JP5407288B2 - Exhaust gas treatment device and exhaust gas treatment method - Google Patents

Exhaust gas treatment device and exhaust gas treatment method Download PDF

Info

Publication number
JP5407288B2
JP5407288B2 JP2008291039A JP2008291039A JP5407288B2 JP 5407288 B2 JP5407288 B2 JP 5407288B2 JP 2008291039 A JP2008291039 A JP 2008291039A JP 2008291039 A JP2008291039 A JP 2008291039A JP 5407288 B2 JP5407288 B2 JP 5407288B2
Authority
JP
Japan
Prior art keywords
temperature
exhaust gas
urea water
urea
scr catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008291039A
Other languages
Japanese (ja)
Other versions
JP2010116858A (en
Inventor
嘉則 ▲高▼橋
好央 武田
吾郎 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2008291039A priority Critical patent/JP5407288B2/en
Publication of JP2010116858A publication Critical patent/JP2010116858A/en
Application granted granted Critical
Publication of JP5407288B2 publication Critical patent/JP5407288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/36Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an exhaust flap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、排気ガス処理装置及び排気ガス処理方法に関するものであり、特に排気ガス中のNOxをアンモニアで還元して浄化するSCR触媒を備えた排気ガス処理装置及び排気ガス処理方法に関するものである。   The present invention relates to an exhaust gas processing apparatus and an exhaust gas processing method, and more particularly to an exhaust gas processing apparatus and an exhaust gas processing method provided with an SCR catalyst that reduces NOx in exhaust gas with ammonia and purifies it. .

エンジンの排気ガスを処理装置として、排気ガス中の窒素酸化物(NOx)を浄化するために尿素を用いたSCR(Selectve Catalytic Reduction)触媒を使用することが種々提案されている。このような排気ガス処理装置では、排気ガス中のNOxを選択的にSCR触媒に吸着させ、SCR触媒上流側の排気通路中に尿素水を噴射し、該尿素水中の尿素を加水分解して還元剤であるアンモニア(NH)をSCR触媒に供給し、前記SCR触媒に吸着したNOxを還元して窒素と水に分解して排出させている。 Various proposals have been made to use an SCR (Selective Catalytic Reduction) catalyst using urea in order to purify nitrogen oxides (NOx) in the exhaust gas using the exhaust gas of the engine as a processing device. In such an exhaust gas treatment device, NOx in the exhaust gas is selectively adsorbed on the SCR catalyst, urea water is injected into the exhaust passage upstream of the SCR catalyst, and urea in the urea water is hydrolyzed and reduced. Ammonia (NH 3 ) as an agent is supplied to the SCR catalyst, and NOx adsorbed on the SCR catalyst is reduced and decomposed into nitrogen and water and discharged.

しかしながら、このようなエンジンの排気ガスの処理装置においては、エンジン始動時の排気ガスが低温であるときには、前記SCR触媒上流側の排気通路中に噴射された尿素水が気化せず排気通路中に堆積してしまう可能性がある。さらに、尿素が加水分解温度(130〜180℃)以下では、排気通路中で尿素が分解してアンモニアになるアンモニア生成率が極端に低くなり、NOxの浄化率が極端に低くなってしまうことに加えて、未分解の尿素がSCR触媒を素通りして大気中に放出されてしまう可能性がある。   However, in such an exhaust gas processing apparatus for an engine, when the exhaust gas at the time of starting the engine is at a low temperature, the urea water injected into the exhaust passage on the upstream side of the SCR catalyst does not vaporize and enters the exhaust passage. There is a possibility of accumulation. Further, when urea is at a hydrolysis temperature (130 to 180 ° C.) or lower, the ammonia generation rate in which the urea is decomposed in the exhaust passage to become ammonia is extremely low, and the NOx purification rate is extremely low. In addition, undecomposed urea may pass through the SCR catalyst and be released into the atmosphere.

前述のエンジン始動時の排気ガスの低温時にアンモニア生成率が低いことを解決するために、排気ガスの低温時には尿素水の噴射を行わず、排気ガス温度が、尿素の加水分解温度以上に設定したある閾値を越えたときに尿素水を短時間で目標量だけ噴射することで、アンモニア生成率の低下を防止しているが、この場合、排気ガス温度が前記閾値以下であるときにはNOxの浄化が行われないという課題が残る。   In order to solve the low ammonia generation rate when the exhaust gas is low at the time of starting the engine, the urea water is not injected when the exhaust gas is low, and the exhaust gas temperature is set to be equal to or higher than the hydrolysis temperature of urea. When a certain threshold value is exceeded, urea water is injected by a target amount in a short time to prevent a decrease in the ammonia production rate. In this case, when the exhaust gas temperature is equal to or lower than the threshold value, NOx purification is performed. The problem of not being done remains.

また、エンジンを停止する前にアンモニアをSCR触媒に事前に吸着させておく事前吸着が有効であるが、エンジン停止時の状態によりアンモニア吸着量が左右されるため、条件によっては効果が不十分となることがある。   In addition, pre-adsorption in which ammonia is adsorbed to the SCR catalyst in advance before stopping the engine is effective, but the amount of ammonia adsorbed depends on the state when the engine is stopped. May be.

また、尿素水に代えて、アンモニア水や液体アンモニアを使用することも考えられるが、これらは毒性が強く、取り扱いが難しい。SCR触媒を使用する排ガス処理装置を搭載した車両の使用者の中には、アンモニア水や液体アンモニア水の取り扱いに深い知見を有さない使用者も少なくないため、アンモニア水や液体アンモニアを使用することは現実的ではない。   Moreover, it is conceivable to use ammonia water or liquid ammonia instead of urea water, but these are highly toxic and difficult to handle. Because there are many users of vehicles equipped with an exhaust gas treatment device that uses an SCR catalyst, they do not have deep knowledge in handling ammonia water or liquid ammonia water, so use ammonia water or liquid ammonia. That is not realistic.

そこで、低温における尿素からのアンモニア生成率を向上させるために、SCR触媒の上流側に加水分解触媒を設けることが提案されており、その一例として例えば特許文献1には、排気ガス通路に、上流側から順に尿素供給ノズルと尿素加水分解触媒とSCR触媒を配設した排気ガス浄化システムにおいて、前記尿素加水分解触媒の排気ガスとの接触面に窒化ケイ素面を形成した排気ガス浄化システムが開示されている。   Thus, in order to improve the ammonia production rate from urea at low temperature, it has been proposed to provide a hydrolysis catalyst upstream of the SCR catalyst. An exhaust gas purification system in which a urea supply nozzle, a urea hydrolysis catalyst, and an SCR catalyst are arranged in order from the side, and an exhaust gas purification system in which a silicon nitride surface is formed on a contact surface with the exhaust gas of the urea hydrolysis catalyst is disclosed. ing.

特開2006−212591号公報JP 2006-212591 A

しかしながら、特許文献1に開示されているような尿素の加水分解触媒を設ける技術においては、加水分解触媒を設けることにより排気ガス処理装置全体が大型化して重量増となる、排気ガス処理装置を製造する際のコスト高となるという問題がある。
さらに、加水分解触媒を設けることで、尿素の分解は促進されるものの、十分なアンモニア生成率は得られず従来の課題を解決することは困難である。
However, in the technique of providing a urea hydrolysis catalyst as disclosed in Patent Document 1, an exhaust gas treatment apparatus is manufactured in which the entire exhaust gas treatment apparatus is increased in size and weight by providing the hydrolysis catalyst. There is a problem that the cost of doing so is high.
Furthermore, although the decomposition of urea is promoted by providing a hydrolysis catalyst, a sufficient ammonia production rate cannot be obtained and it is difficult to solve the conventional problems.

従って、本発明はかかる従来技術の問題に鑑み、エンジンスタートの排気ガス低温時において、尿素からのアンモニア生成率を向上し、NOx浄化率を向上することができる排気ガス処理装置及び排気ガス処理方法を提供することを目的とする。   Therefore, in view of the problems of the prior art, the present invention provides an exhaust gas processing apparatus and an exhaust gas processing method capable of improving the ammonia production rate from urea and improving the NOx purification rate when the exhaust gas temperature at the start of the engine is low. The purpose is to provide.

上記課題を解決するため本発明においては、エンジンの排気通路上に、上流側から順に排気ガス中のNOの酸化活性を高める前段酸化触媒と、排気ガス中のNOxをアンモニアで還元するSCR触媒と、アンモニアを除去する後段酸化触媒とを有し、前記前段酸化触媒とSCR触媒との間に尿素水を添加する排気ガス処理装置において、前記エンジンの通常運転時に、前記排気ガスの温度が第1の所定温度以上で尿素水を添加し、前記エンジンのスタート時に、前記第1の所定温度より低い第2の所定温度以下で尿素水を添加する制御手段を設けたことを特徴とする。
また、前記第2の所定温度が尿素の加水分解温度であることを特徴とする。
通常運転時に尿素水を添加する第1の所定温度よりも低い第2の所定温度以下で尿素水を添加する制御手段を設けることで、エンジンをスタートしてから早期に尿素水を添加することができ、NOxの浄化率を向上することができる。
In order to solve the above problems, in the present invention, on the exhaust passage of the engine, a pre-stage oxidation catalyst for increasing the oxidation activity of NO in the exhaust gas in order from the upstream side, and an SCR catalyst for reducing NOx in the exhaust gas with ammonia In the exhaust gas treatment device that has a post-stage oxidation catalyst for removing ammonia and adds urea water between the pre-stage oxidation catalyst and the SCR catalyst, the temperature of the exhaust gas is the first during the normal operation of the engine. A control means is provided for adding urea water at a predetermined temperature or higher and adding urea water at a second predetermined temperature lower than the first predetermined temperature when the engine is started.
Further, the second predetermined temperature is a hydrolysis temperature of urea.
By providing the first control means for adding urea water at a second predetermined temperature below lower than the predetermined temperature the addition of urea water during normal operation, that early addition of the urea water since the start of the engine And the NOx purification rate can be improved.

また、前記第2の所定温度が尿素水の蒸発温度以上であることを特徴とする。
これにより、通常制御の約2倍のNOx浄化率が得られる。
さらに、エンジンスタートから排気ガス温度が尿素水の蒸発温度に達するまでは尿素水を添加しないため、尿素水の一部が気化せずに排気通路中に堆積し尿素の一部が排気通路内に付着してしまうことを防ぐことができる。
Further, the second predetermined temperature is equal to or higher than an evaporation temperature of the urea water.
As a result, a NOx purification rate approximately twice that of normal control can be obtained.
Furthermore, since the urea water is not added until the exhaust gas temperature reaches the evaporation temperature of the urea water from the start of the engine, a part of the urea water does not vaporize and accumulates in the exhaust passage, and a part of the urea enters the exhaust passage. It can prevent adhering.

また、前記排気ガスの温度が尿素の加水分解温度に達するまで排気ガス温度を昇温する制御を行う第2の制御手段を設けたことを特徴とする。
尿素の加水分解温度までは、排気ガス温度を昇温する制御を行うため、エンジンスタートから尿素水を添加し、該尿素水が分解してアンモニアをSCR触媒に安定して供給できるまでの時間、即ちエンジンスタートからNOxを安定して浄化することができるまでの時間を短縮化することができる。
これにより、SCR触媒に供給された尿素水がSCR触媒本来の還元剤であるアンモニアに速やかに分解し、エンジンスタート後早期に尿素水を添加することと組み合わせることで通常制御の約3倍のNOx浄化率が得られる。
このような制御手段を用いることにより、エンジンスタートから早い段階でアンモニアを供給することができ、高いNOx浄化率でエンジンの排気ガスの処理を行うことができる。
Further, the present invention is characterized in that there is provided a second control means for performing control for raising the temperature of the exhaust gas until the temperature of the exhaust gas reaches the hydrolysis temperature of urea.
Until the hydrolysis temperature of urea, in order to control the temperature of the exhaust gas to be increased, urea water is added from the start of the engine, the urea water decomposes, and the time until ammonia can be stably supplied to the SCR catalyst, That is, it is possible to shorten the time from when the engine is started until NOx can be stably purified.
As a result, urea water supplied to the SCR catalyst is quickly decomposed into ammonia, which is the original reducing agent of the SCR catalyst, and combined with the addition of urea water early after the engine starts, NOx is about three times that of normal control. A purification rate is obtained.
By using such control means, ammonia can be supplied at an early stage from the start of the engine, and the exhaust gas of the engine can be processed with a high NOx purification rate.

