JP5052208B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5052208B2
JP5052208B2 JP2007138072A JP2007138072A JP5052208B2 JP 5052208 B2 JP5052208 B2 JP 5052208B2 JP 2007138072 A JP2007138072 A JP 2007138072A JP 2007138072 A JP2007138072 A JP 2007138072A JP 5052208 B2 JP5052208 B2 JP 5052208B2
Authority
JP
Japan
Prior art keywords
amount
catalyst
calculated
adsorption
adsorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007138072A
Other languages
Japanese (ja)
Other versions
JP2008291739A (en
Inventor
豊 田内
富久 小田
丈和 伊藤
俊祐 利岡
和浩 伊藤
治之 横田
隆治 清水
信也 佐藤
弘行 二宮
孝彦 林
克司 扇元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Toyota Motor Corp
Original Assignee
Hino Motors Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd, Toyota Motor Corp filed Critical Hino Motors Ltd
Priority to JP2007138072A priority Critical patent/JP5052208B2/en
Publication of JP2008291739A publication Critical patent/JP2008291739A/en
Application granted granted Critical
Publication of JP5052208B2 publication Critical patent/JP5052208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

機関排気通路内にNOX選択還元触媒を配置し、NOX選択還元触媒上流の機関排気通路内に、排気ガス中に含まれるNOXを硝酸塩の形で吸蔵し還元剤を供給すると吸蔵したNOXを放出するNOX吸蔵触媒を配置し、NOX選択還元触媒に尿素を供給して尿素から発生するアンモニアにより排気ガス中に含まれるNOXを選択的に還元するようにした内燃機関が公知である(例えば特許文献1を参照)。この内燃機関ではNOX吸蔵触媒に吸蔵されるNOX量およびNOX吸蔵触媒から放出されるNOX量を考慮して尿素供給量が決定されている。例えばNOX吸蔵触媒からNOXが放出されているときには放出NOX量の還元分だけ尿素供給量が増大せしめられる。
特開2005−2925号公報
A NO x selective reduction catalyst is disposed in the engine exhaust passage, and NO x contained in the exhaust gas is occluded in the form of nitrate in the engine exhaust passage upstream of the NO x selective reduction catalyst and supplied as a reducing agent. the the NO X storing catalyst to release the X located, an internal combustion engine which is adapted to selectively reduce NO X contained in exhaust gas by ammonia by supplying urea to the NO X selective reducing catalyst generated from the urea known (For example, see Patent Document 1). Urea supply amount in consideration of the amount of NO X released from the amount of NO X and the NO X storage catalyst is occluded in the NO X storage catalyst in this internal combustion engine is determined. For example, when NO X is released from the NO X storage catalyst, the urea supply amount is increased by the reduction amount of the released NO X amount.
JP 2005-2925 A

ところで上述の内燃機関においてNOX吸蔵触媒が熱劣化すると吸着可能なNOX量が減少するためにNOX吸蔵触媒に吸蔵されるNOX量が変化し、更にNOX吸蔵触媒から放出されるNOX量も変化する。従って尿素供給量を決定するに当ってはNOX吸蔵触媒の熱劣化を考慮しなければならないことになる。しかしながら上述の内燃機関ではNOX吸蔵触媒の熱劣化を考慮しておらず、従ってNOX吸蔵触媒が熱劣化したときには尿素供給量を最適な量に維持しえなくなるという問題がある。 Incidentally NO to the NO X storing catalyst in an internal combustion engine described above the amount of NO X amount of NO X that can be adsorbed to thermal degradation is occluded in the NO X storage catalyst to reduce changes are further released from the NO X storing catalyst X amount also changes. Therefore, in determining the urea supply amount, it is necessary to consider the thermal deterioration of the NO x storage catalyst. However no consideration of the thermal deterioration of the NO X storage catalyst in the above-mentioned internal combustion engine, therefore when the NO X storage catalyst is thermally degraded, there is a problem that not E maintained at optimum amount of urea supply amount.

また、上述の内燃機関ではNOX吸蔵触媒からNOXを放出させるために還元剤、即ち燃料を供給した場合、一部の吸蔵NOXはNO又はNO2の形でNOX吸蔵触媒から放出されるが一部の吸蔵NOXはNOよりも更に還元されてアンモニアNH3の形で放出される。この場合、吸蔵NOXがどの程度NOXとなって放出されるか、どの程度アンモニアNH3となって放出されるかは明確ではない。この場合、アンモニアNH3となって放出される量が多いと放出されたNOXがこのアンモニアNH3によって還元されるので尿素供給量は増大させる必要がなくなる。 In the above-described internal combustion engine, when a reducing agent, that is, a fuel is supplied to release NO X from the NO X storage catalyst, a part of the stored NO X is released from the NO X storage catalyst in the form of NO or NO 2. However, some occluded NO x is further reduced than NO and released in the form of ammonia NH 3 . In this case, it is not clear how much the stored NO x is released as NO x and how much it is released as ammonia NH 3 . In this case, if the amount released as ammonia NH 3 is large, the released NO x is reduced by this ammonia NH 3 , so that it is not necessary to increase the urea supply amount.

ところが上述の内燃機関では吸蔵NOXは全てNOXとなって放出されるとの前提に立っており、従って放出されたNOX量の還元分だけ尿素供給量が増大せしめられるので尿素供給量が過剰になってしまうという問題がある。このような問題はNOX吸蔵触媒を用いている限り生ずる。
本発明は、還元剤を供給しなくてもNOXを放出しうるNOX吸着触媒を用いることにより上述の如き種々の問題が生ずることのない内燃機関の排気浄化装置を提供することにある。
However, the above-mentioned internal combustion engine is based on the premise that all of the stored NO x is released as NO x, and therefore the urea supply amount is increased by the reduced amount of the released NO x amount, so the urea supply amount is increased. There is a problem that it becomes excessive. Such a problem occurs as long as the NO x storage catalyst is used.
An object of the present invention is to provide an exhaust purification device for an internal combustion engine in which various problems as described above do not occur by using a NO x adsorption catalyst capable of releasing NO x without supplying a reducing agent.

即ち、本発明によれば機関排気通路内にNOX選択還元触媒を配置し、NOX選択還元触媒に尿素を供給してこの尿素から発生するアンモニアにより排気ガス中に含まれるNOXを選択的に還元するようにした内燃機関の排気浄化装置において、NOX選択還元触媒上流の機関排気通路内にNOX吸着触媒を配置し、NOX吸着触媒はNOX吸着触媒の温度が低くなるほどNOXの最大吸着量が増大する性質を有すると共にNOX吸着触媒の温度が上昇してNOX吸着触媒に吸着されているNOX量が最大吸着量を超えると吸着されているNOXを放出する性質を有し、更にNOX吸着触媒はNOX吸着触媒の熱劣化の進行に伴い最大吸着量が次第に低下していく性質を有し、NO X 吸着触媒に吸着されているNO X 量が算出されると共に熱劣化の進行に伴い低下する最大吸着量が算出され、算出されている吸着NO X 量が算出された最大吸着量よりも少ないときには機関から排出されるNOX量に基づいてNOX吸着触媒への吸着NOX量が算出されると共に、算出されている吸着NO X 量が算出された最大吸着量よりも多いときにはNOX吸着触媒からの放出NOX量が算出され、機関から排出されるNOX量から算出された吸着NOX量を減算し或いは機関から排出されるNOX量に算出された放出NOX量を加算することによってNOX吸着触媒から流出する排気ガス中のNOX量が算出され、このNOX量から供給尿素量が算出される。 That is, according to the present invention, the NO x selective reduction catalyst is arranged in the engine exhaust passage, urea is supplied to the NO x selective reduction catalyst, and the NO x contained in the exhaust gas is selectively selected by ammonia generated from the urea. in the exhaust purification system of an internal combustion engine which is adapted to reduce, NO and NO X adsorbing catalyst disposed in the X selective reducing catalyst in the engine exhaust passage upstream of, NO X adsorber NO X as NO X temperature decreases adsorption catalyst properties the amount of NO X temperature of the NO X adsorbing catalyst is adsorbed to the NO X trap catalyst rises with the maximum adsorption amount has the property of increasing emits NO X which is adsorbed to exceed the maximum amount of adsorption has a further NO X adsorbing catalyst has the property of gradually gradually decreases the maximum adsorption amount with the progress of heat deterioration of the NO X adsorbing catalyst, the amount of NO X that is adsorbed is calculated in the NO X adsorbing catalyst progress of the Rutotomoni heat deterioration Maximum adsorption amount is calculated that with decreased adsorption amount of NO X in the time less than the maximum adsorption amount adsorbed amount of NO X is calculated, which is calculated based on the amount of NO X discharged from the engine to the NO X adsorbing catalyst together but are calculated, when more than the maximum adsorption amount of adsorbed amount of NO X is calculated, which is calculated is calculated released amount of NO X from the NO X adsorbing catalyst, is calculated from the amount of NO X discharged from the engine adsorption NO NO X amount in the exhaust gas flowing out from the NO X adsorbing catalyst by X amount by subtracting or adding the release NO X amount calculated NO X amount exhausted from the engine is calculated, this NO The supplied urea amount is calculated from the X amount.

NOX吸着触媒の熱劣化を考慮して尿素供給量を算出しているのでNOX吸着触媒が熱劣化したとしても尿素供給量を最適な量に維持することができる。また、NOX吸着触媒から放出されるのはNO又はNO2であるのでNOXの還元に必要な尿素供給量を正確に算出することができる。 Since the urea supply amount is calculated in consideration of the thermal deterioration of the NO X adsorption catalyst, even if the NO X adsorption catalyst is thermally deteriorated, the urea supply amount can be maintained at an optimum amount. Further, since NO or NO 2 is released from the NO x adsorption catalyst, the urea supply amount necessary for the reduction of NO x can be accurately calculated.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.

一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口はNOX吸着触媒12の入口に連結される。このNOX吸着触媒12の下流にはNOX吸着触媒12に隣接して排気ガス中に含まれる粒子状物質を捕集するためのパティキュレートフィルタ13が配置され、このパティキュレートフィルタ13の出口は排気管14を介してNOX選択還元触媒15の入口に連結される。このNOX選択還元触媒15の出口には酸化触媒16が連結される。 On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the inlet of the NO x adsorption catalyst 12. This is downstream of the NO X adsorption catalyst 12 is arranged a particulate filter 13 for trapping particulate matter contained in the exhaust gas adjacent to the NO X adsorption catalyst 12, the outlet of the particulate filter 13 The exhaust gas is connected to the inlet of the NO x selective reduction catalyst 15 through the exhaust pipe 14. An oxidation catalyst 16 is connected to the outlet of the NO x selective reduction catalyst 15.

NOX選択還元触媒15上流の排気管14内には尿素水供給弁17が配置され、この尿素水供給弁17は供給管18、供給ポンプ19を介して尿素水タンク20に連結される。尿素水タンク20内に貯蔵されている尿素水は供給ポンプ19によって尿素水供給弁17から排気管14内を流れる排気ガス中に噴射され、尿素から発生したアンモニア((NH22CO+H2O→2NH3+CO2)によって排気ガス中に含まれるNOXがNOX選択還元触媒15において還元される。 A urea water supply valve 17 is disposed in the exhaust pipe 14 upstream of the NO X selective reduction catalyst 15, and this urea water supply valve 17 is connected to a urea water tank 20 via a supply pipe 18 and a supply pump 19. The urea water stored in the urea water tank 20 is injected into the exhaust gas flowing in the exhaust pipe 14 from the urea water supply valve 17 by the supply pump 19, and ammonia ((NH 2 ) 2 CO + H 2 O generated from urea. → 2NH 3 + CO 2 ) NO X contained in the exhaust gas is reduced in the NO X selective reduction catalyst 15.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路21を介して互いに連結され、EGR通路21内には電子制御式EGR制御弁22が配置される。また、EGR通路21周りにはEGR通路21内を流れるEGRガスを冷却するための冷却装置23が配置される。図1に示される実施例では機関冷却水が冷却装置23内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管24を介してコモンレール25に連結され、このコモンレール25は電子制御式の吐出量可変な燃料ポンプ26を介して燃料タンク27に連結される。燃料タンク27内に貯蔵されている燃料は燃料ポンプ26によってコモンレール25内に供給され、コモンレール25内に供給された燃料は各燃料供給管24を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 21, and an electronically controlled EGR control valve 22 is disposed in the EGR passage 21. A cooling device 23 for cooling the EGR gas flowing in the EGR passage 21 is disposed around the EGR passage 21. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 23, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 25 via a fuel supply pipe 24, and this common rail 25 is connected to a fuel tank 27 via an electronically controlled fuel pump 26 with variable discharge amount. The fuel stored in the fuel tank 27 is supplied into the common rail 25 by the fuel pump 26, and the fuel supplied into the common rail 25 is supplied to the fuel injection valve 3 through each fuel supply pipe 24.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。NOX吸着触媒12にはNOX吸着触媒12の床温を検出するための温度センサ28が取付けられ、この温度センサ28および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、尿素水供給弁17、供給ポンプ19、EGR制御弁22および燃料ポンプ26に接続される。 The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. The the NO X adsorption catalyst 12 is attached a temperature sensor 28 for detecting the bed temperature of the NO X adsorption catalyst 12, the output signal of the temperature sensor 28 and intake air amount detector 8 AD converters 37 respectively corresponding to To the input port 35. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the urea water supply valve 17, the supply pump 19, the EGR control valve 22, and the fuel pump 26 through corresponding drive circuits 38. .

NOX吸着触媒12の基体は多数の細孔を有するコージライト或いはゼオライトからなり、この基体上には例えばアルミナからなる触媒担体の層が形成されていてこの触媒担体上に例えば白金のような貴金属触媒が担持されている。一方、パティキュレートフィルタ13としては触媒を担持していないパティキュレートフィルタを用いることもできるし、例えば白金のような貴金属触媒を担持したパティキュレートフィルタを用いることもできる。また、NOX選択還元触媒15は低温で高いNOX浄化率を有するアンモニア吸着タイプのFeゼオライトから構成することもできるし、アンモニアの吸着機能がないチタニア・バナジウム系の触媒から構成することもできる。酸化触媒16は例えば白金からなる貴金属触媒を担持しており、この酸化触媒16はNOX選択還元触媒15から漏出したアンモニアを酸化する作用をなす。 The base of the NO x adsorption catalyst 12 is made of cordierite or zeolite having a large number of pores, and a layer of a catalyst support made of alumina, for example, is formed on the base, and a noble metal such as platinum is formed on the catalyst support. A catalyst is supported. On the other hand, the particulate filter 13 may be a particulate filter that does not carry a catalyst, or a particulate filter that carries a precious metal catalyst such as platinum. Further, the NO x selective reduction catalyst 15 can be composed of an ammonia adsorption type Fe zeolite having a high NO x purification rate at a low temperature, or can be composed of a titania / vanadium catalyst having no ammonia adsorption function. . The oxidation catalyst 16 carries a noble metal catalyst made of, for example, platinum, and this oxidation catalyst 16 functions to oxidize ammonia leaked from the NO x selective reduction catalyst 15.

図2に圧縮着火式内燃機関の別の実施例を示す。この実施例ではパティキュレートフィルタ13が酸化触媒16の下流に配置され、従ってこの実施例ではNOX吸着触媒12の出口が排気管14を介してNOX選択還元触媒15の入口に連結される。 FIG. 2 shows another embodiment of the compression ignition type internal combustion engine. In this embodiment, the particulate filter 13 is disposed downstream of the oxidation catalyst 16. Therefore, in this embodiment, the outlet of the NO X adsorption catalyst 12 is connected to the inlet of the NO X selective reduction catalyst 15 through the exhaust pipe 14.

ところでNOX選択還元触媒15はほぼ200℃以上にならないと活性化せず、従って機関始動後、NOX選択還元触媒15の温度が上昇するまではNOX選択還元触媒15によるNOXの浄化作用は期待できない。ところがNOX吸着触媒12はNOX吸着触媒12の温度が低くなるほど吸着可能なNOX量が増大する。従って図1および図2に示されるようにNOX選択還元触媒15の上流にNOX吸着触媒12が配置されているとNOX選択還元触媒15が活性化していないときには排気ガス中のNOXはNOX吸着触媒12に吸着され、斯くしてNOXが大気中に放出されるのが抑制されることになる。 Meanwhile the NO X selective reducing catalyst 15 does not become substantially 200 ° C. or higher when not activated, thus after the engine start, purification action of the NO X by the NO X selective reducing catalyst 15 to a temperature of the NO X selective reducing catalyst 15 is raised Cannot be expected. However, the NO x adsorption catalyst 12 increases the amount of adsorbable NO x as the temperature of the NO x adsorption catalyst 12 decreases. Therefore NO X in the exhaust gas when the NO X adsorption catalyst 12 upstream of the NO X selective reducing catalyst 15 is disposed the NO X selective reducing catalyst 15 is not activated, as shown in FIGS. 1 and 2 It is adsorbed by the NO x adsorption catalyst 12 and thus NO x is suppressed from being released into the atmosphere.

次いでNOX吸着触媒12の温度が上昇してくると吸着可能なNOX量が減少するためにNOX吸着触媒12からNOXが放出される。一方、NOX吸着触媒12の温度が上昇するとNOX選択還元触媒15の温度も上昇するためにNOX選択還元触媒15が活性化し、斯くしてNOX吸着触媒12から放出されたNOXはNOX選択還元触媒15において浄化されることになる。 Then NO X NO X from NO X adsorption catalyst 12 to the amount of NO X that can be adsorbed and the temperature comes to rise to a decrease in the adsorption catalyst 12 is released. On the other hand, the temperature of the NO X selective reducing catalyst 15 when the temperature of the NO X adsorption catalyst 12 rises even the NO X selective reducing catalyst 15 is activated in order to increase, the NO X released from the NO X adsorption catalyst 12 and thus The NO x selective reduction catalyst 15 is purified.

次に図3(A)を参照しつつNOX吸着触媒12が吸着可能なNOXの最大吸着量について説明する。
なお、図3(A)において縦軸はNOX吸着触媒12へのNOX吸着量ΣNOXを示しており、横軸はNOX吸着触媒12の床温TCを示している。また、図3(A)においてNMAX0はNOX吸着触媒12が新品のときの、即ちNOX吸着触媒12が熱劣化していないときのNOXの最大吸着量を示しており、NMAX(r)はNOX吸着触媒12が熱劣化したときのNOXの最大吸着量を示している。図3(A)からNOX吸着触媒12が劣化すると最大吸着量が低下することがわかる。
Next, the maximum adsorption amount of NO x that can be adsorbed by the NO x adsorption catalyst 12 will be described with reference to FIG.
The vertical axis in FIG. 3 (A) shows the NO X adsorption amount ΣNOX of the NO X adsorption catalyst 12, the horizontal axis represents the bed temperature TC of the NO X adsorption catalyst 12. Further, NMAX 0 in FIG. 3 (A) shows the maximum adsorption amount of the NO X when NO X adsorption catalyst 12 when the new, i.e. the NO X adsorption catalyst 12 is not thermally deteriorated, NMAX (r ) Shows the maximum adsorption amount of NO x when the NO x adsorption catalyst 12 is thermally deteriorated. It can be seen from FIG. 3A that the maximum adsorption amount decreases when the NO x adsorption catalyst 12 deteriorates.

また、図3(A)からわかるように最大吸着量NMAX0、NMAX(r)はNOX吸着触媒12が熱劣化しているか否かにかかわらずにNOX吸着触媒12の床温TCが低くなるほど増大し、従ってNOX吸着触媒12はNOX吸着触媒12の床温TCが低いとき、例えば機関始動時に多量のNOXを吸着する機能を有していることがわかる。一方、NOX吸着触媒12が劣化するほど劣化時の最大吸着量NMAX(r)はNMAX0に対して低下し、従ってNOX吸着触媒12が劣化するほど機関始動時に吸着可能なNOX量は少なくなる。 Further, as can be seen from FIG. 3A, the maximum adsorption amounts NMAX 0 and NMAX (r) are low in the bed temperature TC of the NO x adsorption catalyst 12 regardless of whether the NO x adsorption catalyst 12 is thermally deteriorated. Indeed it increases, thus NO X adsorption catalyst 12 when the bed temperature TC of the NO X adsorption catalyst 12 is low, it can be seen that has a function of adsorbing a large amount of the NO X for example when the engine is started. On the other hand, as the NO x adsorption catalyst 12 deteriorates, the maximum adsorption amount NMAX (r) at the time of deterioration decreases with respect to NMAX 0. Therefore, as the NO x adsorption catalyst 12 deteriorates, the amount of NO x that can be adsorbed at engine startup becomes smaller. Less.

NOX吸着触媒12の熱劣化はNOX吸着触媒12に加わった熱の履歴に依存しており、NOX吸着触媒12に高い熱が加わるほど、また加わっている時間が長いほどNOX吸着触媒12は熱劣化する。そこで本発明による実施例では次式に基づいてNOX吸着触媒12の劣化率R(%)を算出するようにしている。 Thermal deterioration of the NO X adsorption catalyst 12 is dependent on the thermal history applied to the NO X adsorption catalyst 12, the higher heat is applied to the NO X adsorption catalyst 12, or the longer the The times involved NO X adsorbing catalyst No. 12 is thermally deteriorated. Therefore, in the embodiment according to the present invention, the deterioration rate R (%) of the NO x adsorption catalyst 12 is calculated based on the following equation.

R(%)=K1・t1+K2・t2+K3・t3
ここでK1,K2,K3は定数であり、t1,t2,t3は以下に示すこれまでの合計時間を表している。
NOX吸着触媒12の床温TC これまでの合計時間
600℃〜650℃ t1
650℃〜700℃ t2
700℃以上 t3
なお、K1,K2,K3についてはK1<K2<K3なる関係がある。
R (%) = K 1 · t 1 + K 2 · t 2 + K 3 · t 3
Here, K 1 , K 2 , and K 3 are constants, and t 1 , t 2 , and t 3 represent the total time so far shown below.
Bed temperature TC of the NO X adsorption catalyst 12 to date total time 600 ° C. of to 650 ° C. t 1
650 ° C to 700 ° C t 2
700 ℃ or higher t 3
Note that K 1 , K 2 , and K 3 have a relationship of K 1 <K 2 <K 3 .

従って劣化率RはNOX吸着触媒12の床温TCが高いほど大きくなり、また合計時間が長くなるほど大きくなることがわかる。劣化率Rが求まると次式に基づいて各床温TCにおける劣化時の最大吸着量NMAX(r)が算出される。
NMAX(r)=NMAX0・(1−R(%)/100(%))
Therefore, it can be seen that the deterioration rate R increases as the bed temperature TC of the NO x adsorption catalyst 12 increases, and increases as the total time increases. When the deterioration rate R is obtained, the maximum adsorption amount NMAX (r) at the time of deterioration at each bed temperature TC is calculated based on the following equation.
NMAX (r) = NMAX 0. (1-R (%) / 100 (%))

なお、上述の劣化率Rを表す式において劣化率Rに最も影響を与えるのは右辺第3項K3・t3であるので上式においてK1・t1およびK2・t2を省略することもできる。 In the above-described equation representing the deterioration rate R, it is the third term K 3 · t 3 on the right side that has the most influence on the deterioration rate R, so K 1 · t 1 and K 2 · t 2 are omitted in the above equation. You can also.

図3(B)は劣化率Rを用いて算出された現在の最大吸着量NMAX(r)を示している。ところで今、NOX吸着触媒12が図3(B)のA点で示される状態、即ち床温TCが比較的低く、NOX吸着量ΣNOXが比較的多い状態であったとする。この状態から床温TCがB点で示される温度まで上昇するとこのときには最大吸着量NMAX(r)に対する超過NOX吸着量ΔNXがNOX吸着触媒12から放出されることになる。このようにNOXを硝酸塩の形で吸蔵するNOX吸蔵触媒とは異なり、NOX吸着触媒12の上流に還元剤を供給しなくてもNOX吸着触媒12の床温TCが上昇すればNOX吸着触媒12からNOXが放出されることになる。 FIG. 3B shows the current maximum adsorption amount NMAX (r) calculated using the deterioration rate R. Now, let us assume that the NO X adsorption catalyst 12 is in the state indicated by point A in FIG. 3B, that is, the bed temperature TC is relatively low and the NO X adsorption amount ΣNOX is relatively large. When the bed temperature TC rises from this state to the temperature indicated by point B, the excess NO x adsorption amount ΔNX with respect to the maximum adsorption amount NMAX (r) is released from the NO x adsorption catalyst 12 at this time. Thus unlike the NO X storage catalyst that occludes NO X in the form of nitrates, NO X adsorbing be upstream of the catalyst 12 without supplying a reducing agent of the NO X adsorption catalyst 12 bed temperature TC is NO if elevated NO X is released from the X adsorption catalyst 12.

さて、NOX吸着触媒12は概略的に言うと低温時にNOXを吸着し、高温時にNOXを放出する性質、即ちNOX吸着触媒12の温度に応じて排気ガス中に含まれるNOXを吸着するか或いは吸着されているNOXを放出する性質を有すると共に吸着可能なNOX量がNOX吸着触媒12の熱劣化の進行に伴ない次第に低下していく性質を有する。この場合、吸着可能なNOX量が低下すれば当然のことながらNOX吸着触媒12に吸着されるNOX量は低下し、NOX吸着触媒12に吸着されるNOX量が低下するとNOX吸着触媒12から放出されるNOX量も低下する。 Well, NO X adsorbing catalyst 12 adsorbs NO X at a low temperature say schematically, the nature of releasing NO X at a high temperature, ie NO X NO X contained in the exhaust gas in accordance with the temperature of the adsorption catalyst 12 has the property that decreases gradually possible amount adsorbed nO X is not accompanied with the progress of heat deterioration of the nO X adsorption catalyst 12 which has the property of releasing the nO X that is or adsorbed to the adsorption. In this case, the amount of NO X can be adsorbed amount of NO X is adsorbed in the NO X adsorption catalyst 12 Of course if reduction is lowered, the amount of NO X adsorbed in the NO X adsorption catalyst 12 is reduced NO X The amount of NO x released from the adsorption catalyst 12 also decreases.

従って本発明では熱劣化の進行に伴ない低下する吸着可能なNOX量を推定してこの推定された吸着可能なNOX量に基づきNOX吸着触媒12への吸着NOX量およびNOX吸着触媒12からの放出NOX量を算出し、これら吸着NOX量および放出NOX量を用いて尿素供給量を算出するようにしている。 Thus the adsorption amount of NO X and NO X adsorption in the present invention to NO X adsorption catalyst 12 based on the adsorbable amount of NO X capable of adsorbing amount of NO X decreases In conjunction that is to the estimated estimation progression of thermal degradation calculating the discharge amount of NO X from the catalyst 12 to calculate the urea supply amount using these adsorption amount of NO X and release amount of NO X.

次にこの尿素供給量についてもう少し詳しく説明する。即ち、機関から一定量のNOXが排出されているとするとNOXがNOX吸着触媒12に吸着されたときにはNOX吸着触媒12から流出する排気ガス中のNOX量は減少し、NOXがNOX吸着触媒12から放出しているときにはNOX吸着触媒12から流出する排気ガス中のNOX量は増大する。この場合、NOXを還元するのに必要な尿素量はNOX吸着触媒12から流出する排気ガス中のNOX量が減少すれば減少し、NOX吸着触媒12から流出する排気ガス中のNOX量が増大すれば増大する。一方、機関の運転状態が定まると機関からのNOX排出量が定まり、従って機関の運転状態が定まると機関からの排出NOXを還元するのに必要な尿素供給量が定まる。 Next, the urea supply amount will be described in a little more detail. That, NO X amount in the exhaust gas flowing out from the NO X adsorption catalyst 12 at the time when a certain amount of the NO X from the engine is discharged to NO X is adsorbed in the NO X adsorption catalyst 12 is reduced, NO X There amount of NO X in the exhaust gas flowing out from the NO X adsorption catalyst 12 is increased when you are released from the NO X adsorption catalyst 12. In this case, amount of urea required for reducing the NO X is decreased with decreasing the amount of NO X in the exhaust gas flowing out from the NO X adsorption catalyst 12, NO X NO in the exhaust gas flowing out from the adsorption catalyst 12 It increases as the amount of X increases. On the other hand, Sadamari is NO X emissions from the engine when the determined operating state of the engine, thus the urea supply amount required to reduce emissions NO X from the engine when the operating condition is determined for the engine is determined.

そこで本発明では機関の運転状態から定まる尿素供給量に対し算出された吸着NOX量の還元分だけ尿素供給量を減少させ、機関の運転状態から定まる尿素供給量に対し算出された放出NOX量の還元分だけ尿素供給量を増大させるようにしている。 Therefore, in the present invention to reduce the reduction amount corresponding urea supply amount of adsorbed amount of NO X is calculated to urea supply amount determined from the engine operating state, release NO X calculated to urea supply amount determined from the engine operating state The urea supply amount is increased by the amount of reduction.

次に図4から図6を参照しつつ本発明による尿素供給方法の一実施例について説明する。
上述したように機関から排出されるNOXは機関の運転状態に応じて定まる。本発明による実施例では機関から単位時間当り排出されるNOX量NOXAが要求トルクTQおよび機関回転数Nの関数として図4(A)に示すマップの形で予めROM32内に記憶されている。
Next, an embodiment of the urea supply method according to the present invention will be described with reference to FIGS.
NO X exhausted from the engine as described above is determined in accordance with the engine operating state. In the embodiment according to the present invention, the NO X amount NOXA discharged from the engine per unit time is stored in advance in the ROM 32 as a function of the required torque TQ and the engine speed N in the form of a map shown in FIG.

一方、機関から排出されたNOXのうちNOX吸着触媒12に吸着するNOXの吸着率はNOX吸着触媒12に吸着されているNOX吸着量ΣNOXとNOX吸着触媒12内における排気ガス流の空間速度との関数となる。即ち、図4(B)においてK1で示されるように吸着率はNOX吸着触媒12に吸着されているNOX吸着量ΣNOXが増大するほど減少し、図4(C)においてK2で示されるように吸着率はNOX吸着触媒12内における排気ガス流の空間速度、即ち吸入空気量Gaが増大するほど減少する。これら吸着率K1,K2は予めROM32内に記憶されている。本発明による実施例では機関からの排出NOX量NOXAに吸着率K1およびK2を乗算することによって単位時間当りNOX吸着触媒12に吸着されるNOX量NOXA・K1・K2が算出される。 On the other hand, NO X exhausted in the adsorption catalyst adsorption rate of the NO X adsorbing to 12 NO X adsorbing catalyst NO X adsorption amount adsorbed by the 12 .SIGMA.NOX and NO X adsorption catalyst 12 the gas out of the discharged NO X from the engine It is a function of the space velocity of the flow. That is, as indicated by K1 in FIG. 4B, the adsorption rate decreases as the NO X adsorption amount ΣNOX adsorbed on the NO X adsorption catalyst 12 increases, and as indicated by K2 in FIG. 4C. Further, the adsorption rate decreases as the space velocity of the exhaust gas flow in the NO x adsorption catalyst 12, that is, the intake air amount Ga increases. These adsorption rates K1 and K2 are stored in the ROM 32 in advance. In the embodiment according to the present invention the amount of NO X NOXA · K1 · K2 adsorbed in unit time per NO X adsorption catalyst 12 by multiplying the discharge amount of NO X NOXA adsorption rate K1 and K2 from the engine is calculated.

一方、図3(B)を参照しつつ説明したようにNOX吸着触媒12がA点で示される状態からB点で示される温度まで上昇すると最大吸着量NMAX(r)に対する超過NOX吸着量ΔNXがNOX吸着触媒12から放出される。この場合、この超過NOX吸着量ΔNXは一気に放出されるのではなくて、NOX吸着触媒12へのNOX吸着量ΣNOXおよびNOX吸着触媒12内における排気ガスの空間速度、即ち吸入空気量Gaに応じた速度でもって徐々に放出される。即ち、図5(A)に示されるように或る吸入空気量GaにおけるNOXの脱離速度W、即ちNOX吸着触媒12から単位時間当り放出されるNOX量WはNOX吸着量ΣNOXが増大するほど高くなる。即ち、NOX吸着量ΣNOXが多いほど多量のNOXが放出される。 On the other hand, as described with reference to FIG. 3B, when the NO x adsorption catalyst 12 rises from the state indicated by point A to the temperature indicated by point B, the excess NO x adsorption amount with respect to the maximum adsorption amount NMAX (r). ΔNX is released from the NO x adsorption catalyst 12. In this case, the excess NO X adsorption amount ΔNX is not being released all at once, the space velocity of the exhaust gas in the NO X adsorption amount ΣNOX and NO X adsorption catalyst 12 to the NO X adsorption catalyst 12, i.e. the intake air amount It is gradually released at a rate according to Ga. That is, as shown in FIG. 5A, the NO x desorption speed W at a certain intake air amount Ga, that is, the NO x amount W released from the NO x adsorption catalyst 12 per unit time is the NO x adsorption amount ΣNOX. The higher it is, the higher it becomes. That is, as the NO X adsorption amount ΣNOX increases, a larger amount of NO X is released.

一方、NOX吸着触媒12から脱離されるNOXの脱離率は図5(B)に示されるように吸入空気量Gaが増大するほど高くなる。この場合、実際のNOX脱離速度、即ちNOX吸着触媒12から単位時間当り実際に脱離されるNOX量は図5(A)に示される脱離速度Wに図5(B)に示される脱離率Dを乗算した値W・Dとなる。なお、これら脱離速度Wおよび脱離率Dは予めROM32内に記憶されている。 On the other hand, the desorption rate of NO x desorbed from the NO x adsorption catalyst 12 increases as the intake air amount Ga increases as shown in FIG. In this case, the actual NO x desorption rate, that is, the amount of NO x actually desorbed per unit time from the NO x adsorption catalyst 12 is shown in FIG. 5 (B) as the desorption rate W shown in FIG. 5 (A). The value WD obtained by multiplying the desorption rate D to be obtained is obtained. The desorption speed W and desorption rate D are stored in the ROM 32 in advance.

図6は尿素の供給を制御するためのルーチンを示している。なお、このルーチンは一定時間毎の割込みによって実行される。
図6を参照するとまず初めにステップ50において図4(A)に示すマップから機関からの単位時間当りの排出NOX量NOXAが算出される。次いでステップ51では劣化率R(=Kt・t1+K2・t2+K3・t3)が算出される。具体的に言うと車両の使用が開始されたときから現在に至るまでの間においてNOX吸着触媒12の床温TCが夫々対応する温度領域となっていたときの合計時間t1,t2,t3が算出されており、これら合計時間t1,t2,t3を用いて劣化率Rが算出される。
FIG. 6 shows a routine for controlling the supply of urea. This routine is executed by interruption every predetermined time.
Discharge amount of NO X NOXA per unit time from the engine from the map shown in FIG. 4 (A), first, at step 50 a reference is calculated to FIG. Next, at step 51, the deterioration rate R (= K t · t 1 + K 2 · t 2 + K 3 · t 3 ) is calculated. Specifically, the total time t 1 , t 2 , when the bed temperature TC of the NO x adsorption catalyst 12 is in the corresponding temperature range from when the use of the vehicle is started until now, t 3 is calculated, and the deterioration rate R is calculated using these total times t 1 , t 2 , and t 3 .

次いでステップ52では次式に基づいて各床温TCにおける劣化時の最大吸着量NMAX(r)が算出される。
NMAX(r)=NMAX0・(1−R(%)/100(%))
次いでステップ53ではNOX吸着触媒12への吸着NOX量ΣNOXが最大吸着量NMAX(r)よりも少ないか否かが判別される。ΣNOX<NMAX(r)のとき、即ちまだNOXを吸着する余地があるときにはステップ54に進む。
Next, at step 52, the maximum adsorption amount NMAX (r) at the time of deterioration at each bed temperature TC is calculated based on the following equation.
NMAX (r) = NMAX 0. (1-R (%) / 100 (%))
Then adsorption amount of NO X ΣNOX to NO X adsorption catalyst 12 at step 53 whether less than the maximum adsorption amount NMAX (r) is determined. When ΣNOX <NMAX (r), that is, when there is still room for adsorbing NO X , the routine proceeds to step 54.

ステップ54では図4(B)に示す関係から吸着率K1が算出され、次いでステップ55では図4(C)に示す関係から吸着率K2が算出される。次いでステップ56では単位時間当りNOX吸着触媒12に実際に吸着されるNOX量NOXA・K1・K2をΣNOXに加算することによってNOX吸着量ΣNOXが算出される。次いでステップ57では排出NOX量NOXAから単位時間当り実際に吸着されるNOX量NOXA・K1・K2を減算することによってNOX吸蔵触媒12から単位時間当り流出する排気ガス中のNOX量NOXZが算出される。 At step 54, the adsorption rate K1 is calculated from the relationship shown in FIG. 4B, and then at step 55, the adsorption rate K2 is calculated from the relationship shown in FIG. 4C. Next, at step 56, the NO X adsorption amount ΣNOX is calculated by adding the NO X amount NOXA · K1 · K2 actually adsorbed to the NO X adsorption catalyst 12 per unit time to ΣNOX. Next, at step 57, the NO X amount NOXZ in the exhaust gas flowing out from the NO X storage catalyst 12 per unit time by subtracting the NO X amount NOXA · K1 · K2 actually adsorbed per unit time from the exhausted NO X amount NOXA. Is calculated.

次いでステップ62ではNOX吸着触媒12から流出する排気ガス中のNOX、即ちNOX選択還元触媒15に流入する排気ガス中のNOXを還元するのに必要な尿素量が算出される。本発明による実施例ではこの尿素量は還元すべきNOX量に対して当量比=1となる量にされている。次いでステップ63では尿素水供給弁17からの尿素水の供給作用が行われる。 Then NO X in the exhaust gas flowing out from the NO X adsorption catalyst 12 at step 62, i.e. amount of urea required for reducing NO X in the exhaust gas flowing into the NO X selective reducing catalyst 15 is calculated. In the embodiment according to the present invention, the urea amount is set so that the equivalent ratio = 1 with respect to the NO x amount to be reduced. Next, at step 63, the urea water supply action from the urea water supply valve 17 is performed.

一方、ステップ53においてΣNOX≧NMAX(r)であると判断されたときにはステップ58に進んで図5(A)に示す関係から脱離速度Wが算出される。次いでステップ59では図5(B)に示す関係から脱離率Dが算出される。次いでステップ60では単位時間当り実際に脱離するNOX量W・DをΣNOXから減算することによってNOX吸着量ΣNOXが算出される。次いでステップ61では排出NOX量NOXAに単位時間当り実際に脱離するNOX量W・Dを加算することによってNOX吸着触媒12から単位時間当り流出する排気ガス中のNOX量NOXZが算出される。次いでステップ62ではこのNOXを還元するのに必要な尿素量が算出される。 On the other hand, when it is determined at step 53 that ΣNOX ≧ NMAX (r), the routine proceeds to step 58 where the desorption speed W is calculated from the relationship shown in FIG. Next, at step 59, the desorption rate D is calculated from the relationship shown in FIG. Then NO X adsorption amount .SIGMA.NOX is calculated by subtracting actually the amount of NO X W · D desorbed per unit in step 60 the time from .SIGMA.NOX. Then calculated the amount of NO X NOXZ in the exhaust gas flowing out per unit time from the NO X adsorption catalyst 12 by adding the amount of NO X W · D actually desorbed per unit time in step 61 the discharge amount of NO X NOXA Is done. Next, at step 62 the amount of urea required for reducing the NO X is calculated.

このように本発明による実施例では機関から排出されるNOX量NOXAから吸着NOX量NOXA・K1・K2を減算し或いは機関から排出されるNOX量NOXAに放出NOX量W・Dを加算することによってNOX吸着触媒12から流出する排気ガス中のNOX量NOXZが算出され、このNOX量NOXZから供給尿素量が算出される。 Thus the release the amount of NO X W · D to the NO X amount NOXA is discharged from subtracting or institutions adsorption amount of NO X NOXA · K1 · K2 from the amount of NO X NOXA exhausted from the engine in the embodiment according to the present invention By adding, the NO X amount NOXZ in the exhaust gas flowing out from the NO X adsorption catalyst 12 is calculated, and the supplied urea amount is calculated from this NO X amount NOXZ.

NOX吸着触媒12を用いるとNOX吸着触媒12からは吸着されているNOXがアンモニアNH3に変換されることなくNOXの形で放出されるのでNOXを還元するのに必要な尿素量を正確に算出することができる。従って供給された尿素から発生するアンモニアによってNOXを良好に浄化することができると共に余剰のアンモニアがNOX選択還元触媒15から流出するのを抑制することができる。 Urea required the use of NO X adsorption catalyst 12 from the NO X adsorption catalyst 12 for reducing the NO X because it is released in the form of the NO X without NO X being adsorbed is converted into ammonia (NH 3) The amount can be calculated accurately. Therefore, NO x can be well purified by the ammonia generated from the supplied urea, and excess ammonia can be prevented from flowing out from the NO x selective reduction catalyst 15.

圧縮着火式内燃機関の全体図である。1 is an overall view of a compression ignition type internal combustion engine. 圧縮着火式内燃機関の別の実施例を示す全体図である。It is a general view which shows another Example of a compression ignition type internal combustion engine. NOX吸着触媒のNOXの最大吸着量を示す図である。It is a diagram showing the maximum adsorption amount of the NO X of the NO X adsorbing catalyst. 機関から排出されるNOX量NOXAのマップ等を示す図である。It is a diagram showing a map or the like of the NO X amount NOXA exhausted from the engine. NOXの脱離速度等を示す図である。Is a diagram illustrating the desorption speed of NO X. 尿素の供給制御を行うためのフローチャートである。It is a flowchart for performing supply control of urea.

符号の説明Explanation of symbols

4 吸気マニホルド
5 排気マニホルド
7 排気ターボチャージャ
12 NOX吸着触媒
13 パティキュレートフィルタ
15 NOX選択還元触媒
17 尿素水供給弁
4 Intake manifold 5 Exhaust manifold 7 Exhaust turbocharger 12 NO x adsorption catalyst 13 Particulate filter 15 NO x selective reduction catalyst 17 Urea water supply valve

Claims (2)

機関排気通路内にNOX選択還元触媒を配置し、該NOX選択還元触媒に尿素を供給して該尿素から発生するアンモニアにより排気ガス中に含まれるNOXを選択的に還元するようにした内燃機関の排気浄化装置において、上記NOX選択還元触媒上流の機関排気通路内にNOX吸着触媒を配置し、該NOX吸着触媒はNOX吸着触媒の温度が低くなるほどNOXの最大吸着量が増大する性質を有すると共にNOX吸着触媒の温度が上昇してNOX吸着触媒に吸着されているNOX量が該最大吸着量を超えると吸着されているNOXを放出する性質を有し、更に該NOX吸着触媒はNOX吸着触媒の熱劣化の進行に伴い該最大吸着量が次第に低下していく性質を有し、NO X 吸着触媒に吸着されているNO X 量が算出されると共に熱劣化の進行に伴い低下する該最大吸着量が算出され、該算出されている吸着NO X 量が該算出された最大吸着量よりも少ないときには機関から排出されるNOX量に基づいてNOX吸着触媒への吸着NOX量が算出されると共に、該算出されている吸着NO X 量が該算出された最大吸着量よりも多いときにはNOX吸着触媒からの放出NOX量が算出され、機関から排出されるNOX量から該算出された吸着NOX量を減算し或いは機関から排出されるNOX量に該算出された放出NOX量を加算することによってNOX吸着触媒から流出する排気ガス中のNOX量が算出され、このNOX量から供給尿素量が算出される内燃機関の排気浄化装置。 A NO x selective reduction catalyst is disposed in the engine exhaust passage, and urea is supplied to the NO x selective reduction catalyst so that NO x contained in the exhaust gas is selectively reduced by ammonia generated from the urea. In the exhaust gas purification apparatus for an internal combustion engine, a NO x adsorption catalyst is disposed in the engine exhaust passage upstream of the NO x selective reduction catalyst, and the NO x adsorption catalyst has a maximum adsorption amount of NO x as the temperature of the NO x adsorption catalyst decreases. has but a property of releasing NO X which the amount of NO X temperature of the NO X adsorbing catalyst is adsorbed in the NO X adsorbing catalyst increases with having a property of increasing is adsorbed to exceed said maximum adsorption amount , further the NO X adsorbing catalyst has a property of said maximum adsorption amount gradually decreases with the progress of heat deterioration of the NO X adsorbing catalyst, NO X amount which is adsorbed in the NO X adsorbing catalyst is calculated low with the progress of thermal degradation along with the It said maximum adsorption amount is calculated for the adsorption NO X to NO X adsorbing catalyst based on the amount of NO X discharged from the engine when less than the maximum adsorption amount of adsorbed amount of NO X was issued the calculated that issued the calculated as the amount is calculated, the calculated discharge amount of NO X from the NO X adsorbing catalyst when greater than the maximum adsorption amount of adsorbed amount of NO X was issued the calculated that issued the calculated, the amount of NO X discharged from the engine the amount of NO X in the exhaust gas flowing out from the NO X adsorbing catalyst by adding the release amount of NO X issued the calculated in subtracting the adsorbed amount of NO X issued the calculated or amount of NO X discharged from the engine from the An exhaust emission control device for an internal combustion engine, which is calculated and the supplied urea amount is calculated from the NO x amount. 該算出されている吸着NO X 量が該算出された最大吸着量よりも少ないときの単位時間当りのNO X 吸着量は、算出されている吸着NO X 量が増大するほど減少せしめられると共に吸入空気量が増大するほど減少せしめられ、該算出されている吸着NO X 量が該算出された最大吸着量よりも多いときの単位時間当りの放出NO X 量は、算出されている吸着NO X 量が増大するほど増大せしめられると共に吸入空気量が増大するほど増大せしめられる請求項1に記載の内燃機関の排気浄化装置。 Intake air with NO X adsorption amount per unit time when fewer than the maximum adsorption amount of adsorbed amount of NO X was issued the calculated that issued the calculated, the adsorption amount of NO X that is calculated is made to decrease as increasing the amount is made to decrease as increasing the release amount of NO X per unit time when more than the maximum adsorption amount of adsorbed amount of NO X was issued the calculated that issued the calculated, the adsorption amount of NO X is calculated 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is increased as the intake air amount is increased and is increased as the intake air amount is increased .
JP2007138072A 2007-05-24 2007-05-24 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5052208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007138072A JP5052208B2 (en) 2007-05-24 2007-05-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007138072A JP5052208B2 (en) 2007-05-24 2007-05-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008291739A JP2008291739A (en) 2008-12-04
JP5052208B2 true JP5052208B2 (en) 2012-10-17

Family

ID=40166722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007138072A Expired - Fee Related JP5052208B2 (en) 2007-05-24 2007-05-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5052208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5037587B2 (en) 2009-11-02 2012-09-26 本田技研工業株式会社 Exhaust gas purification system for internal combustion engine
JP6268687B1 (en) * 2016-10-19 2018-01-31 マツダ株式会社 Engine exhaust purification control system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08296472A (en) * 1995-04-25 1996-11-12 Nissan Motor Co Ltd Air-fuel ratio controller for engine
JP3518398B2 (en) * 1999-03-11 2004-04-12 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2002364345A (en) * 2001-06-08 2002-12-18 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2003236343A (en) * 2002-02-12 2003-08-26 Babcock Hitachi Kk Method for decontaminating exhaust gas and apparatus for denitration at low temperature

Also Published As

Publication number Publication date
JP2008291739A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP4375483B2 (en) Exhaust gas purification device for internal combustion engine
JP5018325B2 (en) Exhaust gas purification device for internal combustion engine
US8813480B2 (en) Exhaust purification system of internal combustion engine
JP4730352B2 (en) Exhaust gas purification device for compression ignition type internal combustion engine
JP2009264181A (en) Exhaust emission control device for internal combustion engine
JP4729631B2 (en) Exhaust gas purification device for internal combustion engine
JP2009257226A (en) Exhaust emission control device for internal combustion engine
WO2015122443A1 (en) Exhaust purification device and control method for exhaust purification device
EP2053211B1 (en) Exhaust gas control apparatus for internal combustion engine
JP4792424B2 (en) Exhaust gas purification device for internal combustion engine
JP2009047095A (en) Exhaust emission control device of internal-combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP2009257231A (en) Exhaust emission control device for internal combustion engine
JP5835488B2 (en) Exhaust gas purification device for internal combustion engine
JP4595926B2 (en) Exhaust gas purification device for internal combustion engine
JP5052208B2 (en) Exhaust gas purification device for internal combustion engine
KR101122406B1 (en) Exhaust gas purification system for internal combustion engine
JP2008286001A (en) Exhaust emission control device of internal combustion engine
JP5119289B2 (en) Exhaust gas purification device for internal combustion engine
JP2009036153A (en) Exhaust-emission purifying apparatus of internal combustion engine
JP2008232055A (en) Exhaust emission control system for internal combustion engine
JP4760661B2 (en) Exhaust gas purification device for internal combustion engine
JP2008255942A (en) Exhaust emission control device for internal combustion engine
JP2005127286A (en) Exhaust emission cleaning device for internal combustion engine
JP2009144688A (en) Exhaust emission purifier of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120724

R151 Written notification of patent or utility model registration

Ref document number: 5052208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees