JP2000265828A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000265828A
JP2000265828A JP11065692A JP6569299A JP2000265828A JP 2000265828 A JP2000265828 A JP 2000265828A JP 11065692 A JP11065692 A JP 11065692A JP 6569299 A JP6569299 A JP 6569299A JP 2000265828 A JP2000265828 A JP 2000265828A
Authority
JP
Japan
Prior art keywords
exhaust gas
reduction catalyst
internal combustion
combustion engine
ammonia compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11065692A
Other languages
Japanese (ja)
Other versions
JP3518398B2 (en
Inventor
Kazuhiro Ito
和浩 伊藤
Toshiaki Tanaka
俊明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP06569299A priority Critical patent/JP3518398B2/en
Priority to FR0002782A priority patent/FR2790789B1/en
Priority to DE10011612A priority patent/DE10011612B4/en
Publication of JP2000265828A publication Critical patent/JP2000265828A/en
Application granted granted Critical
Publication of JP3518398B2 publication Critical patent/JP3518398B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0878Bypassing absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, capable of purifying NOx in a range of operation areas as wider as possible as compared with that in the past. SOLUTION: An NOx absorption and reduction catalyst 3 capable of occluding NOx when the air-fuel ratio of exhaust gas is lean, and of emitting and reducing occluded NOx when the oxygen concentration in exhaust gas is lowered, is provided for the exhaust passage of a lean combustion type internal combustion engine, and the engine is also provided with an urea selective reducing catalyst 4 capable of letting reduction take place while urea is being added, and it is so devised that exhaust emission control is performed by two catalysts while they are mutually compensating for exhaust emission control roughly in the whole range of operation areas for the internal combustion engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関の排気浄化
装置に係り、特に、希薄燃焼式の内燃機関から排出され
る排気ガス中のNOx 等を浄化する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly to an apparatus for purifying NOx and the like in exhaust gas discharged from a lean burn type internal combustion engine.

【0002】[0002]

【従来の技術】希薄燃焼式内燃機関の排気浄化装置とし
て、例えば、特許第2605580号に記載された装置
が知られている。
2. Description of the Related Art As an exhaust gas purifying apparatus for a lean-burn internal combustion engine, for example, an apparatus described in Japanese Patent No. 2605580 is known.

【0003】この装置は、流入する排気ガスの空燃比が
リーンであるときにNOx を吸収し、流入する排気ガス
の酸素濃度を低下させると吸収したNOx を放出するN
Ox吸収剤を排気通路に配置した装置であり、排気ガス
の酸素濃度を低下させるために、内燃機関において燃料
を噴射して未燃ガス(還元剤)を生成するリッチスパイ
ク制御を行っている。このことは、NOx の浄化のため
の還元剤が内燃機関経由でNOx 吸収剤へと供給される
ことを意味している。
This device absorbs NOx when the air-fuel ratio of the inflowing exhaust gas is lean, and releases the absorbed NOx when the oxygen concentration of the inflowing exhaust gas is reduced.
This is a device in which an Ox absorbent is disposed in an exhaust passage, and performs a rich spike control for injecting fuel in an internal combustion engine to generate unburned gas (reducing agent) in order to reduce the oxygen concentration of the exhaust gas. This means that the reducing agent for purifying NOx is supplied to the NOx absorbent via the internal combustion engine.

【0004】[0004]

【発明が解決しようとする課題】前記したような、内燃
機関から還元剤を供給する排気浄化装置では、内燃機関
が希薄燃焼式であった場合で、高回転、高負荷下におい
てもリーン状態で運転したいという要請があるものの、
そのような運転状態ではリッチスパイクにより還元剤を
NOx 吸収剤(NOx 触媒)に供給することができな
い。
In the exhaust gas purifying apparatus for supplying the reducing agent from the internal combustion engine as described above, when the internal combustion engine is of the lean burn type, the exhaust gas purifying apparatus is in a lean state even at a high speed and a high load. Although there is a request to drive,
In such an operating state, the reducing agent cannot be supplied to the NOx absorbent (NOx catalyst) due to rich spikes.

【0005】空燃比をリッチにするためには、スロット
ルを絞って吸入空気量を減らす必要があるが、内燃機関
が高回転高負荷かつリーン燃焼で運転されるときに、そ
のようなリッチ条件を形成すると燃料の燃焼に支障が来
たし、スモークが発生するからである。
In order to make the air-fuel ratio rich, it is necessary to reduce the intake air amount by reducing the throttle. However, when the internal combustion engine is operated at a high speed and a high load and lean combustion, such a rich condition is required. If it is formed, the combustion of fuel will be hindered, and smoke will be generated.

【0006】そこで、リーン燃焼をあきらめストイキ
(理論空燃比)での燃焼を行えばよいが、それでは内燃
機関を希薄燃焼式としてリーン燃焼による燃費の向上を
図ることができない。
Therefore, it is only necessary to give up lean combustion and perform stoichiometric combustion (stoichiometric air-fuel ratio). However, it is not possible to improve the fuel efficiency by lean combustion using an internal combustion engine of a lean burn type.

【0007】また、HCやHを還元剤とする選択還元触
媒を設けることも考えられるが、そのようなHCやHを
還元剤とする選択還元触媒では高回転高負荷状態では、
高温のためにNOx 浄化率が低い。
[0007] It is also conceivable to provide a selective reduction catalyst using HC or H as a reducing agent. However, such a selective reduction catalyst using HC or H as a reducing agent has a problem in a high rotation and high load state.
NOx purification rate is low due to high temperature.

【0008】このようなことから、全運転領域でNOx
を浄化することが困難であった。本発明はこのような点
に鑑みなされたもので、従来に比べて可能な限り広い運
転領域でNOx の浄化を行うことのできる内燃機関の排
気浄化装置の提供を課題とする。
[0008] From such a fact, NOx in the entire operation range.
Was difficult to purify. SUMMARY OF THE INVENTION The present invention has been made in view of such a point, and it is an object of the present invention to provide an exhaust gas purifying apparatus for an internal combustion engine which can purify NOx in an operation range as wide as possible as compared with the related art.

【0009】[0009]

【課題を解決するための手段】本発明は、前記課題を解
決するため、以下の手段を採った。すなわち、本発明の
内燃機関の排気浄化装置は、希薄燃焼式内燃機関の排気
通路に、内燃機関から排出された排気ガスの空燃比がリ
ーンのときにNOx を吸蔵し、排気ガス中の酸素濃度が
低下すると吸蔵したNOx を放出・還元するNOx吸蔵
還元型触媒と、アンモニア化合物添加により選択還元が
行われるアンモニア化合物選択還元触媒とを備えたこと
を特徴とする。
The present invention adopts the following means in order to solve the above-mentioned problems. That is, the exhaust gas purifying apparatus for an internal combustion engine according to the present invention stores NOx in the exhaust passage of the lean burn type internal combustion engine when the air-fuel ratio of the exhaust gas discharged from the internal combustion engine is lean, and reduces the oxygen concentration in the exhaust gas. A NOx storage-reduction type catalyst that releases and reduces the stored NOx when the NOx reduction occurs, and an ammonia compound selective reduction catalyst that performs selective reduction by adding an ammonia compound.

【0010】本発明が適用される内燃機関は希薄燃焼式
のディーゼルエンジンやガソリンエンジンであり、筒内
噴射式のエンジンを含む。NOx 吸蔵還元型触媒は、内
燃機関が高回転高負荷のリーン燃焼下で運転されている
ときNOx 吸収剤に吸収されたNOx が触媒によって還
元されず、NOx吸収剤が還元されないため、NOx 浄
化が不可能となる。しかし高回転高負荷の運転条件下で
は、アンモニア化合物選択還元触媒が機能し、NOx を
浄化する。よって、NOx 吸蔵還元型触媒のみを設けた
場合に比較して、NOx 浄化を行える運転領域が広が
る。
The internal combustion engine to which the present invention is applied is a lean burn type diesel engine or gasoline engine, and includes a direct injection type engine. In the NOx storage reduction type catalyst, when the internal combustion engine is operated under high speed and high load lean combustion, NOx absorbed by the NOx absorbent is not reduced by the catalyst and the NOx absorbent is not reduced. Impossible. However, under high-rotation, high-load operating conditions, the ammonia compound selective reduction catalyst functions to purify NOx. Therefore, compared with the case where only the NOx storage reduction type catalyst is provided, the operating range in which NOx can be purified is widened.

【0011】なお、NOx 吸蔵還元型触媒に還元剤を内
燃機関経由で供給する場合を前提として本発明がなされ
たが、内燃機関に接続された排気通路に還元剤を供給す
るタイプの装置であっても、本発明を適用することには
何ら差し支えない。
The present invention has been made on the premise that the reducing agent is supplied to the NOx storage-reduction catalyst via the internal combustion engine. However, this device is of a type for supplying the reducing agent to an exhaust passage connected to the internal combustion engine. However, there is no problem in applying the present invention.

【0012】ここで、内燃機関の運転状態を検出する運
転状態検出手段を備えるとともに、前記運転状態検出手
段により検出した内燃機関の運転状態に従って、前記N
Ox吸蔵還元型触媒とアンモニア化合物選択還元触媒と
のいずれか一方に排気ガス流を切り換える切換手段とを
備えると、運転状態に従ってNOx 浄化に適切な触媒を
選択できる。
Here, there is provided an operating state detecting means for detecting an operating state of the internal combustion engine, and the N is determined according to the operating state of the internal combustion engine detected by the operating state detecting means.
If one of the Ox storage reduction type catalyst and the ammonia compound selective reduction catalyst is provided with a switching means for switching the exhaust gas flow, an appropriate catalyst for NOx purification can be selected according to the operation state.

【0013】例えば、運転状態検出手段で検出した運転
状態が所定の高回転高負荷値以下のとき、前記NOx 吸
蔵還元型触媒を選択し、検出した運転状態が所定の高回
転高負荷値を越えたとき、アンモニア化合物選択還元触
媒を選択する。
For example, when the operating state detected by the operating state detecting means is equal to or less than a predetermined high rotation high load value, the NOx storage reduction type catalyst is selected, and the detected operating state exceeds the predetermined high rotation high load value. Then, an ammonia compound selective reduction catalyst is selected.

【0014】なお、検出すべき運転状態とは、NOx 吸
蔵還元型触媒の還元不能領域となる運転領域であり、こ
こでは所定の高回転高負荷運転状態のときに還元不能と
してアンモニア化合物選択還元触媒による排気浄化を行
う。よって、このような運転状態を検出するためには、
機関回転数、機関負荷のいずれかあるいは双方の他、吸
入空気量、スロットル開度など、NOx 吸蔵還元型触媒
の還元不能領域を直接的あるいは間接的に示すことので
きるパラメータを用いることができる。
The operating state to be detected is an operating area in which the NOx occlusion reduction type catalyst cannot be reduced. In this case, it is determined that reduction cannot be performed in a predetermined high-speed high-load operating state. Exhaust gas purification is performed. Therefore, in order to detect such an operation state,
In addition to one or both of the engine speed and the engine load, parameters that can directly or indirectly indicate the non-reducible region of the NOx storage reduction catalyst, such as the intake air amount and the throttle opening, can be used.