また、前記排ガスの温度が尿素水の蒸発温度に達すると、尿素水の噴射を開始し、所定量の尿素水の噴射を、前記排気ガスの温度が尿素の加水分解温度に達する前に終了させるように前記制御手段にて制御を行うことを特徴とする。
これにより、排気ガス温度が尿素の加水分解温度に達したときには尿素水の添加が終了しているため、アンモニア生成率が向上し、添加した尿素水がより有効に使用される。
Further, when the temperature of the exhaust gas reaches the evaporation temperature of the urea water, to commence injection of the urea water, the injection of the urea water Tokoro quantification, the temperature of the exhaust gas is terminated before reaching the hydrolysis temperature of the urea As described above, control is performed by the control means.
Thereby, when the exhaust gas temperature reaches the hydrolysis temperature of urea, the addition of urea water is completed, so the ammonia production rate is improved, and the added urea water is used more effectively.

また、前記エンジンの排気通路上且つ前記前段酸化触媒よりも上流側に、排気ガスの流量を調整可能な排気絞り弁を設け、該排気絞り弁の開度を調整することで前記排気ガス温度の昇温を行うことを特徴とする。
一般的なエンジンの排気通路上には排気絞り弁が設けられていることが多い。そのため、前記排気絞り弁の開度を調整して排気ガスの昇温制御を行うことで、既存のシステムを大きく変更することなく、本発明を実施することができる。
Further, an exhaust throttle valve capable of adjusting the flow rate of the exhaust gas is provided on the exhaust passage of the engine and upstream of the pre-stage oxidation catalyst, and the exhaust gas temperature is adjusted by adjusting the opening of the exhaust throttle valve. The temperature is increased.
An exhaust throttle valve is often provided on an exhaust passage of a general engine. Therefore, by adjusting the opening degree of the exhaust throttle valve and performing exhaust gas temperature increase control, the present invention can be implemented without greatly changing the existing system.

また、前記SCR触媒へのアンモニア吸着可能量と温度の関係を表したマップを用意し、該マップを用い、排気ガス温度に応じて前記尿素水の添加量を決定することを特徴とする。
これにより、適正な量の尿素水添加量を決定することができ、尿素が加水分解して生成されるアンモニアがSCR触媒を素通りして大気に放出されてしまう所謂アンモニアスリップが発生せず、しかもNOxの浄化に有効なアンモニア量を確保することができる。
In addition, a map representing the relationship between the amount of ammonia that can be adsorbed on the SCR catalyst and the temperature is prepared, and the addition amount of the urea water is determined according to the exhaust gas temperature using the map.
This makes it possible to determine the appropriate amount of urea water added, so-called ammonia slip in which ammonia produced by hydrolysis of urea passes through the SCR catalyst and is released to the atmosphere does not occur. An amount of ammonia effective for NOx purification can be secured.

さらに、課題を実現するための方法の発明として、前段酸化触媒によって排気ガス中のNOの酸化活性を高め、SCR触媒によって排気ガス中のNOxをアンモニアで還元し、尿素水を添加してから、後段酸化触媒によってアンモニアを除去する排気ガス処理方法において、前記エンジンのスタート時に、前記排気ガスの温度が尿素の加水分解温度以下且つ尿素水の蒸発温度以上の温度で所定量の尿素水を噴射するとともに、前記排気ガスの温度が尿素の加水分解温度に達するまで排気ガス温度を昇温する制御を行うことを特徴とする。
Furthermore, as an invention of a method for realizing the problem, the oxidation activity of NO in the exhaust gas is increased by the pre-stage oxidation catalyst, the NOx in the exhaust gas is reduced with ammonia by the SCR catalyst, and urea water is added. In the exhaust gas treatment method in which ammonia is removed by a post-stage oxidation catalyst, when the engine is started, a predetermined amount of urea water is injected at a temperature equal to or lower than the hydrolysis temperature of urea and equal to or higher than the evaporation temperature of urea water. At the same time, control is performed to raise the exhaust gas temperature until the temperature of the exhaust gas reaches the hydrolysis temperature of urea.

以上記載のごとく本発明によれば、エンジンスタートの排気ガス低温時においても、尿素からのアンモニア生成率を向上し、NOx浄化率を向上することができる排気ガス処理装置及び排気ガス処理方法を提供することができる。   As described above, according to the present invention, there is provided an exhaust gas processing apparatus and an exhaust gas processing method capable of improving the ammonia production rate from urea and improving the NOx purification rate even at low engine exhaust gas temperature. can do.

以下、図面を参照して本発明の好適な実施例を例示的に詳しく説明する。但しこの実施例に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。   Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.

図1は、実施例1における排気ガス処理装置の概要図である。図1を用いて排ガス処理装置の概略について説明する。本発明の排気処理装置1は、図1に示したように前段酸化触媒2及びフィルタ4からなるDPFシステム10と、SCR触媒6及び後段酸化触媒8からなるSCRシステム12とから構成される。   FIG. 1 is a schematic diagram of an exhaust gas treatment apparatus according to the first embodiment. An outline of the exhaust gas treatment apparatus will be described with reference to FIG. As shown in FIG. 1, the exhaust treatment apparatus 1 of the present invention includes a DPF system 10 including a front-stage oxidation catalyst 2 and a filter 4, and an SCR system 12 including an SCR catalyst 6 and a rear-stage oxidation catalyst 8.

このようなDPFシステム10とSCRシステム12を組み合わせた排ガス処理装置においては、エンジン30で発生した排ガスは、まず前段酸化触媒2及びフィルタ4からなるDPFシステム10に送り込まれ、フィルタ4でPM(Particulate Matter)を捕集されて排出される。   In such an exhaust gas treatment device that combines the DPF system 10 and the SCR system 12, the exhaust gas generated in the engine 30 is first sent to the DPF system 10 including the pre-stage oxidation catalyst 2 and the filter 4, and the filter 4 performs PM (Particulate) Matter) is collected and discharged.

前記フィルタ4でPMを捕集された後の排ガスは、中間通路14を通り、SCRシステム12を構成するSCR触媒6に送り込まれる。また、中間通路14中に設けた尿素噴射ノズル16より尿素水を噴射し、該尿素水中の尿素が分解することによってNHが生成される。なお前記尿素噴射ノズル16より噴射される尿素水の噴射量は、後述する制御装置32により制御される。 The exhaust gas after PM is collected by the filter 4 passes through the intermediate passage 14 and is sent to the SCR catalyst 6 constituting the SCR system 12. Further, urea water is injected from a urea injection nozzle 16 provided in the intermediate passage 14, and the urea in the urea water is decomposed to generate NH 3 . The amount of urea water injected from the urea injection nozzle 16 is controlled by a control device 32 described later.

前記尿素水が分解して生成されたNHは一旦SCR触媒6上に吸着した後、排気ガス中のNOxと以下の(1)〜(3)の反応式によって反応し、有害なNOxを無害なNへと転換させる。
2NO+2NO+4NH→4N+6HO ・・・(1)
4NO+4NH+O→4N+6HO ・・・(2)
6NO+8NH→7N+12HO ・・・(3)
NH 3 produced by decomposition of the urea water is once adsorbed on the SCR catalyst 6 and then reacts with NOx in the exhaust gas by the following reaction formulas (1) to (3) to harm noxious NOx. To N 2 .
2NO + 2NO 2 + 4NH 3 → 4N 2 + 6H 2 O (1)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (2)
6NO 2 + 8NH 3 → 7N 2 + 12H 2 O (3)

さらに、SCR触媒6で反応できなかったNHは、同様にSCR触媒6で反応できなかったNOxと後段酸化触媒8でSCR触媒6と同様の(1)〜(3)の反応式によって反応し、NOxを無害なN2へと転換させる。また、SCR触媒6上に吸着したNHは、温度上昇によりSCR触媒6より脱離し、後段酸化触媒で(4)の反応式によりNへと転化される。
12NH+9O→6N+18HO ・・・(4)
Furthermore, NH 3 that could not be reacted with the SCR catalyst 6 reacted similarly with NOx that could not be reacted with the SCR catalyst 6 and the subsequent oxidation catalyst 8 according to the same reaction formulas (1) to (3) as the SCR catalyst 6. , Convert NOx to harmless N2. Further, NH 3 adsorbed on the SCR catalyst 6 is desorbed from the SCR catalyst 6 due to the temperature rise, and is converted into N 2 by the reaction equation (4) at the subsequent oxidation catalyst.
12NH 3 + 9O 2 → 6N 2 + 18H 2 O (4)

次に、前記制御装置32による制御について、図1を参照しながら、図2を用いて説明する。
図2は実施例1におけるエンジンスタート時の制御装置32による制御のフローチャートである。
Next, the control by the control device 32 will be described with reference to FIG.
FIG. 2 is a flowchart of control by the control device 32 when the engine is started in the first embodiment.

ステップS1でエンジン30がスタートすると、エンジン30からエンジンスタートの信号が制御装置32に送られる。   When the engine 30 is started in step S <b> 1, an engine start signal is sent from the engine 30 to the control device 32.

ステップS1でエンジンスタートの信号が送られると、制御装置32は、DPFシステム10の下流側且つSCRシステム12の上流側の位置する中間通路14内の温度を検出する温度計18で検出される温度T1を取得し、該温度T1によりコールドスタートか否かを判断する。コールドスタートとは、低温でのスタートのことであり、これは前記温度T1が尿素の分解温度以下であるか否かで判断する。つまり、T1が尿素の分解温度以下であればコールドスタート、T1が尿素の分解温度よりも高ければコールドスタートではないということである。   When an engine start signal is sent in step S1, the controller 32 detects the temperature detected by the thermometer 18 that detects the temperature in the intermediate passage 14 located downstream of the DPF system 10 and upstream of the SCR system 12. T1 is acquired, and it is determined whether or not it is a cold start based on the temperature T1. The cold start is a start at a low temperature, and this is determined by whether or not the temperature T1 is equal to or lower than the decomposition temperature of urea. That is, if T1 is lower than the decomposition temperature of urea, it is a cold start, and if T1 is higher than the decomposition temperature of urea, it is not a cold start.

ステップS2でNo、即ちコールドスタートではないと判断されると、ステップS3に進み通常制御を行う。   If it is determined No in step S2, that is, it is not a cold start, the process proceeds to step S3 and normal control is performed.

ステップS2でYes、即ちコールドスタートと判断されると、図2において点線Aで囲った尿素水噴射制御と、点線Bで囲った昇温制御を同時に行う。前記尿素水噴射制御と昇温制御は同時に並行して行うが、ここでは点線Aで囲った尿素水噴射制御から説明する。
If YES in step S2, that is, a cold start is determined, the urea water injection control surrounded by the dotted line A and the temperature increase control surrounded by the dotted line B in FIG. The urea water injection control and the temperature increase control are simultaneously performed in parallel . Here, the urea water injection control surrounded by a dotted line A will be described.

ステップS2でYesと判断されると、尿素水噴射制御では、ステップS11で温度計18で検出される温度T1が尿素水の蒸発温度Ta以上であるか否か判断する。前記尿素水蒸発温度Taは、尿素水が蒸発する温度のことであり、尿素水の尿素濃度、尿素の噴射速度、量などによって異なるが80〜120℃程度である。
If it is determined Yes in step S2, the urea water injection control determines whether or not the temperature T1 detected by the thermometer 18 in step S11 is equal to or higher than the urea water evaporation temperature Ta. The urea water evaporation temperature Ta is a temperature at which the urea water evaporates, and is about 80 to 120 ° C. although it varies depending on the urea concentration, urea injection speed, amount, and the like.

ステップS11でNoと判断されると、温度T1が後述する後述する昇温制御により上昇し、尿素水の蒸発温度Ta以上になるまでステップS11を繰り返す。   If it is determined No in step S11, step S11 is repeated until the temperature T1 rises by a temperature control described later, and becomes equal to or higher than the evaporation temperature Ta of the urea water.

ステップS11でYesと判断されると、ステップS12で、尿素噴射ノズル16の開度を調整し尿素水の中間通路14中への噴射を開始する。   If it is determined Yes in step S11, the opening of the urea injection nozzle 16 is adjusted in step S12, and injection of urea water into the intermediate passage 14 is started.

ステップS12で尿素水の噴射が開始されると、アンモニアマップを参照し、ステップS13で必要量の尿素水が噴射されたか否かを判断する。
図4にアンモニアマップの一例を示す。図4のアンモニアマップにおいて、縦軸はSCR触媒6へのアンモニア吸着可能量、横軸は温度である。図4に示したとおり、アンモニアは温度が低いほどSCR触媒6に多く吸着する。そこで、前回のエンジン停止時の温度計18における検出値をTとすると、SCR触媒6にはAだけアンモニアが既に吸着していると考えられる。また、現行の排気ガス温度T1におけるアンモニアのSCR触媒6への吸着可能量はA1である。そのため、A1−A=Aだけ新たにアンモニアを吸着させることができ、該Aに対応する尿素水を噴射すればよく、この値をステップS13における尿素水の必要量とする。
When the injection of urea water is started in step S12, the ammonia map is referred to and it is determined whether or not the required amount of urea water is injected in step S13.
FIG. 4 shows an example of the ammonia map. In the ammonia map of FIG. 4, the vertical axis represents the amount of ammonia that can be adsorbed to the SCR catalyst 6, and the horizontal axis represents temperature. As shown in FIG. 4, ammonia is more adsorbed on the SCR catalyst 6 as the temperature is lower. Therefore, when the detection value at the previous engine stop of the thermometer 18 and T E, the SCR catalyst 6 is believed that ammonia alone A E is already adsorbed. Further, the adsorbable amount of ammonia on the SCR catalyst 6 at the current exhaust gas temperature T1 is A1. Therefore, ammonia can be newly adsorbed by A1−A E = A, and urea water corresponding to A can be injected, and this value is set as the necessary amount of urea water in step S13.

ステップS13でNoと判断されると、必要量の尿素水が噴射されるまで尿素の噴射を続ける。
ステップS13でYesと判断されると、ステップS3に進み、尿素噴射に関しては通常の制御を行う。
If it is determined No in step S13, the urea injection is continued until the required amount of urea water is injected.
If it is determined Yes in step S13, the process proceeds to step S3, and normal control is performed for urea injection.

次に、点線Bで囲った昇温制御について説明する。
ステップS2でYesと判断されると、昇温制御では、ステップS21でエンジンの排気出口の設けた排気絞り弁34の弁開度を小さくなるように調整し、排気ガスを強制的に昇温する。
なお、本実施例においては排気絞り弁34の開度調整により排気ガスの昇温を行うが、ステップS21においては、排気ガスを昇温することができれば他の方法を用いてもよく、例えばエンジンの吸気を絞ったり、排気ラインにヒーターを設けて排気ガスを昇温することもできる。
Next, the temperature rise control surrounded by the dotted line B will be described.
If it is determined Yes in step S2, in the temperature increase control, in step S21, the opening degree of the exhaust throttle valve 34 provided at the exhaust outlet of the engine is adjusted to be small, and the exhaust gas is forcibly heated. .
In this embodiment, the temperature of the exhaust gas is raised by adjusting the opening of the exhaust throttle valve 34. However, in step S21, other methods may be used as long as the temperature of the exhaust gas can be raised, for example, the engine The intake air can be throttled or the exhaust gas can be heated by providing a heater in the exhaust line.

ステップS21で昇温が開始されると、ステップS22で温度計18で検出される温度T1が尿素の分解温度Tb以上であるか否か判断する。前記尿素分解温度Tbは、尿素が加水分解してアンモニアとなる温度のことであり、SCRの尿素分解性能によって異なるが130〜180℃程度である。
When the temperature rise is started in step S21, it is determined in step S22 whether or not the temperature T1 detected by the thermometer 18 is equal to or higher than the urea decomposition temperature Tb. The urea decomposition temperature Tb is a temperature at which urea is hydrolyzed to ammonia, and is about 130 to 180 ° C. although it varies depending on the urea decomposition performance of the SCR.

ステップS22でNoと判断されると、温度T1が上昇し、尿素分解温度Tb以上になるまで昇温を続ける。   If it is determined No in step S22, the temperature T1 rises, and the temperature rise is continued until the temperature becomes equal to or higher than the urea decomposition temperature Tb.

ステップS22でYesと判断されると、ステップS23で強制昇温を停止してステップS3に進み、昇温に関しては通常の制御を行う。   If it is determined Yes in step S22, the forced temperature rise is stopped in step S23, and the process proceeds to step S3.

図2のフローチャートも用いて説明した制御装置32における制御時の尿素水噴射量及び排ガス温度T1の時間変化の一例を図3に示した。
図3は実施例1におけるエンジンスタート時の排気ガス温度及び尿素水噴射量の時間変化を表すグラフであり、縦軸は尿素水噴射量及び温度を表し、横軸は時間を表す。
FIG. 3 shows an example of temporal changes in the urea water injection amount and the exhaust gas temperature T1 during the control in the control device 32 described with reference to the flowchart of FIG.
FIG. 3 is a graph showing temporal changes in the exhaust gas temperature and the urea water injection amount at the start of the engine in the first embodiment. The vertical axis represents the urea water injection amount and temperature, and the horizontal axis represents time.

図3を用い、図2のフローチャートを用いて説明した制御の一例について時間軸に沿って再度説明する。
図3に示したように、時間0でエンジンがコールドスタートすると、昇温制御が開始される。該昇温制御により排気ガス温度T1が上昇し、時間taで尿素水蒸発温度Taに達すると、尿素水の噴射を開始し、時間tcで目標量の尿素水が噴射されたら尿素水の噴射を停止する。その後、時間tbで排気ガス温度T1が尿素分解温度Tbに達する、つまりSCR温度が低温で吸着性尿素を分解してアンモニアにすると昇温制御を停止し、以降は通常制御を行う。
なお、図3の例と逆に、排気ガス温度T1が尿素分解温度Tbに達する時間tbよりも、尿素水の噴射が終わる時間tcの方が後であってもよいが、その場合アンモニア生成率の面で劣るため、図3に示したように時間tbよりも時間tcの方が先となるようにすることが好ましい。
An example of the control described with reference to the flowchart of FIG. 2 will be described again along the time axis with reference to FIG.
As shown in FIG. 3, when the engine is cold-started at time 0, the temperature increase control is started. When the exhaust gas temperature T1 rises by the temperature increase control and reaches the urea water evaporation temperature Ta at time ta, the urea water injection is started. When the target amount of urea water is injected at time tc, the urea water injection is started. Stop. Thereafter, when the exhaust gas temperature T1 reaches the urea decomposition temperature Tb at time tb, that is, when the SCR temperature is low and the adsorptive urea is decomposed into ammonia, the temperature increase control is stopped, and thereafter normal control is performed.
Incidentally, in Examples and reverse 3, than the time tb when the exhaust gas temperature T 1 is reached to the urea decomposition temperature Tb, but towards the time tc the injection of the urea water is completed there may be later that when ammonia Since the generation rate is inferior, it is preferable to set the time tc ahead of the time tb as shown in FIG.

通常制御、及び以下の条件2〜7の6条件で、図2、図3で説明した制御を行い、SCR触媒6におけるエンジンスタート時のNOx浄化率を調べた。
条件1.通常制御
条件2.尿素早期添加温度:25℃
条件3.尿素早期添加温度:100℃
条件4.尿素早期添加温度:130℃
条件5.尿素早期添加温度:130℃、昇温制御:180℃まで
条件6.尿素早期添加温度:130℃、昇温制御:200℃まで
条件7.尿素装置添加温度:130℃、昇温制御:130℃まで
条件2〜4は昇温制御を行わず、尿素の早期添加開始タイミング(温度)を変更した。
条件5〜7は昇温制御の終了タイミング以外は同じ条件とした。
結果を図5に示す。
図5において、縦軸はNOx浄化率、横軸は条件名である。
図5に示すようにSCR触媒6のNOx浄化率は制御により大きく向上し、尿素早期添加だけで、通常制御の約2培の40%の浄化率が得られ、昇温制御と組み合わせると何れの条件においても50%以上、最大60%近いNOx浄化率が得られた。
The control described in FIGS. 2 and 3 was performed under the normal control and the following six conditions 2 to 7, and the NOx purification rate at the start of the engine in the SCR catalyst 6 was examined.
Condition 1. Normal control conditions Urea early addition temperature: 25 ° C
Condition 3. Urea early addition temperature: 100 ° C
Condition 4. Urea early addition temperature: 130 ° C
Condition 5. 5. Urea early addition temperature: 130 ° C., temperature rise control: up to 180 ° C. 6. Urea early addition temperature: 130 ° C., temperature rise control: up to 200 ° C. Urea apparatus addition temperature: 130 ° C., temperature increase control: up to 130 ° C. Conditions 2 to 4 did not perform temperature increase control, and changed the early addition start timing (temperature) of urea.
Conditions 5 to 7 were the same except for the end timing of the temperature raising control.
The results are shown in FIG.
In FIG. 5, the vertical axis represents the NOx purification rate, and the horizontal axis represents the condition name.
As shown in FIG. 5, the NOx purification rate of the SCR catalyst 6 is greatly improved by the control, and a purification rate of 40%, which is about 2 years of normal control, can be obtained only by the early addition of urea. Even under the conditions, a NOx purification rate of 50% or more and a maximum of 60% was obtained.

(比較例)
図6は、比較例におけるエンジンスタート時の排気ガス温度及び尿素水噴射量の時間変化を表すグラフであり、縦軸は尿素水噴射量及び温度を表し、横軸は時間を表す。
比較例においては、エンジンがコールドスタートしてから排気ガスの強制昇温は行わなかった。また、尿素分解温度よりも高温に設定した尿素水噴射閾値に排ガス温度が達すると目標量の尿素水を添加した。これは従来の制御である。
このとき、エンジンスタート時におけるNOxの浄化率は20〜30%程度であった。
(Comparative example)
FIG. 6 is a graph showing temporal changes in the exhaust gas temperature and the urea water injection amount when the engine is started in the comparative example. The vertical axis represents the urea water injection amount and temperature, and the horizontal axis represents time.
In the comparative example, the exhaust gas was not forcedly heated after the engine was cold started. Further, when the exhaust gas temperature reached the urea water injection threshold set to be higher than the urea decomposition temperature, a target amount of urea water was added. This is a conventional control.
At this time, the NOx purification rate when the engine was started was about 20 to 30%.

本発明によれば、エンジンスタートから排気ガス温度が尿素水の蒸発温度に達するまでは尿素水を添加しないため、尿素水が気化せずに排気通路中に堆積することなく、しかも、尿素の加水分解温度までは、排気ガス温度を昇温する制御を行うために、エンジンスタートから尿素水を添加し、該尿素水が分解してアンモニアをSCR触媒に安定して供給できるまでの時間、即ちエンジンスタートからNOxを安定して浄化することができるまでの時間を短縮化することができる。
従って、エンジンスタートから早い段階でSCR触媒にアンモニアを供給することができ、高いNOx浄化率でエンジンの排気ガスの処理を行うことができるといえる。
According to the present invention, since the urea water is not added until the exhaust gas temperature reaches the evaporation temperature of the urea water from the start of the engine, the urea water does not vaporize and accumulate in the exhaust passage, and the urea water is not added. Up to the decomposition temperature, in order to control the temperature of the exhaust gas to rise, urea water is added from the start of the engine, the time from when the urea water decomposes and ammonia can be stably supplied to the SCR catalyst, that is, the engine The time from the start until NOx can be stably purified can be shortened.
Therefore, it can be said that ammonia can be supplied to the SCR catalyst at an early stage from the start of the engine, and the exhaust gas of the engine can be processed with a high NOx purification rate.

本発明はかかる従来技術の問題に鑑み、エンジンスタートの排気ガス低温時において、尿素からのアンモニア生成率を向上し、NOx浄化率を向上することができる排気ガス処理装置及び排気ガス処理方法として利用することができる。   In view of the problems of the prior art, the present invention is used as an exhaust gas processing apparatus and an exhaust gas processing method capable of improving the ammonia production rate from urea and improving the NOx purification rate at the time of engine start exhaust gas low temperature. can do.

実施例1における排気ガス処理装置の概要図である。1 is a schematic diagram of an exhaust gas treatment device in Embodiment 1. FIG. 実施例1におけるエンジンスタート時の制御装置による制御のフローチャートである。3 is a flowchart of control by the control device at the time of engine start in the first embodiment. 実施例1におけるエンジンスタート時の排気ガス温度及び尿素水噴射量の時間変化を表すグラフである。6 is a graph showing temporal changes in exhaust gas temperature and urea water injection amount when the engine is started in the first embodiment. アンモニアマップの一例である。It is an example of an ammonia map. 実施例1におけるNOx浄化率の結果を示すグラフである。4 is a graph showing the results of NOx purification rate in Example 1. 比較例におけるエンジンスタート時の排気ガス温度及び尿素水噴射量の時間変化を表すグラフである。It is a graph showing the time change of the exhaust gas temperature at the time of the engine start in a comparative example, and urea water injection amount.

符号の説明Explanation of symbols

1 排ガス処理装置
2 前段酸化触媒
4 フィルタ
6 SCR触媒
8 後段酸化触媒
14 中間通路
16 尿素水噴射ノズル
18 温度計
30 エンジン
32 制御装置
34 排気絞り弁
DESCRIPTION OF SYMBOLS 1 Exhaust gas processing apparatus 2 Pre-stage oxidation catalyst 4 Filter 6 SCR catalyst 8 Post-stage oxidation catalyst 14 Intermediate passage 16 Urea water injection nozzle 18 Thermometer 30 Engine 32 Control apparatus 34 Exhaust throttle valve

Claims (4)

エンジンの排気通路上に、上流側から順に排気ガス中のNOの酸化活性を高める前段酸化触媒と、排気ガス中のNOxをアンモニアで還元するSCR触媒と、アンモニアを除去する後段酸化触媒とを有し、前記前段酸化触媒とSCR触媒との間に尿素水を添加する排気ガス処理装置において、
前記前段酸化触媒の下流かつ前記SCR触媒の上流における排気ガスの温度が尿素の加水分解温度である第2の所定温度以下であるか否かを判定するコールドスタート判定手段と、
前記コールドスタート判定手段において前記排気ガスの温度が前記第2の所定温度よりも高いと判断された場合には、前記前段酸化触媒の下流かつ前記SCR触媒の上流における排気ガスの温度が前記第2の所定温度よりも高い第1の所定温度以上で尿素水を添加し、
前記コールドスタート判定手段において前記排気ガスの温度が前記第2の所定温度以下と判断された場合には、前記前段酸化触媒の下流かつ前記SCR触媒の上流における排気ガスの温度が尿素水の蒸発温度以上、且つ、前記第2の所定温度以下で尿素水を添加する、尿素水噴射制御手段と、
前記コールドスタート判定手段において前記排気ガスの温度が前記第2の所定温度以下と判断された場合に、前記尿素水噴射制御と並行して、前記排気ガスの温度が前記第2の所定温度に達するまで前記排気ガスの温度を昇温する制御を行う昇温制御手段と、を設けたことを特徴とする排気ガス処理装置。
On the exhaust path of the engine, there are a pre-stage oxidation catalyst that increases the oxidation activity of NO in the exhaust gas in order from the upstream side, an SCR catalyst that reduces NOx in the exhaust gas with ammonia, and a post-stage oxidation catalyst that removes ammonia. In the exhaust gas treatment device for adding urea water between the pre-stage oxidation catalyst and the SCR catalyst,
Cold start determination means for determining whether the temperature of the exhaust gas downstream of the upstream oxidation catalyst and upstream of the SCR catalyst is equal to or lower than a second predetermined temperature that is a hydrolysis temperature of urea;
When the cold start determination means determines that the temperature of the exhaust gas is higher than the second predetermined temperature, the temperature of the exhaust gas downstream of the pre-stage oxidation catalyst and upstream of the SCR catalyst is the second temperature. Adding urea water at a first predetermined temperature higher than the predetermined temperature of
When the cold start determination means determines that the temperature of the exhaust gas is equal to or lower than the second predetermined temperature, the temperature of the exhaust gas downstream of the preceding oxidation catalyst and upstream of the SCR catalyst is the evaporation temperature of urea water. Above, and urea water injection control means for adding urea water below the second predetermined temperature;
When the cold start determination means determines that the temperature of the exhaust gas is equal to or lower than the second predetermined temperature, the temperature of the exhaust gas reaches the second predetermined temperature in parallel with the urea water injection control. An exhaust gas processing apparatus, comprising: a temperature increase control means for performing control to increase the temperature of the exhaust gas until
前記尿素水噴射制御手段は、前記排ガスの温度が尿素水の蒸発温度に達すると、尿素水の噴射を開始し、所定量の尿素水の噴射を、前記排気ガスの温度が尿素の加水分解温度に達する前に終了することを特徴とする請求項1に記載の排気ガス処理装置。 The urea solution injection control means, when the temperature of the exhaust gas reaches the evaporation temperature of the urea water, to commence injection of the urea water, the injection of the urea water Tokoro quantification, temperature urea hydrolysis temperature of the exhaust gas The exhaust gas processing device according to claim 1, wherein the exhaust gas processing device is terminated before reaching. 前記エンジンの排気通路上且つ前記前段酸化触媒よりも上流側に、排気ガスの流量を調整可能な排気絞り弁を設け、
前記昇温制御手段は、該排気絞り弁の開度を調整することで前記排気ガスの温度の昇温を行うことを特徴とする請求項1又は2に記載の排気ガス処理装置。
An exhaust throttle valve capable of adjusting the flow rate of the exhaust gas is provided on the exhaust passage of the engine and on the upstream side of the pre-stage oxidation catalyst,
The exhaust gas processing apparatus according to claim 1 or 2 , wherein the temperature raising control means raises the temperature of the exhaust gas by adjusting an opening of the exhaust throttle valve.
前記SCR触媒へのアンモニア吸着可能量と前記排気ガスの温度の関係を表したマップを用意し、
前記尿素水噴射制御手段は、前記コールドスタート判定手段において前記排気ガスの温度が前記第2の所定温度よりも高いと判断された場合に添加する尿素水の添加量を、該マップを用い、前記排気ガスの温度に応じて決定することを特徴とする請求項1から3の何れか一項に記載の排気ガス処理装置。
Prepare a map showing the relationship between the amount of ammonia adsorbable on the SCR catalyst and the temperature of the exhaust gas,
The urea water injection control means uses the map to add the amount of urea water to be added when the cold start determination means determines that the temperature of the exhaust gas is higher than the second predetermined temperature. The exhaust gas processing device according to any one of claims 1 to 3, wherein the exhaust gas processing device is determined according to a temperature of the exhaust gas.
JP2008291039A 2008-11-13 2008-11-13 Exhaust gas treatment device and exhaust gas treatment method Expired - Fee Related JP5407288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008291039A JP5407288B2 (en) 2008-11-13 2008-11-13 Exhaust gas treatment device and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008291039A JP5407288B2 (en) 2008-11-13 2008-11-13 Exhaust gas treatment device and exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JP2010116858A JP2010116858A (en) 2010-05-27
JP5407288B2 true JP5407288B2 (en) 2014-02-05

Family

ID=42304670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008291039A Expired - Fee Related JP5407288B2 (en) 2008-11-13 2008-11-13 Exhaust gas treatment device and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP5407288B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013183153A1 (en) * 2012-06-07 2016-01-28 トヨタ自動車株式会社 Engine system
JP5983743B2 (en) * 2012-06-19 2016-09-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP6003600B2 (en) * 2012-12-05 2016-10-05 トヨタ自動車株式会社 Control device for internal combustion engine
JP2014118945A (en) * 2012-12-19 2014-06-30 Mitsubishi Motors Corp Exhaust purification device for internal combustion engine
JP6642545B2 (en) * 2017-09-14 2020-02-05 マツダ株式会社 Engine exhaust purification device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303934A (en) * 1998-06-23 2001-10-31 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US6698191B2 (en) * 2001-08-09 2004-03-02 Ford Global Technologies, Llc High efficiency conversion of nitrogen oxides in an exhaust aftertreatment device at low temperature
JP2003269149A (en) * 2002-03-15 2003-09-25 Mitsubishi Heavy Ind Ltd Denitrification device
JP2003290629A (en) * 2002-04-02 2003-10-14 Nissan Motor Co Ltd Cleaning system for exhaust gas
JP2004290629A (en) * 2003-03-25 2004-10-21 Yasuo Suenaga Magnetic pulse generator for electromagnetic treatment
JP4369727B2 (en) * 2003-11-05 2009-11-25 日野自動車株式会社 Exhaust purification device control method
DE102004001331A1 (en) * 2004-01-08 2005-07-28 Robert Bosch Gmbh Introducing ammonia into engine exhaust system containing selective catalytic reduction catalyst reduce nitrogen oxide emissions comprises introducing ammonia after switching off the engine
JP4507901B2 (en) * 2005-02-07 2010-07-21 いすゞ自動車株式会社 Exhaust gas purification system and exhaust gas purification method thereof
FR2914013A1 (en) * 2007-03-22 2008-09-26 Peugeot Citroen Automobiles Sa LOW TEMPERATURE UREA INJECTION PROCESS

Also Published As

Publication number Publication date
JP2010116858A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP6135198B2 (en) Control method of exhaust gas aftertreatment device
JP4470987B2 (en) Reducing agent injection control device
JP5333664B2 (en) Exhaust gas purification device for internal combustion engine
JP5002040B2 (en) Exhaust gas purification device for internal combustion engine
JP2017025830A (en) Exhaust emission control device for engine
JP2016505749A (en) Method, apparatus and system for controlling ammonia slip of selective catalytic reduction (SCR) catalyst during high temperature transition
JP5407288B2 (en) Exhaust gas treatment device and exhaust gas treatment method
JP4186422B2 (en) Exhaust gas purification equipment for diesel engines
JP2011089434A (en) Exhaust emission control device in internal combustion engine
JP2011069324A (en) Exhaust emission control device for engine
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2014102932A1 (en) Exhaust gas purification system for internal combustion engine
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
WO2017191813A1 (en) Exhaust gas purification system for internal combustion engine, and exhaust gas purification method for internal combustion engine
JP5610956B2 (en) Exhaust gas purification device control method and control device
JP2010121530A (en) Exhaust gas treatment device
JP4729990B2 (en) Exhaust gas purification device for internal combustion engine
JP2016121547A (en) System and method of purifying exhaust gas of internal combustion engine
KR101628098B1 (en) Exhaust gas purification system for vehicle
JP2018080657A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2017031942A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2013092075A (en) Exhaust emission control device of internal combustion engine
CN114704356B (en) Reducing N in tail gas 2 O method, device, electronic equipment and storage medium
JP2020041428A (en) Post-exhaust treatment device
JP6241160B2 (en) Exhaust gas purification system, internal combustion engine, and exhaust gas purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees