JP2016121547A - System and method of purifying exhaust gas of internal combustion engine - Google Patents

System and method of purifying exhaust gas of internal combustion engine Download PDF

Info

Publication number
JP2016121547A
JP2016121547A JP2014260298A JP2014260298A JP2016121547A JP 2016121547 A JP2016121547 A JP 2016121547A JP 2014260298 A JP2014260298 A JP 2014260298A JP 2014260298 A JP2014260298 A JP 2014260298A JP 2016121547 A JP2016121547 A JP 2016121547A
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
urea water
flow
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014260298A
Other languages
Japanese (ja)
Inventor
弘吉 前川
Kokichi Maekawa
弘吉 前川
光 伊東
Hikari Ito
光 伊東
伸匡 大橋
Nobumasa Ohashi
伸匡 大橋
鉄平 大堀
Teppei Ohori
鉄平 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2014260298A priority Critical patent/JP2016121547A/en
Publication of JP2016121547A publication Critical patent/JP2016121547A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide a system and a method of purifying exhaust gas of an internal combustion engine capable of: stably supplying ammonia to a selective reduction catalyst device while taking advantage of capabilities thereof to prevent accumulation of a white product derived from urea water and to use urea water with high efficiency; reducing a slip amount of the ammonia from the selective reduction catalyst device; and improving NOx purification performance of the selective reduction catalyst device.SOLUTION: A system for purifying exhaust gas of an internal combustion engine comprises: an ammonia absorption device 30 installed on a parallel passage 31 arranged parallel to an exhaust passage 15 between a particulate matter collection device 23 and a selective reduction catalyst device 24; a flow passage switching valve 32 which guides the exhaust gas Ga flowing out of the particulate matter collection device 23 either to the exhaust passage 15 or to the parallel passage 31; and an opening and closing valve 33 which opens and closes the parallel passage 31 at a downstream side of the ammonia absorption device 30.SELECTED DRAWING: Figure 1

Description

本発明は、内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けて構成される内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法に関する。   The present invention relates to an exhaust gas purification system for an internal combustion engine and an exhaust gas for the internal combustion engine, which are provided with an urea water injection device, a particulate collection device, and a selective catalytic reduction device in order from the upstream side in the exhaust passage of the internal combustion engine. It relates to a purification method.

一般に、内燃機関の排気通路に備えた排気ガス浄化装置には、内燃機関の排気ガスに含まれる窒素酸化物(NOx)を浄化するために、選択還元型触媒装置(SCR触媒装置)やNOx吸蔵型還元触媒装置等の触媒装置が配設されている。   In general, an exhaust gas purification device provided in an exhaust passage of an internal combustion engine includes a selective reduction type catalyst device (SCR catalyst device) or NOx occlusion in order to purify nitrogen oxide (NOx) contained in the exhaust gas of the internal combustion engine. A catalyst device such as a type reduction catalyst device is provided.

この選択還元型触媒装置を使用する場合には、選択還元型触媒装置より上流側の排気通路に尿素水噴射装置を設けて、この尿素水噴射装置より噴射した尿素水が排気ガスの熱により加水分解して生成されるアンモニア(NH3)を還元剤として選択還元型触媒装置に供給することで、選択還元型触媒の触媒作用により排気ガスに含まれる窒素酸化物を還元して浄化している。 When this selective reduction catalyst device is used, a urea water injection device is provided in the exhaust passage upstream of the selective reduction catalyst device, and the urea water injected from the urea water injection device is hydrolyzed by the heat of the exhaust gas. By supplying ammonia (NH 3 ) generated by decomposition as a reducing agent to the selective reduction catalyst device, nitrogen oxides contained in the exhaust gas are reduced and purified by the catalytic action of the selective reduction catalyst. .

従来技術では、この尿素水噴射装置は、選択還元型触媒装置の入口側に近い排気通路に設けるのが一般的であるが、この構成では、尿素水が分解する際に生じるビウレットやシアヌル酸などに代表される白色生成物が排気通路の配管内や選択還元型触媒装置のハニカム構造体に堆積することや、それに伴って起こる配管の腐食ならびに選択還元型触媒装置の劣化等が問題となっている。さらに、この構成では、尿素水噴射装置より噴射された尿素水の利用効率が悪いという問題もある。   In the prior art, this urea water injection device is generally provided in the exhaust passage close to the inlet side of the selective catalytic reduction device, but in this configuration, biuret, cyanuric acid, etc. generated when urea water is decomposed As a result, the white products represented by (1) accumulate in the exhaust passage piping and the honeycomb structure of the selective catalytic reduction device, and the corrosion of the piping and the deterioration of the selective catalytic reduction device are accompanied by problems. Yes. Furthermore, this configuration also has a problem that the utilization efficiency of the urea water injected from the urea water injection device is poor.

これへの対策として、ディーゼルエンジンの排気管に、排ガス上流側より順に、噴射ノズル、ディーゼルパティキュレートフィルタ、選択還元型触媒を設けて、この噴射ノズルから尿素系液体をディーゼルパティキュレートフィルタより排ガス上流側の排気管に噴射して、排ガスが比較的低温時には、生成したアンモニアが排ガス中のNOxと反応して生じた固形物の硝酸アンモニウムを噴射ノズルの下流側に設けられたパティキュレートフィルタで捕集して、比較的低温時において、NOxが大気に排出されることを防止するエンジンの排ガス浄化装置が提案されている(例えば、特許文献1参照)。   As countermeasures, an injection nozzle, a diesel particulate filter, and a selective catalytic reduction catalyst are installed in the exhaust pipe of the diesel engine in order from the exhaust gas upstream side, and urea-based liquid is discharged from the injection nozzle upstream of the diesel particulate filter. When the exhaust gas is injected into the exhaust pipe on the side and the exhaust gas is at a relatively low temperature, the produced ammonium nitrate reacts with NOx in the exhaust gas and is collected by a particulate filter provided downstream of the injection nozzle. An engine exhaust gas purification device that prevents NOx from being discharged into the atmosphere at a relatively low temperature has been proposed (see, for example, Patent Document 1).

しかしながら、図5に示すが、このエンジンの排ガス浄化装置のように、排気通路15に、上流側より順に、尿素水噴射装置27、微粒子捕集装置23、選択還元型触媒装置24が配置された排気ガス浄化システム1Xでは、微粒子捕集装置23と選択還元型触媒装置24の間に、選択還元型触媒装置24に流入するアンモニアの量を制御できるような機構が存在しないため、選択還元型触媒装置24に到達するアンモニアの量は、微粒子捕集装置23の入口側で噴射される尿素水Uの量だけではなく、微粒子捕集装置23内における尿素水Uの気化や分解の度合いに左右される。   However, as shown in FIG. 5, the urea water injection device 27, the particulate collection device 23, and the selective catalytic reduction device 24 are arranged in this order from the upstream side in the exhaust passage 15 as in the exhaust gas purification device of this engine. In the exhaust gas purification system 1X, there is no mechanism between the particulate collection device 23 and the selective catalytic reduction device 24 that can control the amount of ammonia flowing into the selective catalytic reduction device 24. Therefore, the selective catalytic reduction catalyst The amount of ammonia reaching the device 24 depends not only on the amount of urea water U injected on the inlet side of the particulate collection device 23 but also on the degree of vaporization and decomposition of the urea water U in the particulate collection device 23. The

そのため、特に、エンジンの冷間時に、充分に昇温されていない状態、例えば、160℃以下の微粒子捕集装置に尿素水を噴射した場合には、この噴射した尿素水が微粒子捕集装置の入口あるいは内部に蓄積される。従って、この状態で、微粒子捕集装置が急激に昇温された場合には、蓄積された尿素が一度に分解して大量のアンモニアが発生して、選択還元型触媒装置に供給されることになるので、選択還元型触媒装置より下流側に大量のアンモニアが流出する可能性が生じる。   Therefore, particularly when the urea water is injected into a particulate collection device of 160 ° C. or lower when the temperature is not sufficiently raised when the engine is cold, the injected urea water is not contained in the particulate collection device. Accumulated at the entrance or inside. Therefore, in this state, when the particulate collection device is heated rapidly, the accumulated urea is decomposed at a time and a large amount of ammonia is generated and supplied to the selective catalytic reduction catalyst device. Therefore, there is a possibility that a large amount of ammonia flows out downstream of the selective catalytic reduction catalyst device.

つまり、エンジンの冷間時においては、選択還元型触媒装置へのアンモニアの供給量を安定して供給することが難しいという問題と、微粒子捕集装置から瞬間的に大量のアンモニアが放出されて選択還元型触媒装置に供給された場合に、選択還元型触媒装置で消費しきれずに、アンモニアが下流側に大量にスリップしてしまう可能性があるという問題がある。   In other words, when the engine is cold, it is difficult to stably supply the ammonia supply to the selective catalytic reduction device, and a large amount of ammonia is instantaneously released from the particulate collection device. When supplied to the reduction catalyst apparatus, there is a problem that ammonia may slip in a large amount downstream without being consumed by the selective reduction catalyst apparatus.

このSCR触媒をスリップしたアンモニアの回収と、回収したアンモニアの有効利用を目的に、SCR触媒の下流にアンモニア吸蔵部を設け、このアンモニア吸蔵部から放出されたアンモニアを回収する回収部としてアンモニア吸蔵タンクを設けて、このアンモニア吸蔵タンクからアンモニアを流量調整弁を介してSCR触媒の上流側に供給する排気ガス浄化装置が提案されている(例えば、特許文献2参照)。   For the purpose of recovering ammonia slipped from the SCR catalyst and effectively using the recovered ammonia, an ammonia storage part is provided downstream of the SCR catalyst, and an ammonia storage tank is used as a recovery part for recovering the ammonia released from the ammonia storage part. There is proposed an exhaust gas purification device that supplies ammonia from the ammonia storage tank to the upstream side of the SCR catalyst via a flow rate adjustment valve (see, for example, Patent Document 2).

しかしながら、この排気ガス浄化装置では、アンモニア吸蔵部の他にアンモニア吸蔵タンクや、アンモニア吸蔵部を加熱するためのヒータ、アンモニア吸蔵部の前後の上流排気バルブ、下流排気バルブに加えて、還元剤還流バルブ、流量調整弁の4つのバルブが必要になり、構成が複雑化するという問題がある。   However, in this exhaust gas purification device, in addition to the ammonia storage unit, an ammonia storage tank, a heater for heating the ammonia storage unit, an upstream exhaust valve before and after the ammonia storage unit, a downstream exhaust valve, a reducing agent recirculation Four valves, a valve and a flow rate adjustment valve, are required, and there is a problem that the configuration becomes complicated.

特開2007−113401号公報JP 2007-113401 A 特開2014−47721号公報JP 2014-47721 A

本発明は、上記のことを鑑みてなされたものであり、その目的は、内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けて構成される内燃機関の排気ガス浄化システムにおいて、選択還元型触媒装置での尿素水由来の白色生成物の堆積を抑制できるという利点と尿素水の利用効率が高いという利点を生かしながら、さらに、選択還元型触媒装置へのアンモニアの供給を安定的に行うことができると共に、選択還元型触媒装置からのアンモニアのスリップ量を減少できて、選択還元型触媒装置のNOx浄化性能を向上させることができる、内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法を提供することにある。   The present invention has been made in view of the above, and an object thereof is to provide a urea water injection device, a particulate collection device, and a selective catalytic reduction device in the exhaust passage of the internal combustion engine in order from the upstream side. In the exhaust gas purification system of the internal combustion engine that is configured, the selection is further made while taking advantage of the advantage that the deposition of white product derived from urea water in the selective catalytic reduction device can be suppressed and the utilization efficiency of urea water is high. Ammonia can be stably supplied to the reduction catalyst device, and the slip amount of ammonia from the selective reduction catalyst device can be reduced, so that the NOx purification performance of the selective reduction catalyst device can be improved. Another object is to provide an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for the internal combustion engine.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化システムは、内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けて構成される内燃機関の排気ガス浄化システムにおいて、前記微粒子捕集装置と前記選択還元型触媒装置の間の前記排気通路に、アンモニア吸着装置を備えた並行通路を設け、前記微粒子捕集装置から流出する排気ガスの流れを前記排気通路への流れと前記並行通路への流れに切り換える流路切替弁と、前記アンモニア吸着装置の下流側の前記並行通路を開閉する開閉弁をそれぞれ設け、更に、前記選択還元型触媒装置に流入する排気ガスのアンモニア濃度を検出する第1アンモニア濃度センサと、前記アンモニア吸着装置に流入する排気ガスのアンモニア濃度を検出する第2アンモニア濃度センサとを設けて構成される。   In order to achieve the above object, an exhaust gas purification system for an internal combustion engine according to the present invention is provided with a urea water injection device, a particulate collection device, and a selective catalytic reduction device in order from the upstream side in the exhaust passage of the internal combustion engine. In the exhaust gas purification system of an internal combustion engine configured, a parallel passage having an ammonia adsorption device is provided in the exhaust passage between the particulate collection device and the selective catalytic reduction device, and the particulate collection device flows out of the exhaust passage. A flow path switching valve for switching the flow of exhaust gas to the flow to the exhaust passage and the flow to the parallel passage, and an on-off valve for opening and closing the parallel passage on the downstream side of the ammonia adsorption device, A first ammonia concentration sensor for detecting the ammonia concentration of the exhaust gas flowing into the selective catalytic reduction device, and the ammonia concentration of the exhaust gas flowing into the ammonia adsorption device; Configured to provide a second ammonia concentration sensor for detecting.

この構成によれば、第1アンモニア濃度センサで検出されるアンモニア濃度を用いて、選択還元型触媒装置に流入するアンモニア量を算出することができ、また、第2アンモニア濃度センサで検出されるアンモニア濃度を用いて、アンモニア吸着装置に流入するアンモニア量を算出することができるので、これらの値を元に、微粒子捕集装置から流出した排気ガス中の過剰のアンモニアをアンモニア吸着装置に吸着して一時貯蔵できると共に、必要に応じて、アンモニア吸着装置に吸着したアンモニアを脱離して、選択還元型触媒装置に供給することができるようになる。   According to this configuration, the ammonia amount flowing into the selective catalytic reduction catalyst device can be calculated using the ammonia concentration detected by the first ammonia concentration sensor, and the ammonia detected by the second ammonia concentration sensor Since the amount of ammonia flowing into the ammonia adsorption device can be calculated using the concentration, excess ammonia in the exhaust gas flowing out from the particulate collection device is adsorbed to the ammonia adsorption device based on these values. In addition to being able to be temporarily stored, if necessary, the ammonia adsorbed on the ammonia adsorption device can be desorbed and supplied to the selective catalytic reduction catalyst device.

従って、選択還元型触媒装置での尿素水由来の白色生成物の堆積を抑制できるという利点と尿素水の利用効率が高いという利点を生かしながら、さらに、選択還元型触媒装置へのアンモニアの供給を安定的に行うことができると共に、選択還元型触媒装置からのアンモニアのスリップ量を減少できて、選択還元型触媒装置のNOx浄化性能を向上させることができる。   Therefore, while taking advantage of the advantage that it is possible to suppress the deposition of the white product derived from urea water in the selective catalytic reduction device and the advantage that the utilization efficiency of urea water is high, the supply of ammonia to the selective catalytic reduction device is further reduced. In addition to being able to perform stably, the amount of ammonia slip from the selective catalytic reduction apparatus can be reduced, and the NOx purification performance of the selective catalytic reduction apparatus can be improved.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化システムを制御する制御装置を、前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させる通常制御を行う通常制御手段と、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁して、排気ガスを前記アンモニア吸着装置に流入させて排気ガス中のアンモニアを前記アンモニア吸着装置に吸着させる吸着制御を行う吸着制御手段と、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁した状態で、前記アンモニア吸着装置をアンモニア脱離温度以上に昇温して、前記アンモニア吸着装置から脱離したアンモニアを前記選択還元型触媒装置に流入させる脱離制御を行う脱離制御手段とを備えて構成する。   Further, in the exhaust gas purification system for an internal combustion engine, the control device for controlling the exhaust gas purification system switches the flow path switching valve to a flow to the exhaust passage and closes the on-off valve to exhaust the exhaust gas purification system. Normal control means for performing normal control for allowing gas to flow into the selective catalytic reduction device, and switching the flow path switching valve to the flow to the parallel path and opening the on-off valve to adsorb the exhaust gas to the ammonia adsorption An adsorption control means for performing adsorption control for allowing ammonia in exhaust gas to be adsorbed by the ammonia adsorbing apparatus by flowing into the apparatus, and a state in which the flow path switching valve is switched to the flow to the parallel passage and the on-off valve is opened The ammonia adsorption device is heated to a temperature higher than the ammonia desorption temperature, and the ammonia desorbed from the ammonia adsorption device is transferred to the selective reduction catalyst device. Configure a detachment control means for elimination control to enter.

この構成によれば、通常制御手段と吸着制御手段と脱離制御手段とを適宜組み合わせることにより、微粒子捕集装置で吸着及び放出される尿素水の量を考慮しながら、尿素水噴射装置から供給する尿素水の量と、アンモニア吸着装置から脱離するアンモニアの量を調整して、アンモニアを適量で選択還元型触媒装置に流入させることができるようになり、尿素水の利用効率を高めると共に、アンモニアスリップを防止できる。   According to this configuration, the normal control means, the adsorption control means, and the desorption control means are appropriately combined to supply from the urea water injection device while taking into account the amount of urea water adsorbed and released by the particulate collection device. The amount of urea water to be adjusted and the amount of ammonia desorbed from the ammonia adsorption device can be adjusted to allow ammonia to flow into the selective catalytic reduction device in an appropriate amount, improving the efficiency of using urea water, Ammonia slip can be prevented.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記排気ガス浄化システムを制御する制御装置を、さらに、前記尿素水噴射装置から尿素水を噴射中において、前記第1アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記選択還元型触媒装置に流入するアンモニアの量が、過剰でないと判定したときには、前記通常制御手段で通常制御を行い、前記尿素水噴射装置から尿素水を噴射中において、前記選択還元型触媒装置に流入するアンモニアの量が、過剰であると判定したときには、前記吸着制御手段で吸着制御を行い、前記尿素水噴射装置から尿素水を噴射中において、前記第2アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記アンモニア吸着装置に吸着したアンモニア量が、予め設定した吸着上限量に達したときには、前記尿素水噴射装置における尿素水の噴射を停止し、前記脱離制御手段で脱離制御を行い、前記第1アンモニア濃度センサで検出したアンモニア濃度と前記第2アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記アンモニア吸着装置に吸着しているアンモニア量が予め設定した吸着下限量に達したときには、前記尿素水噴射装置における尿素水の噴射を再開し、前記通常制御手段で通常制御を行うアンモニア供給制御手段を備えて構成する。   Further, in the exhaust gas purification system for an internal combustion engine, the control device for controlling the exhaust gas purification system further includes ammonia detected by the first ammonia concentration sensor during injection of urea water from the urea water injection device. When it is determined that the amount of ammonia flowing into the selective catalytic reduction device calculated using the concentration is not excessive, normal control is performed by the normal control means, and urea water is being injected from the urea water injection device. When it is determined that the amount of ammonia flowing into the selective catalytic reduction device is excessive, the adsorption control means performs adsorption control, and during the injection of urea water from the urea water injection device, the second ammonia The amount of ammonia adsorbed on the ammonia adsorption device calculated using the ammonia concentration detected by the concentration sensor is set in advance. When the adsorption upper limit amount reached, the urea water injection in the urea water injection device is stopped, the desorption control means performs desorption control, and the ammonia concentration detected by the first ammonia concentration sensor and the second When the ammonia amount adsorbed on the ammonia adsorption device calculated using the ammonia concentration detected by the ammonia concentration sensor reaches a preset lower limit adsorption amount, the urea water injection in the urea water injection device is resumed. And an ammonia supply control means for performing normal control by the normal control means.

この構成によれば、第1アンモニア濃度センサで検出したアンモニア濃度と第2アンモニア濃度センサで検出したアンモニア濃度を用いて、微粒子捕集装置で吸着及び放出される尿素水の量を考慮すると共に、アンモニア吸着装置におけるアンモニア吸着量を考慮しながら、尿素水噴射装置から供給する尿素水の量と、アンモニア吸着装置から脱離するアンモニアの量を調整して、アンモニアを適量で選択還元型触媒装置に流入させるので、尿素水の利用効率を高めると共に、アンモニアスリップを防止できる。なお、この吸着上限量は、吸着最大量の70%〜80%程度に設定することが好ましい。また、吸着下限量は、吸着最大量の0%〜20%程度に設定することが好ましい。   According to this configuration, the ammonia concentration detected by the first ammonia concentration sensor and the ammonia concentration detected by the second ammonia concentration sensor are used to consider the amount of urea water adsorbed and released by the particulate collection device, Adjusting the amount of urea water supplied from the urea water injector and the amount of ammonia desorbed from the ammonia adsorber while taking into account the amount of ammonia adsorbed in the ammonia adsorber, an appropriate amount of ammonia can be converted into a selective reduction catalyst device. Since it is made to flow in, it can raise the utilization efficiency of urea water and can prevent ammonia slip. The upper limit amount of adsorption is preferably set to about 70% to 80% of the maximum amount of adsorption. The lower limit of adsorption is preferably set to about 0% to 20% of the maximum amount of adsorption.

また、上記の内燃機関の排気ガス浄化システムにおいて、前記アンモニア吸着装置に加熱装置を設け、この加熱装置で前記アンモニア吸着装置を加熱することにより、前記アンモニア吸着装置からアンモニアを脱離させるように構成する。   Further, in the exhaust gas purification system for an internal combustion engine, the ammonia adsorption device is provided with a heating device, and the ammonia adsorption device is heated by the heating device to desorb ammonia from the ammonia adsorption device. To do.

この構成によれば、排気ガスや電気ヒーターを用いた加熱装置により、アンモニア吸着装置からのアンモニアの脱離及び脱離量をより精度よく制御することができるようになる。   According to this configuration, the desorption and desorption amount of ammonia from the ammonia adsorption device can be controlled more accurately by a heating device using exhaust gas or an electric heater.

上記の目的を達成するための本発明の内燃機関の排気ガス浄化方法は、内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けた内燃機関の排気ガス浄化システムに、前記微粒子捕集装置と前記選択還元型触媒装置の間の前記排気通路に、アンモニア吸着装置を備えた並行通路と、前記微粒子捕集装置から流出する排気ガスの流れを前記排気通路への流れと前記並行通路への流れに切り換える流路切替弁と、前記アンモニア吸着装置の下流側の前記並行通路を開閉する開閉弁と、前記選択還元型触媒装置に流入する排気ガスのアンモニア濃度を検出する第1アンモニア濃度センサと、前記アンモニア吸着装置に流入する排気ガスのアンモニア濃度を検出する第2アンモニア濃度センサとを設けて構成した内燃機関の排気ガス浄化システムにおける内燃機関の排気ガス浄化方法において、前記尿素水噴射装置から尿素水を噴射中において、前記第1アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記選択還元型触媒装置に流入するアンモニアの量が、過剰でないと判定したときには、前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させ、前記尿素水噴射装置から尿素水を噴射中において、前記選択還元型触媒装置に流入するアンモニアの量が過剰であると判定したときには、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁して、排気ガスを前記アンモニア吸着装置に流入させて排気ガス中のアンモニアを前記アンモニア吸着装置に吸着させ、前記尿素水噴射装置から尿素水を噴射中において、前記アンモニア吸着装置に吸着したアンモニア量が予め設定した吸着上限量に達したときには、前記尿素水噴射装置における尿素水の噴射を停止し、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁した状態で、前記アンモニア吸着装置をアンモニア脱離温度以上に昇温して、前記アンモニア吸着装置から脱離したアンモニアを前記選択還元型触媒装置に流入させ、前記アンモニア吸着装置に吸着したアンモニア量が予め設定した吸着下限量に達したときには、前記尿素水噴射装置における尿素水の噴射を再開し、前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させることを特徴とする方法である。この方法によれば、上記の内燃機関の排気ガス浄化システムと同様の作用効果を奏することができる。   In the exhaust gas purification method for an internal combustion engine of the present invention for achieving the above object, a urea water injection device, a particulate collection device, and a selective catalytic reduction device are provided in the exhaust passage of the internal combustion engine in order from the upstream side. In an exhaust gas purification system of an internal combustion engine, a parallel passage provided with an ammonia adsorption device in the exhaust passage between the particulate collection device and the selective catalytic reduction device, and an exhaust gas flowing out from the particulate collection device A flow path switching valve for switching the flow to the flow to the exhaust passage and the flow to the parallel passage, an open / close valve for opening and closing the parallel passage on the downstream side of the ammonia adsorption device, and the selective reduction catalyst device A first ammonia concentration sensor for detecting the ammonia concentration of the exhaust gas and a second ammonia concentration sensor for detecting the ammonia concentration of the exhaust gas flowing into the ammonia adsorption device are provided. In the exhaust gas purification method of the internal combustion engine in the exhaust gas purification system of the constructed internal combustion engine, the urea concentration calculated by using the ammonia concentration detected by the first ammonia concentration sensor during the urea water injection from the urea water injection device, When it is determined that the amount of ammonia flowing into the selective catalytic reduction device is not excessive, the flow path switching valve is switched to the flow to the exhaust passage and the on-off valve is closed to reduce the exhaust gas to the selective reduction. When it is determined that the amount of ammonia flowing into the selective reduction catalyst device is excessive while the urea water injection device is injecting urea water from the urea water injection device, the flow path switching valve is set to the parallel passage. And the opening / closing valve is opened to allow the exhaust gas to flow into the ammonia adsorbing device so that the ammonia in the exhaust gas When the amount of ammonia adsorbed on the ammonia adsorbing device reaches the upper limit adsorbed in advance while the urea adsorbing device adsorbs the urea water from the urea water injecting device, the urea water in the urea water injecting device In the state where the flow path switching valve is switched to the flow to the parallel passage and the on-off valve is opened, the ammonia adsorption device is heated to an ammonia desorption temperature or higher, and the ammonia adsorption is stopped. Ammonia desorbed from the apparatus is caused to flow into the selective reduction catalyst device, and when the amount of ammonia adsorbed on the ammonia adsorption device reaches a preset lower limit of adsorption, the urea water injection in the urea water injection device is resumed. Then, the flow path switching valve is switched to the flow to the exhaust passage and the on-off valve is closed so that the exhaust gas is selectively reduced. The method is characterized in that it is caused to flow into a type catalyst device. According to this method, the same effect as the exhaust gas purification system of the internal combustion engine can be obtained.

本発明の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法によれば、内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けて構成される内燃機関の排気ガス浄化システムにおいて、選択還元型触媒装置での尿素水由来の白色生成物の堆積を抑制できるという利点と尿素水の利用効率が高いという利点を生かしながら、さらに、選択還元型触媒装置へのアンモニアの供給を安定的に行うことができると共に、選択還元型触媒装置からのアンモニアのスリップ量を減少できて、選択還元型触媒装置のNOx浄化性能を向上させることができる。   According to the exhaust gas purification system for an internal combustion engine and the exhaust gas purification method for an internal combustion engine of the present invention, a urea water injection device, a particulate collection device, and a selective catalytic reduction catalyst device are sequentially provided in the exhaust passage of the internal combustion engine from the upstream side. In the exhaust gas purification system of the internal combustion engine that is provided, while taking advantage of the advantage that the deposition of white product derived from urea water in the selective catalytic reduction device can be suppressed and the advantage that the use efficiency of urea water is high, In addition, it is possible to stably supply ammonia to the selective catalytic reduction catalytic converter and to reduce the slip amount of ammonia from the selective catalytic reduction catalytic converter, thereby improving the NOx purification performance of the selective catalytic reduction catalytic converter. Can do.

本発明に係る実施の形態の内燃機関の排気ガス浄化システムを備えた内燃機関の構成を模式的に示す図である。It is a figure showing typically composition of an internal-combustion engine provided with an exhaust-gas purification system of an internal-combustion engine of an embodiment concerning the present invention. 図1の内燃機関の排気ガス浄化システムの構成を拡大した図であり、排気ガスが並行通路を通過する状態を示す図である。It is the figure which expanded the structure of the exhaust gas purification system of the internal combustion engine of FIG. 1, and is a figure which shows the state through which exhaust gas passes a parallel passage. 図1の内燃機関の排気ガス浄化システムの構成を拡大した図であり、排気ガスが並行通路を通過しない状態を示す図である。It is the figure which expanded the structure of the exhaust gas purification system of the internal combustion engine of FIG. 1, and is a figure which shows the state which exhaust gas does not pass a parallel channel | path. 本発明に係る実施の形態の内燃機関の排気ガス浄化システムの制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus of the exhaust gas purification system of the internal combustion engine of embodiment which concerns on this invention. 従来技術に係る内燃機関の排気ガス浄化システムの構成を示す図である。It is a figure which shows the structure of the exhaust-gas purification system of the internal combustion engine which concerns on a prior art.

以下、本発明に係る実施の形態の内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法について図面を参照しながら説明する。   Hereinafter, an exhaust gas purification system for an internal combustion engine and an exhaust gas purification method for an internal combustion engine according to embodiments of the present invention will be described with reference to the drawings.

最初に図1を参照しながら、この実施の形態の内燃機関の排気ガス浄化システム1が配置されるエンジン(内燃機関)10について説明する。このエンジン10には、気筒(シリンダ)10aに面して燃料噴射装置11と吸気弁12と排気弁13が設けられ、更に、吸気弁12に連通する吸気通路14と、排気弁13に連通する排気通路15と、EGR通路16が設けられている。   First, an engine (internal combustion engine) 10 in which an exhaust gas purification system 1 for an internal combustion engine according to this embodiment is arranged will be described with reference to FIG. The engine 10 is provided with a fuel injection device 11, an intake valve 12 and an exhaust valve 13 facing a cylinder (cylinder) 10 a, and further, an intake passage 14 communicating with the intake valve 12 and an exhaust valve 13. An exhaust passage 15 and an EGR passage 16 are provided.

この吸気通路14には、上流側より順に、エアクリーナ17、ターボチャージャ(ターボ式過給器)18のコンプレッサ18b、インタークーラ19a、インテークスロットルバルブ19bが設けられ、また、排気通路15には、上流側より順に、ターボチャージャ18のタービン18a、排気ガス浄化装置20が設けられている。また、EGR通路16は、コンプレッサ18bより下流の吸気通路14とタービン18aより上流の排気通路15を接続して設けられ、このEGR通路16には、上流側より順に、EGRクーラ16a、EGRバルブ16bが設けられている。   The intake passage 14 is provided with an air cleaner 17, a turbocharger (turbo supercharger) 18 compressor 18 b, an intercooler 19 a, and an intake throttle valve 19 b in order from the upstream side. The turbine 18a of the turbocharger 18 and the exhaust gas purification device 20 are provided in this order from the side. The EGR passage 16 is provided by connecting an intake passage 14 downstream of the compressor 18b and an exhaust passage 15 upstream of the turbine 18a. The EGR passage 16 is provided with an EGR cooler 16a and an EGR valve 16b in this order from the upstream side. Is provided.

そして、大気から導入される新気Aは、必要に応じて、EGR通路16から吸気通路14に流入する排気ガス(EGRガス)Geを伴って、吸気弁12経由で気筒(シリンダ)10aに送られる。また、気筒10aで発生した排気ガスGは、排気弁13経由で排気通路15に流出し、その一部はEGR通路16にEGRガスGeとして流れ、残りの排気ガスGa(=G−Ge)は、タービン18aを経由して、排気ガス浄化装置20に流入して、浄化された後、浄化された排気ガスGcとしてマフラー(図示しない)、テールパイプ(図示しない)を経由して大気中へ放出される。   The fresh air A introduced from the atmosphere is sent to the cylinder (cylinder) 10a via the intake valve 12 with the exhaust gas (EGR gas) Ge flowing into the intake passage 14 from the EGR passage 16 as necessary. It is done. Further, the exhaust gas G generated in the cylinder 10a flows into the exhaust passage 15 via the exhaust valve 13, a part of which flows as the EGR gas Ge in the EGR passage 16, and the remaining exhaust gas Ga (= G-Ge) is Then, after flowing into the exhaust gas purification device 20 via the turbine 18a and being purified, it is discharged into the atmosphere as a purified exhaust gas Gc via a muffler (not shown) and a tail pipe (not shown). Is done.

また、排気ガス浄化装置20は、この図1の構成では、酸化触媒装置(DOC)22、微粒子捕集装置23、選択還元型触媒装置(SCR)24及び酸化触媒装置(DOC)25等で構成される。   Further, in the configuration of FIG. 1, the exhaust gas purification device 20 includes an oxidation catalyst device (DOC) 22, a particulate collection device 23, a selective catalytic reduction device (SCR) 24, an oxidation catalyst device (DOC) 25, and the like. Is done.

また、酸化触媒装置22の上流側の排気通路15には、未燃燃料を排気通路15内に噴射する燃料噴射装置26が配設され、微粒子捕集装置23の再生処理時に、排気通路15内に未燃燃料を噴射し、酸化触媒装置22で酸化された未燃燃料の酸化熱により排気ガスGaを昇温して微粒子捕集装置23をPM燃焼可能な温度域まで昇温させる役割を持っている。   A fuel injection device 26 for injecting unburned fuel into the exhaust passage 15 is disposed in the exhaust passage 15 upstream of the oxidation catalyst device 22. The unburned fuel is injected into the gas, and the exhaust gas Ga is heated by the oxidation heat of the unburned fuel oxidized by the oxidation catalyst device 22 to raise the temperature of the particulate collection device 23 to a temperature range where PM combustion is possible. ing.

また、酸化触媒装置22の下流側で、かつ、微粒子捕集装置23の上流側の排気通路15には、NOx還元用の尿素水Uを排気通路15内に噴射する尿素水噴射装置27が配設され、噴射された尿素水Uは、微粒子捕集装置23内で気化及び分解を促進されて、アンモニアを生成し、下流側の選択還元型触媒装置24でこのアンモニアにより排気ガスGa中のNOxを水と窒素に還元して無害化している。   A urea water injection device 27 that injects urea water U for NOx reduction into the exhaust passage 15 is disposed in the exhaust passage 15 downstream of the oxidation catalyst device 22 and upstream of the particulate collection device 23. The urea water U injected and injected is promoted to vaporize and decompose in the particulate collection device 23 to generate ammonia, and the NOx in the exhaust gas Ga is generated by this ammonia in the selective catalytic reduction device 24 on the downstream side. Is detoxified by reducing it to water and nitrogen.

そして、本発明においては、内燃機関の排気ガス浄化システム1では、図1、図2に示すように、微粒子捕集装置23と選択還元型触媒装置24の間の排気通路15に、アンモニア吸着装置30を備えた並行通路31を設ける。また、微粒子捕集装置23から流出する排気ガスGaの流れを排気通路13への流れと並行通路31への流れに切り換える流路切替弁32と、アンモニア吸着装置30の下流側の並行通路31を開閉する開閉弁33をそれぞれ設ける。   In the present invention, in the exhaust gas purification system 1 for an internal combustion engine, as shown in FIGS. 1 and 2, an ammonia adsorption device is provided in the exhaust passage 15 between the particulate collection device 23 and the selective catalytic reduction device 24. A parallel passage 31 with 30 is provided. Further, a flow path switching valve 32 for switching the flow of the exhaust gas Ga flowing out from the particulate collection device 23 to the flow to the exhaust passage 13 and the flow to the parallel passage 31, and the parallel passage 31 on the downstream side of the ammonia adsorption device 30 are provided. Opening / closing valves 33 for opening and closing are provided.

この流路切替弁32は、三方弁で形成すると一つの弁で済むが、2個の開閉弁で構成してもよい。また、この流路切替弁32を、排気通路15への流れと並行通路31への流れとを選択的に切り替える弁で構成してもよいが、排気通路15への流れと並行通路31への流れとの割合を0%〜100%まで連続的に切り替える弁で構成すると、制御が多少複雑になるが、より極め細かい制御を行うことができるようになる。   If the flow path switching valve 32 is formed of a three-way valve, only one valve is required, but the flow path switching valve 32 may be composed of two on-off valves. Further, the flow path switching valve 32 may be configured as a valve that selectively switches the flow to the exhaust passage 15 and the flow to the parallel passage 31, but the flow to the exhaust passage 15 and the flow to the parallel passage 31 are not limited. If the valve is configured to continuously switch the ratio of the flow from 0% to 100%, the control becomes somewhat complicated, but more fine control can be performed.

また、このアンモニア吸着装置30に加熱装置(図示しない)を設け、この加熱装置でアンモニア吸着装置30を加熱することにより、アンモニア吸着装置30からアンモニアを脱離させるように構成する。これにより、排気ガスや電気ヒーターを用いた加熱装置により、アンモニア吸着装置30からのアンモニアの脱離及び脱離量をより精度よく制御することができるようになる。   Further, the ammonia adsorption device 30 is provided with a heating device (not shown), and the ammonia adsorption device 30 is heated by the heating device, so that ammonia is desorbed from the ammonia adsorption device 30. Thus, the desorption and desorption amount of ammonia from the ammonia adsorption device 30 can be controlled with higher accuracy by a heating device using exhaust gas or an electric heater.

更に、選択還元型触媒装置24に流入する排気ガスGaのアンモニア濃度を検出する第1アンモニア濃度センサ34と、アンモニア吸着装置30に流入する排気ガスGaのアンモニア濃度を検出する第2アンモニア濃度センサ35とを設けて構成する。   Further, a first ammonia concentration sensor 34 that detects the ammonia concentration of the exhaust gas Ga flowing into the selective catalytic reduction device 24, and a second ammonia concentration sensor 35 that detects the ammonia concentration of the exhaust gas Ga flowing into the ammonia adsorption device 30. And are configured.

この構成により、第1アンモニア濃度センサ34で検出されるアンモニア濃度を用いて、選択還元型触媒装置24に流入するアンモニア量を算出することができ、また、第2アンモニア濃度センサ35で検出されるアンモニア濃度を用いて、アンモニア吸着装置30に流入するアンモニア量を算出することができる。そして、これらの値を元に、微粒子捕集装置23から流出した排気ガスGa中の過剰のアンモニアをアンモニア吸着装置30に吸着して一時貯蔵できると共に、必要に応じて、アンモニア吸着装置30に吸着したアンモニアを脱離して、選択還元型触媒装置24に供給することができるようになる。   With this configuration, it is possible to calculate the amount of ammonia flowing into the selective catalytic reduction catalyst device 24 using the ammonia concentration detected by the first ammonia concentration sensor 34, and to detect it by the second ammonia concentration sensor 35. Using the ammonia concentration, the amount of ammonia flowing into the ammonia adsorption device 30 can be calculated. Based on these values, excess ammonia in the exhaust gas Ga flowing out from the particulate collection device 23 can be adsorbed to the ammonia adsorption device 30 and temporarily stored, and adsorbed to the ammonia adsorption device 30 as necessary. The released ammonia can be desorbed and supplied to the selective catalytic reduction device 24.

また、内燃機関の排気ガス浄化システム1を制御する制御装置40を設ける。この制御装置40は、エンジン10全般の運転状態を制御するエンジンコントロールモジュール(ECM)に組み込んでもよいし、独立して設けてもよい。   Moreover, the control apparatus 40 which controls the exhaust gas purification system 1 of an internal combustion engine is provided. The control device 40 may be incorporated in an engine control module (ECM) that controls the overall operation state of the engine 10 or may be provided independently.

そして、本発明では、図4に示すように、この排気ガス浄化システム1を制御する制御装置40を、通常制御手段41と吸着制御手段42と脱離制御手段43とアンモニア供給制御手段44を備えて構成する。   And in this invention, as shown in FIG. 4, the control apparatus 40 which controls this exhaust gas purification system 1 is provided with the normal control means 41, the adsorption | suction control means 42, the desorption control means 43, and the ammonia supply control means 44. Configure.

この通常制御手段41は、図3に示すように、流路切替弁32を排気通路15への流れに切り換えると共に開閉弁33を閉弁して、排気ガスGaを選択還元型触媒装置24に流入させる通常制御を行う手段であり、吸着制御手段42は、図2に示すように、流路切替弁32を並行通路31への流れに切り換えると共に開閉弁33を開弁して、排気ガスGaをアンモニア吸着装置30に流入させて排気ガスGa中のアンモニアをアンモニア吸着装置30に吸着させる吸着制御を行う手段である。   As shown in FIG. 3, the normal control means 41 switches the flow path switching valve 32 to the flow to the exhaust passage 15 and closes the on-off valve 33 so that the exhaust gas Ga flows into the selective reduction catalyst device 24. As shown in FIG. 2, the adsorption control means 42 switches the flow path switching valve 32 to the flow to the parallel passage 31 and opens the on-off valve 33 to open the exhaust gas Ga as shown in FIG. It is means for performing adsorption control in which ammonia in exhaust gas Ga is caused to flow into the ammonia adsorbing device 30 and adsorbed by the ammonia adsorbing device 30.

また、脱離制御手段43は、図2に示すように、流路切替弁32を並行通路31への流れに切り換えると共に開閉弁33を開弁した状態で、アンモニア吸着装置30をアンモニア脱離温度以上に昇温して、アンモニア吸着装置30から脱離したアンモニアを選択還元型触媒装置24に流入させる脱離制御を行う手段である。   Further, as shown in FIG. 2, the desorption control means 43 switches the flow path switching valve 32 to the flow to the parallel passage 31 and opens the on-off valve 33 in the state where the ammonia adsorption device 30 is opened to the ammonia desorption temperature. This is a means for performing desorption control in which the temperature is raised to the above and ammonia desorbed from the ammonia adsorption device 30 flows into the selective catalytic reduction device 24.

これにより、通常制御手段41と吸着制御手段42と脱離制御手段43とを適宜組み合わせることにより、微粒子捕集装置23で吸着及び放出される尿素水Uの量を考慮しながら、尿素水噴射装置27から供給する尿素水Uの量と、アンモニア吸着装置30から脱離するアンモニアの量を調整して、アンモニアを適量で選択還元型触媒装置24に流入させることができるようになり、尿素水Uの利用効率を高めると共に、アンモニアスリップを防止できる。   As a result, the urea water injection device can be obtained by appropriately combining the normal control means 41, the adsorption control means 42, and the desorption control means 43 while taking into account the amount of urea water U adsorbed and released by the particulate collection device 23. 27, the amount of urea water U supplied from 27 and the amount of ammonia desorbed from the ammonia adsorbing device 30 can be adjusted so that an appropriate amount of ammonia can flow into the selective catalytic reduction device 24. As well as improving the efficiency of use, ammonia slip can be prevented.

また、アンモニア供給制御手段44は、次のような各条件下で、通常制御、吸着制御、脱離制御を行う手段である。   The ammonia supply control means 44 is means for performing normal control, adsorption control, and desorption control under the following conditions.

つまり、尿素水噴射装置27から尿素水Uを噴射中において、第1アンモニア濃度センサ34で検出したアンモニア濃度を用いて算出した、選択還元型触媒装置24に流入するアンモニアの量が、過剰でないと判定したときには、通常制御手段41で通常制御を行う。   That is, the amount of ammonia flowing into the selective catalytic reduction device 24 calculated using the ammonia concentration detected by the first ammonia concentration sensor 34 while the urea water U is being injected from the urea water injection device 27 is not excessive. When the determination is made, the normal control means 41 performs normal control.

また、尿素水噴射装置27から尿素水Uを噴射中において、選択還元型触媒装置24に流入するアンモニアの量が、過剰であると判定したときには、吸着制御手段42で吸着制御を行う。   Further, when the urea water U is being injected from the urea water injection device 27 and when it is determined that the amount of ammonia flowing into the selective catalytic reduction device 24 is excessive, the adsorption control means 42 performs adsorption control.

また、尿素水噴射装置27から尿素水Uを噴射中において、第2アンモニア濃度センサ35で検出したアンモニア濃度を用いて算出した、アンモニア吸着装置30に吸着したアンモニア量が、予め設定した吸着上限量に達したときには、尿素水噴射装置27における尿素水Uの噴射を停止し、脱離制御手段43で脱離制御を行う。   Further, during the injection of the urea water U from the urea water injection device 27, the ammonia amount adsorbed on the ammonia adsorption device 30 calculated using the ammonia concentration detected by the second ammonia concentration sensor 35 is a preset adsorption upper limit amount. Is reached, the urea water injection in the urea water injection device 27 is stopped, and the desorption control means 43 performs desorption control.

また、第1アンモニア濃度センサ34で検出したアンモニア濃度と第2アンモニア濃度センサ35で検出したアンモニア濃度を用いて算出した、アンモニア吸着装置30に吸着しているアンモニア量が予め設定した吸着下限量に達したときには、尿素水噴射装置27における尿素水Uの噴射を再開し、通常制御手段41で通常制御を行う。   Further, the amount of ammonia adsorbed on the ammonia adsorbing device 30 calculated using the ammonia concentration detected by the first ammonia concentration sensor 34 and the ammonia concentration detected by the second ammonia concentration sensor 35 becomes a preset lower limit of adsorption. When it reaches, the injection of the urea water U in the urea water injection device 27 is resumed, and the normal control means 41 performs the normal control.

これにより、第1アンモニア濃度センサ34で検出したアンモニア濃度と第2アンモニア濃度センサ35で検出したアンモニア濃度を用いて、微粒子捕集装置23で吸着及び放出される尿素水Uの量を考慮すると共に、アンモニア吸着装置30におけるアンモニア吸着量を考慮しながら、尿素水噴射装置27から供給する尿素水Uの量と、アンモニア吸着装置30から脱離するアンモニアの量を調整して、アンモニアを適量で選択還元型触媒装置24に流入させるので、尿素水Uの利用効率を高めると共に、アンモニアスリップを防止できる。なお、この吸着上限量は、吸着最大量の70%〜80%程度に設定することが好ましい。また、吸着下限量は、吸着最大量の0%〜20%程度に設定することが好ましい。   Thus, the ammonia concentration detected by the first ammonia concentration sensor 34 and the ammonia concentration detected by the second ammonia concentration sensor 35 are used to consider the amount of urea water U adsorbed and released by the particulate collection device 23. Then, the amount of ammonia water U supplied from the urea water injection device 27 and the amount of ammonia desorbed from the ammonia adsorption device 30 are adjusted in consideration of the ammonia adsorption amount in the ammonia adsorption device 30, and an appropriate amount of ammonia is selected. Since it flows into the reduction catalyst device 24, the utilization efficiency of the urea water U can be enhanced and ammonia slip can be prevented. The upper limit amount of adsorption is preferably set to about 70% to 80% of the maximum amount of adsorption. The lower limit of adsorption is preferably set to about 0% to 20% of the maximum amount of adsorption.

次に、本発明に係る内燃機関の排気ガス浄化方法について説明する。この方法は、エンジン10の排気通路15に、上流側より順に、尿素水噴射装置27、微粒子捕集装置23、選択還元型触媒装置24を設けた内燃機関の排気ガス浄化システム1に、微粒子捕集装置23と選択還元型触媒装置24の間の排気通路15に、アンモニア吸着装置30を備えた並行通路31と、微粒子捕集装置23から流出する排気ガスGaの流れを排気通路15への流れと並行通路31への流れに切り換える流路切替弁32と、アンモニア吸着装置30の下流側の並行通路31を開閉する開閉弁33と、選択還元型触媒装置24に流入する排気ガスGaのアンモニア濃度を検出する第1アンモニア濃度センサ34と、アンモニア吸着装置30に流入する排気ガスのアンモニア濃度を検出する第2アンモニア濃度センサ35を設けて構成した内燃機関の排気ガス浄化システムにおける内燃機関の排気ガス浄化方法である。   Next, an exhaust gas purification method for an internal combustion engine according to the present invention will be described. This method is applied to the exhaust gas purification system 1 of the internal combustion engine in which the urea water injection device 27, the particulate collection device 23, and the selective reduction catalyst device 24 are provided in the exhaust passage 15 of the engine 10 in order from the upstream side. In the exhaust passage 15 between the collector 23 and the selective catalytic reduction device 24, the parallel passage 31 provided with the ammonia adsorption device 30 and the flow of the exhaust gas Ga flowing out from the particulate collection device 23 flow to the exhaust passage 15. The flow path switching valve 32 for switching to the flow to the parallel passage 31, the on-off valve 33 for opening and closing the parallel passage 31 on the downstream side of the ammonia adsorption device 30, and the ammonia concentration of the exhaust gas Ga flowing into the selective catalytic reduction device 24 A first ammonia concentration sensor 34 for detecting the ammonia concentration and a second ammonia concentration sensor 35 for detecting the ammonia concentration of the exhaust gas flowing into the ammonia adsorption device 30 are provided. An exhaust gas purification method for an internal combustion engine in the exhaust gas purification system configured internal combustion engine.

そして、この方法において、尿素水噴射装置27から尿素水Uを噴射中において、第1アンモニア濃度センサ34で検出したアンモニア濃度を用いて算出した、選択還元型触媒装置24に流入するアンモニアの量が、過剰でないと判定したときには、流路切替弁32を排気通路15への流れに切り換えると共に開閉弁33を閉弁して、排気ガスGaを選択還元型触媒装置24に流入させる。   In this method, the amount of ammonia flowing into the selective catalytic reduction device 24 calculated using the ammonia concentration detected by the first ammonia concentration sensor 34 while the urea water U is being injected from the urea water injection device 27 is calculated. When it is determined that the flow rate is not excessive, the flow path switching valve 32 is switched to the flow to the exhaust passage 15 and the on-off valve 33 is closed to allow the exhaust gas Ga to flow into the selective catalytic reduction device 24.

また、尿素水噴射装置27から尿素水Uを噴射中において、選択還元型触媒装置24に流入するアンモニアの量が過剰であると判定したときには、流路切替弁32を並行通路31への流れに切り換えると共に開閉弁33を開弁して、排気ガスGaをアンモニア吸着装置30に流入させて排気ガスGa中のアンモニアをアンモニア吸着装置30に吸着させる。   When it is determined that the amount of ammonia flowing into the selective catalytic reduction device 24 is excessive during the injection of the urea water U from the urea water injection device 27, the flow path switching valve 32 is changed to the flow to the parallel passage 31. At the same time, the on-off valve 33 is opened, and the exhaust gas Ga is caused to flow into the ammonia adsorption device 30 so that the ammonia in the exhaust gas Ga is adsorbed to the ammonia adsorption device 30.

また、尿素水噴射装置27から尿素水Uを噴射中において、アンモニア吸着装置30に吸着したアンモニア量が予め設定した吸着上限量に達したときには、尿素水噴射装置27における尿素水Uの噴射を停止し、流路切替弁32を並行通路31への流れに切り換えると共に開閉弁33を開弁した状態で、アンモニア吸着装置30をアンモニア脱離温度以上に昇温して、アンモニア吸着装置30から脱離したアンモニアを選択還元型触媒装置24に流入させる。   Further, during the injection of the urea water U from the urea water injection device 27, when the amount of ammonia adsorbed on the ammonia adsorption device 30 reaches a preset adsorption upper limit amount, the urea water U injection in the urea water injection device 27 is stopped. In the state where the flow path switching valve 32 is switched to the flow to the parallel passage 31 and the on-off valve 33 is opened, the ammonia adsorption device 30 is heated to the ammonia desorption temperature or higher and desorbed from the ammonia adsorption device 30. The prepared ammonia is caused to flow into the selective reduction catalyst device 24.

さらに、アンモニア吸着装置30に吸着したアンモニア量が予め設定した吸着下限量に達したときには、尿素水噴射装置27における尿素水Uの噴射を再開し、流路切替弁32を排気通路15への流れに切り換えると共に開閉弁33を閉弁して、排気ガスGaを選択還元型触媒装置24に流入させる。   Further, when the amount of ammonia adsorbed on the ammonia adsorbing device 30 reaches a preset lower limit amount of adsorption, the urea water U injection in the urea water injecting device 27 is resumed, and the flow of the flow path switching valve 32 to the exhaust passage 15 is resumed. And the on-off valve 33 is closed to allow the exhaust gas Ga to flow into the selective catalytic reduction device 24.

そして、上記の構成の内燃機関の排気ガス浄化システム1及び内燃機関の排気ガス浄化方法によれば、エンジン10の排気通路15に、上流側より順に、尿素水噴射装置27、微粒子捕集装置23、選択還元型触媒装置24を設けて構成される内燃機関の排気ガス浄化システム1において、選択還元型触媒装置24での尿素水Uに由来する白色生成物の堆積を抑制できるという利点と尿素水Uの利用効率が高いという利点を生かしながら、さらに、選択還元型触媒装置24へのアンモニアの供給を安定的に行うことができると共に、選択還元型触媒装置24からのアンモニアのスリップ量を減少できて、選択還元型触媒装置24のNOx浄化性能を向上させることができる。   Then, according to the exhaust gas purification system 1 for an internal combustion engine and the exhaust gas purification method for the internal combustion engine having the above-described configuration, the urea water injection device 27 and the particulate collection device 23 are sequentially provided in the exhaust passage 15 of the engine 10 from the upstream side. In the exhaust gas purification system 1 for an internal combustion engine configured by providing the selective reduction catalyst device 24, the advantage of being able to suppress the deposition of the white product derived from the urea water U in the selective reduction catalyst device 24 and the urea water While taking advantage of high utilization efficiency of U, it is possible to stably supply ammonia to the selective catalytic reduction device 24 and to reduce the slip amount of ammonia from the selective catalytic reduction device 24. Thus, the NOx purification performance of the selective catalytic reduction device 24 can be improved.

1、1X 内燃機関の排気ガス浄化システム
10 エンジン(内燃機関)
11 燃料噴射装置
14 吸気通路
15 排気通路
20 排気ガス浄化装置
22 酸化触媒装置(DOC)
23 微粒子捕集装置
24 選択還元型触媒装置(SCR)
25 酸化触媒装置(DOC)
26 燃料噴射装置
27 尿素水噴射装置
30 アンモニア吸着装置
31 並行通路
32 流路切替弁
33 開閉弁
34 第1アンモニア濃度センサ
35 第2アンモニア濃度センサ
40 制御装置
41 通常制御手段
42 吸着制御手段
43 脱離制御手段
44 アンモニア供給制御手段
A 新気
G 発生した排気ガス
Ga 排気ガス浄化装置を通過する排気ガス
Gc 浄化処理された排気ガス
Ge EGRガス
U 尿素水
1, 1X Exhaust gas purification system for internal combustion engine 10 Engine (internal combustion engine)
11 Fuel injection device 14 Intake passage 15 Exhaust passage 20 Exhaust gas purification device 22 Oxidation catalyst device (DOC)
23 Fine particle collector 24 Selective reduction type catalytic device (SCR)
25 Oxidation catalyst equipment (DOC)
26 Fuel injection device 27 Urea water injection device 30 Ammonia adsorption device 31 Parallel passage 32 Flow path switching valve 33 On-off valve 34 First ammonia concentration sensor 35 Second ammonia concentration sensor 40 Control device 41 Normal control means 42 Adsorption control means 43 Desorption Control means 44 Ammonia supply control means A Fresh air G Generated exhaust gas Ga Exhaust gas Gc passing through exhaust gas purification device Purified exhaust gas Ge EGR gas U Urea water

Claims (5)

内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けて構成される内燃機関の排気ガス浄化システムにおいて、
前記微粒子捕集装置と前記選択還元型触媒装置の間の前記排気通路に、アンモニア吸着装置を備えた並行通路を設け、
前記微粒子捕集装置から流出する排気ガスの流れを前記排気通路への流れと前記並行通路への流れに切り換える流路切替弁と、前記アンモニア吸着装置の下流側の前記並行通路を開閉する開閉弁をそれぞれ設け、
更に、前記選択還元型触媒装置に流入する排気ガスのアンモニア濃度を検出する第1アンモニア濃度センサと、前記アンモニア吸着装置に流入する排気ガスのアンモニア濃度を検出する第2アンモニア濃度センサとを設けて構成したことを特徴とする内燃機関の排気ガス浄化システム。
In the exhaust gas purification system of an internal combustion engine configured by providing a urea water injection device, a particulate collection device, and a selective catalytic reduction device in order from the upstream side in the exhaust passage of the internal combustion engine,
A parallel passage provided with an ammonia adsorption device is provided in the exhaust passage between the particulate collection device and the selective catalytic reduction device,
A flow path switching valve for switching the flow of the exhaust gas flowing out from the particulate collection device to the flow to the exhaust passage and the flow to the parallel passage, and an on-off valve for opening and closing the parallel passage on the downstream side of the ammonia adsorption device Provided,
Furthermore, a first ammonia concentration sensor that detects the ammonia concentration of the exhaust gas flowing into the selective reduction catalyst device and a second ammonia concentration sensor that detects the ammonia concentration of the exhaust gas flowing into the ammonia adsorption device are provided. An exhaust gas purification system for an internal combustion engine, characterized in that it is configured.
前記排気ガス浄化システムを制御する制御装置を、
前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させる通常制御を行う通常制御手段と、
前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁して、排気ガスを前記アンモニア吸着装置に流入させて排気ガス中のアンモニアを前記アンモニア吸着装置に吸着させる吸着制御を行う吸着制御手段と、
前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁した状態で、前記アンモニア吸着装置をアンモニア脱離温度以上に昇温して、前記アンモニア吸着装置から脱離したアンモニアを前記選択還元型触媒装置に流入させる脱離制御を行う脱離制御手段とを備えて構成した請求項1に記載の内燃機関の排気ガス浄化システム。
A control device for controlling the exhaust gas purification system;
Normal control means for performing normal control for switching the flow path switching valve to the flow to the exhaust passage and closing the on-off valve to allow exhaust gas to flow into the selective catalytic reduction device;
Adsorption control for switching the flow path switching valve to the flow to the parallel passage and opening the on-off valve to allow exhaust gas to flow into the ammonia adsorption device and to adsorb ammonia in the exhaust gas to the ammonia adsorption device Adsorption control means for performing
Ammonia desorbed from the ammonia adsorbing device by switching the flow path switching valve to the flow to the parallel passage and raising the temperature of the ammonia adsorbing device to an ammonia desorption temperature or more with the open / close valve opened. The exhaust gas purification system for an internal combustion engine according to claim 1, further comprising a desorption control unit that performs desorption control for causing the gas to flow into the selective catalytic reduction device.
前記排気ガス浄化システムを制御する制御装置を、さらに、
前記尿素水噴射装置から尿素水を噴射中において、前記第1アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記選択還元型触媒装置に流入するアンモニアの量が、過剰でないと判定したときには、前記通常制御手段で通常制御を行い、
前記尿素水噴射装置から尿素水を噴射中において、前記選択還元型触媒装置に流入するアンモニアの量が、過剰であると判定したときには、前記吸着制御手段で吸着制御を行い、
前記尿素水噴射装置から尿素水を噴射中において、前記第2アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記アンモニア吸着装置に吸着したアンモニア量が、予め設定した吸着上限量に達したときには、前記尿素水噴射装置における尿素水の噴射を停止し、前記脱離制御手段で脱離制御を行い、
前記第1アンモニア濃度センサで検出したアンモニア濃度と前記第2アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記アンモニア吸着装置に吸着しているアンモニア量が予め設定した吸着下限量に達したときには、前記尿素水噴射装置における尿素水の噴射を再開し、前記通常制御手段で通常制御を行うアンモニア供給制御手段を備えて構成した請求項2に記載の内燃機関の排気ガス浄化システム。
A control device for controlling the exhaust gas purification system;
When it is determined that the amount of ammonia flowing into the selective catalytic reduction catalyst device calculated using the ammonia concentration detected by the first ammonia concentration sensor during injection of urea water from the urea water injection device is not excessive. The normal control means performs normal control,
During the injection of urea water from the urea water injection device, when it is determined that the amount of ammonia flowing into the selective reduction catalyst device is excessive, adsorption control is performed by the adsorption control means,
During the injection of urea water from the urea water injection device, the amount of ammonia adsorbed on the ammonia adsorption device calculated using the ammonia concentration detected by the second ammonia concentration sensor reached a preset upper limit of adsorption. Sometimes, the urea water injection in the urea water injection device is stopped, the desorption control means performs desorption control,
The amount of ammonia adsorbed on the ammonia adsorption device calculated using the ammonia concentration detected by the first ammonia concentration sensor and the ammonia concentration detected by the second ammonia concentration sensor has reached a preset lower limit of adsorption. 3. The exhaust gas purification system for an internal combustion engine according to claim 2, further comprising ammonia supply control means for resuming urea water injection in the urea water injection device and performing normal control by the normal control means.
前記アンモニア吸着装置に加熱装置を設け、この加熱装置で前記アンモニア吸着装置を加熱することにより、前記アンモニア吸着装置からアンモニアを脱離させる請求項1〜3のいずれか1項に記載の内燃機関の排気ガス浄化システム。   The internal combustion engine according to any one of claims 1 to 3, wherein a heating device is provided in the ammonia adsorption device, and the ammonia adsorption device is heated by the heating device to desorb ammonia from the ammonia adsorption device. Exhaust gas purification system. 内燃機関の排気通路に、上流側より順に、尿素水噴射装置、微粒子捕集装置、選択還元型触媒装置を設けた内燃機関の排気ガス浄化システムに、前記微粒子捕集装置と前記選択還元型触媒装置の間の前記排気通路に、アンモニア吸着装置を備えた並行通路と、前記微粒子捕集装置から流出する排気ガスの流れを前記排気通路への流れと前記並行通路への流れに切り換える流路切替弁と、前記アンモニア吸着装置の下流側の前記並行通路を開閉する開閉弁と、前記選択還元型触媒装置に流入する排気ガスのアンモニア濃度を検出する第1アンモニア濃度センサと、前記アンモニア吸着装置に流入する排気ガスのアンモニア濃度を検出する第2アンモニア濃度センサとを設けて構成した内燃機関の排気ガス浄化システムにおける内燃機関の排気ガス浄化方法において、
前記尿素水噴射装置から尿素水を噴射中において、前記第1アンモニア濃度センサで検出したアンモニア濃度を用いて算出した、前記選択還元型触媒装置に流入するアンモニアの量が、過剰でないと判定したときには、前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させ、
前記尿素水噴射装置から尿素水を噴射中において、前記選択還元型触媒装置に流入するアンモニアの量が過剰であると判定したときには、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁して、排気ガスを前記アンモニア吸着装置に流入させて排気ガス中のアンモニアを前記アンモニア吸着装置に吸着させ、
前記尿素水噴射装置から尿素水を噴射中において、前記アンモニア吸着装置に吸着したアンモニア量が予め設定した吸着上限量に達したときには、前記尿素水噴射装置における尿素水の噴射を停止し、前記流路切替弁を前記並行通路への流れに切り換えると共に前記開閉弁を開弁した状態で、前記アンモニア吸着装置をアンモニア脱離温度以上に昇温して、前記アンモニア吸着装置から脱離したアンモニアを前記選択還元型触媒装置に流入させ、
前記アンモニア吸着装置に吸着したアンモニア量が予め設定した吸着下限量に達したときには、前記尿素水噴射装置における尿素水の噴射を再開し、前記流路切替弁を前記排気通路への流れに切り換えると共に前記開閉弁を閉弁して、排気ガスを前記選択還元型触媒装置に流入させることを特徴とする内燃機関の排気ガス浄化方法。
An exhaust gas purification system for an internal combustion engine in which an urea water injection device, a particulate collection device, and a selective reduction catalyst device are provided in the exhaust passage of the internal combustion engine in this order from the upstream side, the particulate collection device and the selective reduction catalyst A parallel passage provided with an ammonia adsorption device in the exhaust passage between devices, and a flow path switching for switching the flow of exhaust gas flowing out from the particulate collection device to the flow to the exhaust passage and the flow to the parallel passage A valve, an on-off valve that opens and closes the parallel passage on the downstream side of the ammonia adsorption device, a first ammonia concentration sensor that detects the ammonia concentration of the exhaust gas flowing into the selective catalytic reduction device, and the ammonia adsorption device The exhaust gas of the internal combustion engine in the exhaust gas purification system of the internal combustion engine, which is provided with a second ammonia concentration sensor for detecting the ammonia concentration of the inflowing exhaust gas In the purification method,
When it is determined that the amount of ammonia flowing into the selective catalytic reduction catalyst device calculated using the ammonia concentration detected by the first ammonia concentration sensor during injection of urea water from the urea water injection device is not excessive. , Switching the flow path switching valve to the flow to the exhaust passage and closing the on-off valve to flow the exhaust gas into the selective catalytic reduction device,
When it is determined that the amount of ammonia flowing into the selective reduction catalyst device is excessive during the injection of urea water from the urea water injection device, the flow path switching valve is switched to the flow to the parallel passage and the Opening the on-off valve, allowing the exhaust gas to flow into the ammonia adsorbing device and adsorbing ammonia in the exhaust gas to the ammonia adsorbing device;
During the injection of urea water from the urea water injection device, when the amount of ammonia adsorbed on the ammonia adsorption device reaches a preset adsorption upper limit amount, the urea water injection in the urea water injection device is stopped, and the flow In a state where the path switching valve is switched to the flow to the parallel passage and the on-off valve is opened, the ammonia adsorption device is heated to an ammonia desorption temperature or higher, and the ammonia desorbed from the ammonia adsorption device is Flow into the selective catalytic reduction device,
When the amount of ammonia adsorbed on the ammonia adsorbing device reaches a preset adsorbing lower limit amount, the urea water injection in the urea water injection device is restarted, and the flow path switching valve is switched to the flow to the exhaust passage. An exhaust gas purification method for an internal combustion engine, wherein the on-off valve is closed to allow exhaust gas to flow into the selective catalytic reduction device.
JP2014260298A 2014-12-24 2014-12-24 System and method of purifying exhaust gas of internal combustion engine Pending JP2016121547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014260298A JP2016121547A (en) 2014-12-24 2014-12-24 System and method of purifying exhaust gas of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014260298A JP2016121547A (en) 2014-12-24 2014-12-24 System and method of purifying exhaust gas of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2016121547A true JP2016121547A (en) 2016-07-07

Family

ID=56328252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014260298A Pending JP2016121547A (en) 2014-12-24 2014-12-24 System and method of purifying exhaust gas of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2016121547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016217301A (en) * 2015-05-25 2016-12-22 日本特殊陶業株式会社 Ammonia generator and ammonia generation control device
JP2018100600A (en) * 2016-12-19 2018-06-28 いすゞ自動車株式会社 Exhaust emission control system and poisoning control method for exhaust emission control system
US10300435B2 (en) 2015-02-26 2019-05-28 Ngk Spark Plug Co., Ltd. Ammonia generation apparatus and ammonia generation control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10300435B2 (en) 2015-02-26 2019-05-28 Ngk Spark Plug Co., Ltd. Ammonia generation apparatus and ammonia generation control apparatus
JP2016217301A (en) * 2015-05-25 2016-12-22 日本特殊陶業株式会社 Ammonia generator and ammonia generation control device
JP2018100600A (en) * 2016-12-19 2018-06-28 いすゞ自動車株式会社 Exhaust emission control system and poisoning control method for exhaust emission control system

Similar Documents

Publication Publication Date Title
JP4542455B2 (en) Exhaust gas purification device for internal combustion engine
JP2009138737A (en) Exhaust emission control method and exhaust emission control device of engine
JP2006233936A (en) Exhaust emission control device for internal combustion engine
US10040029B2 (en) Efficient lean NOx trap regeneration with enchanced ammonia formation
US11346266B2 (en) Engine exhaust aftertreatment device and method
JP2011111945A (en) Exhaust emission control device
US8661799B2 (en) Exhaust system for an internal combustion engine
EP1550796A1 (en) Method for controlling the temperature of the exhaust gases in an engine and the relative engine apparatus
JP2008157188A (en) Emission purifying device
JP2016121547A (en) System and method of purifying exhaust gas of internal combustion engine
JP5716687B2 (en) Exhaust gas purification device for internal combustion engine
JP6319561B2 (en) Exhaust purification system
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP2016079861A (en) NOx PURIFICATION SYSTEM FOR INTERNAL COMBUSTION ENGINE
JP6112297B2 (en) Engine exhaust purification system
JP2017031942A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP4893493B2 (en) Exhaust gas purification device for internal combustion engine
KR100892538B1 (en) Exhaust gas after treatment system for improvement in no occlusion performance during dpf regeneration
JP2008232055A (en) Exhaust emission control system for internal combustion engine
JP2016023579A (en) NOx REDUCTION CONTROL METHOD IN EXHAUST GAS POST-TREATMENT DEVICE
JP6593015B2 (en) Exhaust gas purification system for internal combustion engine and internal combustion engine
JP6264554B2 (en) Exhaust purification system
JP2017031940A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2016133007A (en) Exhaust processing system and exhaust processing method
GB2547205A (en) An exhaust system