【0015】ここで、前記NOx 吸蔵還元型触媒と前記
アンモニア化合物選択還元触媒とを排気通路に直列に配
置することができる。この場合、前記アンモニア化合物
選択還元触媒を、排気通路において前記NOx 吸蔵還元
型触媒の下流側に配置してもよいし、前記アンモニア化
合物選択還元触媒を、排気通路において前記NOx 吸蔵
還元型触媒の上流側に配置してもよい。
Here, the NOx storage reduction catalyst and the ammonia compound selective reduction catalyst can be arranged in series in an exhaust passage. In this case, the ammonia compound selective reduction catalyst may be disposed downstream of the NOx storage reduction catalyst in the exhaust passage, or the ammonia compound selective reduction catalyst may be disposed upstream of the NOx storage reduction catalyst in the exhaust passage. It may be arranged on the side.

【0016】このように直列に配置する場合、上流側に
配置された触媒を迂回して排気ガスを下流側の触媒に案
内するバイパス路を備え、前記切換手段によってバイパ
ス路を開閉することで排気ガス流を切り換えるようにす
るとよい。
In the case where the exhaust gas is arranged in series as described above, the exhaust gas is provided by bypassing the catalyst arranged on the upstream side and guiding the exhaust gas to the catalyst on the downstream side. The gas flow may be switched.

【0017】また、前記NOx 吸蔵還元型触媒と前記ア
ンモニア化合物選択還元触媒とを排気通路に並列に配置
することも可能である。
It is also possible to arrange the NOx storage reduction type catalyst and the ammonia compound selective reduction catalyst in parallel in an exhaust passage.

【0018】並列に配置する場合、排気通路を互いに並
列な第1の排気通路と第2の排気通路とに分岐せしめ、
第1の排気通路に前記NOx 吸蔵還元型触媒を配置し、
第2の排気通路に前記アンモニア化合物選択還元触媒を
配置し、前記切換手段として、切換弁を前記第1の排気
通路と第2の排気通路との分岐点に配置し、運転状況に
応じて切換弁による切換で第1の排気通路と第2の排気
通路とのいずれかを選択するようにすることができる。
In the case of the parallel arrangement, the exhaust passage is branched into a first exhaust passage and a second exhaust passage which are parallel to each other,
Disposing the NOx storage reduction catalyst in a first exhaust passage;
The ammonia compound selective reduction catalyst is disposed in a second exhaust passage, and a switching valve is disposed at the branch point between the first exhaust passage and the second exhaust passage as the switching means, and is switched according to an operating condition. Either the first exhaust passage or the second exhaust passage can be selected by switching using a valve.

【0019】以上のような構成とすることで、運転状況
に応じて、NOx 吸蔵還元型触媒とアンモニア化合物選
択還元触媒とが互いに補完しあう形で機能する。従っ
て、一方の排気浄化触媒だけの場合に比較して、可能な
限り広範囲の運転領域で排気浄化を行うことができる。
With the above-described structure, the NOx storage reduction catalyst and the ammonia compound selective reduction catalyst function in such a manner that they complement each other according to the operating conditions. Therefore, exhaust gas purification can be performed in as wide a range of operation as possible as compared with the case of using only one exhaust gas purification catalyst.

【0020】さらに、前記アンモニア化合物選択還元触
媒に流入する排気ガス中のNOx 量と、内燃機関の吸入
空気量とから前記アンモニア化合物選択還元触媒に添加
すべきアンモニア化合物量を推定する添加アンモニア化
合物量決定手段を前記各構成からなる排気浄化装置に備
えると、添加すべきアンモニア化合物量を容易に決定で
きる。
Further, the amount of added ammonia compound for estimating the amount of ammonia compound to be added to the ammonia compound selective reduction catalyst from the amount of NOx in exhaust gas flowing into the ammonia compound selective reduction catalyst and the amount of intake air of the internal combustion engine. When the determining means is provided in the exhaust gas purifying apparatus having the above-described configurations, the amount of the ammonia compound to be added can be easily determined.

【0021】さらに、前記アンモニア化合物選択還元触
媒から流出するアンモニア化合物を検出するアンモニア
化合物検出手段と、このアンモニア化合物検出手段で検
出したアンモニア化合物検出量から添加すべきアンモニ
ア化合物量を適正な添加量に修正する制御手段を備えれ
ば、より正確に添加アンモニア化合物量を制御すること
ができ、より効果的な排気浄化を行うことができる。な
お、アンモニア化合物選択還元触媒で使用する還元剤と
してのアンモニア化合物としては、尿素、カルバミン酸
アンモニウム等が挙げられる。以上説明した本発明の各
構成は、可能な限り互いに組み合わせることができる。
Further, an ammonia compound detecting means for detecting an ammonia compound flowing out of the ammonia compound selective reduction catalyst, and an ammonia compound amount to be added is adjusted to an appropriate addition amount based on the ammonia compound detection amount detected by the ammonia compound detecting means. If the control means for correcting is provided, the amount of added ammonia compound can be controlled more accurately, and more effective exhaust gas purification can be performed. In addition, urea, ammonium carbamate, etc. are mentioned as an ammonia compound as a reducing agent used in an ammonia compound selective reduction catalyst. The components of the present invention described above can be combined with each other as much as possible.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照しつつ説明する。なお、以下の例では、アンモニア
化合物として尿素を使用した場合である。
Embodiments of the present invention will be described below with reference to the drawings. In the following example, urea is used as the ammonia compound.

【0023】<実施形態1>図1に示した例は、筒内噴
射式である希薄燃焼式ガソリンエンジン1の排気管2
に、NOx 吸蔵還元型触媒3とアンモニア化合物選択還
元触媒としての尿素選択還元触媒4とを直列に配置した
例であり、尿素選択還元触媒4はNOx 吸蔵還元型触媒
3の下流側に配置してある。
<Embodiment 1> An example shown in FIG. 1 is an exhaust pipe 2 of a lean-burn gasoline engine 1 which is a direct injection type.
In this example, the NOx occlusion reduction catalyst 3 and the urea selective reduction catalyst 4 as an ammonia compound selective reduction catalyst are arranged in series. The urea selective reduction catalyst 4 is arranged downstream of the NOx occlusion reduction catalyst 3. is there.

【0024】このエンジン1では、例えば次式に基づい
て燃料噴射時間TAUが算出される。 TAU=TP・K ここで、TPは基本燃料噴射時間を示しており、Kは補
正係数を示している。基本燃料噴射時間TPは機関シリ
ンダ内に供給される混合気の空燃比を理論空燃比とする
のに必要な燃料噴射時間を示している。この基本燃料噴
射時間TPは予め実験により求められ、機関負荷Q/N
(吸入空気量Q/機関回転数N)および機関回転数Nの
関数として、マップの形で予めROM内に記憶されてい
る。
In the engine 1, the fuel injection time TAU is calculated based on, for example, the following equation. TAU = TP · K Here, TP indicates a basic fuel injection time, and K indicates a correction coefficient. The basic fuel injection time TP indicates a fuel injection time required for setting the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder to the stoichiometric air-fuel ratio. This basic fuel injection time TP is obtained in advance by an experiment, and the engine load Q / N
As a function of (intake air amount Q / engine speed N) and engine speed N, they are stored in the ROM in advance in the form of a map.

【0025】補正係数Kは機関シリンダ内に供給される
混合気の空燃比を制御するための係数であって、K=
1.0であれば機関シリンダ内に供給される混合気は理
論空燃比(ストイキ)となる。これに対してK<1.0
になれば機関シリンダ内に供給される混合気の空燃比は
理論空燃比よりも大きくなり、すなわちリーンとなり、
K>1.0になれば機関シリンダ内に供給される混合気
の空燃比は理論空燃比よりも小さくなり、すなわちリッ
チとなる。
The correction coefficient K is a coefficient for controlling the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder.
If it is 1.0, the air-fuel mixture supplied to the engine cylinder has a stoichiometric air-fuel ratio. On the other hand, K <1.0
, The air-fuel ratio of the air-fuel mixture supplied into the engine cylinder becomes larger than the stoichiometric air-fuel ratio, that is, lean,
When K> 1.0, the air-fuel ratio of the air-fuel mixture supplied into the engine cylinder becomes smaller than the stoichiometric air-fuel ratio, that is, becomes rich.

【0026】そして、このエンジン1では、機関低中負
荷運転領域では補正係数Kの値が1.0よりも小さい値
とされてリーン空燃比制御が行われ、機関高負荷運転領
域、エンジン1始動時の暖機運転時、加速時、および例
えば120km/h以上の定速運転時には補正係数Kの
値が1.0とされてストイキ制御が行われ、機関全負荷
運転領域では補正係数Kの値は1.0よりも大きな値と
されてリッチ空燃比制御が行われるように設定してあ
る。
In the engine 1, in the engine low-medium load operation region, the value of the correction coefficient K is set to a value smaller than 1.0 to perform the lean air-fuel ratio control. During warm-up operation, acceleration, and at a constant speed operation of, for example, 120 km / h or more, the value of the correction coefficient K is set to 1.0 and the stoichiometric control is performed. Is set to a value larger than 1.0 and rich air-fuel ratio control is performed.

【0027】内燃機関では通常、低中負荷運転される頻
度が最も高く、従って、運転期間中の大部分において補
正係数Kの値が1.0よりも小さくされて、リーン混合
気が燃焼せしめられることになる。
In an internal combustion engine, low-medium load operation is usually performed most frequently. Therefore, during most of the operation period, the value of the correction coefficient K is made smaller than 1.0, and the lean mixture is burned. Will be.

【0028】前記NOx 吸蔵還元型触媒3は、例えばア
ルミナを担体とし、この担体上に例えばカリウムK、ナ
トリウムNa、リチウムLi、セシウムCsのようなア
ルカリ金属、バリウムBa、カルシウムCaのようなア
ルカリ土類、ランタンLa、イットリウムYのような希
土類から選ばれた少なくとも一つと、白金Ptのような
貴金属とが担持されている。機関吸気通路およびNOx
吸蔵還元型触媒3上流での排気通路内に供給された空気
および燃料(炭化水素)の比をNOx 吸蔵還元型触媒3
への流入排気ガスの空燃比と称するとき、このNOx 吸
蔵還元型触媒3は、流入排気ガスの空燃比がリーンのと
きはNOx を吸収し、流入排気ガス中の酸素濃度が低下
すると吸収したNOx を放出する。
The NOx storage-reduction catalyst 3 uses, for example, alumina as a carrier, and on the carrier, for example, an alkali metal such as potassium K, sodium Na, lithium Li, and cesium Cs, and an alkaline earth such as barium Ba and calcium Ca. And at least one selected from rare earths such as lanthanum La and yttrium Y, and a noble metal such as platinum Pt. Engine intake passage and NOx
The ratio of air and fuel (hydrocarbon) supplied into the exhaust passage upstream of the NOx storage reduction catalyst 3
When referred to as the air-fuel ratio of the inflowing exhaust gas, the NOx storage reduction catalyst 3 absorbs NOx when the inflowing exhaust gas has a lean air-fuel ratio, and absorbs the NOx when the oxygen concentration in the inflowing exhaust gas decreases. Release.

【0029】なお、NOx 吸蔵還元型触媒3上流の排気
通路内に燃料(炭化水素)あるいは空気が供給されない
場合、流入排気ガスの空燃比は燃焼室内に供給される混
合気の空燃比に一致し、従って、この場合には、NOx
吸蔵還元型触媒3は燃焼室内に供給される混合気の空燃
比がリーンのときには、NOx を吸収し、燃焼室内に供
給される混合気中の酸素濃度が低下すると吸収したNO
x を放出・還元する。
When fuel (hydrocarbon) or air is not supplied into the exhaust passage upstream of the NOx storage reduction catalyst 3, the air-fuel ratio of the inflowing exhaust gas matches the air-fuel ratio of the air-fuel mixture supplied into the combustion chamber. Therefore, in this case, NOx
The storage reduction catalyst 3 absorbs NOx when the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber is lean, and absorbs NOx when the oxygen concentration in the air-fuel mixture supplied to the combustion chamber decreases.
Release and reduce x.

【0030】NOx 吸蔵還元型触媒3でのNOx 吸収・
還元は、図2に示したようなメカニズムで行われると考
えられている。このメカニズムは、担体上に白金Ptお
よびバリウムBaを担持させた場合であるが、他の貴金
属,アルカリ金属,アルカリ土類,希土類を用いても同
様のメカニズムとなる。
NOx absorption and reduction in the NOx storage reduction catalyst 3
It is believed that the reduction is performed by a mechanism as shown in FIG. This mechanism is a case where platinum Pt and barium Ba are supported on a carrier, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths, and rare earths.

【0031】まず、排気ガスがかなりリーンになると排
気ガス中の酸素濃度が大巾に増大するため、図2(A)
に示すように酸素O2 がO2 -またはO2-の形で白金Pt
の表面に付着する。次に、排気ガスに含まれるNOは、
白金Ptの表面上でO2 -またはO2-と反応し、NO2
なる(2NO+O2 →2NO2 )。
First, when the exhaust gas becomes considerably lean, the oxygen concentration in the exhaust gas greatly increases.
Oxygen O 2 is O 2 as shown in - or platinum Pt in O 2- in the form
Adheres to the surface of Next, NO contained in the exhaust gas
O 2 on the surface of the platinum Pt - or reacts with O 2-, the NO 2 (2NO + O 2 → 2NO 2).

【0032】その後、生成されたNO2 は、NOx 吸蔵
還元型触媒3のNOx 吸収能力が飽和しない限り、白金
Pt上で酸化されながら触媒内に吸収されて酸化バリウ
ムBaOと結合し、図2(A)に示されるように硝酸イ
オンNO3 -の形でNOx 吸蔵還元型触媒3内に拡散す
る。このようにしてNOx がNOx 吸蔵還元型触媒3内
に吸収される。
Thereafter, as long as the NOx absorption capacity of the NOx storage reduction catalyst 3 is not saturated, the generated NO 2 is absorbed into the catalyst while being oxidized on the platinum Pt and combined with the barium oxide BaO, as shown in FIG. nitrate ions NO as shown in a) 3 - diffuses in the NOx storage reduction catalyst 3 in the form of. In this way, NOx is absorbed in the NOx storage reduction type catalyst 3.

【0033】これに対し、排気ガス中の酸素濃度が低下
した場合は、NO2の生成量が低下し、前記反応とは逆
の反応によって、NOx 吸蔵還元型触媒3内の硝酸イオ
ンNO3 -は、NO2 またはNOの形でNOx 吸蔵還元型
触媒3から放出される。
On the other hand, when the oxygen concentration in the exhaust gas decreases, the amount of produced NO 2 decreases, and the nitrate ion NO 3 in the NOx storage reduction catalyst 3 is reduced by the reverse reaction. Is released from the NOx storage reduction catalyst 3 in the form of NO 2 or NO.

【0034】つまり、NOx は、排気ガス中の酸素濃度
が低下すると、NOx 吸蔵還元型触媒3から放出される
ことになる。図3に示されたように、流入排気ガスのリ
ーン度合いが低くなれば、流入排気ガス中の酸素濃度が
低下し、従って、流入排気ガスのリーン度合いを低くす
れば、たとえ流入排気ガスの空燃比がリーンであっても
NOx 吸蔵還元型触媒3からNOx が放出されることと
なる。
That is, NOx is released from the NOx storage reduction catalyst 3 when the oxygen concentration in the exhaust gas decreases. As shown in FIG. 3, if the lean degree of the inflowing exhaust gas is reduced, the oxygen concentration in the inflowing exhaust gas is reduced. Even when the fuel ratio is lean, NOx is released from the NOx storage reduction catalyst 3.

【0035】一方、このとき、燃焼室内に供給する混合
気がストイキあるいはリッチにされて、排気ガスの空燃
比がストイキあるいはリッチになると、図3に示すよう
に多量の未燃HC,COがエンジン1から排出される。
これら未燃HC,COは、白金Pt上の酸素O2 -または
2-とすぐに反応して酸化される。
On the other hand, at this time, when the air-fuel mixture supplied to the combustion chamber is made stoichiometric or rich and the air-fuel ratio of the exhaust gas becomes stoichiometric or rich, as shown in FIG. Emitted from 1.
These unburned HC and CO are immediately oxidized by reacting with oxygen O 2 - or O 2- on platinum Pt.

【0036】また、流入排気ガスの空燃比がストイキあ
るいはリッチになると、排気ガス中の酸素濃度は極度に
低下するため、NOx 吸蔵還元型触媒3は、NO2 また
はNOを放出する。このNO2 またはNOは、図2
(B)に示すように、未燃HC、COと反応して還元さ
れる。このようにして白金Pt上のNO2 またはNOが
存在しなくなると、触媒から次から次へとNO2 または
NOが放出される。従って、流入排気ガスの空燃比をリ
ッチにすると短時間の内にNOx 吸蔵還元型触媒3から
NOx が放出される。白金Pt上のO2 -またはO2-を消
費しても未燃HC,COが残っていれば、NOx 吸蔵還
元型触媒3から放出されたNOx も、エンジン1から排
出されたNOx も、この未燃HC,COによって還元さ
れる。
When the air-fuel ratio of the inflowing exhaust gas becomes stoichiometric or rich, the oxygen concentration in the exhaust gas is extremely reduced, so that the NOx storage reduction catalyst 3 releases NO 2 or NO. This NO 2 or NO is shown in FIG.
As shown in (B), it is reduced by reacting with unburned HC and CO. When NO 2 or NO on the platinum Pt disappears in this way, NO 2 or NO is released from the catalyst one after another. Therefore, when the air-fuel ratio of the inflowing exhaust gas is made rich, NOx is released from the NOx storage reduction catalyst 3 within a short time. Platinum Pt on the O 2 - or O 2- unburned be consumed HC, any remaining CO is, NOx released from the NOx storage reduction catalyst 3 also, even NOx discharged from the engine 1, the It is reduced by unburned HC and CO.

【0037】従って、流入排気ガスの空燃比をリッチに
すれば短時間の内にNOx 吸蔵還元型触媒3に吸収され
ているNOx が放出され、しかも、この放出されたNO
x が還元されるために大気中にNOx が排出されるのを
阻止することができる。
Therefore, if the air-fuel ratio of the inflowing exhaust gas is made rich, the NOx absorbed in the NOx storage reduction catalyst 3 is released within a short time, and the released NOx is also released.
NOx can be prevented from being discharged into the atmosphere due to reduction of x.

【0038】また、NOx 吸蔵還元型触媒3は還元触媒
の機能を有しているので、流入排気ガスの空燃比を理論
空燃比にしてもNOx 吸蔵還元型触媒3から放出された
NOx が還元される。しかし、流入排気ガスの空燃比を
理論空燃比にした場合、NOx 吸蔵還元型触媒3からは
NOx が徐々にしか放出されないため、NOx 吸蔵還元
型触媒3に吸収されている全NOx を放出するには長い
時間を要する。
Further, since the NOx storage-reduction catalyst 3 has the function of a reduction catalyst, the NOx released from the NOx storage-reduction catalyst 3 is reduced even if the air-fuel ratio of the inflowing exhaust gas is set to the stoichiometric air-fuel ratio. You. However, when the air-fuel ratio of the inflowing exhaust gas is set to the stoichiometric air-fuel ratio, NOx is gradually released from the NOx storage-reduction catalyst 3, so that all the NOx absorbed by the NOx storage-reduction catalyst 3 is released. Takes a long time.

【0039】流入排気ガスの空燃比をリーンの度合いを
低くすればたとえ流入排気ガスの空燃比がリーンであっ
たとしても、NOx 吸蔵還元型触媒3からNOx が放出
される。従って、NOx 吸蔵還元型触媒3からNOx を
放出させるには、流入排気ガス中の酸素濃度を低下させ
ればよいこととなる。
If the air-fuel ratio of the inflowing exhaust gas is made lower, the NOx is released from the NOx storage reduction catalyst 3 even if the air-fuel ratio of the inflowing exhaust gas is lean. Therefore, in order to release NOx from the NOx storage reduction catalyst 3, the oxygen concentration in the inflowing exhaust gas should be reduced.

【0040】次に、前記尿素選択還元触媒4は、NOx
触媒に尿素添加により選択還元を行うものである。ここ
でいうNOx 触媒は、第4、5および6周期の遷移元素
の酸化物および/または希土類の酸化物を含有するゼオ
ライト触媒を例示できる。特に好ましくは、Al23
Ti、Vを担持した触媒が例示できる。
Next, the urea selective reduction catalyst 4
The selective reduction is performed by adding urea to the catalyst. The NOx catalyst mentioned here can be exemplified by a zeolite catalyst containing an oxide of a transition element and / or a rare earth oxide in the fourth, fifth and sixth cycles. Particularly preferred is a catalyst in which Ti and V are supported on Al 2 O 3 .

【0041】この触媒上に尿素水溶液が添加されると、
所定の排気温度下、排気中の窒素酸化物が以下の反応式
のように還元される。
When an aqueous urea solution is added to the catalyst,
At a predetermined exhaust temperature, nitrogen oxides in the exhaust are reduced according to the following reaction formula.

【0042】 (NH22CO+H2O→2NH3 X+CO2 …(1) 4NH3 X+4NO+O2→4N2+6H2O …(2)(NH 2 ) 2 CO + H 2 O → 2NH 3 X + CO 2 (1) 4NH 3 X + 4NO + O 2 → 4N 2 + 6H 2 O (2)

【0043】以上説明した、NOx 吸蔵還元型触媒3と
尿素選択還元触媒4とを互いに補完的に機能させるた
め、本例では、NOx 吸蔵還元型触媒3の下流側で尿素
選択還元触媒4の上流側に、NOx センサ5と、尿素添
加制御弁6とを備えている。NOx センサ5はNOx 吸
蔵還元型触媒3の直下流側であり、尿素添加制御弁6の
上流側に位置する。また、尿素選択還元触媒4の直上流
側には触媒入ガス温度センサ7が配置されるとともに、
尿素選択還元触媒4の下流側にアンモニアセンサ8が配
置されている。
In order to make the NOx occlusion reduction type catalyst 3 and the urea selective reduction catalyst 4 function complementarily to each other as described above, in this embodiment, the downstream side of the NOx occlusion reduction type catalyst 3 and the upstream side of the urea selective reduction catalyst 4 On the side, a NOx sensor 5 and a urea addition control valve 6 are provided. The NOx sensor 5 is located immediately downstream of the NOx storage reduction catalyst 3 and upstream of the urea addition control valve 6. Further, a catalyst input gas temperature sensor 7 is disposed immediately upstream of the urea selective reduction catalyst 4, and
An ammonia sensor 8 is arranged downstream of the urea selective reduction catalyst 4.

【0044】NOx センサ5、尿素添加制御弁6、触媒
入ガス温度センサ7、アンモニアセンサ8はそれぞれコ
ンピュータからなる制御装置(ECU)9に電気的に接
続されている。さらに、機関回転数を検出するための回
転数センサが設けられ、このセンサもまた制御装置(E
CU)9に接続されている。
The NOx sensor 5, the urea addition control valve 6, the catalyst-containing gas temperature sensor 7, and the ammonia sensor 8 are each electrically connected to a control unit (ECU) 9 composed of a computer. Further, a speed sensor for detecting the engine speed is provided, and this sensor is also provided by the control device (E
CU) 9.

【0045】これらセンサ等からの情報により、各触媒
の状態ひいては内燃機関の運転状態が検出される。そし
て、これらセンサ等から入力されるデータから内燃機関
の運転状態を検出する運転状態検出手段10が前記制御
装置(ECU)9のコンピュータ上に実現されている。
さらに、検出した運転状態に応じて、前記尿素添加制御
弁6に尿素添加指令を出すとともに、添加量を制御する
尿素添加量制御手段11もまた、前記制御装置(EC
U)9のコンピュータ上に実現されている。なお、尿素
添加量制御手段11により尿素が添加されるとき、その
添加中であることを運転者に表示する還元剤インジケー
タ12がメーターパネル等13に設けられている。
Based on the information from these sensors and the like, the state of each catalyst and the operating state of the internal combustion engine are detected. Operating state detecting means 10 for detecting the operating state of the internal combustion engine from data input from these sensors and the like is implemented on a computer of the control device (ECU) 9.
Further, in response to the detected operating state, the urea addition control valve 6 issues a urea addition command and controls the addition amount.
U) 9 is implemented on the computer. When urea is added by the urea addition amount control means 11, a reducing agent indicator 12 for indicating to the driver that urea is being added is provided on a meter panel 13 or the like.

【0046】NOx センサ5は前記NOx 吸蔵還元型触
媒3を経由した排気ガス中のNOx濃度、すなわち、尿
素選択還元触媒4への入ガス中のNOx 濃度を検出す
る。前記尿素添加量制御手段11は、NOx センサ5に
より検出されたNOx 濃度と、図示しないエアフローメ
ータにより検出された空気量により内燃機関から排出さ
れるNOx 量を求め、求められたNOx 量から尿素選択
還元触媒4に添加すべき尿素量を推定する添加尿素量決
定手段を有し、その推定値に従った量の尿素を添加する
よう指令する。
The NOx sensor 5 detects the NOx concentration in the exhaust gas passing through the NOx occlusion reduction type catalyst 3, that is, the NOx concentration in the gas entering the urea selective reduction catalyst 4. The urea addition amount control means 11 obtains the NOx amount discharged from the internal combustion engine based on the NOx concentration detected by the NOx sensor 5 and the air amount detected by an air flow meter (not shown), and selects urea from the obtained NOx amount. It has an added urea amount determining means for estimating the amount of urea to be added to the reduction catalyst 4, and instructs to add an amount of urea according to the estimated value.

【0047】ここで、尿素量を推定するため、検出した
NOx 量と添加すべき尿素量との関係を予め定めたマッ
プをROMに記憶させておくとよい。なお、NOx セン
サ5の代わりにアクセル開度、ひいては燃料噴射量、機
関回転数、EGR制御装置によるEGR量などからNO
x 量を推定してもよい。また、内燃機関の吸入空気量は
エアフローメータでの検出に代えた他の手段、例えば、
スロットル開度などによってもよい。
Here, in order to estimate the amount of urea, a map in which the relationship between the detected amount of NOx and the amount of urea to be added may be stored in advance in the ROM. It should be noted that, instead of the NOx sensor 5, the accelerator opening, the fuel injection amount, the engine speed, the EGR amount by the EGR control device, etc.
The x amount may be estimated. Further, the intake air amount of the internal combustion engine is other means instead of detection with an air flow meter, for example,
It may be based on the throttle opening.

【0048】触媒入ガス温度センサ7は、尿素選択還元
触媒4へ流入する排気ガスの温度を検出する触媒温度検
出手段として機能し、この温度から尿素選択還元触媒4
の活性化状態を判定することができる。この触媒への入
ガス温度が低いときは、触媒の浄化能力が低いので、尿
素添加量制御手段11において、尿素添加量を減らす。
なお、触媒への入ガス温度(触媒温度)と尿素添加量と
の関係は予めマップとしてROMに記憶しておく。
The catalyst-input gas temperature sensor 7 functions as a catalyst temperature detecting means for detecting the temperature of the exhaust gas flowing into the urea selective reduction catalyst 4.
Can be determined. When the temperature of the gas entering the catalyst is low, the purifying ability of the catalyst is low, so the urea addition amount control means 11 reduces the urea addition amount.
The relationship between the temperature of gas entering the catalyst (catalyst temperature) and the amount of urea added is stored in the ROM in advance as a map.

【0049】アンモニアセンサ8は、尿素添加量の補正
に使用する。すなわち、尿素選択還元触媒4の下流側に
あるアンモニアセンサ8によりアンモニアを検出すると
いうことは、NOx 量以上に、添加された尿素が多すぎ
ることを意味する。このため、アンモニアセンサ8で検
出したアンモニア検出量を尿素添加量制御手段11にフ
ィードバックして、添加すべき尿素量を適正な目標値に
修正するフィードバック制御手段を備えている。この制
御手段もまた尿素添加量制御手段11の一部として制御
装置(ECU)9のコンピュータ上に実現されている。
The ammonia sensor 8 is used for correcting the amount of urea added. That is, detecting ammonia by the ammonia sensor 8 downstream of the urea selective reduction catalyst 4 means that the added urea is too much more than the NOx amount. Therefore, a feedback control unit is provided which feeds back the detected amount of ammonia detected by the ammonia sensor 8 to the urea addition amount control unit 11 and corrects the amount of urea to be added to an appropriate target value. This control means is also realized on a computer of the control device (ECU) 9 as a part of the urea addition amount control means 11.

【0050】以下、本例による排気浄化制御を説明す
る。内燃機関が運転されると、筒内で燃料が燃焼される
ことにより、排気ガスが排出され、排出されたガスは排
気管2内を流れ、NOx 吸蔵還元型触媒3と尿素選択還
元触媒4とを順次通過して図示しないマフラーを通り、
大気へと放出される。
Hereinafter, the exhaust gas purification control according to this embodiment will be described. When the internal combustion engine is operated, fuel is burned in the cylinder to discharge exhaust gas, and the discharged gas flows in the exhaust pipe 2, and the NOx storage reduction catalyst 3 and the urea selective reduction catalyst 4 Through the muffler (not shown)
Released to the atmosphere.

【0051】本例では、NOx 吸蔵還元型触媒3での浄
化領域を越えた高負荷高回転の機関運転領域において尿
素選択還元触媒4が機能することで、可能な限り広い領
域での排気浄化を行う。
In this embodiment, the urea selective reduction catalyst 4 functions in the high-load and high-speed engine operation region beyond the purification region of the NOx storage reduction type catalyst 3, thereby purifying exhaust gas in the widest possible range. Do.

【0052】まず、所定の高負荷高回転領域でない場
合、NOx 吸蔵還元型触媒3において、上記した原理で
NOx の吸蔵と還元が繰り替えされ、排気浄化が行われ
る。すなわち、NOx 吸蔵還元型触媒3からNOx が放
出されるとき、流入排気ガスの空燃比をリッチにして、
NOx 吸蔵還元型触媒3において放出したNOx を還元
する。
First, when the engine speed is not in the predetermined high-load, high-speed region, the NOx storage-reduction catalyst 3 repeats the storage and reduction of NOx according to the above-described principle, thereby purifying the exhaust gas. That is, when NOx is released from the NOx storage reduction catalyst 3, the air-fuel ratio of the inflowing exhaust gas is made rich,
The released NOx is reduced in the NOx storage reduction type catalyst 3.

【0053】一方、内燃機関が所定の高負荷高回転とな
った場合に、スロットルを絞り吸入空気量を減らすなど
して、空燃比をリッチにすると、吸入空気量(酸素量)
が減ることに起因して、燃料が未燃状態となっていわゆ
るスモークが発生してしまう。よって、所定の高負荷高
回転の運転領域ではNOx 吸蔵還元型触媒3よるNOx
の還元を行うことができない。
On the other hand, if the air-fuel ratio is made rich by reducing the throttle and reducing the intake air amount when the internal combustion engine has reached a predetermined high load and high speed, the intake air amount (oxygen amount)
As a result, the fuel becomes unburned and so-called smoke is generated. Therefore, in a predetermined high-load and high-speed operation region, the NOx storage reduction catalyst 3
Cannot be reduced.

【0054】そこで、このような運転領域であること
を、運転状態検出手段10が検出したことを受けて、尿
素添加量制御手段11が前記尿素添加制御弁6に尿素添
加指令を出す。尿素添加制御弁6からは尿素水溶液が噴
射され、これにより、上記した原理によって、排気浄化
がなされる。
Therefore, in response to the detection of the operating state by the operating state detecting means 10, the urea addition amount control means 11 issues a urea addition command to the urea addition control valve 6. An aqueous urea solution is injected from the urea addition control valve 6, whereby the exhaust gas is purified according to the above-described principle.

【0055】この間NOx センサ5により、NOx 吸蔵
還元型触媒3で浄化されずに吹き抜けたNOx の濃度を
検出し、この検出値を受けて、制御装置(ECU)9の
尿素添加量制御手段11は、NOx 濃度と、内燃機関へ
の吸入空気量により内燃機関から排出されるNOx 量を
求め、その値から尿素選択還元触媒4に添加すべき尿素
量を添加尿素量決定手段によって推定し、その推定値に
従った量の尿素を添加するよう尿素添加制御弁6に指令
する。
During this time, the NOx sensor 5 detects the concentration of NOx that has flowed through without being purified by the NOx storage-reduction catalyst 3, and upon receiving this detection value, the urea addition amount control means 11 of the control unit (ECU) 9 The NOx amount discharged from the internal combustion engine is determined from the NOx concentration and the intake air amount to the internal combustion engine, and the urea amount to be added to the urea selective reduction catalyst 4 is estimated from the obtained value by the added urea amount determining means. The urea addition control valve 6 is commanded to add urea in an amount according to the value.

【0056】また、触媒入ガス温度センサ7により尿素
選択還元触媒4への入ガス温度が測定され、その検出値
の高低に応じて、制御装置(ECU)9の尿素添加量制
御手段11において、尿素添加量を増減する。
The temperature of the gas entering the urea selective reduction catalyst 4 is measured by the catalyst entering gas temperature sensor 7, and the urea addition amount control means 11 of the control unit (ECU) 9 Increase or decrease the amount of urea added.

【0057】さらに、アンモニアセンサ8が尿素選択還
元触媒4を通過した出ガス中のアンモニア濃度を検出し
ており、この検出値を受けて、尿素添加量制御手段11
におけるフィードバック制御手段は、尿素選択還元触媒
4を通過した排気ガス中のアンモニア濃度が少なくなる
方向に、添加尿素量を修正する。
Further, the ammonia sensor 8 detects the concentration of ammonia in the exhaust gas that has passed through the urea selective reduction catalyst 4.
The feedback control means in (1) corrects the added urea amount in a direction in which the ammonia concentration in the exhaust gas passing through the urea selective reduction catalyst 4 decreases.

【0058】このようにして、NOx 吸蔵還元型触媒3
と尿素選択還元触媒4とで排気浄化が行われるが、ここ
で、NOx 吸蔵還元型触媒3と尿素選択還元触媒4によ
る排気浄化の補完関係を図4に示す。図4における
(A)はNOx 吸蔵還元型触媒3による浄化可能領域を
示し、図4における(B)は尿素選択還元触媒4による
浄化可能領域を示す。
Thus, the NOx storage reduction catalyst 3
The exhaust gas purification is performed by the NOx storage reduction catalyst 3 and the urea selective reduction catalyst 4. The complementary relationship between the NOx storage reduction catalyst 3 and the urea selective reduction catalyst 4 is shown in FIG. 4A shows a purifiable region by the NOx storage reduction catalyst 3, and FIG. 4B shows a purifiable region by the urea selective reduction catalyst 4. As shown in FIG.

【0059】また、図5に、NOx 吸蔵還元型触媒3と
尿素選択還元触媒4における排気温度と浄化率との関係
を示す。図5の(A)はNOx 吸蔵還元型触媒3による
浄化可能領域を示し、図4における(B)は尿素選択還
元触媒4による浄化可能領域を示す。図5から明らかな
ように排気温度の低い領域でNOx 吸蔵還元型触媒3が
機能し、排気温度の高い領域で尿素選択還元触媒4が機
能することが理解される。
FIG. 5 shows the relationship between the exhaust gas temperature and the purification rate in the NOx occlusion reduction type catalyst 3 and the urea selective reduction catalyst 4. FIG. 5A shows a purifiable region by the NOx storage reduction catalyst 3, and FIG. 4B shows a purifiable region by the urea selective reduction catalyst 4. As shown in FIG. As is clear from FIG. 5, it is understood that the NOx occlusion reduction type catalyst 3 functions in a region where the exhaust gas temperature is low, and the urea selective reduction catalyst 4 functions in a region where the exhaust gas temperature is high.

【0060】なお、本実施形態において、NOx 吸蔵還
元型触媒3と尿素選択還元触媒4の位置を交換してもよ
い。
In the present embodiment, the positions of the NOx storage reduction catalyst 3 and the urea selective reduction catalyst 4 may be exchanged.

【0061】<実施形態2>次に、図6に従って他の実
施形態を説明する。図6では、実施形態1で示した構成
に、さらに、スタートキャット21を備えた構成であ
る。スタートキャット21は、内燃機関にできるだけ近
い排気管2内に設けたNOx 触媒のことで、機関始動時
に、NOx 吸蔵還元型触媒3が暖められる前に内燃機関
から出されるNOx を浄化する。スタートキャット21
はNOx 吸蔵還元型触媒3の前段で内燃機関に近い部分
に配置されるため、機関の始動時に排気ガスによって速
やかに加熱され、浄化領域に昇温される。
<Embodiment 2> Next, another embodiment will be described with reference to FIG. FIG. 6 shows a configuration in which a start cat 21 is further provided in the configuration shown in the first embodiment. The start cat 21 is a NOx catalyst provided in the exhaust pipe 2 as close as possible to the internal combustion engine, and purifies NOx emitted from the internal combustion engine before the NOx storage reduction catalyst 3 is warmed up at the time of engine start. Start cat 21
Is disposed in a portion near the internal combustion engine in front of the NOx storage reduction catalyst 3, so that it is quickly heated by the exhaust gas when the engine is started, and the temperature is raised to the purification region.

【0062】<実施形態3>図7に示したように、この
実施形態に示した排気浄化装置は、図1に示した構成に
加えて、上流側に配置されたNOx 吸蔵還元型触媒3を
迂回して排気ガスを下流側の触媒に案内するバイパス路
31を有している。
<Embodiment 3> As shown in FIG. 7, the exhaust gas purifying apparatus shown in this embodiment uses the NOx storage reduction catalyst 3 arranged on the upstream side in addition to the configuration shown in FIG. It has a bypass 31 that bypasses and guides exhaust gas to the downstream catalyst.

【0063】排気管2とバイパス路31との分岐点に
は、切換手段として、バイパス路31を開閉することで
排気ガス流を切り換える切換弁32が設けられている。
At a branch point between the exhaust pipe 2 and the bypass passage 31, a switching valve 32 is provided as switching means for switching the exhaust gas flow by opening and closing the bypass passage 31.

【0064】この切換弁32は、前記制御装置(EC
U)9に電気的に接続されて制御される電磁弁である。
そして、切換弁32は、運転状態検出手段10によりN
Ox 吸蔵還元型触媒3が機能する運転領域であるとされ
たとき、バイパス路31を閉じ、NOx 吸蔵還元型触媒
3へと排気ガスが流れるようにする。また、内燃機関が
高負荷高回転の運転状態となったときは、この状態を検
出して切換弁32でバイパス路31を開くとともに、N
Ox 吸蔵還元型触媒3への排気ガス通路を閉ざし、排気
ガスがバイパス路31から直接尿素選択還元触媒4へ流
入するようにしてある。
The switching valve 32 is connected to the control device (EC
U) The solenoid valve is electrically connected to and controlled by 9.
Then, the switching valve 32 is set to N
When it is determined that the operating range is such that the Ox storage reduction catalyst 3 functions, the bypass passage 31 is closed to allow the exhaust gas to flow to the NOx storage reduction catalyst 3. When the internal combustion engine is in a high-load, high-speed operation state, this state is detected, the switching valve 32 opens the bypass passage 31, and the N
The exhaust gas passage to the Ox storage reduction catalyst 3 is closed so that the exhaust gas flows directly from the bypass passage 31 into the urea selective reduction catalyst 4.

【0065】従って、運転状態検出手段10で検出した
内燃機関の運転状態が高負荷高回転でない場合、制御装
置からの指令で切換弁32がバイパス路31を閉じ、N
Ox吸蔵還元型触媒3へと排気ガスを流し、運転状態検
出手段10で検出した内燃機関の運転状態が高負荷高回
転である場合、制御装置からの指令で切換弁32がバイ
パス路31を開き、NOx 吸蔵還元型触媒3への排気ガ
ス流路を閉ざして、排気ガスをバイパス路31から直接
尿素選択還元触媒4へと流す。このような運転領域であ
ることを、運転状態検出手段10が検出したことを受け
て、尿素添加量制御手段11が前記尿素添加制御弁6に
尿素添加指令を出す。尿素添加制御弁6からは尿素水溶
液が噴射され、これにより、上記した原理によって、排
気浄化がなされる。
Therefore, when the operation state of the internal combustion engine detected by the operation state detection means 10 is not high load and high speed, the switching valve 32 closes the bypass passage 31 by a command from the control device, and N
When the exhaust gas flows into the Ox storage reduction type catalyst 3 and the operating state of the internal combustion engine detected by the operating state detecting means 10 is high load and high speed, the switching valve 32 opens the bypass passage 31 by a command from the control device. The exhaust gas flow path to the NOx storage reduction catalyst 3 is closed, and the exhaust gas flows from the bypass path 31 directly to the urea selective reduction catalyst 4. The urea addition amount control means 11 issues a urea addition command to the urea addition control valve 6 in response to the detection of the operation state by the operation state detection means 10. An aqueous urea solution is injected from the urea addition control valve 6, whereby the exhaust gas is purified according to the above-described principle.

【0066】<実施形態4>図8に示したように、この
実施形態に示した排気浄化装置は、排気通路を互いに並
列な第1の排気通路41と第2の排気通路42とに分岐
せしめ、第1の排気通路41にNOx 吸蔵還元型触媒を
配置し、第2の排気通路42に尿素選択還元触媒4を配
置した構成である。
<Embodiment 4> As shown in FIG. 8, in the exhaust gas purifying apparatus shown in this embodiment, the exhaust passage is branched into a first exhaust passage 41 and a second exhaust passage 42 which are parallel to each other. The first exhaust passage 41 has a configuration in which a NOx storage reduction catalyst is disposed, and the second exhaust passage 42 has a urea selective reduction catalyst 4 disposed therein.

【0067】そして、前記切換手段として、切換弁32
を前記第1の排気通路41と第2の排気通路42との分
岐点に配置してある。そして、図1に示した構成と同様
に、NOx センサ5が尿素選択還元触媒4のの上流側に
設けられているとともに、尿素選択還元触媒4の直上流
側に触媒入ガス温度センサ7が設けられ、かつ、尿素選
択還元触媒4の下流側にアンモニアセンサ8が設けられ
ている。さらに、尿素選択還元触媒4の直上流側に尿素
添加制御弁6が設けられている。
A switching valve 32 is used as the switching means.
Is disposed at a branch point between the first exhaust passage 41 and the second exhaust passage 42. As in the configuration shown in FIG. 1, a NOx sensor 5 is provided on the upstream side of the urea selective reduction catalyst 4, and a catalyst input gas temperature sensor 7 is provided on the upstream side of the urea selective reduction catalyst 4. In addition, an ammonia sensor 8 is provided downstream of the urea selective reduction catalyst 4. Further, a urea addition control valve 6 is provided immediately upstream of the urea selective reduction catalyst 4.

【0068】前記切換弁32は、前記制御装置(EC
U)9に電気的に接続されて制御される電磁弁である。
そして、切換弁32は、運転状態検出手段10によりN
Ox 吸蔵還元型触媒3が機能する運転領域であるとされ
たとき、第1の排気通路41を選択してNOx 吸蔵還元
型触媒3へと排気ガスが流れるようにする。NOx 吸蔵
還元型触媒3での排気浄化は上記した通りである。
The switching valve 32 is connected to the control device (EC
U) The solenoid valve is electrically connected to and controlled by 9.
Then, the switching valve 32 is set to N
When it is determined that the operating range is such that the Ox storage reduction catalyst 3 functions, the first exhaust passage 41 is selected so that the exhaust gas flows to the NOx storage reduction catalyst 3. Exhaust gas purification by the NOx storage reduction catalyst 3 is as described above.

【0069】また、内燃機関が高負荷高回転の運転状態
となったときは、この状態を検出して切換弁32が第2
の排気通路42を選択して排気ガスが尿素選択還元触媒
4へ流入するようにしてある。尿素選択還元触媒4が選
択された場合、尿素添加量制御手段11が前記尿素添加
制御弁6に尿素添加指令を出す。尿素添加制御弁6から
は尿素水溶液が噴射され、これにより、上記した原理に
よって、排気浄化がなされる。
When the internal combustion engine is in a high-load, high-speed operation state, this state is detected and the switching valve 32 is switched to the second state.
And the exhaust gas flows into the urea selective reduction catalyst 4. When the urea selective reduction catalyst 4 is selected, the urea addition amount control means 11 issues a urea addition command to the urea addition control valve 6. An aqueous urea solution is injected from the urea addition control valve 6, whereby the exhaust gas is purified according to the above-described principle.

【0070】〔他の実施の形態〕前述した実施の形態で
は本発明をガソリンエンジン1に適用した例で説明した
が、本発明をディーゼルエンジンに適用することができ
ることは勿論である。ディーゼルエンジンの場合は、燃
焼室での燃焼がストイキよりもはるかにリーン域で行わ
れるので、通常の機関運転状態ではNOx 吸蔵還元型触
媒3に流入する排気ガスの空燃比は非常にリーンであ
り、NOx の吸収は行われるものの、NOxの放出が行
われることは殆どない。
[Other Embodiments] In the above embodiment, the present invention is applied to the gasoline engine 1, but it goes without saying that the present invention can be applied to a diesel engine. In the case of a diesel engine, the combustion in the combustion chamber is performed in a much leaner region than the stoichiometric condition, so that the air-fuel ratio of the exhaust gas flowing into the NOx storage reduction catalyst 3 is very lean under a normal engine operating condition. , NOx is absorbed, but NOx is hardly released.

【0071】そこで、ディーゼルエンジンでは、例えば
排気再循環装置(いわゆる、EGR装置)を導入し、排
気再循環ガスを多量に燃焼室に導入することによって、
排気ガスの空燃比をストイキまたはリッチにして、触媒
に吸収されているNOx を放出させることができる。
Therefore, in a diesel engine, for example, an exhaust gas recirculation device (so-called EGR device) is introduced, and a large amount of exhaust gas recirculation gas is introduced into the combustion chamber.
The air-fuel ratio of the exhaust gas can be made stoichiometric or rich to release the NOx absorbed by the catalyst.

【0072】[0072]

【発明の効果】本発明の内燃機関の排気浄化装置によれ
ば、互いに排気浄化領域を補完しあうNOx 吸蔵還元型
触媒と、アンモニア化合物選択還元触媒とを備えたの
で、可能な限り広い運転領域での排気浄化を行うことが
できる。
According to the exhaust gas purifying apparatus for an internal combustion engine of the present invention, since the NOx storage reduction type catalyst and the ammonia compound selective reduction catalyst which complement each other in the exhaust gas purifying area are provided, the operating range is as wide as possible. Exhaust gas purification can be performed.

【0073】ここで、内燃機関の運転状態を検出する運
転状態検出手段を備え、内燃機関の運転状態に従って、
前記NOx 吸蔵還元型触媒とアンモニア化合物選択還元
触媒とのいずれか一方に排気ガス流を切換手段で切り換
えることにより、運転状態に応じて最適な触媒を選択で
きる。
Here, operating state detecting means for detecting the operating state of the internal combustion engine is provided, and according to the operating state of the internal combustion engine,
By switching the exhaust gas flow to one of the NOx storage reduction type catalyst and the ammonia compound selective reduction catalyst by the switching means, an optimum catalyst can be selected according to the operating state.

【0074】さらに、添加アンモニア化合物量決定手段
により、前記アンモニア化合物選択還元触媒に流入する
排気ガス中のNOx 量と内燃機関の吸入空気量とから、
アンモニア化合物選択還元触媒に添加すべきアンモニア
化合物量を容易に決定できる。
Further, the amount of added ammonia compound is determined from the amount of NOx in the exhaust gas flowing into the ammonia compound selective reduction catalyst and the amount of intake air of the internal combustion engine by the means for determining the amount of added ammonia compound.
The amount of ammonia compound to be added to the ammonia compound selective reduction catalyst can be easily determined.

【0075】しかも、アンモニア化合物選択還元触媒か
ら流出するアンモニア化合物をアンモニア化合物検出手
段で検出し、この検出したアンモニア化合物検出量から
添加すべきアンモニア化合物量を適正な添加量に制御手
段で修正するようにすれば、より正確に添加アンモニア
化合物量を制御することができ、より効果的な排気浄化
を行うことができる。
In addition, the ammonia compound flowing out of the ammonia compound selective reduction catalyst is detected by the ammonia compound detection means, and the amount of the ammonia compound to be added is corrected to the appropriate addition amount by the control means based on the detected ammonia compound detection amount. By doing so, the amount of added ammonia compound can be controlled more accurately, and more effective exhaust gas purification can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る内燃機関の排気浄化装置の第1
の実施形態の概略構成図である。
FIG. 1 shows a first embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention.
It is a schematic structure figure of an embodiment.

【図2】 吸蔵還元型NOx 触媒のNOx 吸放出作用を
説明するための図である。
FIG. 2 is a diagram for explaining the NOx absorbing / releasing action of a storage reduction type NOx catalyst.

【図3】 機関から排出される排気ガス中の未燃HC,
COおよび酸素の濃度を概略的に示す線図である。
FIG. 3 Unburned HC in exhaust gas discharged from the engine,
FIG. 3 is a diagram schematically showing the concentrations of CO and oxygen.

【図4】 機関回転数および機関負荷との関係で触媒に
よる排気浄化領域を示したグラフ図である。
FIG. 4 is a graph showing an exhaust gas purification region using a catalyst in relation to an engine speed and an engine load.

【図5】 排気温度と排気浄化率との関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between an exhaust gas temperature and an exhaust gas purification rate.

【図6】 第2の実施形態を示す図である。FIG. 6 is a diagram showing a second embodiment.

【図7】 第3の実施形態を示す図である。FIG. 7 is a diagram showing a third embodiment.

【図8】 第4の実施形態を示す図である。FIG. 8 is a diagram showing a fourth embodiment.

【符号の説明】[Explanation of symbols]

1 エンジン 2 排気管 3 吸蔵還元型触媒 4 アンモニア化合物(尿素)選択還
元触媒 5 NOx センサ 6 アンモニア化合物添加制御弁(還
元剤供給手段) 7 触媒入ガス温度センサ 8 アンモニアセンサ(アンモニア化
合物検出手段) 9 制御装置(ECU) 10 運転状態検出手段 11 アンモニア化合物(尿素)添加量
制御手段 (添加アンモニア化合物(尿素)量決定手段) 12 還元剤インジケータ 13 メーターパネル等 21 スタートキャット 31 バイパス路 32 切換弁(切換手段) 41 第1の排気通路 42 第2の排気通路
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust pipe 3 Storage-reduction catalyst 4 Ammonia compound (urea) selective reduction catalyst 5 NOx sensor 6 Ammonia compound addition control valve (reducing agent supply means) 7 Catalyst gas temperature sensor 8 Ammonia sensor (ammonia compound detection means) 9 Control device (ECU) 10 Operating state detection means 11 Ammonia compound (urea) addition amount control means (Additional ammonia compound (urea) amount determination means) 12 Reducing agent indicator 13 Meter panel etc. 21 Start cat 31 Bypass path 32 Switching valve (switching) Means) 41 First exhaust passage 42 Second exhaust passage

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/08 F01N 3/20 N B 3/20 3/24 E B01D 53/36 ZABE 3/24 101A Fターム(参考) 3G091 AA02 AA11 AA12 AA17 AA18 AA24 AA28 AB05 AB06 BA03 BA14 BA33 CA12 CA13 CA16 CA17 CA18 CB02 CB07 CB08 DA01 DA02 DA03 DB06 DB10 DC03 EA01 EA03 EA05 EA07 EA33 FA01 FA04 FA09 FA12 FA13 FA14 FA17 FA18 FB03 FB10 FB11 FB12 GB01W GB01X GB02W GB03W GB04W GB05W GB06W GB09X GB10X GB16X HA08 HA11 HA12 HA36 HA37 HA38 HB02 HB05 4D048 AA06 AB02 AC04 BA03Y BA07Y BA11Y BA15X BA23Y BA30X BA39X CA01 CC25 CC26 DA01 DA02 DA06 DA08 DA09 DA10 EA04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/08 F01N 3/20 NB 3/20 3/24 E B01D 53/36 ZABE 3/24 101A F Terms (reference) 3G091 AA02 AA11 AA12 AA17 AA18 AA24 AA28 AB05 AB06 BA03 BA14 BA33 CA12 CA13 CA16 CA17 CA18 CB02 CB07 CB08 DA01 DA02 DA03 DB06 DB10 DC03 EA01 EA03 EA05 EA07 EA33 FA01 FA04 FA09 FA12 FA13 FB03 GB02W GB03W GB04W GB05W GB06W GB09X GB10X GB16X HA08 HA11 HA12 HA36 HA37 HA38 HB02 HB05 4D048 AA06 AB02 AC04 BA03Y BA07Y BA11Y BA15X BA23Y BA30X BA39X CA01 CC25 CC26 DA01 DA02 DA06 DA08 DA09 DA10 EA04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 希薄燃焼式内燃機関の排気通路に、内燃
機関から排出された排気ガスの空燃比がリーンのときに
NOx を吸蔵し、排気ガス中の酸素濃度が低下すると吸
蔵したNOx を放出・還元するNOx 吸蔵還元型触媒
と、アンモニア化合物添加により選択還元が行われるア
ンモニア化合物選択還元触媒とを備えたことを特徴とす
る内燃機関の排気浄化装置。
1. An exhaust passage of a lean-burn internal combustion engine stores NOx when the air-fuel ratio of exhaust gas discharged from the internal combustion engine is lean, and releases the stored NOx when the oxygen concentration in the exhaust gas decreases. An exhaust gas purification device for an internal combustion engine, comprising: a NOx storage reduction catalyst to be reduced; and an ammonia compound selective reduction catalyst that performs selective reduction by adding an ammonia compound.
【請求項2】 内燃機関の運転状態を検出する運転状態
検出手段を備えるとともに、前記運転状態検出手段によ
り検出した内燃機関の運転状態に従って、前記NOx 吸
蔵還元型触媒とアンモニア化合物選択還元触媒とのいず
れか一方に排気ガス流を切り換える切換手段とを備えた
ことを特徴とする請求項1記載の内燃機関の排気浄化装
置。
2. An operating condition detecting means for detecting an operating condition of the internal combustion engine, wherein the NOx storage-reduction catalyst and the ammonia compound selective reducing catalyst are connected in accordance with the operating condition of the internal combustion engine detected by the operating condition detecting device. 2. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, further comprising a switching means for switching an exhaust gas flow in one of the exhaust gas purifying apparatuses.
【請求項3】 前記NOx 吸蔵還元型触媒と前記アンモ
ニア化合物選択還元触媒とを排気通路に直列に配置した
ことを特徴とする請求項1または2記載の内燃機関の排
気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein said NOx storage reduction catalyst and said ammonia compound selective reduction catalyst are arranged in series in an exhaust passage.
【請求項4】 前記アンモニア化合物選択還元触媒を、
排気通路において前記NOx 吸蔵還元型触媒の下流側に
配置したことを特徴とする請求項3記載の内燃機関の排
気浄化装置。
4. The ammonia compound selective reduction catalyst,
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas purifying device is disposed downstream of the NOx storage reduction catalyst.
【請求項5】 前記アンモニア化合物選択還元触媒を、
排気通路において前記NOx 吸蔵還元型触媒の上流側に
配置したことを特徴とする請求項3記載の内燃機関の排
気浄化装置。
5. The ammonia compound selective reduction catalyst,
4. The exhaust gas purifying apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas purifying device is disposed upstream of the NOx storage reduction catalyst.
【請求項6】 前記NOx 吸蔵還元型触媒と前記アンモ
ニア化合物選択還元触媒とを排気通路に並列に配置した
ことを特徴とする請求項1または2記載の内燃機関の排
気浄化装置。
6. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein the NOx storage reduction catalyst and the ammonia compound selective reduction catalyst are arranged in parallel in an exhaust passage.
【請求項7】 上流側に配置された触媒を迂回して排気
ガスを下流側の触媒に案内するバイパス路を備え、前記
切換手段は、バイパス路を開閉することで排気ガス流を
切り換えることを特徴とする請求項3記載の排気浄化装
置。
7. A bypass passage for bypassing a catalyst disposed on an upstream side and guiding exhaust gas to a catalyst on a downstream side, wherein the switching means switches an exhaust gas flow by opening and closing the bypass passage. The exhaust gas purifying apparatus according to claim 3, characterized in that:
【請求項8】 排気通路を互いに並列な第1の排気通路
と第2の排気通路とに分岐せしめ、第1の排気通路に前
記NOx 吸蔵還元型触媒を配置し、第2の排気通路に前
記アンモニア化合物選択還元触媒を配置し、前記切換手
段として、切換弁を前記第1の排気通路と第2の排気通
路との分岐点に配置したことを特徴とする請求項6記載
の内燃機関の排気浄化装置。
8. An exhaust passage is branched into a first exhaust passage and a second exhaust passage which are parallel to each other, the NOx storage reduction catalyst is disposed in the first exhaust passage, and the NOx storage reduction catalyst is disposed in the second exhaust passage. 7. The exhaust gas of an internal combustion engine according to claim 6, wherein an ammonia compound selective reduction catalyst is disposed, and a switching valve is disposed at a branch point between the first exhaust passage and the second exhaust passage as the switching means. Purification device.
【請求項9】 前記アンモニア化合物選択還元触媒に流
入する排気ガス中のNOx 量と、内燃機関の吸入空気量
とから前記アンモニア化合物選択還元触媒に添加すべき
アンモニア化合物量を推定する添加アンモニア化合物量
決定手段を備えた請求項1から8のいずれかに記載の内
燃機関の排気浄化装置。
9. The amount of added ammonia compound for estimating the amount of ammonia compound to be added to the ammonia compound selective reduction catalyst from the amount of NOx in exhaust gas flowing into the ammonia compound selective reduction catalyst and the amount of intake air of the internal combustion engine. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 8, further comprising a determination unit.
【請求項10】 前記アンモニア化合物選択還元触媒か
ら流出するアンモニア化合物を検出するアンモニア化合
物検出手段と、このアンモニア化合物検出手段で検出し
たアンモニア化合物検出量から添加すべきアンモニア化
合物量を適正な添加量に修正する制御手段とを備えた請
求項9記載の内燃機関の排気浄化装置。
10. An ammonia compound detecting means for detecting an ammonia compound flowing out from said ammonia compound selective reduction catalyst, and an ammonia compound amount to be added is adjusted to an appropriate addition amount based on the ammonia compound detection amount detected by said ammonia compound detecting means. The exhaust gas purifying apparatus for an internal combustion engine according to claim 9, further comprising control means for correcting the exhaust gas.
【請求項11】 アンモニア化合物選択還元触媒の温度
状態を検出する触媒温度検出手段と、検出した触媒温度
によって、アンモニア化合物選択還元触媒へのアンモニ
ア化合物添加量を増減するアンモニア化合物添加量制御
手段とを備えた請求項1から10のいずれかに記載の内
燃機関の排気浄化装置。
11. A catalyst temperature detecting means for detecting a temperature state of an ammonia compound selective reduction catalyst, and an ammonia compound addition amount controlling means for increasing / decreasing an ammonia compound addition amount to the ammonia compound selective reduction catalyst according to the detected catalyst temperature. The exhaust gas purification device for an internal combustion engine according to any one of claims 1 to 10, further comprising:
JP06569299A 1999-03-11 1999-03-11 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3518398B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06569299A JP3518398B2 (en) 1999-03-11 1999-03-11 Exhaust gas purification device for internal combustion engine
FR0002782A FR2790789B1 (en) 1999-03-11 2000-03-03 EMISSION CONTROL APPARATUS FOR INTERNAL COMBUSTION ENGINE
DE10011612A DE10011612B4 (en) 1999-03-11 2000-03-10 Emission control device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06569299A JP3518398B2 (en) 1999-03-11 1999-03-11 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2000265828A true JP2000265828A (en) 2000-09-26
JP3518398B2 JP3518398B2 (en) 2004-04-12

Family

ID=13294333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06569299A Expired - Lifetime JP3518398B2 (en) 1999-03-11 1999-03-11 Exhaust gas purification device for internal combustion engine

Country Status (3)

Country Link
JP (1) JP3518398B2 (en)
DE (1) DE10011612B4 (en)
FR (1) FR2790789B1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US6698188B2 (en) 2000-12-08 2004-03-02 Toyota Jidosha Kabushiki Kaisha Emission control apparatus of internal combustion engine
WO2004025091A1 (en) * 2002-09-10 2004-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarifying device for internal combustion engine
JP2006512529A (en) * 2003-01-02 2006-04-13 ダイムラークライスラー・アクチェンゲゼルシャフト Exhaust gas aftertreatment device and method
JP2007032431A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Exhaust emission control device
US7313911B2 (en) 2003-02-26 2008-01-01 Umicore Ag & Co. Kg Method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust-gas purification system therefor
JP2008280949A (en) * 2007-05-11 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008291706A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008291739A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2009019951A1 (en) * 2007-08-08 2009-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2009097471A (en) * 2007-10-18 2009-05-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2010031718A (en) * 2008-07-28 2010-02-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2010507037A (en) * 2006-10-11 2010-03-04 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Dual injector device for reducing diesel emissions
WO2010087369A1 (en) * 2009-01-30 2010-08-05 三菱重工業株式会社 Exhaust gas cleaning device
WO2010087370A1 (en) * 2009-01-30 2010-08-05 三菱重工業株式会社 Exhaust gas purifying apparatus
JP2010216274A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Power generating system and method for generating power
WO2010140262A1 (en) * 2009-06-03 2010-12-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2010147107A1 (en) * 2009-06-18 2010-12-23 Udトラックス株式会社 Exhaust purification device and exhaust purification method, for engine
JP2011149360A (en) * 2010-01-22 2011-08-04 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2014033883A1 (en) 2012-08-30 2014-03-06 トヨタ自動車 株式会社 Additive supply device for internal combustion engines
WO2014115303A1 (en) 2013-01-25 2014-07-31 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
KR101498182B1 (en) * 2014-11-25 2015-03-04 세종공업 주식회사 Exhaust gas purification apparatus
US9051860B2 (en) 2010-05-20 2015-06-09 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
DE102016200207A1 (en) 2015-01-13 2016-07-14 Honda Motor Co., Ltd. Emission control system for internal combustion engines
DE102016200464A1 (en) 2015-01-21 2016-07-21 Honda Motor Co., Ltd. Emission control system for internal combustion engines
JP2016211507A (en) * 2015-05-13 2016-12-15 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2017078584A (en) * 2015-10-19 2017-04-27 本田技研工業株式会社 Humidity estimation method and internal combustion engine exhaust purification system
JP6230006B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230003B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230004B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230007B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230008B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230009B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP2018003747A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine
US20180038301A1 (en) * 2016-08-02 2018-02-08 Mazda Motor Corporation Exhaust emission control system of engine
JP2019190419A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle
JP2019190417A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100420A1 (en) 2001-01-08 2002-07-11 Bosch Gmbh Robert Method and device for controlling an exhaust gas aftertreatment system
JP3726705B2 (en) * 2001-05-11 2005-12-14 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10164833A1 (en) * 2001-07-03 2004-06-09 Daimlerchrysler Ag Internal combustion engine with exhaust aftertreatment device and operating method therefor
JP3815289B2 (en) * 2001-10-19 2006-08-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3800065B2 (en) * 2001-10-26 2006-07-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10211781B4 (en) * 2002-03-16 2004-08-12 Innecken Elektrotechnik Gmbh & Co. Kg Method and device for monitoring and regulating the operation of an internal combustion engine with reduced NOx emissions
JP3757894B2 (en) * 2002-04-15 2006-03-22 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine and exhaust purification method for internal combustion engine
US6732507B1 (en) * 2002-12-30 2004-05-11 Southwest Research Institute NOx aftertreatment system and method for internal combustion engines
DE10308287B4 (en) * 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Process for exhaust gas purification
US7213395B2 (en) 2004-07-14 2007-05-08 Eaton Corporation Hybrid catalyst system for exhaust emissions reduction
SE530028C2 (en) * 2006-06-28 2008-02-12 Scania Cv Abp Method and apparatus for the treatment of exhaust gases and vehicles
WO2008022751A2 (en) * 2006-08-19 2008-02-28 Umicore Ag & Co. Kg Method for operating an exhaust-gas purification system in a lean-burn spark-ignition engine
JP4404098B2 (en) * 2007-02-07 2010-01-27 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
GB2460825A (en) 2008-06-06 2009-12-16 Delphi Tech Inc Reagent dosing system
DE102009000804B4 (en) * 2009-02-12 2013-07-04 Ford Global Technologies, Llc emission control system
WO2012029050A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved no oxidation activity
WO2012029051A1 (en) 2010-09-02 2012-03-08 Basf Se Catalyst for gasoline lean burn engines with improved nh3-formation activity
US9242242B2 (en) 2010-09-02 2016-01-26 Basf Se Catalyst for gasoline lean burn engines with improved NO oxidation activity
US8950174B2 (en) 2010-09-02 2015-02-10 Basf Se Catalysts for gasoline lean burn engines with improved NH3-formation activity
DE102013213292B4 (en) 2013-07-08 2015-02-26 Ford Global Technologies, Llc (N.D.Ges.D. Staates Delaware) Combustion engine with cylinder deactivation and method for cylinder deactivation
DE202013103022U1 (en) 2013-07-08 2013-07-18 Ford Global Technologies, Llc Internal combustion engine with cylinder deactivation
DE102013213294A1 (en) 2013-07-08 2015-01-08 Ford Global Technologies, Llc (N.D.Ges.D. Staates Delaware) Combustion engine with cylinder deactivation and method for cylinder deactivation
EP2985068A1 (en) 2014-08-13 2016-02-17 Umicore AG & Co. KG Catalyst system for the reduction of nitrogen oxides
FR3025725B1 (en) * 2014-09-15 2019-05-24 Psa Automobiles Sa. PROCESS FOR THE DEPOLLUTION OF NITROGEN OXIDES
US10329980B2 (en) 2016-08-03 2019-06-25 Mazda Motor Corporation Exhaust emission control system of engine
JP6270253B1 (en) 2016-10-19 2018-01-31 マツダ株式会社 Engine exhaust purification control system
JP6268685B1 (en) 2016-10-19 2018-01-31 マツダ株式会社 Engine exhaust purification control system
JP6268686B1 (en) 2016-10-19 2018-01-31 マツダ株式会社 Engine exhaust purification control system
JP6268688B1 (en) * 2016-10-19 2018-01-31 マツダ株式会社 Engine exhaust purification control system
KR102333304B1 (en) * 2017-05-26 2021-12-02 에이치에스디엔진 주식회사 Selective catalytic reduction system
KR102333324B1 (en) * 2017-05-26 2021-12-02 에이치에스디엔진 주식회사 Selective catalytic reduction system
JP6627839B2 (en) 2017-10-05 2020-01-08 マツダ株式会社 Engine exhaust purification control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4227741A1 (en) * 1992-08-21 1994-02-24 Bayerische Motoren Werke Ag Catalytic denitrification of engine exhaust gas with reducing agent - in amt. controlled according to nitrogen oxide concn. before and/or after redn. and pref. residual reducing agent content
JP2605580B2 (en) * 1993-06-10 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2845080B2 (en) * 1993-03-17 1999-01-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP3119088B2 (en) * 1994-09-16 2000-12-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE19740702C1 (en) * 1997-09-16 1998-11-19 Siemens Ag Exhaust purification system management for e.g. lean-running diesel engine
US6182443B1 (en) * 1999-02-09 2001-02-06 Ford Global Technologies, Inc. Method for converting exhaust gases from a diesel engine using nitrogen oxide absorbent

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698188B2 (en) 2000-12-08 2004-03-02 Toyota Jidosha Kabushiki Kaisha Emission control apparatus of internal combustion engine
JP4556364B2 (en) * 2001-08-23 2010-10-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2003065036A (en) * 2001-08-23 2003-03-05 Toyota Motor Corp Exhaust emission control device for internal combustion engine
WO2004025091A1 (en) * 2002-09-10 2004-03-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarifying device for internal combustion engine
US9057307B2 (en) 2003-01-02 2015-06-16 Daimler Ag Exhaust gas aftertreatment installation and method
JP2006512529A (en) * 2003-01-02 2006-04-13 ダイムラークライスラー・アクチェンゲゼルシャフト Exhaust gas aftertreatment device and method
US8297046B2 (en) 2003-01-02 2012-10-30 Daimler Ag Exhaust gas aftertreatment installation and method
US7814747B2 (en) 2003-01-02 2010-10-19 Daimler Ag Exhaust gas aftertreatment installation and method
US7313911B2 (en) 2003-02-26 2008-01-01 Umicore Ag & Co. Kg Method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust-gas purification system therefor
JP2007032431A (en) * 2005-07-27 2007-02-08 Honda Motor Co Ltd Exhaust emission control device
JP4502899B2 (en) * 2005-07-27 2010-07-14 本田技研工業株式会社 Exhaust gas purification device
JP2010507037A (en) * 2006-10-11 2010-03-04 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Dual injector device for reducing diesel emissions
JP2008280949A (en) * 2007-05-11 2008-11-20 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008291706A (en) * 2007-05-23 2008-12-04 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008291739A (en) * 2007-05-24 2008-12-04 Toyota Motor Corp Exhaust emission control device of internal combustion engine
US8341941B2 (en) 2007-08-08 2013-01-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
WO2009019951A1 (en) * 2007-08-08 2009-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
JP2009097471A (en) * 2007-10-18 2009-05-07 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2010031718A (en) * 2008-07-28 2010-02-12 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
CN102301104B (en) * 2009-01-30 2013-07-24 三菱重工业株式会社 Exhaust gas purifying apparatus
WO2010087370A1 (en) * 2009-01-30 2010-08-05 三菱重工業株式会社 Exhaust gas purifying apparatus
WO2010087369A1 (en) * 2009-01-30 2010-08-05 三菱重工業株式会社 Exhaust gas cleaning device
JP2010174815A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Exhaust emission control device
US9051863B2 (en) 2009-01-30 2015-06-09 Mitsubishi Heavy Industries, Ltd. Flue gas purifying device
JP2010216274A (en) * 2009-03-13 2010-09-30 Nippon Shokubai Co Ltd Power generating system and method for generating power
WO2010140262A1 (en) * 2009-06-03 2010-12-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5429286B2 (en) * 2009-06-03 2014-02-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8813480B2 (en) 2009-06-03 2014-08-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2444612B1 (en) * 2009-06-18 2019-03-27 UD Trucks Corporation Exhaust purification device and exhaust purification method, for engine
WO2010147107A1 (en) * 2009-06-18 2010-12-23 Udトラックス株式会社 Exhaust purification device and exhaust purification method, for engine
JP2011149360A (en) * 2010-01-22 2011-08-04 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US9051860B2 (en) 2010-05-20 2015-06-09 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2014033883A1 (en) 2012-08-30 2014-03-06 トヨタ自動車 株式会社 Additive supply device for internal combustion engines
US9528416B2 (en) 2013-01-25 2016-12-27 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
WO2014115303A1 (en) 2013-01-25 2014-07-31 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
KR101498182B1 (en) * 2014-11-25 2015-03-04 세종공업 주식회사 Exhaust gas purification apparatus
DE102016200207B4 (en) 2015-01-13 2019-09-26 Honda Motor Co., Ltd. Emission control system for internal combustion engines
DE102016200207A1 (en) 2015-01-13 2016-07-14 Honda Motor Co., Ltd. Emission control system for internal combustion engines
JP2016130464A (en) * 2015-01-13 2016-07-21 本田技研工業株式会社 Exhaust emission control system for internal combustion engine
DE102016200464A1 (en) 2015-01-21 2016-07-21 Honda Motor Co., Ltd. Emission control system for internal combustion engines
JP2016211507A (en) * 2015-05-13 2016-12-15 三菱自動車工業株式会社 Exhaust emission control device for engine
JP2017078584A (en) * 2015-10-19 2017-04-27 本田技研工業株式会社 Humidity estimation method and internal combustion engine exhaust purification system
JP6230003B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230004B1 (en) * 2016-07-05 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP2018003745A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine
JP2018003746A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine
JP2018003747A (en) * 2016-07-05 2018-01-11 マツダ株式会社 Exhaust emission control device for engine
US10443524B2 (en) * 2016-08-02 2019-10-15 Mazda Motor Corporation Exhaust emission control system of engine
US20180038301A1 (en) * 2016-08-02 2018-02-08 Mazda Motor Corporation Exhaust emission control system of engine
JP6230009B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP2018021497A (en) * 2016-08-03 2018-02-08 マツダ株式会社 Exhaust emission control device for engine
JP2018021496A (en) * 2016-08-03 2018-02-08 マツダ株式会社 Exhaust emission control device for engine
JP2018021498A (en) * 2016-08-03 2018-02-08 マツダ株式会社 Exhaust emission control device for engine
JP2018021495A (en) * 2016-08-03 2018-02-08 マツダ株式会社 Exhaust emission control device for engine
JP6230008B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230007B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP6230006B1 (en) * 2016-08-03 2017-11-15 マツダ株式会社 Engine exhaust purification system
JP2019190419A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle
JP2019190417A (en) * 2018-04-27 2019-10-31 いすゞ自動車株式会社 Exhaust emission control device and vehicle

Also Published As

Publication number Publication date
FR2790789A1 (en) 2000-09-15
JP3518398B2 (en) 2004-04-12
FR2790789B1 (en) 2006-01-06
DE10011612A1 (en) 2000-10-26
DE10011612B4 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3518398B2 (en) Exhaust gas purification device for internal combustion engine
US7963103B2 (en) Exhaust gas purification method and system
US6834496B2 (en) Exhaust gas purifying apparatus for internal combustion engine and control method thereof
US7716918B2 (en) Method of exhaust gas purification and exhaust gas purification system
US7127883B1 (en) Exhaust gas purifying apparatus of internal combustion engine
US7454900B2 (en) Catalyst recovery method
KR100876564B1 (en) Exhaust Gas Purification System for Internal Combustion Engine
JP2004257324A (en) Emission control device for internal combustion engine
WO2002008583A1 (en) Exhaust emission control device of internal combustion engine
EP1176290B1 (en) Exhaust gas purification device for internal combustion engine
US6763657B2 (en) Exhaust gas purifying method of internal combustion engine
KR20030022687A (en) Exhaust emission control system of internal combustion engine
EP1176289B1 (en) Emission control system of internal combustion engine
JP3558036B2 (en) Exhaust gas purification device for internal combustion engine
JP3552489B2 (en) Exhaust gas purification device for internal combustion engine
JP2000282843A (en) Exhaust emission control device for internal combustion engine
JP2002030927A (en) Exhaust emission control device of internal combustion engine
US10933374B2 (en) Exhaust emission control device, method and computer program product for an engine
JP3552603B2 (en) Exhaust gas purification device for internal combustion engine
EP2460996B1 (en) Exhaust emission purifier of internal combustion engine
JP3514152B2 (en) Exhaust gas purification device for internal combustion engine
JP2004308526A (en) Exhaust emission cleaning device for internal combustion engine
JP3376954B2 (en) Exhaust purification device for internal combustion engine and method for determining SOx poisoning thereof
JP3478135B2 (en) Exhaust gas purification device for internal combustion engine
JP4144405B2 (en) Deterioration judgment device for exhaust aftertreatment device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 10

EXPY Cancellation because of completion of term