JP2017150326A (en
Inventor
長岡 大治
大治 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016031058A priority Critical patent/JP6686516B2/en
Publication of JP2017150326A publication Critical patent/JP2017150326A/en
Application granted granted Critical
Publication of JP6686516B2 publication Critical patent/JP6686516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、LNTを用いた排ガス処理方法およびその装置に関するものである。   The present invention relates to an exhaust gas treatment method using LNT and an apparatus therefor.

deNOx(脱硝)システムとして尿素SCR(Selective Catalystic Reduction)やLNT(Lean NOx Trap)システムが知られている。   Urea SCR (Selective Catalytic Reduction) and LNT (Lean NOx Trap) systems are known as deNOx (denitration) systems.

LNTの触媒は、アルミナ(Al23)等の触媒担体に、PtやPdなどの貴金属触媒と、Na、K、Cs等のアルカリ金属やCa、Ba等のアルカリ土類金属、Y、La、Ce等の希土類等のNOx吸蔵機能をもつ吸蔵材を担持したもので、排ガス中の酸素濃度によって、NOx吸蔵とNOx放出・浄化の二つの機能を発揮する。 The catalyst of LNT is a catalyst carrier such as alumina (Al 2 O 3 ), a noble metal catalyst such as Pt or Pd, an alkali metal such as Na, K or Cs or an alkaline earth metal such as Ca or Ba, Y or La. , Ce and the like are loaded with an occlusion material having a NOx occlusion function such as rare earths, and exert two functions of NOx occlusion and NOx emission / purification depending on the oxygen concentration in the exhaust gas.

LNTシステムは、リーンとリッチを繰り返してdeNOxを行う仕組みになっている。すなわち、通常運転状態のように排ガス中の酸素濃度が高い条件(リーン空燃比)では、排ガス中のNOが、PtやPdなどの貴金属触媒等でNO2に酸化され、これを吸蔵材が、硝酸塩(Ba(NO32)として吸蔵しNOxを浄化し、その後、吸蔵材での吸蔵量が飽和するタイミングで、低酸素濃度の条件(リッチ空燃比)にしてリッチ還元を行い、燃料(HC)を貴金属触媒上で還元することで、排ガス中にCO、HC、H2を生成させて、放出されたNOxを還元して浄化する。 The LNT system has a mechanism for repeating lean and rich to perform deNOx. That is, under conditions where the oxygen concentration in the exhaust gas is high (lean air-fuel ratio) such as in a normal operating state, NO in the exhaust gas is oxidized to NO 2 by a noble metal catalyst such as Pt or Pd, and the storage material It is stored as nitrate (Ba (NO 3 ) 2 ) to purify NOx, and thereafter, at the timing when the storage amount in the storage material is saturated, rich reduction is performed under conditions of low oxygen concentration (rich air-fuel ratio), and fuel ( By reducing (HC) on the noble metal catalyst, CO, HC, and H 2 are produced in the exhaust gas, and the released NOx is reduced and purified.

このようにLNTシステムは、リーン時にはNOxを吸着又は吸蔵し、リッチ時には、吸着又は吸蔵されたNOxがCeやBaより放出され、排ガス中のHC、COとNOxが三元触媒機能により無害なガスとされる。   In this way, the LNT system adsorbs or stores NOx when lean, and when rich, the adsorbed or stored NOx is released from Ce or Ba, and HC, CO and NOx in the exhaust gas are harmless gases due to the three-way catalytic function. It is said that

LNTシステムにおいて、吸蔵材は、NOxと同時に、排ガス中のSOxも吸着、吸蔵するため、吸蔵材に蓄積したSを放出させるために、雰囲気温度を約650℃の高温とし、かつ空燃比がリッチ雰囲気にすることで、吸蔵で生じたBa2SO4を炭酸塩+SO2としてSパージ(脱硫)を行っている。 In the LNT system, the storage material adsorbs and stores SOx in the exhaust gas at the same time as NOx. Therefore, in order to release S accumulated in the storage material, the ambient temperature is set to a high temperature of about 650 ° C and the air-fuel ratio is rich. By making the atmosphere, Ba 2 SO 4 generated by occlusion is used as carbonate + SO 2 for S purging (desulfurization).

吸蔵材の特性として、触媒温度が400℃以上の高温の時には、触媒単位容積当たりのNOx吸蔵量が減少するので、高温域(=高負荷域)のdeNOx効果が低下するのが課題である。   As a characteristic of the storage material, when the catalyst temperature is a high temperature of 400 ° C. or higher, the NOx storage amount per unit volume of the catalyst decreases, so that a problem is that the deNOx effect in the high temperature range (= high load range) decreases.

対策手法の1つとして、車両のアンダーフロア(U/F)へ2個目のLNT触媒(2ndLNT)の追加が検討されている。この効果としては触媒容量の増加に伴いNOx吸着量が増すこと、及び上流LNT触媒(1stLNT)よりも触媒温度が低くなるので、高負荷域でもdeNOx効率が維持できる(触媒の温度ウインドウの拡大)ことが挙げられる。   As one of the countermeasures, the addition of a second LNT catalyst (2ndLNT) to the underfloor (U / F) of the vehicle is being considered. The effect is that the amount of NOx adsorbed increases with an increase in the catalyst capacity, and the catalyst temperature becomes lower than that of the upstream LNT catalyst (1st LNT), so that the deNOx efficiency can be maintained even in the high load range (expansion of the temperature window of the catalyst). It can be mentioned.

特開2009−174445号公報JP, 2009-174445, A 特開2014−070520号公報JP, 2014-070520, A 特開2012−087703号公報JP, 2012-087703, A

しかしながら、LNT触媒をエンジンに近接した1stLNTとアンダーフロア(U/F)に配置した場合、以下の2つの問題が考えられる。   However, when the LNT catalyst is arranged on the 1st LNT close to the engine and on the underfloor (U / F), the following two problems can be considered.

(1)2ndLNTのリッチ還元のための還元剤が不足する。リッチ時の還元剤が1stLNTで消費され、2ndLNTに到達する量が減少するため、2ndLNTに吸蔵されたNOxの還元が不十分になる可能性がある。   (1) Insufficient reducing agent for rich reduction of 2ndLNT. Since the reducing agent at the rich time is consumed by the 1st LNT and the amount reaching the 2nd LNT is reduced, the reduction of NOx stored in the 2nd LNT may be insufficient.

(2)2ndLNTの脱硫が困難になる。1stLNTの温度を脱硫可能な温度以上かつ触媒の熱劣化温度以下に制御した場合(例えば650℃〜750℃)、2ndLNTの温度が脱硫可能温度以下あるいはボーダーライン程度の温度(550℃〜650℃)になり、脱硫がし辛くなる。   (2) Desulfurization of 2ndLNT becomes difficult. When the temperature of the 1st LNT is controlled to be equal to or higher than the desulfurization temperature and equal to or lower than the heat deterioration temperature of the catalyst (for example, 650 ° C to 750 ° C), the temperature of the 2nd LNT is equal to or lower than the desulfurization temperature or a borderline temperature (550 ° C to 650 ° C) It becomes difficult to desulfurize.

そこで、本発明の目的は、上記課題を解決し、高温域(=高負荷域)のdeNOx効果を向上させ、しかもリッチ還元効率と脱硫効率を向上させることができるLNTを用いた排ガス処理方法およびその装置を提供することにある。   Therefore, an object of the present invention is to solve the above problems, improve the deNOx effect in the high temperature range (= high load range), and further improve the rich reduction efficiency and desulfurization efficiency, and an exhaust gas treatment method using LNT, To provide the device.

上記目的を達成するために本発明は、エンジンに近接して1stLNTとCSFとを配置し、排ガス温度が100℃〜200℃低下する位置に2ndLNTを配置し、その間にHCインジェクタを配置し、リッチ還元時に前記HCインジェクタでHCの追加噴射を行い、Sパージ時にHCインジェクタからのHC噴射で、2ndLNT触媒の脱硫温度を制御するLNT触媒を用いた排ガス処理方法である。   In order to achieve the above object, the present invention arranges 1stLNT and CSF close to an engine, arranges 2ndLNT at a position where exhaust gas temperature decreases by 100 ° C to 200 ° C, arranges an HC injector between them, and rich This is an exhaust gas treatment method using an LNT catalyst that controls the desulfurization temperature of the 2nd LNT catalyst by additionally injecting HC by the HC injector during reduction and by HC injection from the HC injector during S purge.

また、本発明は、エンジンに近接して1stLNT触媒とCSFが配置された前段側処理部と、車両アンダーフロアに設けられ、2ndLNTが配置された後段側処理部と、前記CSFと前記2ndLNTの間に配置されたHCインジェクタとを備えたLNT触媒を用いた排ガス処理装置である。   Further, the present invention provides a front-stage processing unit in which a 1st LNT catalyst and CSF are arranged in the vicinity of an engine, a rear-stage processing unit in which a 2ndLNT is arranged on the vehicle underfloor, and between the CSF and the 2ndLNT. Is an exhaust gas treatment device using an LNT catalyst provided with an HC injector disposed in the.

本発明は、以下の優れた効果を発揮する。
(1)尿素フリーでRDE試験(実走行による排ガス試験)などの広い温度範囲で、deNOx効果を得ることができる。
(2)脱硫を確実に行い、触媒性能を長期間維持することができる。
(3)追加コスト的にも比較的安いコストで実現が可能となる。
The present invention exhibits the following excellent effects.
(1) The urea-free deNOx effect can be obtained in a wide temperature range such as an RDE test (exhaust gas test by actual running).
(2) Desulfurization can be reliably performed and catalyst performance can be maintained for a long period of time.
(3) It can be realized at a relatively low cost in terms of additional cost.

本発明の一実施の形態を示す概略図である。It is a schematic diagram showing an embodiment of the invention. 本発明の排ガス処理方法における制御フローを示す図である。It is a figure which shows the control flow in the exhaust gas processing method of this invention. 図2の制御フローにおいて、NOx還元量を計算するためのマップを示し、(a)は触媒温度に対する還元効率マップ(b)は空燃比に対する還元効率マップを示す図である。In the control flow of FIG. 2, a map for calculating the NOx reduction amount is shown, (a) is a reduction efficiency map with respect to the catalyst temperature , and (b) is a diagram with a reduction efficiency map with respect to the air-fuel ratio . 図2の制御フローにおいてSパージを行うときの、ポスト/HC噴射タイミングと、そのときのLNT1、2の温度変化と空気過剰率変化を示す図である。FIG. 3 is a diagram showing a post / HC injection timing, a temperature change of LNTs 1 and 2 and a change of excess air ratio at that time when S purge is performed in the control flow of FIG. 2. LNT触媒の触媒温度とNOx浄化率の関係を示す図である。It is a figure which shows the catalyst temperature of a LNT catalyst, and the relationship of NOx purification rate.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1は、LNT触媒による排ガス後処理装置10を示したものである。   FIG. 1 shows an exhaust gas aftertreatment device 10 using an LNT catalyst.

エンジンEの吸排気系には、ターボチャージャ11とEGR管12が接続されており、エアクリーナ13から吸入される空気は、ターボチャージャ11のコンプレッサ14で圧縮されると共に吸気通路15に圧送され、エンジンEの吸気マニホールド16からエンジンE内に供給される。吸気通路15には、エンジンEへの空気量を調節するための吸気バルブ17が設けられる。   The turbocharger 11 and the EGR pipe 12 are connected to the intake / exhaust system of the engine E, and the air taken in from the air cleaner 13 is compressed by the compressor 14 of the turbocharger 11 and is sent under pressure to the intake passage 15, It is supplied into the engine E from the E intake manifold 16. The intake passage 15 is provided with an intake valve 17 for adjusting the amount of air to the engine E.

エンジンEから排出された排ガスは、排気マニホールド18からターボチャージャ11のタービン19に排出されると共にタービン19を駆動し、排気系20に排気される。   The exhaust gas discharged from the engine E is discharged from the exhaust manifold 18 to the turbine 19 of the turbocharger 11, drives the turbine 19, and is discharged to the exhaust system 20.

吸気マニホールド16と排気マニホールド18にはEGR管12が接続され、EGR管12に、排気マニホールド18から吸気マニホールド16に至る排ガスを冷却するためのEGRクーラ21が接続されると共に、EGR量を調節するEGRバルブ22が接続される。   The EGR pipe 12 is connected to the intake manifold 16 and the exhaust manifold 18, the EGR cooler 21 for cooling the exhaust gas from the exhaust manifold 18 to the intake manifold 16 is connected to the EGR pipe 12, and the EGR amount is adjusted. The EGR valve 22 is connected.

排ガス後処理装置10は、タービン19の下流側で、エンジンEに近接して設けられる前段側処理部10aと、前段側処理部10aの後段で、排ガス温度がΔ100℃〜200℃程度低下する車両のアンダーフロア(U/F)に配置される後段側処理部10bとで構成される。   The exhaust gas post-treatment device 10 is a vehicle in which the exhaust gas temperature decreases by about Δ100 ° C. to 200 ° C. in the downstream side of the turbine 19 and in the upstream side processing unit 10a provided near the engine E and the downstream side of the upstream side processing unit 10a. And a rear-side processing unit 10b disposed on the underfloor (U / F) of the.

前段側処理部10aは、縦型の前段側キャニング容器23内に、1stLNT24とその後流に、CSF(Catalyzed Soot Filter:触媒付きスートフィルタ)25が設けられて構成される。   The pre-stage side processing unit 10a is configured by providing a vertical type pre-stage side canning container 23 with a 1st LNT 24 and a CSF (Catalyzed Soot Filter) 25 provided downstream thereof.

この前段側処理部10aの前段側キャニング容器23には、前段側HCインジェクタ26が設けられる。この前段側HCインジェクタ26は、リッチ還元時やSパージ時に前段側キャニング容器23内の1stLNT24にHCを供給するものであり、エンジンE側のポスト噴射でHCを供給するように構成した場合には設けなくてもよい。   A pre-stage side HC injector 26 is provided in the pre-stage side canning container 23 of the pre-stage side processing unit 10a. The pre-stage side HC injector 26 supplies HC to the 1st LNT 24 in the pre-stage side canning container 23 at the time of rich reduction or S purge, and is configured to supply HC by post injection on the engine E side. It may not be provided.

後段側処理部10bは、前段側処理部10aと排気管20aを介して接続され、その排気管20aに接続された後段側キャニング容器27内に2ndLNT28が配置される。   The post-stage processing unit 10b is connected to the pre-stage processing unit 10a via the exhaust pipe 20a, and the 2ndLNT 28 is arranged in the post-stage canning container 27 connected to the exhaust pipe 20a.

2ndLNT28の上流側、本実施の形態では、CSF25の下流側の前段側キャニング容器23にHCを噴射する後段側HCインジェクタ29が設けられる。   A second-stage HC injector 29 that injects HC to the upstream side of the 2ndLNT 28, which is the downstream side of the CSF 25 in this embodiment, is provided in the upstream-stage canning vessel 23.

1stLNT24の上流側の前段側キャニング容器23には、排ガス温度を検出する第1温度センサ30が設けられ、1stLNT24とCSF25間の前段側キャニング容器23には、第2温度センサ31が設けられ、前段側処理部10aの下流の排気管20aには、第3温度センサ32が設けられる。   A first temperature sensor 30 for detecting the exhaust gas temperature is provided in the upstream side canning vessel 23 upstream of the 1stLNT 24, and a second temperature sensor 31 is provided in the upstream side canning vessel 23 between the 1stLNT 24 and the CSF 25. A third temperature sensor 32 is provided in the exhaust pipe 20a downstream of the side processing unit 10a.

CSF25の下流側の前段側キャニング容器23には、第1NOxセンサ33が設けられ、2ndLNT28の下流側の後段側キャニング容器27内に第2NOxセンサ34が設けられる。   A first NOx sensor 33 is provided in the upstream-side canning container 23 on the downstream side of the CSF 25, and a second NOx sensor 34 is provided in the downstream-side canning container 27 on the downstream side of the 2ndLNT 28.

第1〜第3温度センサ30〜32と第1、第2NOxセンサ33、34の検出値が、ECU40に入力される。   The detection values of the first to third temperature sensors 30 to 32 and the first and second NOx sensors 33 and 34 are input to the ECU 40.

エンジンEは、ECU40により運転状況により燃料噴射弁INでの燃料噴射量を制御する他に運転に必要な種々の全般的な制御がなされる。ECU40には、第1、第2NOxセンサ33、34の検出値から1stLNT24と2ndLNT28でのNOx吸蔵量を演算するNOx吸着量演算手段41と、リッチ還元時の触媒温度に対する還元効率のマップ(図3(a))と空燃比に対する還元効率のマップ(図3(b))とを参照して、ポスト噴射又は前段側HCインジェクタ26でのHC噴射と後段側HCインジェクタ29でのHC噴射を実施してリッチ還元を行うためのリッチ還元制御手段42と、Sパージ時にポスト噴射又は前段側HCインジェクタでのHC噴射と後段側HCインジェクタでのHC噴射を実施して1stLNT24と2ndLNT28の温度と空燃比を制御するSパージ制御手段43とが形成される。 The engine E is controlled by the ECU 40 to control the fuel injection amount of the fuel injection valve IN according to the operating condition, and various general controls necessary for the operation are performed. The ECU 40 includes a NOx adsorption amount calculation unit 41 that calculates the NOx storage amount in the 1st LNT 24 and the 2nd LNT 28 from the detection values of the first and second NOx sensors 33 and 34, and a map of the reduction efficiency with respect to the catalyst temperature during the rich reduction (FIG. 3). Referring to (a)) and the map of reduction efficiency with respect to the air-fuel ratio (FIG. 3 (b)), post injection or HC injection by the front-stage HC injector 26 and HC injection by the rear-stage HC injector 29 are performed. The rich reduction control means 42 for performing rich reduction by performing post injection or HC injection by the front side HC injector and HC injection by the rear side HC injector at the time of S purging to perform the temperature and air-fuel ratio comparison of the 1st LNT 24 and the 2nd LNT 28. The S purge control means 43 for controlling is formed.

次に、LNTを用いた排ガス処理方法を説明する。   Next, an exhaust gas treatment method using LNT will be described.

通常運転状態のように排ガス中の酸素濃度が高い条件(リーン空燃比)で、排ガス中のNOxが、前段側処理部10aの1stLNT24に吸蔵され、排ガス中の一酸化炭素や未燃燃料がCSF25の酸化触媒で酸化されると共にPM(パティキュレートマター)がCSF25で除去される。この後、前段側処理部10aの1stLNT24で吸蔵されなかったNOxは、後段側処理部10bの2ndLNT28で吸蔵される。   Under conditions where the oxygen concentration in the exhaust gas is high (lean air-fuel ratio), such as in the normal operating state, NOx in the exhaust gas is stored in the 1st LNT 24 of the pretreatment unit 10a, and carbon monoxide and unburned fuel in the exhaust gas are CSF25. PM (particulate matter) is removed by the CSF 25 while being oxidized by the oxidation catalyst. After this, NOx that was not stored in the 1stLNT 24 of the upstream processing unit 10a is stored in the 2ndLNT 28 of the downstream processing unit 10b.

このリーン空燃比でのdeNOxは、タービン19から排出される排ガス温度が400℃以上の高温となると1stLNT24でのNOx浄化率が悪くなるが、2ndLNT28でNOx浄化率を高めることが可能となる。   With regard to deNOx with this lean air-fuel ratio, when the exhaust gas temperature discharged from the turbine 19 becomes a high temperature of 400 ° C. or higher, the NOx purification rate in the 1st LNT 24 becomes poor, but it becomes possible to increase the NOx purification rate in the 2nd LNT 28.

これを図5により説明する。   This will be described with reference to FIG.

図5は、LNTの排ガス温度に対するNOx浄化率の関係を示したものである。   FIG. 5 shows the relationship between the NOx purification rate and the exhaust gas temperature of LNT.

この図5で、実線aは、1stLNTの浄化率特性、点線bは2ndLNTの浄化率特性を示したものである。   In FIG. 5, the solid line a shows the purification rate characteristic of 1st LNT, and the dotted line b shows the purification rate characteristic of 2nd LNT.

1stLNTでは、排ガス温度が250〜400℃で浄化率が高いが、400℃を超える高温(高負荷域)ではNOx浄化率が悪くなる。しかし、2ndLNTは、アンダーフロアに配置されるため、エンジンEから排気される排ガス温度が400℃を超えても、2ndLNTに流入する排ガス温度は100〜200℃低下するため、2ndLNTの触媒温度は、250〜400℃に保たれるため、1stLNTで浄化できなかったNOxを高効率で浄化することが可能となる。   In the 1st LNT, the purification rate is high when the exhaust gas temperature is 250 to 400 ° C, but the NOx purification rate becomes worse at a high temperature (high load range) exceeding 400 ° C. However, since the 2ndLNT is arranged on the underfloor, even if the temperature of the exhaust gas exhausted from the engine E exceeds 400 ° C, the temperature of the exhaust gas flowing into the 2ndLNT decreases by 100 to 200 ° C, so the catalyst temperature of the 2ndLNT is Since the temperature is maintained at 250 to 400 ° C., NOx that could not be purified by 1st LNT can be purified with high efficiency.

このリーン空燃比でのdeNOx中にNOx吸着量演算手段41は、第1、第2NOxセンサ33、34の検出値から1stLNT24と2ndLNT28でのNOx吸蔵量を演算し、NOx吸蔵量が閾値以上、又はNOx浄化率が閾値以下になったときに、リッチ還元を行う。このNOx吸蔵量とNOx浄化率の閾値の設定は、1stLNT24でのNOx吸蔵量が飽和した時点、或いは1stLNT24でのNOx吸蔵量が飽和した後に2ndLNT28でのNOx吸蔵量が飽和に近づいてNOx浄化率が閾値以下になるまでの間で、任意に設定する。   The NOx adsorption amount calculation means 41 during deNOx at this lean air-fuel ratio calculates the NOx storage amount at the 1st LNT 24 and the 2nd LNT 28 from the detection values of the first and second NOx sensors 33, 34, and the NOx storage amount is equal to or greater than the threshold value, or When the NOx purification rate becomes equal to or less than the threshold value, rich reduction is performed. The threshold values of the NOx storage amount and the NOx purification rate are set when the NOx storage amount in the 1stLNT24 is saturated or after the NOx storage amount in the 1stLNT24 is saturated and the NOx storage amount in the 2ndLNT28 approaches saturation. It is set arbitrarily until is less than or equal to the threshold.

次にリッチ還元を行う際に、リッチ還元制御手段42は、第1〜第3温度センサ30〜32の検出値を基に、図3(a)のマップから1stLNT24と2ndLNT28での触媒温度に対する還元効率を求め、その還元効率から図3(b)の空燃比からNOx還元量を推定し、これを基にポスト噴射量又は前段側HCインジェクタ26でのHC(還元剤)噴射量と後段側HCインジェクタ29でのHC噴射量を決定し、これに基づいたHC噴射量でリッチ還元を行う。この場合、2ndLNT28でのリッチ還元は、1stLNT24とCSF25をスリップした還元剤量も考慮して還元効率を推定して、HC量を決定し、これを基に後段側HCインジェクタ29が間欠的にHCを噴射してリッチ還元を行うことで、還元剤スリップを防止する。 Next, when performing rich reduction, the rich reduction control means 42 reduces the catalyst temperature at the 1st LNT 24 and the 2nd LNT 28 from the map of FIG. 3A based on the detection values of the first to third temperature sensors 30 to 32. The efficiency is obtained, and the NOx reduction amount is estimated from the air-fuel ratio of FIG. 3 (b) from the reduction efficiency, and based on this, the post injection amount or the HC (reducing agent) injection amount and the rear stage HC at the front side HC injector 26 is calculated. The HC injection amount in the injector 29 is determined, and the rich reduction is performed with the HC injection amount based on this. In this case, the rich reduction at the 2ndLNT 28 estimates the reduction efficiency in consideration of the reducing agent amount slipping the 1stLNT 24 and the CSF 25 to determine the HC amount, and the HC injector 29 at the subsequent stage intermittently determines the HC amount based on this. By performing the rich reduction by injecting, the reducing agent slip is prevented.

また、1stLNT24と2ndLNT28での触媒温度に応じて、エンジンEの出口排ガス温度が低温時(例えば200℃〜400℃)では、1stLNT24のみでリッチ還元を行い、高温時(例えば350℃〜550℃)では、2ndLNT28のみでリッチ還元を行うように制御してもよい。   Further, depending on the catalyst temperature in the 1stLNT24 and the 2ndLNT28, when the outlet exhaust gas temperature of the engine E is low (for example, 200 ° C to 400 ° C), rich reduction is performed only by the 1stLNT24, and at high temperature (for example, 350 ° C to 550 ° C). Then, the control may be performed so that the rich reduction is performed only by the 2ndLNT 28.

Sパージ制御手段43は、例えば、NOx吸蔵量の積算値が設定値に達したとき、或いは走行距離が1万kmを超えたときに1stLNT24と2ndLNT28がS被毒されたとしてSパージを行うもので、図4に示すように、排ガス温度が目標温度(例えば650℃)となるように、ポスト噴射又は前段側HCインジェクタ26でHCを噴射し、その後、前段側HCインジェクタ26でHCを間欠的に噴射すると共に後段側HCインジェクタ29でもHCを噴射し、1stLNT24と2ndLNT28の温度を脱硫可能な温度以上(例えば650℃以上)かつ触媒の熱劣化温度以下(例えば750℃以下)に制御しつつSパージを行う。   The S purge control means 43 performs S purge assuming that the 1st LNT 24 and the 2nd LNT 28 are S-poisoned when the integrated value of the NOx storage amount reaches a set value or when the traveling distance exceeds 10,000 km. Then, as shown in FIG. 4, post-injection or HC injection is performed by the upstream-side HC injector 26 so that the exhaust gas temperature reaches a target temperature (for example, 650 ° C.), and then HC is intermittently discharged by the upstream-side HC injector 26. And the second-stage HC injector 29 also injects HC to control the temperature of the 1st LNT 24 and the 2nd LNT 28 to a desulfurization temperature or higher (for example, 650 ° C. or higher) and a thermal deterioration temperature of the catalyst or lower (for example, 750 ° C. or lower). Purge.

このSパージの脱硫時に、後段側HCインジェクタ29での追加噴射で、第3温度センサ32の検出値を基に、2ndLNT触媒の温度のフィードバック制御を行う。   At the time of desulfurization of this S purge, the feedback control of the temperature of the 2nd LNT catalyst is performed based on the detection value of the third temperature sensor 32 by the additional injection by the rear side HC injector 29.

また、Sパージリッチ時に空燃比が小さくなると、酸素不足となり、SがSO2では無くH2Sの形で放出されやすくなるため、空気過剰率λを1に保つようにHC噴射量を制御する。 Further, when the air-fuel ratio becomes small during S purge rich, oxygen becomes insufficient, and S is likely to be released in the form of H 2 S instead of SO 2 , so the HC injection amount is controlled so as to keep the excess air ratio λ at 1. .

次に、本発明の制御フローを図2により説明する。   Next, the control flow of the present invention will be described with reference to FIG.

図2において、ステップS10で制御が開始されると、ステップS11でNOxセンサー値により、1stLNTと2ndLNTのNOx吸蔵量を各々計算する。   In FIG. 2, when the control is started in step S10, the NOx storage amounts of 1stLNT and 2ndLNT are calculated from the NOx sensor value in step S11.

このステップS11で、NOx吸蔵量が設定値に達したとき、ステップS12の判断でリッチ燃焼に切り換え、ステップS13で、図3(a)の触媒温度に対する還元効率マップと図3(b)の空燃比に対する還元効率マップとを基に、NOx還元量を各々LNTで計算し、ポスト噴射又は前段側HCインジェクタでのHC噴射と後段側HCインジェクタでのHC噴射を実施してリッチ還元を行った後、制御を終了する(ステップS15)。 In step S11, when the NOx storage amount reaches the set value, the combustion is switched to rich combustion in the determination in step S12, and in step S13, the reduction efficiency map with respect to the catalyst temperature of FIG. 3 (a) and the empty space of FIG. 3 (b). After the NOx reduction amount is calculated by LNT based on the reduction efficiency map with respect to the fuel ratio, and after the post injection or the HC injection by the front side HC injector and the HC injection by the rear side HC injector, the rich reduction is performed. The control is ended (step S15).

またステップS11で、NOx吸蔵量の積算値を基に1stLNTと2ndLNTのS被毒量を推定し、S被毒量が一定量に達したとき、或いは車両の走行距離が設定距離となったとき、ステップS12の判断で、Sパージと判断し、ステップS14で、1stLNTと2ndLNTの昇温を行うべく、ポスト噴射又は前段側HCインジェクタでのHC噴射と後段側HCインジェクタでのHC噴射を行って目標温度(例えば650℃〜750℃)まで、1stLNTと2ndLNTの温度を上昇させ、かつ空気過剰率λを1の状態に保ってSパージを行った後、制御を終了する(ステップS15)。 Further, in step S11, the S poisoning amount of 1stLNT and 2ndLNT is estimated based on the integrated value of the NOx storage amount, and when the S poisoning amount reaches a certain amount, or when the traveling distance of the vehicle reaches a set distance. In step S12, it is determined as S purge, and in step S14, in order to raise the temperature of 1stLNT and 2ndLNT, post-injection or HC injection by the front-stage side HC injector and HC injection by the rear-stage side HC injector are performed. After increasing the temperatures of the 1st LNT and the 2nd LNT to a target temperature (for example, 650 ° C. to 750 ° C.) and performing the S purge while keeping the excess air ratio λ at 1, the control is ended (step S15).

10 排ガス後処理装置
10a 前段側処理部
10b 後段側処理部
24 1stLNT
25 CSF
28 2ndLNT
29 後段側HCインジェクタ
E エンジン
10 Exhaust gas after-treatment device 10a Pre-stage side treatment section 10b Post-stage side treatment section 24 1stLNT
25 CSF
28 2nd LNT
29 Rear-stage HC injector E engine

Claims (4)

エンジンに近接して1stLNTとCSFとを配置し、CSFの下流の位置に2ndLNTを配置し、CSFと2ndLNTの間に後段側HCインジェクタを配置し、リッチ還元時に前記後段側HCインジェクタでHCの追加噴射を行い、Sパージ時に後段側HCインジェクタからのHC噴射で、2ndLNT触媒の脱硫温度を制御し、
Sパージ時にポスト噴射又は1stLNTの上流に設けた前段側HCインジェクタによりHCを噴射して1stLNTを脱硫温度に昇温し、
Sパージ時に、ポスト噴射又は前段側HCインジェクタでHCを間欠的に噴射すると共に後段側HCインジェクタでHCを連続的に噴射し、ポスト噴射又は前段側HCインジェクタでのHC噴射時に空気過剰率を1より低くし、それ以外のときに空気過剰率を1に保つようHC噴射量を制御する、LNT触媒を用いた排ガス処理方法。
1stLNT and CSF are arranged close to the engine, 2ndLNT is arranged at a position downstream of CSF , a rear side HC injector is arranged between CSF and 2ndLNT, and HC is added at the rear side HC injector at the time of rich reduction. Injection, and at the time of S purging, the HC injection from the HC injector on the latter stage controls the desulfurization temperature of the 2nd LNT catalyst ,
At the time of S purging, post-injection or HC is injected by a pre-stage side HC injector provided upstream of 1stLNT to raise the 1stLNT to a desulfurization temperature,
During the S purge, the post injection or the front side HC injector intermittently injects HC, and the rear side HC injector continuously injects HC, and the excess air ratio is set to 1 during post injection or HC injection by the front side HC injector. An exhaust gas treatment method using an LNT catalyst, in which the HC injection amount is controlled so as to lower the air excess ratio to 1 at other times.
リッチ還元時に、ポスト噴射又は1stLNTの上流に設けたHCインジェクタで還元剤を噴射してリッチ還元を行う請求項1記載の排ガス処理方法。   The exhaust gas treatment method according to claim 1, wherein at the time of rich reduction, a reducing agent is injected by a post-injection or an HC injector provided upstream of 1stLNT to perform rich reduction. 2ndLNTが、排ガス温度が100℃〜200℃低下する位置に配置されている請求項1または2に記載のLNT触媒を用いた排ガス処理方法。 The exhaust gas treatment method using the LNT catalyst according to claim 1 or 2, wherein the 2ndLNT is arranged at a position where the exhaust gas temperature decreases by 100 to 200 ° C. エンジンに近接して1stLNT触媒とCSFが配置された前段側処理部と、車両アンダーフロアに設けられ、2ndLNTが配置された後段側処理部と、前記CSFと前記2ndLNTの間に配置された後段側HCインジェクタとを備えたLNT触媒を用いた排ガス処理装置であって、
リッチ還元時に前記後段側HCインジェクタでHCの追加噴射を行い、Sパージ時に後段側HCインジェクタからのHC噴射で、2ndLNT触媒の脱硫温度を制御し、
Sパージ時にポスト噴射又は1stLNTの上流に設けた前段側HCインジェクタによりHCを噴射して1stLNTを脱硫温度に昇温し、
Sパージ時に、ポスト噴射又は前段側HCインジェクタでHCを間欠的に噴射すると共に後段側HCインジェクタでHCを連続的に噴射し、ポスト噴射又は前段側HCインジェクタでのHC噴射時に空気過剰率を1より低くし、それ以外のときに空気過剰率を1に保つようHC噴射量を制御する、LNT触媒を用いた排ガス処理装置。
A front-side processing unit which 1stLNT catalyst and CSF is arranged close to the engine, provided in a vehicle underfloor, and the rear stage side processing unit which 2NdLNT is placed, arranged subsequent stage between the said CSF 2NdLNT An exhaust gas treatment device using an LNT catalyst equipped with an HC injector ,
During the rich reduction, additional injection of HC is performed by the latter-stage HC injector, and during S purge, the HC injection from the latter-stage HC injector controls the desulfurization temperature of the 2nd LNT catalyst,
At the time of S purging, post-injection or HC is injected by a pre-stage side HC injector provided upstream of 1stLNT to raise the 1stLNT to a desulfurization temperature,
During the S purge, the post injection or the front side HC injector intermittently injects HC, and the rear side HC injector continuously injects HC, and the excess air ratio is set to 1 during post injection or HC injection by the front side HC injector. An exhaust gas treatment device using an LNT catalyst that lowers the amount of HC and controls the HC injection amount to keep the excess air ratio at 1 at other times.
JP2016031058A 2016-02-22 2016-02-22 Exhaust gas treatment method and device using LNT Active JP6686516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016031058A JP6686516B2 (en) 2016-02-22 2016-02-22 Exhaust gas treatment method and device using LNT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016031058A JP6686516B2 (en) 2016-02-22 2016-02-22 Exhaust gas treatment method and device using LNT

Publications (2)

Publication Number Publication Date
JP2017150326A JP2017150326A (en) 2017-08-31
JP6686516B2 true JP6686516B2 (en) 2020-04-22

Family

ID=59739513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016031058A Active JP6686516B2 (en) 2016-02-22 2016-02-22 Exhaust gas treatment method and device using LNT

Country Status (1)

Country Link
JP (1) JP6686516B2 (en)

Also Published As

Publication number Publication date
JP2017150326A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
JP4415648B2 (en) Sulfur purge control method and exhaust gas purification system
US7716918B2 (en) Method of exhaust gas purification and exhaust gas purification system
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
EP2998533B1 (en) METHOD FOR DETERMINING DEGRADATION OF NOx STORAGE REDUCTION CATALYST IN EXHAUST GAS AFTERTREATMENT DEVICE
US7669410B2 (en) Sulfur purge control method for exhaust gas purifying system and exhaust gas purifying system
US8671661B2 (en) Exhaust gas purification method and exhaust gas purification system
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
JP5217102B2 (en) NOx purification system control method and NOx purification system
JP2008286042A (en) CONTROL METHOD OF NOx PURIFICATION SYSTEM AND NOx PURIFICATION SYSTEM
JP5092511B2 (en) NOx purification system and control method of NOx purification system
JP2010209737A (en) Exhaust emission control device for internal combustion engine
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP3876903B2 (en) Desulfurization control method for exhaust gas purification system and exhaust gas purification system
JP6686516B2 (en) Exhaust gas treatment method and device using LNT
JP2007009810A (en) METHOD FOR CONTROLLING SULFUR PURGE OF NOx ELIMINATION SYSTEM AND NOx ELIMINATION SYSTEM
JP6398401B2 (en) Exhaust purification system
JP2020033984A (en) Exhaust emission control device for internal combustion engine and vehicle
JP6500636B2 (en) Engine exhaust purification system
JP2008115712A (en) Exhaust emission control device of internal combustion engine
JP2018145832A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191017

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200316

R150 Certificate of patent or registration of utility model

Ref document number: 6686516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150