JP2010261387A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine Download PDF

Info

Publication number
JP2010261387A
JP2010261387A JP2009113582A JP2009113582A JP2010261387A JP 2010261387 A JP2010261387 A JP 2010261387A JP 2009113582 A JP2009113582 A JP 2009113582A JP 2009113582 A JP2009113582 A JP 2009113582A JP 2010261387 A JP2010261387 A JP 2010261387A
Authority
JP
Japan
Prior art keywords
nox
catalyst
temperature
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009113582A
Other languages
Japanese (ja)
Inventor
Satoshi Kobayakawa
智志 小早川
Tomihisa Oda
富久 小田
Nobumoto Ohashi
伸基 大橋
Shinji Kamoshita
伸治 鴨下
Bungo Kawaguchi
文悟 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009113582A priority Critical patent/JP2010261387A/en
Publication of JP2010261387A publication Critical patent/JP2010261387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of restraining the amount of NOx discharged to the outside without being purified during cold start or the like of an internal combustion engine, while restraining device cost and fuel consumption. <P>SOLUTION: This exhaust emission control device has a NOx catalyst 35, a NOx adsorption catalyst 25 for temporarily adsorbing-holding NOx, and a burner 60 as a heating means capable of heating exhaust gas. For relatively increasing a NOx adsorption amount for possibly adsorbing the NOx adsorption catalyst 25 during cold start of the internal combustion engine, bed temperature thereof is raised by the burner 60 to a first temperature region in first stage temperature rise control, and for desorbing NOx adsorbed to the NOx adsorption catalyst 25 and relatively increasing a NOx purification rate of the NOx catalyst 35, the bed temperature of the NOx catalyst 25 is raised to a second temperature region higher than the first temperature region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排出する排ガスに含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、特許文献1は、NOxを吸着するNOx吸着触媒と、NOxを浄化するNOx触媒と、NOx吸着触媒を加熱するための燃焼ガスを供給する高温ガス発生装置とを備えるものを開示している。この排気浄化装置においては、排ガス中のNOxをNOx吸着触媒に吸着させ、NOx吸着触媒の吸着したNOxの量がある程度に達したNOxがされると、高温ガス発生装置から燃焼ガスがNOx吸着触媒に供給される。これにより、NOx吸着触媒に吸着されたNOxが脱離する。脱離したNOxは、NOx触媒において浄化される。   As an exhaust purification device that purifies nitrogen oxides (NOx) contained in exhaust gas discharged from an internal combustion engine, Patent Literature 1 heats a NOx adsorption catalyst that adsorbs NOx, a NOx catalyst that purifies NOx, and a NOx adsorption catalyst. And a high-temperature gas generator that supplies combustion gas for the purpose. In this exhaust purification device, NOx in the exhaust gas is adsorbed by the NOx adsorption catalyst, and when the amount of NOx adsorbed by the NOx adsorption catalyst reaches a certain level, the combustion gas is transferred from the high temperature gas generator to the NOx adsorption catalyst. To be supplied. Thereby, NOx adsorbed on the NOx adsorption catalyst is desorbed. The desorbed NOx is purified by the NOx catalyst.

特開平3−135417号公報Japanese Patent Laid-Open No. 3-135417

ところで、NOx吸着触媒及びNOx触媒は、効率良くNOxを吸着し、あるいは、効率良くNOxを浄化することがある活性温度域をそれぞれ有している。このため、内燃機関の冷間始動時等においては、NOx吸着触媒及びNOx触媒を早期に暖気しないと、NOxが浄化されずに外部に排出されてしまう可能性がある。NOx吸着触媒及びNOx触媒の早期暖気のために、各々に加熱手段を設けると、装置のコストが大幅に上昇するとともに燃費も悪化するという問題がある。   Incidentally, the NOx adsorption catalyst and the NOx catalyst each have an active temperature range in which NOx is adsorbed efficiently or NOx can be purified efficiently. For this reason, at the time of cold start of the internal combustion engine or the like, if the NOx adsorption catalyst and the NOx catalyst are not warmed up early, NOx may be discharged outside without being purified. If the heating means is provided for each of the NOx adsorption catalyst and the NOx catalyst for early warming, there is a problem that the cost of the apparatus is significantly increased and the fuel consumption is also deteriorated.

本発明の目的は、内燃機関の冷間始動時等に浄化されずに外部に放出されるNOxの量を抑制できるとともに、装置のコストおよび燃費を低減できる内燃機関の排気浄化装置を提供することにある。   An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress the amount of NOx released to the outside without being purified at the time of cold start of the internal combustion engine and the like and can reduce the cost and fuel consumption of the device. It is in.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排ガスに含まれるNOxを浄化するNOx触媒と、前記排気通路の前記NOx触媒の上流側に設けられ、排ガスに含まれるNOxを一時的に吸着保持するNOx吸着触媒と、前記排気通路の前記NOx吸着触媒の上流側に設けられ、排ガスを加熱可能な加熱手段と、内燃機関の始動時に前記NOx吸着触媒の吸着可能なNOx吸着量を相対的に高めるために前記NOx吸着触媒の床温を第1の温度域まで前記加熱手段により昇温させる第1段階昇温制御と、前記NOx吸着触媒に吸着されたNOxを脱離させるとともに前記NOx触媒のNOx浄化率を相対的に高めるために、前記NOx触媒の床温を前記第1の温度域よりも高い第2の温度域まで前記加熱手段により昇温させる第2段階昇温制御を実行する制御手段とを有することを特徴とする。   An exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of the internal combustion engine, is provided on the upstream side of the NOx catalyst in the exhaust passage, and is included in the exhaust gas. NOx adsorption catalyst that temporarily adsorbs and retains NOx, a heating means that is provided upstream of the NOx adsorption catalyst in the exhaust passage and that can heat exhaust gas, and the NOx adsorption catalyst can be adsorbed when the internal combustion engine is started In order to relatively increase the NOx adsorption amount, the first stage temperature rise control for raising the bed temperature of the NOx adsorption catalyst to the first temperature range by the heating means, and NOx adsorbed on the NOx adsorption catalyst In order to desorb and relatively increase the NOx purification rate of the NOx catalyst, the bed temperature of the NOx catalyst is increased by the heating means to a second temperature range higher than the first temperature range. And having a control means for executing a second stage temperature rise control for raising the temperature.

上記構成において、前記第1の温度域は、前記NOx吸着触媒が活性化する温度域であり、前記第2の温度域は、前記NOx触媒が活性化する温度域である。   In the above configuration, the first temperature range is a temperature range in which the NOx adsorption catalyst is activated, and the second temperature range is a temperature range in which the NOx catalyst is activated.

上記構成において、前記加熱手段は、燃料と空気とが供給され、排ガスとしての燃焼ガスを前記排気通路に供給するバーナーを含む、構成を採用できる。   The said structure WHEREIN: The said heating means can employ | adopt the structure containing the burner which supplies fuel and air and supplies the combustion gas as waste gas to the said exhaust passage.

上記構成において、前記排気通路の前記NOx吸着触媒と前記NOx触媒との間に、排ガス中に含まれる粒子状物質を捕集するフィルタをさらに備え、前記加熱手段は、前記フィルタの浄化機能を再生するためのフィルタ再生処理に用いられる、構成を採用できる。   In the above configuration, a filter for collecting particulate matter contained in the exhaust gas is further provided between the NOx adsorption catalyst and the NOx catalyst in the exhaust passage, and the heating means regenerates the purification function of the filter It is possible to employ a configuration used for filter regeneration processing.

本発明によれば、装置コスト及び燃費を抑制しつつ内燃機関の冷間始動時等に浄化されずに外部に放出されるNOxの量を抑制できる。   According to the present invention, it is possible to suppress the amount of NOx released to the outside without being purified at the time of cold start of the internal combustion engine or the like while suppressing the apparatus cost and fuel consumption.

本発明の一実施形態に係る内燃機関の排気浄化装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. NOx吸着触媒の吸着量及びNOx触媒の浄化率と温度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the adsorption amount of a NOx adsorption catalyst, the purification rate of a NOx catalyst, and temperature. 第1段階昇温制御及び第2段階昇温制御を説明するためのタイミングチャートである。It is a timing chart for demonstrating 1st step temperature rising control and 2nd step temperature rising control. 昇温制御におけるNOx量の変化の一例を示すグラフである。It is a graph which shows an example of the change of the NOx amount in temperature rising control. ECUによる昇温制御の一例を示すフローチャートである。It is a flowchart which shows an example of the temperature rising control by ECU.

以下、本発明の好適一実施形態を添付図面に基づいて詳述する。
図1は本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。
図1において、内燃機関10は、例えば、ディーゼルエンジンであり、この内燃機関10の排気通路15の上流側には、加熱手段としてのバーナー60が設けられている。バーナー60には、内燃機関10側から、空気が供給される空気供給経路61及び燃料が供給される燃料供給経路62が接続されている。バーナー60は、燃料供給経路62から供給される燃料を燃焼させ、燃焼ガスを排気通路15に供給する。また、空気供給経路61からの空気量及び燃料供給経路62からの燃料の量を制御することにより、燃焼ガスの空燃比が制御される。バーナー60は、後述するNOx吸着触媒25、DPF30、NOx触媒コンバータ35の床温を上昇させるのに用いられる。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention.
In FIG. 1, the internal combustion engine 10 is a diesel engine, for example, and a burner 60 as a heating unit is provided on the upstream side of the exhaust passage 15 of the internal combustion engine 10. An air supply path 61 for supplying air and a fuel supply path 62 for supplying fuel are connected to the burner 60 from the internal combustion engine 10 side. The burner 60 combusts the fuel supplied from the fuel supply path 62 and supplies the combustion gas to the exhaust passage 15. Further, by controlling the amount of air from the air supply path 61 and the amount of fuel from the fuel supply path 62, the air-fuel ratio of the combustion gas is controlled. The burner 60 is used to raise the bed temperature of the NOx adsorption catalyst 25, the DPF 30, and the NOx catalytic converter 35 described later.

バーナー60から排出される燃焼ガスは、完全燃焼した状態で排気通路15に排出されてもよいし、あるいは、未燃燃料を含む状態で排気通路15に排出されてもよい。   The combustion gas exhausted from the burner 60 may be exhausted to the exhaust passage 15 in a completely burned state, or may be exhausted to the exhaust passage 15 in a state containing unburned fuel.

排気通路15のバーナー60の下流側には、NOx吸着触媒25、フィルタとしてのDPF(ディーゼル・パティキュレート・フィルタ)30及びNOx触媒35が順に設けられている。   On the downstream side of the burner 60 in the exhaust passage 15, a NOx adsorption catalyst 25, a DPF (diesel particulate filter) 30 as a filter, and a NOx catalyst 35 are provided in this order.

排気通路15において、NOx触媒35の下流には、窒素酸化物の濃度を検出するNOxセンサ95Aが設けられ、NOx触媒35の上流側には、NOxセンサ95Bが設けられている。また、NOx吸着触媒25の入口、DPF30の入出口及びNOx触媒35の入口には、それぞれ、排気温度センサ90が設けられ、これらセンサの検出信号は、制御手段としてのECU100へ入力される。   In the exhaust passage 15, a NOx sensor 95 </ b> A that detects the concentration of nitrogen oxides is provided downstream of the NOx catalyst 35, and a NOx sensor 95 </ b> B is provided upstream of the NOx catalyst 35. An exhaust temperature sensor 90 is provided at each of the inlet of the NOx adsorption catalyst 25, the inlet / outlet of the DPF 30, and the inlet of the NOx catalyst 35, and detection signals from these sensors are input to the ECU 100 as control means.

さらに、排気通路15において、DPF30とNOx触媒35との間には、排気通路15に尿素水溶液を添加するための尿素水添加弁70と、この尿素水添加弁70の下流に設けられて排ガスEGと尿素水溶液を混合させるための添加弁下流ミキサ80とが設けられている。   Further, in the exhaust passage 15, a urea water addition valve 70 for adding a urea aqueous solution to the exhaust passage 15 and a downstream of the urea water addition valve 70 are provided between the DPF 30 and the NOx catalyst 35. And an addition valve downstream mixer 80 for mixing the urea aqueous solution.

NOx吸着触媒25は、ゼオライト等の吸着触媒から構成され、排ガスEGに含まれるNOxを一時的に吸着する。なお、NOx吸着触媒25の吸着可能な最大のNOx吸着量は、後述するように、その床温に応じて変化する。   The NOx adsorption catalyst 25 is composed of an adsorption catalyst such as zeolite, and temporarily adsorbs NOx contained in the exhaust gas EG. Note that the maximum NOx adsorption amount that can be adsorbed by the NOx adsorption catalyst 25 varies according to the bed temperature, as will be described later.

