JP2007002697A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2007002697A
JP2007002697A JP2005181828A JP2005181828A JP2007002697A JP 2007002697 A JP2007002697 A JP 2007002697A JP 2005181828 A JP2005181828 A JP 2005181828A JP 2005181828 A JP2005181828 A JP 2005181828A JP 2007002697 A JP2007002697 A JP 2007002697A
Authority
JP
Japan
Prior art keywords
exhaust gas
fuel
urea water
particulate filter
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181828A
Other languages
Japanese (ja)
Inventor
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005181828A priority Critical patent/JP2007002697A/en
Publication of JP2007002697A publication Critical patent/JP2007002697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To protect a selective reduction type catalyst from high-temperature exhaust gas in forced regeneration of a particulate filter. <P>SOLUTION: The selective reduction type catalyst 5 is installed in the middle of an exhaust pipe 4, and urea water 11 is added as reducer to the upstream side of the selective reduction type catalyst 5 to reduction-control NOx in this exhaust emission control device. On an exhaust pipe 4 upstream of an addition position of urea water 11 (an opening position of an injection nozzle 6), the particulate filter 14 equipped at a front stage with an oxidation catalyst 13 is disposed. Between the particulate filter 14 and the addition position of urea water 11, a heat accumulating member 15 in permeable structure in which heat of exhaust gas 3 can be accumulated is disposed. A fuel adding means to add fuel (a fuel injection device 30) to exhaust gas 3 upstream of the oxidation catalyst 13 is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. In recent years, it has been difficult to ensure the safety of traveling with ammonia itself, and in recent years, the use of non-toxic urea water as a reducing agent has been studied.

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガス中で尿素水がアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる(例えば、特許文献1参照)。
特開2002−161732号公報
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and NOx in the exhaust gas is converted onto the selective catalytic reduction catalyst. It is reduced and purified well by ammonia (see, for example, Patent Document 1).
JP 2002-161732 A

他方、ディーゼルエンジンの排気浄化を図る場合、排気ガス中のNOxを除去するだけでは十分ではなく、排気ガス中に含まれるパティキュレート(Particulate Matter:粒子状物質)についてもパティキュレートフィルタを通して捕集する必要があるが、この種のパティキュレートフィルタを採用する場合には、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要がある。   On the other hand, when purifying exhaust gas from a diesel engine, it is not sufficient to remove NOx in the exhaust gas, and particulates contained in the exhaust gas are also collected through the particulate filter. However, when this type of particulate filter is employed, it is necessary to regenerate the particulate filter by appropriately burning and removing the particulate before the exhaust resistance increases due to clogging.

このため、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流の排気ガス中に燃料を添加してパティキュレートフィルタを強制再生することが考えられている。   For this reason, a flow-through type oxidation catalyst is attached to the preceding stage of the particulate filter, and fuel is added to the exhaust gas upstream from the oxidation catalyst when the amount of particulate deposition increases. It is considered to force playback.

つまり、酸化触媒より上流の排気ガス中に燃料を添加すれば、その添加燃料(HC)が前段の酸化触媒を通過する間に酸化反応するので、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, if fuel is added to the exhaust gas upstream of the oxidation catalyst, the added fuel (HC) undergoes an oxidation reaction while passing through the preceding oxidation catalyst. The catalyst bed temperature of the particulate filter immediately after that is raised, the particulates are burned out, and the particulate filter is regenerated.

一般的に、前述した如き燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実行して排気ガス中に燃料を添加することが考えられているが、その添加燃料を効率良く強制再生に活用し且つ排気ガスが極力温度降下しないうちに添加燃料を酸化処理するためには、前記パティキュレートフィルタ及びその前段の酸化触媒を選択還元型触媒の前段に配置することが好ましいものと考えられている。   In general, as a specific means for performing the fuel addition as described above, the post-injection is executed at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. It is considered that the fuel is added to the exhaust gas, but in order to efficiently utilize the added fuel for forced regeneration and oxidize the added fuel before the temperature of the exhaust gas drops as much as possible, It is considered preferable to dispose the particulate filter and the oxidation catalyst in the preceding stage in the preceding stage of the selective catalytic reduction catalyst.

しかしながら、選択還元型触媒の前段でパティキュレートフィルタの強制再生を行うと、その前段の酸化触媒で添加燃料が酸化反応することによる発熱と、パティキュレートフィルタで捕集済みパティキュレートが燃焼することによる発熱とにより、パティキュレートフィルタの出側における排気ガスの温度が約700℃以上にも上昇し、もともと耐熱性の弱い選択還元型触媒が熱劣化して触媒機能が大幅に低下してしまう虞れがあった。   However, if the particulate filter is forcibly regenerated before the selective catalytic reduction catalyst, heat is generated by the oxidation reaction of the added fuel at the preceding oxidation catalyst, and the particulates collected by the particulate filter burn. Due to heat generation, the temperature of the exhaust gas on the outlet side of the particulate filter rises to about 700 ° C. or more, and the selective reduction catalyst that originally has low heat resistance may be thermally deteriorated and the catalytic function may be greatly reduced. was there.

本発明は、上述の実情に鑑みてなされたものであり、パティキュレートフィルタの強制再生時における高温の排気ガスから選択還元型触媒を保護し得るようにした排気浄化装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an exhaust purification device that can protect a selective catalytic reduction catalyst from high-temperature exhaust gas during forced regeneration of a particulate filter. Yes.

本発明は、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置より上流の排気管に、酸化触媒を前段に付帯装備したパティキュレートフィルタを配設すると共に、該パティキュレートフィルタと前記尿素水の添加位置との間に、排気ガスの熱を蓄え得る通気構造の蓄熱材を配設し、前記酸化触媒より上流で排気ガス中に燃料を添加する燃料添加手段を備えたことを特徴とするものである。   The present invention is an exhaust emission control device equipped with a selective reduction catalyst in the middle of an exhaust pipe and reducing and purifying NOx by adding urea water as a reducing agent upstream of the selective reduction catalyst, A particulate filter with an oxidation catalyst attached to the upstream stage is disposed in the exhaust pipe upstream from the urea water addition position, and the heat of the exhaust gas is transferred between the particulate filter and the urea water addition position. A heat storage material having a ventilation structure that can be stored is provided, and fuel addition means for adding fuel to the exhaust gas upstream of the oxidation catalyst is provided.

而して、このようにすれば、パティキュレートフィルタにより排気ガス中のパティキュレートが捕集されると共に、その後段で尿素水が排気ガス中に添加されてアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになるので、排気ガス中のパティキュレートとNOxの同時低減が図られる。   Thus, in this way, particulates in the exhaust gas are collected by the particulate filter, and urea water is added to the exhaust gas in the subsequent stage and thermally decomposed into ammonia and carbon dioxide gas. Since NOx in the exhaust gas is satisfactorily reduced and purified by ammonia on the reduction catalyst, simultaneous reduction of particulates and NOx in the exhaust gas can be achieved.

しかも、パティキュレートフィルタの強制再生時において、前段の酸化触媒で添加燃料が酸化反応し且つ後段のパティキュレートフィルタで捕集済みパティキュレートが燃焼することで高温の排気ガスが生じても、この高温の排気ガスは、蓄熱材を通過する際に熱を吸収されて温度低下するので、選択還元型触媒への熱衝撃が緩和されて該選択還元型触媒の熱劣化が回避されることになる。   In addition, even during the forced regeneration of the particulate filter, even if the added fuel undergoes an oxidation reaction with the preceding stage oxidation catalyst and the collected particulate matter burns with the subsequent stage particulate filter, high temperature exhaust gas is generated. When the exhaust gas passes through the heat storage material, the heat is absorbed and the temperature is lowered, so that the thermal shock to the selective catalytic reduction catalyst is alleviated and the thermal degradation of the selective catalytic reduction catalyst is avoided.

更に、運転状態の変化により排気ガスの温度が低下しても、蓄熱材に蓄えられた熱により排気ガスが暫時昇温され続けて急激な温度低下が回避されるので、排気ガスの温度が低くなる運転領域での選択還元型触媒のNOx低減率が向上される。   Furthermore, even if the temperature of the exhaust gas decreases due to a change in the operating state, the exhaust gas continues to be heated for a while due to the heat stored in the heat storage material, so that a sudden temperature decrease is avoided. The NOx reduction rate of the selective catalytic reduction catalyst in the operating region is improved.

また、本発明においては、エンジンの各気筒に燃料を噴射する燃料噴射装置を燃料添加手段として採用し、気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことで燃料添加を実行するように構成すると良い。   Further, in the present invention, a fuel injection device that injects fuel into each cylinder of the engine is adopted as a fuel addition means, and fuel injection into the cylinder is controlled to leave a large amount of unburned fuel in the exhaust gas. It is good to comprise so that fuel addition may be performed.

上記した本発明の排気浄化装置によれば、選択還元型触媒より上流で高温の排気ガスが生じても、該排気ガスの熱を蓄熱材で吸収して選択還元型触媒への熱衝撃を緩和することができるので、パティキュレートフィルタの強制再生時における高温の排気ガスから選択還元型触媒を確実に保護することができ、これによって、選択還元型触媒の前段へのパティキュレートフィルタの配置を可能ならしめてパティキュレートとNOxの同時低減を実現することができ、しかも、蓄熱材に蓄えた熱を排気ガスの温度が低くなる運転領域で有効に活用することにより、このような排気ガスの温度が低くなる運転領域での選択還元型触媒のNOx低減率を従来より向上することができる等種々の優れた効果を奏し得る。   According to the above-described exhaust gas purification apparatus of the present invention, even when high-temperature exhaust gas is generated upstream from the selective catalytic reduction catalyst, the heat of the exhaust gas is absorbed by the heat storage material to mitigate thermal shock to the selective catalytic reduction catalyst. As a result, the selective catalytic reduction catalyst can be reliably protected from the high-temperature exhaust gas during forced regeneration of the particulate filter, which enables the particulate filter to be placed in front of the selective catalytic reduction catalyst. This makes it possible to reduce particulates and NOx at the same time, and by effectively utilizing the heat stored in the heat storage material in the operating region where the temperature of the exhaust gas is low, the temperature of such exhaust gas can be reduced. Various excellent effects can be obtained, such as the NOx reduction rate of the selective catalytic reduction catalyst in the operating region where the operation is reduced can be improved as compared with the conventional technology.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒5が装備されている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, the exhaust pipe 4 through which the exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows is shown. In addition, a selective catalytic reduction catalyst 5 having the property of selectively reacting NOx with ammonia even in the presence of oxygen is provided.

この選択還元型触媒5の入側には噴射ノズル6が設置されており、該噴射ノズル6と所要場所に設けた尿素水タンク8との間が、尿素水噴射弁7を備えた尿素水供給ライン9により接続され、該尿素水供給ライン9の途中に装備した供給ポンプ10の駆動により尿素水タンク8内の尿素水11(還元剤)を尿素水噴射弁7を介し選択還元型触媒5の上流側に添加し得るようになっていて、これら尿素水噴射弁7、尿素水タンク8、尿素水供給ライン9、供給ポンプ10により尿素水添加装置12が構成されている。   An injection nozzle 6 is installed on the inlet side of the selective reduction catalyst 5, and urea water supply including a urea water injection valve 7 is provided between the injection nozzle 6 and a urea water tank 8 provided at a required place. The urea water 11 (reducing agent) in the urea water tank 8 is connected to the selective catalytic reduction catalyst 5 via the urea water injection valve 7 by driving a supply pump 10 connected in the middle of the urea water supply line 9. The urea water injection device 12 is configured by the urea water injection valve 7, the urea water tank 8, the urea water supply line 9, and the supply pump 10.

そして、この尿素水添加装置12による尿素水11の添加位置(噴射ノズル6の開口位置)より上流の排気管4に、酸化触媒13を前段に付帯装備し且つ自身にも酸化触媒を一体的に担持したパティキュレートフィルタ14が装備されていると共に、該パティキュレートフィルタ14と前記尿素水11の添加位置との間には、排気ガス3の熱を蓄え得る通気構造の蓄熱材15が設けられており、また、前記選択還元型触媒5の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒16が装備されている。 The exhaust pipe 4 upstream of the urea water 11 addition position (opening position of the injection nozzle 6) by the urea water addition device 12 is provided with an oxidation catalyst 13 in the preceding stage, and the oxidation catalyst is integrated with itself. A supported particulate filter 14 is provided, and a heat storage material 15 having a ventilation structure capable of storing heat of the exhaust gas 3 is provided between the particulate filter 14 and the urea water 11 addition position. In addition, immediately after the selective catalytic reduction catalyst 5, an NH 3 slip catalyst 16 that oxidizes excess ammonia as a countermeasure against leaked ammonia is provided.

ここで、排気ガス3の熱を蓄え得る通気構造の蓄熱材15には、ハニカム構造のセラミックスや、金属フィルタ(ミクロンオーダーの金属繊維を積層焼結したもの、金属粉末の焼結体、金属メッシュを積層焼結したもの、金属メッシュに金属粉末を焼結させたもの等)、メタルハニカム等を採用することが可能である。   Here, the heat storage material 15 having a ventilation structure capable of storing the heat of the exhaust gas 3 includes honeycomb structure ceramics, metal filters (thickness-sintered micron-order metal fibers, sintered metal powder, metal mesh) It is possible to employ a metal honeycomb or the like obtained by laminating and sintering a metal powder, a metal mesh sintered on a metal mesh, or the like.

また、図示しない運転席のアクセルには、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ17(負荷センサ)が備えられていると共に、ディーゼルエンジン1の適宜位置には、その回転数を検出する回転センサ18が装備されており、これらアクセルセンサ17及び回転センサ18からのアクセル開度信号17a及び回転数信号18aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置19(燃料噴射制御装置)に対し入力されるようになっている。   Further, the accelerator of the driver's seat (not shown) is provided with an accelerator sensor 17 (load sensor) that detects the accelerator opening as a load of the diesel engine 1, and the rotational speed is set at an appropriate position of the diesel engine 1. A rotation sensor 18 for detection is provided, and an accelerator opening signal 17a and a rotation speed signal 18a from the accelerator sensor 17 and the rotation sensor 18 constitute a control device 19 (fuel injection) that forms an engine control computer (ECU: Electronic Control Unit). Is input to the control device).

一方、前記制御装置19においては、アクセル開度信号17a及び回転数信号18aから判断される現在の運転状態に応じ、各気筒内に燃料を噴射する燃料噴射装置20に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号20aが出力されるようになっている。   On the other hand, in the control device 19, the fuel injection timing and the injection toward the fuel injection device 20 for injecting the fuel into each cylinder according to the current operation state determined from the accelerator opening signal 17a and the rotation speed signal 18a. A fuel injection signal 20a for commanding the amount is output.

ここで、前記燃料噴射装置20は、各気筒毎に装備される図示しない複数のインジェクタにより構成されており、これら各インジェクタの電磁弁が前記制御装置19からの燃料噴射信号20aにより適宜に開弁制御されて燃料の噴射タイミング及び噴射量(開弁時間)が適切に制御されるようになっている。   Here, the fuel injection device 20 is constituted by a plurality of injectors (not shown) provided for each cylinder, and the electromagnetic valves of these injectors are appropriately opened by a fuel injection signal 20 a from the control device 19. Thus, the fuel injection timing and the injection amount (valve opening time) are appropriately controlled.

ただし、本形態例においては、制御装置19でアクセル開度信号17a及び回転数信号18aに基づき通常モードの燃料噴射信号20aが決定されるようになっている一方、パティキュレートフィルタ14の強制再生を行う必要が生じた際に、通常モードから再生モードに切り替わり、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミング(開始時期がクランク角90゜〜130゜の範囲)でポスト噴射を行うような燃料噴射信号20aが決定されるようになっている。   However, in the present embodiment, the control device 19 determines the fuel injection signal 20a in the normal mode based on the accelerator opening signal 17a and the rotational speed signal 18a, while the particulate filter 14 is forcibly regenerated. When it is necessary to perform this, the normal mode is switched to the regeneration mode, and the non-ignition timing (start timing) later than the compression top dead center following the main injection of fuel performed near the compression top dead center (crank angle 0 °). The fuel injection signal 20a is determined so as to perform post injection at a crank angle of 90 ° to 130 °.

つまり、このようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス3中に未燃の燃料(主としてHC:炭化水素)が添加されることになり、この未燃の燃料がパティキュレートフィルタ14の前段の酸化触媒13を通過する間に酸化反応し、その反応熱で昇温した排気ガス3の流入により直後のパティキュレートフィルタ14の触媒床温度が上げられてパティキュレートが燃焼除去されることになる。   That is, when post-injection is performed at a non-ignition timing later than the compression top dead center following main injection, unburned fuel (mainly HC: hydrocarbon) is added to the exhaust gas 3 by this post-injection. The unburned fuel undergoes an oxidation reaction while passing through the oxidation catalyst 13 in the preceding stage of the particulate filter 14, and the particulate filter 14 immediately after the inflow of the exhaust gas 3 heated by the reaction heat. Thus, the catalyst bed temperature is raised and the particulates are burned and removed.

また、この制御装置19においては、ディーゼルエンジン1の回転数と燃料噴射信号20aの出力値から判る燃料の噴射量とを抽出し、これら回転数と噴射量とによるパティキュレートの発生量マップからディーゼルエンジン1の現在の運転状態に基づくパティキュレートの基本的な発生量を推定し、この基本的な発生量に対しパティキュレートの発生にかかわる各種の条件を考慮した補正係数を掛け且つ現在の運転状態におけるパティキュレートの処理量を減算して最終的な発生量を求め、この最終的な発生量を時々刻々積算してパティキュレートの堆積量を推定し、その堆積量が所定の目標値に達したものと推定された際に、燃料噴射制御が通常モードから再生モードへ切り替わり、パティキュレートフィルタ14の上流側の排気ガス3中に燃料が添加されるようになっている。   Further, the control device 19 extracts the fuel injection amount determined from the rotational speed of the diesel engine 1 and the output value of the fuel injection signal 20a, and the diesel generation from the particulate generation map based on the rotational speed and the injection amount. The basic generation amount of particulates based on the current operation state of the engine 1 is estimated, and the basic generation amount is multiplied by a correction coefficient considering various conditions relating to the generation of particulates, and the current operation state The final generation amount is obtained by subtracting the particulate processing amount at, and the final generation amount is momentarily accumulated to estimate the particulate deposition amount. The deposition amount has reached a predetermined target value. When it is estimated, the fuel injection control is switched from the normal mode to the regeneration mode, and the exhaust gas 3 upstream of the particulate filter 14 is So that the fuel is added to.

尚、このようなパティキュレートの堆積量を推定する方法には各種の考え方があり、ここに例示した推定方法以外の手法を用いてパティキュレートの堆積量を推定することも勿論可能であり、パティキュレートフィルタの前後の差圧に基づいてパティキュレートの堆積量を推定したり、運転時間や走行距離を目安としてパティキュレートの堆積量を推定したりすることも可能である。   There are various ways of estimating the amount of particulate deposition, and it is of course possible to estimate the amount of particulate deposition using a method other than the estimation method exemplified here. It is also possible to estimate the accumulated amount of particulates based on the differential pressure before and after the curate filter, or to estimate the accumulated amount of particulates based on the operation time and travel distance.

また、前記制御装置19においては、ディーゼルエンジン1の回転数と燃料の噴射量等に基づきNOxの発生量も推定され、このNOxの発生量に見合う必要量の尿素水11の添加が前記尿素水添加装置12に向け指示されるようになっており、より具体的には、前記制御装置19から出力される供給ポンプ10への駆動指令信号10aと尿素水噴射弁7への開弁指令信号7aとにより前記尿素水添加装置12による尿素水11の添加が実行されるようになっている。   The control device 19 also estimates the amount of NOx generated based on the rotational speed of the diesel engine 1 and the amount of fuel injected, and the addition of a necessary amount of urea water 11 corresponding to the amount of NOx generated results in the urea water being added. More specifically, an instruction is given to the adding device 12, and more specifically, a drive command signal 10a to the supply pump 10 and a valve opening command signal 7a to the urea water injection valve 7 output from the control device 19 are provided. Thus, the addition of the urea water 11 by the urea water adding device 12 is executed.

而して、このように排気浄化装置を構成すれば、パティキュレートフィルタ14により排気ガス3中のパティキュレートが捕集されると共に、その後段で尿素水添加装置12の噴射ノズル6から尿素水11が排気ガス3中に添加されてアンモニアと炭酸ガスに熱分解され、選択還元型触媒5上で排気ガス3中のNOxがアンモニアにより良好に還元浄化されることになるので、排気ガス3中のパティキュレートとNOxの同時低減が図られる。   Thus, if the exhaust gas purification device is configured in this way, the particulate filter 14 collects the particulates in the exhaust gas 3 and, at the subsequent stage, the urea water 11 from the injection nozzle 6 of the urea water addition device 12. Is added to the exhaust gas 3 and thermally decomposed into ammonia and carbon dioxide, and the NOx in the exhaust gas 3 is favorably reduced and purified by ammonia on the selective catalytic reduction catalyst 5. Simultaneous reduction of particulates and NOx is achieved.

しかも、パティキュレートフィルタ14の強制再生を行う必要が生じた際に、制御装置19における燃料噴射制御が通常モードから再生モードに切り替わり、ポスト噴射によりディーゼルエンジン1側で添加された燃料が前段の酸化触媒13で酸化反応し且つ後段のパティキュレートフィルタ14で捕集済みパティキュレートが燃焼することで高温の排気ガス3が生じても、この高温の排気ガス3は、その直後の蓄熱材15を通過する際に熱を吸収されて温度低下するので、選択還元型触媒5への熱衝撃が緩和されて該選択還元型触媒5の熱劣化が回避されることになる。   Moreover, when it becomes necessary to perform forced regeneration of the particulate filter 14, the fuel injection control in the control device 19 is switched from the normal mode to the regeneration mode, and the fuel added on the diesel engine 1 side by the post injection is oxidized in the previous stage. Even if high temperature exhaust gas 3 is produced by oxidation reaction at the catalyst 13 and combustion of the particulates collected by the particulate filter 14 at the subsequent stage, the high temperature exhaust gas 3 passes through the heat storage material 15 immediately after that. In this case, heat is absorbed and the temperature is lowered, so that the thermal shock to the selective catalytic reduction catalyst 5 is alleviated and thermal degradation of the selective catalytic reduction catalyst 5 is avoided.

例えば、図2に示す如く、強制再生時におけるパティキュレートフィルタ14の温度Aが約700℃であった場合、蓄熱材15がない場合の選択還元型触媒5の温度Bが約600℃程度となるのに対し、両者間に蓄熱材15が介装されている場合の選択還元型触媒5の温度Cは約500℃以下に抑えることが可能となり、また、図3にXで示す如く、蓄熱材15を採用した場合に65万kmにも及ぶ走行距離を経てもNOx低減率の低下(熱劣化)が極めて軽微であったのに対し、図3にYで示す如く、蓄熱材15を採用しなかった場合にNOx低減率の低下(熱劣化)が顕著に現れることが検証実験により確認された。   For example, as shown in FIG. 2, when the temperature A of the particulate filter 14 at the time of forced regeneration is about 700 ° C., the temperature B of the selective catalytic reduction catalyst 5 without the heat storage material 15 is about 600 ° C. On the other hand, the temperature C of the selective catalytic reduction catalyst 5 when the heat storage material 15 is interposed between them can be suppressed to about 500 ° C. or less, and as indicated by X in FIG. When NO. 15 was used, the decrease in NOx reduction rate (thermal degradation) was very slight even after a mileage of 650,000 km, but as shown by Y in FIG. It was confirmed by a verification experiment that a decrease in NOx reduction rate (thermal degradation) appears remarkably in the absence of the NOx.

更に、本形態例のように蓄熱材15を備えておけば、運転状態の変化により排気ガス3の温度が低下しても、蓄熱材15に蓄えられた熱により排気ガス3が暫時昇温され続けて急激な温度低下が回避されるので、排気ガス3の温度が低くなる運転領域での選択還元型触媒5のNOx低減率が向上される。   Further, if the heat storage material 15 is provided as in the present embodiment, even if the temperature of the exhaust gas 3 decreases due to a change in the operating state, the exhaust gas 3 is heated for a while by the heat stored in the heat storage material 15. Since an abrupt temperature decrease is subsequently avoided, the NOx reduction rate of the selective catalytic reduction catalyst 5 in the operation region where the temperature of the exhaust gas 3 is lowered is improved.

従って、上記形態例によれば、選択還元型触媒5より上流で高温の排気ガス3が生じても、該排気ガス3の熱を蓄熱材15で吸収して選択還元型触媒5への熱衝撃を緩和することができるので、パティキュレートフィルタ14の強制再生時における高温の排気ガス3から選択還元型触媒5を確実に保護することができ、これによって、選択還元型触媒5の前段へのパティキュレートフィルタ14の配置を可能ならしめてパティキュレートとNOxの同時低減を実現することができ、しかも、蓄熱材15に蓄えた熱を排気ガス3の温度が低くなる運転領域で有効に活用することにより、このような排気ガス3の温度が低くなる運転領域での選択還元型触媒5のNOx低減率を従来より向上することができる。   Therefore, according to the above embodiment, even if the high-temperature exhaust gas 3 is generated upstream from the selective catalytic reduction catalyst 5, the heat of the exhaust gas 3 is absorbed by the heat storage material 15 and the thermal shock to the selective catalytic reduction catalyst 5. Therefore, the selective catalytic reduction catalyst 5 can be surely protected from the high-temperature exhaust gas 3 during the forced regeneration of the particulate filter 14. By enabling the arrangement of the curative filter 14 to achieve simultaneous reduction of particulates and NOx, the heat stored in the heat storage material 15 can be effectively utilized in the operation region where the temperature of the exhaust gas 3 is lowered. Thus, the NOx reduction rate of the selective catalytic reduction catalyst 5 in the operation region where the temperature of the exhaust gas 3 becomes low can be improved as compared with the conventional art.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、先の形態例においては、燃料添加手段として燃料噴射装置を採用し、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を添加するようにしているが、気筒内へのメイン噴射の時期を通常より遅らせることで排気ガス中に燃料を添加するようにしても良く、更には、このように気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことにより燃料添加を行う手段だけでなく、排気管の適宜位置(排気マニホールドでも可)に燃料添加手段としてインジェクタを貫通装着し、このインジェクタにより排気ガス中に燃料を直噴して添加するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment. In the above embodiment, the fuel injection device is used as the fuel addition means, and the fuel is performed near the compression top dead center. Fuel is added to the exhaust gas by performing post-injection at a timing of non-ignition later than the compression top dead center following the main injection of the engine, but the timing of main injection into the cylinder is delayed from normal The fuel may be added to the exhaust gas, and only the means for adding fuel by controlling the fuel injection into the cylinder and leaving a large amount of unburned fuel in the exhaust gas. In addition, an injector may be provided as a fuel addition means at an appropriate position of the exhaust pipe (or an exhaust manifold is acceptable), and fuel may be directly injected into the exhaust gas by this injector, It is of course that various changes and modifications may be made without departing from the scope and spirit of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 強制再生時の選択還元型触媒の温度を蓄熱材の有無で比較したグラフである。It is the graph which compared the temperature of the selective reduction type catalyst at the time of forced regeneration with the presence or absence of a heat storage material. 走行距離とNOx低減率との関係を蓄熱材の有無で比較したグラフである。It is the graph which compared the relationship between a travel distance and a NOx reduction rate by the presence or absence of a heat storage material.

符号の説明Explanation of symbols

3 排気ガス
4 排気管
5 選択還元型触媒
6 噴射ノズル
11 尿素水
12 尿素水添加装置
13 酸化触媒
14 パティキュレートフィルタ
15 蓄熱材
20 燃料噴射装置(燃料添加手段)
DESCRIPTION OF SYMBOLS 3 Exhaust gas 4 Exhaust pipe 5 Selective reduction type catalyst 6 Injection nozzle 11 Urea water 12 Urea water addition apparatus 13 Oxidation catalyst 14 Particulate filter 15 Thermal storage material 20 Fuel injection apparatus (fuel addition means)

Claims (2)

排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置より上流の排気管に、酸化触媒を前段に付帯装備したパティキュレートフィルタを配設すると共に、該パティキュレートフィルタと前記尿素水の添加位置との間に、排気ガスの熱を蓄え得る通気構造の蓄熱材を配設し、前記酸化触媒より上流で排気ガス中に燃料を添加する燃料添加手段を備えたことを特徴とする排気浄化装置。   An exhaust gas purification apparatus equipped with a selective reduction catalyst in the middle of an exhaust pipe and adding urea water as a reducing agent upstream of the selective reduction catalyst to reduce and purify NOx, wherein urea water addition A ventilating structure in which an exhaust pipe upstream of the position is provided with a particulate filter with an oxidation catalyst attached to the preceding stage, and heat of the exhaust gas can be stored between the particulate filter and the urea water addition position An exhaust emission control device comprising a fuel addition means for arranging the heat storage material and adding fuel to the exhaust gas upstream of the oxidation catalyst. エンジンの各気筒に燃料を噴射する燃料噴射装置を燃料添加手段として採用し、気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことで燃料添加を実行するように構成したことを特徴とする請求項1に記載の排気浄化装置。   Fuel injection device that injects fuel into each cylinder of the engine is adopted as fuel addition means, and fuel addition is executed by controlling fuel injection into the cylinder and leaving a large amount of unburned fuel in the exhaust gas The exhaust emission control device according to claim 1, which is configured.
JP2005181828A 2005-06-22 2005-06-22 Exhaust emission control device Pending JP2007002697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181828A JP2007002697A (en) 2005-06-22 2005-06-22 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181828A JP2007002697A (en) 2005-06-22 2005-06-22 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2007002697A true JP2007002697A (en) 2007-01-11

Family

ID=37688549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181828A Pending JP2007002697A (en) 2005-06-22 2005-06-22 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2007002697A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100769570B1 (en) * 2007-05-29 2007-10-23 한국기계연구원 System and method for removing diesel pm using of nitrogen dioxide
JP2008267327A (en) * 2007-04-24 2008-11-06 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
WO2009008110A1 (en) * 2007-07-11 2009-01-15 Hino Motors, Ltd. Exhaust purification apparatus
JP2009150279A (en) * 2007-12-19 2009-07-09 Hino Motors Ltd Exhaust gas treatment device
WO2010087005A1 (en) * 2009-01-30 2010-08-05 トヨタ自動車株式会社 Exhaust purifying device
WO2012024211A1 (en) * 2010-08-19 2012-02-23 Dow Global Technologies Llc. Method and devices for heating urea-containing materials in vehicle emission control system
JP2012132468A (en) * 2012-03-26 2012-07-12 Yanmar Co Ltd Diesel engine
JP2012520419A (en) * 2009-03-12 2012-09-06 ボルボ ラストバグナー アーベー Method of operation for exhaust aftertreatment system and exhaust aftertreatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002089240A (en) * 2000-09-08 2002-03-27 Nissan Motor Co Ltd Exhaust emission control device and exhaust emission control method using this
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267327A (en) * 2007-04-24 2008-11-06 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP4697474B2 (en) * 2007-04-24 2011-06-08 三菱自動車工業株式会社 Exhaust gas purification device for internal combustion engine
KR100769570B1 (en) * 2007-05-29 2007-10-23 한국기계연구원 System and method for removing diesel pm using of nitrogen dioxide
WO2009008110A1 (en) * 2007-07-11 2009-01-15 Hino Motors, Ltd. Exhaust purification apparatus
JP2009019556A (en) * 2007-07-11 2009-01-29 Hino Motors Ltd Exhaust emission control device
JP2009150279A (en) * 2007-12-19 2009-07-09 Hino Motors Ltd Exhaust gas treatment device
WO2010087005A1 (en) * 2009-01-30 2010-08-05 トヨタ自動車株式会社 Exhaust purifying device
JPWO2010087005A1 (en) * 2009-01-30 2012-07-26 トヨタ自動車株式会社 Exhaust purification device
JP2012520419A (en) * 2009-03-12 2012-09-06 ボルボ ラストバグナー アーベー Method of operation for exhaust aftertreatment system and exhaust aftertreatment system
WO2012024211A1 (en) * 2010-08-19 2012-02-23 Dow Global Technologies Llc. Method and devices for heating urea-containing materials in vehicle emission control system
JP2012132468A (en) * 2012-03-26 2012-07-12 Yanmar Co Ltd Diesel engine

Similar Documents

Publication Publication Date Title
JP4785766B2 (en) Exhaust purification device
JP5000405B2 (en) Exhaust purification device
JP4947036B2 (en) Engine exhaust purification method
JP4789242B2 (en) Exhaust purification device
CN104718366B (en) Exhaust gas purification system and exhaust gas purification method
JP4592504B2 (en) Exhaust purification device
JP5118331B2 (en) Exhaust purification device
JP4274270B2 (en) NOx purification system and control method of NOx purification system
JP4592505B2 (en) Exhaust purification device
JP5846488B2 (en) Exhaust gas purification device for internal combustion engine
JP2007002697A (en) Exhaust emission control device
JP5383615B2 (en) Warming up the aftertreatment burner system
JP5448310B2 (en) Exhaust purification device
JP2009091909A (en) Exhaust emission control device
JP2010261331A (en) Exhaust purification device
JP2009013932A (en) Exhaust emission control device
JP2010180861A (en) Exhaust emission control device
JP2007239752A (en) Exhaust emission control device for internal combustion engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2007247652A (en) Exhaust emission control device for internal combustion engine
JP2010038034A (en) Control method of exhaust emission control device
JP2008274850A (en) Exhaust emission control device
JP2008075620A (en) Exhaust emission control device
JP6015198B2 (en) Reducing agent addition system
US8763373B2 (en) System for purifying exhaust gas and method for controlling the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130