DPF30は、排ガスEGに含まれる粒子状物質(PM)を捕集するフィルタである。DPF30の構造は、周知のように、例えば、金属やセラミクス製のハニカム体で構成されている。DPF30は、PMが所定量堆積すると再生処理が必要である。具体的には、バーナー060により昇温された排ガスEG及び未燃燃料をDPF30に供給する。これにより、捕集したPMが燃焼処理され、フィルタ機能が再生される。この再生処理におけるDPF30の温度は、例えば、600〜700℃程度となる。なお、DPF30に所定量のPMが堆積したかの判断は、周知技術であるので、説明を省略する。また、DPF30は、貴金属からなる酸化触媒を担持する構成としてもよい。   The DPF 30 is a filter that collects particulate matter (PM) contained in the exhaust gas EG. As is well known, the structure of the DPF 30 is composed of, for example, a honeycomb body made of metal or ceramics. The DPF 30 needs to be regenerated when a predetermined amount of PM is deposited. Specifically, the exhaust gas EG and unburned fuel heated by the burner 060 are supplied to the DPF 30. As a result, the collected PM is burned and the filter function is regenerated. The temperature of the DPF 30 in this regeneration process is, for example, about 600 to 700 ° C. Note that the determination of whether a predetermined amount of PM has accumulated on the DPF 30 is a well-known technique, and a description thereof will be omitted. Further, the DPF 30 may be configured to carry an oxidation catalyst made of a noble metal.

尿素水添加弁70は、尿素水溶液を収容するタンク75から尿素水が供給され、ECU100からの制御信号に応じた量の尿素水を排気通路15に添加する。   The urea water addition valve 70 is supplied with urea water from a tank 75 that stores a urea aqueous solution, and adds an amount of urea water according to a control signal from the ECU 100 to the exhaust passage 15.

NOx触媒35は、尿素添加弁70から添加される尿素水溶液を還元剤として用いて、排ガスEGに含まれるNOxを選択的に還元して窒素ガスと水にする。具体的には、排ガスEG中に添加された尿素水溶液は、排ガスEGの熱により加水分解されてアンモニアに変化し、NOx触媒35に吸着保持される。このNOx触媒35に吸着保持されたアンモニアがNOxと反応し、水と無害な窒素に還元される。NOx触媒35のアンモニア吸着量が飽和吸着量を超えると、アンモニアスリップが発生する可能性があり、少なすぎると、NOxを十分に浄化できない可能性がある。なお、還元剤として、尿素の代わりに、アンモニアを直接供給することも可能である。   The NOx catalyst 35 selectively reduces NOx contained in the exhaust gas EG into nitrogen gas and water using the urea aqueous solution added from the urea addition valve 70 as a reducing agent. Specifically, the urea aqueous solution added to the exhaust gas EG is hydrolyzed by the heat of the exhaust gas EG to change to ammonia, and is adsorbed and held by the NOx catalyst 35. The ammonia adsorbed and held by the NOx catalyst 35 reacts with NOx and is reduced to water and harmless nitrogen. If the ammonia adsorption amount of the NOx catalyst 35 exceeds the saturated adsorption amount, ammonia slip may occur, and if it is too small, NOx may not be sufficiently purified. As a reducing agent, ammonia can be directly supplied instead of urea.

NOx触媒35は、周知の構造であり、例えば、Si、O、Alを主成分とすると共にFeイオンを含むゼオライトから構成されたものや、例えば、酸化アルミニウムアルミナからなる基材の表面にバナジウム触媒(V2O5)を担持させたものなどを用いることができ、特に、これらに限定されるわけではない。   The NOx catalyst 35 has a well-known structure. For example, the NOx catalyst 35 is composed of zeolite containing Si, O, and Al as main components and containing Fe ions, for example, a vanadium catalyst on the surface of a base material made of aluminum oxide alumina. A material carrying (V2O5) or the like can be used, and is not particularly limited thereto.

ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、駆動回路等を含む出力インターフェース回路を含むハードウエアと所要のソフトウエアで構成される。ECU100は、排気温度センサ90A〜90D、NOxセンサ95A,95Bなどからの信号に基づいて、尿素水添加弁70からの還元剤としての尿素水の添加量を制御する尿素水添加量制御や、後述するバーナー60によるNO吸着触媒25の床温及びNOx触媒35の床温を制御する。   The ECU 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a backup memory such as an EEPROM (Electronically Erasable and Programmable Read Only Memory), an A / D converter, a buffer, and the like. It comprises hardware including an output interface circuit including an input interface circuit, a drive circuit, etc., and necessary software. ECU 100 controls urea water addition amount control for controlling the amount of urea water added as a reducing agent from urea water addition valve 70 based on signals from exhaust temperature sensors 90A to 90D, NOx sensors 95A and 95B, and the like. The bed temperature of the NO adsorption catalyst 25 and the bed temperature of the NOx catalyst 35 are controlled by the burner 60.

次に、本発明の原理について図2及び図3を参照して説明する。
先ず、図2に示すように、NOx吸着触媒25の吸着量(最大吸着量)、および、NOx触媒35のNOx浄化率(最大浄化率)は、その床温に応じて変化する。具体的には、NOx吸着触媒25は、冷間始動時から温度が上昇していくと、温度Taで吸着量が最大となり、その後の温度上昇に従って吸着量が減少していく。NOx触媒35のNOx浄化率は、冷間始動時から温度が上昇していくにしたがって増加し、温度Taよりも高い温度T2において最大となり、その後、温度上昇にしたがって低下していく。
Next, the principle of the present invention will be described with reference to FIGS.
First, as shown in FIG. 2, the adsorption amount (maximum adsorption amount) of the NOx adsorption catalyst 25 and the NOx purification rate (maximum purification rate) of the NOx catalyst 35 change according to the bed temperature. Specifically, as the temperature of the NOx adsorption catalyst 25 rises from the cold start, the adsorption amount becomes maximum at the temperature Ta, and the adsorption amount decreases as the temperature rises thereafter. The NOx purification rate of the NOx catalyst 35 increases as the temperature increases from the cold start, reaches a maximum at a temperature T2 higher than the temperature Ta, and then decreases as the temperature increases.

本発明では、上記したようなNOx吸着触媒25とNOx触媒35の性質を利用して、図3に示すように、冷間始動時(コールドスタート時)にNOx吸着触媒25の吸着可能なNOx吸着量を相対的に高めるためにNOx吸着触媒25の床温を第1の温度域(温度Ta付近)までバーナー60を用いて昇温させる第1段階昇温制御と、NOx吸着触媒25に吸着されたNOxを脱離させるとともにNOx触媒35のNOx浄化率を相対的に高めるために、NOx触媒25の床温を第1の温度域(温度Ta付近)よりも高い第2の温度域(温度T2付近)までバーナー60を用いて昇温させる第2段階昇温制御を実行する。   In the present invention, by utilizing the properties of the NOx adsorption catalyst 25 and the NOx catalyst 35 as described above, as shown in FIG. 3, the NOx adsorption that can be adsorbed by the NOx adsorption catalyst 25 at the time of cold start (during cold start). In order to increase the amount relatively, the NOx adsorption catalyst 25 is adsorbed by the NOx adsorption catalyst 25 and the first stage temperature rise control in which the bed temperature of the NOx adsorption catalyst 25 is raised to the first temperature range (near temperature Ta) using the burner 60. In order to desorb NOx and to relatively increase the NOx purification rate of the NOx catalyst 35, the bed temperature of the NOx catalyst 25 is set to a second temperature range (temperature T2) higher than the first temperature range (near temperature Ta). The second stage temperature rise control is performed to raise the temperature using the burner 60 until the vicinity).

すなわち、本発明では、コールドスタート時にNOx吸着触媒25のNOx吸着量を速やかに増大させるために、強制的にNOxを最も吸着しやすい温度域まで昇温し、NOxを効率良く吸着して、外部への放出を抑制する(図3のAの区間)。NOx吸着触媒25の床温を昇温させると、これに伴い、NOx触媒35の床温も昇温する。このとき、図3に示すように、NOx触媒の床温が、所定のしきい値温度T1に達したところで(図3に示すBの付近)、温度制御の対象をNOx吸着触媒25からNOx触媒35へ代えて、NOx触媒35を第2の温度域T2まで昇温させる。ここで、温度域T1は、図2に示す外部に排出されるNOx量が所定のNOx量X(ppm)以下に抑えることができる浄化率αが得られる温度の領域とするのが好ましい。   That is, in the present invention, in order to quickly increase the NOx adsorption amount of the NOx adsorption catalyst 25 at the cold start, the temperature is forcibly increased to a temperature range where NOx is most easily adsorbed, and NOx is adsorbed efficiently, (Section A in FIG. 3). When the bed temperature of the NOx adsorption catalyst 25 is raised, the bed temperature of the NOx catalyst 35 is raised accordingly. At this time, as shown in FIG. 3, when the bed temperature of the NOx catalyst reaches a predetermined threshold temperature T1 (in the vicinity of B shown in FIG. 3), the temperature control target is changed from the NOx adsorption catalyst 25 to the NOx catalyst. Instead of 35, the temperature of the NOx catalyst 35 is raised to the second temperature range T2. Here, it is preferable that the temperature range T1 is a temperature range in which the purification rate α is obtained such that the amount of NOx discharged to the outside shown in FIG. 2 can be suppressed to a predetermined NOx amount X (ppm) or less.

また、代替的には、第1段階昇温制御から第2段階昇温制御への切り替えタイミングは、NOx吸着触媒25に吸着されたNOxの推定量が所定のしきい値Thを超えたタイミングとすることも可能である。   Alternatively, the switching timing from the first stage temperature rise control to the second stage temperature rise control is the timing when the estimated amount of NOx adsorbed by the NOx adsorption catalyst 25 exceeds a predetermined threshold Th. It is also possible to do.

ここで、上記のような昇温制御を実行した際のNOx触媒25の前で検出されるNOx量と外部に放出される(テールパイプから放出される)NOx量の変化の一例について図4を参照して説明する。   Here, FIG. 4 shows an example of changes in the amount of NOx detected before the NOx catalyst 25 and the amount of NOx released to the outside (released from the tail pipe) when the temperature raising control as described above is executed. The description will be given with reference.

コールドスタート時点付近では、NOxの浄化が進んでいないため、NOx触媒25の前のNOx量およびテールパイプから放出されるNOx量は比較的多い。NOx吸着触媒25の温度が上昇して吸着能力が増加するため、NOx触媒25の前のNOx量およびテールパイプから放出されるNOx量は急激に減少する。そして、A区間を達してB地点において第2段階昇温制御に切り替えられると、NOx吸着触媒25に吸着されたNOxがパージされるため、NOx触媒25の前のNOx量は増大する。しかし、テールパイプから放出されるNOx量は最大でも所定のNOx量Xを超えることがない。図4に示すα(T1)が温度域T1で少なくとも得られるNOx浄化率に相当する。   Since the purification of NOx is not progressing near the cold start time, the amount of NOx before the NOx catalyst 25 and the amount of NOx released from the tail pipe are relatively large. Since the temperature of the NOx adsorption catalyst 25 rises and the adsorption capacity increases, the amount of NOx before the NOx catalyst 25 and the amount of NOx released from the tail pipe are rapidly reduced. When the section A is reached and the second stage temperature increase control is switched at the point B, the NOx adsorbed by the NOx adsorption catalyst 25 is purged, so that the amount of NOx before the NOx catalyst 25 increases. However, the amount of NOx released from the tail pipe does not exceed the predetermined NOx amount X even at the maximum. Α (T1) shown in FIG. 4 corresponds to the NOx purification rate obtained at least in the temperature range T1.

次に、ECU100による上記昇温制御の一例について図5に示すフローチャートを参照して説明する。なお、図5に示す処理ルーチンは、内燃機関のコールドスタート時に実行される。   Next, an example of the temperature increase control by the ECU 100 will be described with reference to a flowchart shown in FIG. The processing routine shown in FIG. 5 is executed when the internal combustion engine is cold started.

まず、バーナー60を起動して、NOx吸着触媒25を活性化温度(温度Ta付近)まで加熱する(ステップS1)。すなわち、第1段階昇温制御を実行する。NOx吸着触媒25の温度は、例えば、排気温度センサの出力から推定することができる。   First, the burner 60 is activated to heat the NOx adsorption catalyst 25 to the activation temperature (near the temperature Ta) (step S1). That is, the first stage temperature increase control is executed. The temperature of the NOx adsorption catalyst 25 can be estimated from the output of the exhaust temperature sensor, for example.

次いで、NOx吸着触媒25の床温が温度T1を超えたかを判断する(ステップS2)。NOx吸着触媒25の床温は、排気温度センサの出力から推定できる。   Next, it is determined whether the bed temperature of the NOx adsorption catalyst 25 has exceeded the temperature T1 (step S2). The bed temperature of the NOx adsorption catalyst 25 can be estimated from the output of the exhaust temperature sensor.

NOx吸着触媒25の床温が温度T1を超えている場合には、NOx吸着触媒25のNOx吸着量の推定値が所定のしきい値Thを超えているかを判断する(ステップS3)。超えている場合には、NOx触媒35を活性化温度(温度T2付近)まで加熱する(ステップS4)。すなわち、第2段階昇温制御を実行する。   When the bed temperature of the NOx adsorption catalyst 25 exceeds the temperature T1, it is determined whether the estimated value of the NOx adsorption amount of the NOx adsorption catalyst 25 exceeds a predetermined threshold value Th (step S3). When exceeding, the NOx catalyst 35 is heated to the activation temperature (near temperature T2) (step S4). That is, the second stage temperature increase control is executed.

上記実施形態では、DPF30を備え、このDPF30の再生処理を利用して選択還元触媒を加熱する場合について説明したが、本発明はこれに限定されない。DPF30を備えていない構成も可能であり、DPF30がNOx触媒コンバータ35の下流側に設けられている場合には、バーナーやヒータを用いて選択還元触媒を加熱してもよいし、急加速時などの高負荷が内燃機関にかかった際の排ガスの温度上昇を利用して高温域に温度を上昇させることも可能である。   In the above embodiment, the case where the DPF 30 is provided and the selective reduction catalyst is heated using the regeneration process of the DPF 30 has been described, but the present invention is not limited to this. A configuration without the DPF 30 is also possible. When the DPF 30 is provided on the downstream side of the NOx catalytic converter 35, the selective reduction catalyst may be heated using a burner or a heater, or during rapid acceleration, etc. It is also possible to raise the temperature to a high temperature region by utilizing the temperature rise of the exhaust gas when a high load is applied to the internal combustion engine.

上記実施形態では、加熱手段としてバーナー60を用いたが、例えば、排ガス自体を加熱するヒータ等の他の加熱手段を用いることも可能である。   In the above embodiment, the burner 60 is used as the heating means. However, for example, other heating means such as a heater for heating the exhaust gas itself may be used.

10…内燃機関
15…排気通路
25…NOx吸着触媒
30…DPF(フィルタ)
35…NOx触媒
60…バーナー
70…尿素水添加弁
100…ECU
90A〜90D…排気温度センサ
95A,95B…NOxセンサ
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 15 ... Exhaust passage 25 ... NOx adsorption catalyst 30 ... DPF (filter)
35 ... NOx catalyst 60 ... Burner 70 ... Urea water addition valve 100 ... ECU
90A to 90D ... exhaust temperature sensors 95A, 95B ... NOx sensors

Claims (4)

内燃機関の排気通路に設けられ、排ガスに含まれるNOxを浄化するNOx触媒と、
前記排気通路の前記NOx触媒の上流側に設けられ、排ガスに含まれるNOxを一時的に吸着保持するNOx吸着触媒と、
前記排気通路の前記NOx吸着触媒の上流側に設けられ、排ガスを加熱可能な加熱手段と、
内燃機関の始動時に前記NOx吸着触媒の吸着可能なNOx吸着量を相対的に高めるために前記NOx吸着触媒の床温を第1の温度域まで前記加熱手段により昇温させる第1段階昇温制御と、前記NOx吸着触媒に吸着されたNOxを脱離させるとともに前記NOx触媒のNOx浄化率を相対的に高めるために、前記NOx触媒の床温を前記第1の温度域よりも高い第2の温度域まで前記加熱手段により昇温させる第2段階昇温制御を実行する制御手段と、
を有することを特徴とする内燃機関の排気浄化装置。
A NOx catalyst provided in an exhaust passage of the internal combustion engine for purifying NOx contained in the exhaust gas;
A NOx adsorption catalyst provided upstream of the NOx catalyst in the exhaust passage and temporarily adsorbing and holding NOx contained in the exhaust gas;
A heating means provided upstream of the NOx adsorption catalyst in the exhaust passage and capable of heating exhaust gas;
First-stage temperature rise control for raising the bed temperature of the NOx adsorption catalyst to a first temperature range by the heating means in order to relatively increase the NOx adsorption amount that can be adsorbed by the NOx adsorption catalyst when the internal combustion engine is started. In order to desorb NOx adsorbed on the NOx adsorption catalyst and relatively increase the NOx purification rate of the NOx catalyst, a bed temperature of the NOx catalyst is set to a second temperature higher than the first temperature range. Control means for performing second-stage temperature rise control for raising the temperature by the heating means to a temperature range;
An exhaust emission control device for an internal combustion engine, comprising:
前記加熱手段は、燃料と空気とが供給され、排ガスとしての燃焼ガスを前記排気通路に供給するバーナーを含む、ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the heating unit includes a burner that is supplied with fuel and air and supplies combustion gas as exhaust gas to the exhaust passage. 前記排気通路の前記NOx吸着触媒と前記NOx触媒との間に、排ガス中に含まれる粒子状物質を捕集するフィルタをさらに備え、
前記加熱手段は、前記フィルタの浄化機能を再生するためのフィルタ再生処理に用いられる、ことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
A filter for collecting particulate matter contained in the exhaust gas between the NOx adsorption catalyst and the NOx catalyst in the exhaust passage;
The exhaust purification device for an internal combustion engine according to claim 1 or 2, wherein the heating means is used for a filter regeneration process for regenerating the purification function of the filter.
前記第1の温度域は、前記NOx吸着触媒が活性化する温度域であり、前記第2の温度域は、前記NOx触媒が活性化する温度域である、ことを特徴とする請求項1ないし3のいずれかに記載の内燃機関の排気浄化装置。   The first temperature range is a temperature range in which the NOx adsorption catalyst is activated, and the second temperature range is a temperature range in which the NOx catalyst is activated. 4. An exhaust emission control device for an internal combustion engine according to any one of 3 above.
JP2009113582A 2009-05-08 2009-05-08 Exhaust emission control device of internal combustion engine Pending JP2010261387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113582A JP2010261387A (en) 2009-05-08 2009-05-08 Exhaust emission control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113582A JP2010261387A (en) 2009-05-08 2009-05-08 Exhaust emission control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010261387A true JP2010261387A (en) 2010-11-18

Family

ID=43359681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113582A Pending JP2010261387A (en) 2009-05-08 2009-05-08 Exhaust emission control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010261387A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
CN104074594A (en) * 2014-06-25 2014-10-01 彭友莲 Automobile tail gas exhaust pipe based on electrostatic spraying dust extraction
CN109404100A (en) * 2018-11-09 2019-03-01 潍柴动力股份有限公司 A kind of emission-control equipment, exhaust gas purification control method and its control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
JPWO2013183153A1 (en) * 2012-06-07 2016-01-28 トヨタ自動車株式会社 Engine system
CN104074594A (en) * 2014-06-25 2014-10-01 彭友莲 Automobile tail gas exhaust pipe based on electrostatic spraying dust extraction
CN109404100A (en) * 2018-11-09 2019-03-01 潍柴动力股份有限公司 A kind of emission-control equipment, exhaust gas purification control method and its control system
CN109404100B (en) * 2018-11-09 2020-11-20 潍柴动力股份有限公司 Exhaust purification device, exhaust purification control method and control system thereof

Similar Documents

Publication Publication Date Title
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
CN107023355B (en) Exhaust gas purification system and control method thereof
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
JP5062539B2 (en) Exhaust gas purification device for internal combustion engine
JP2009013931A (en) Exhaust emission control device
JP5158214B2 (en) Exhaust gas purification device for internal combustion engine
JP2010261423A (en) Exhaust emission control device of internal combustion engine
JP2010261331A (en) Exhaust purification device
JP2009013932A (en) Exhaust emission control device
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
JP4919178B2 (en) Exhaust gas purification device for internal combustion engine
JP4135757B2 (en) Exhaust gas purification system for internal combustion engine
JP2010127151A (en) Exhaust emission control device for internal combustion engine
WO2010087005A1 (en) Exhaust purifying device
JP2007002697A (en) Exhaust emission control device
JP2010229929A (en) Exhaust emission control device for internal combustion engine
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP5282568B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2010261387A (en) Exhaust emission control device of internal combustion engine
JP5900653B2 (en) Exhaust gas purification system for internal combustion engine
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP2010270616A (en) Exhaust emission control device for internal combustion engine
JP4301098B2 (en) Exhaust gas purification device
JP6969153B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine