JP2008274850A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2008274850A
JP2008274850A JP2007119543A JP2007119543A JP2008274850A JP 2008274850 A JP2008274850 A JP 2008274850A JP 2007119543 A JP2007119543 A JP 2007119543A JP 2007119543 A JP2007119543 A JP 2007119543A JP 2008274850 A JP2008274850 A JP 2008274850A
Authority
JP
Japan
Prior art keywords
particulate filter
exhaust gas
reduction catalyst
urea water
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007119543A
Other languages
Japanese (ja)
Inventor
Makoto Kimura
誠 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2007119543A priority Critical patent/JP2008274850A/en
Publication of JP2008274850A publication Critical patent/JP2008274850A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve mountability on a vehicle, by compactly arranging a particulate filter and a selective reduction type catalyst, while securing sufficient reaction time for generating ammonia from urea water. <P>SOLUTION: This exhaust emission control device has the particulate filter 5 in the middle of an exhaust pipe 4, and has the selective reduction type catalyst 6 selectively reacting NOx with the ammonia even in coexistence of oxygen on its downstream side, and is constituted so that the urea water is added as a reducing agent between the selective reduction type catalyst 6 and the particulate filter 5. The particulate filter 5 and the selective reduction type catalyst 5 are arranged in series by opposing mutual respective outlet side end parts. A connecting flow passage 9 is arranged for introducing exhaust gas 3 exhausted from the outlet side end part of the particulate filter 5 to an inlet side end part of the selective reduction type catalyst 6 by bypassing the selective reduction type catalyst 6. A urea water adding injector 11 is provided in the middle of the connecting flow passage 9. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied.

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガス中で尿素水が次式によりアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる。
[化1]
(NH22CO+H2O→2NH3+CO2
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water in the exhaust gas is thermally decomposed into ammonia and carbon dioxide gas by the following formula, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. NOx is reduced and purified well by ammonia.
[Chemical 1]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2

他方、ディーゼルエンジンの排気浄化を図る場合、排気ガス中のNOxを除去するだけでは十分ではなく、排気ガス中に含まれるパティキュレート(Particulate Matter:粒子状物質)についてもパティキュレートフィルタを通して捕集する必要があるが、この種のパティキュレートフィルタを採用する場合には、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要がある。   On the other hand, when purifying exhaust gas from a diesel engine, it is not enough to remove NOx in the exhaust gas, and particulates contained in the exhaust gas are also collected through the particulate filter. However, when this type of particulate filter is employed, it is necessary to regenerate the particulate filter by appropriately burning and removing the particulate before the exhaust resistance increases due to clogging.

このため、パティキュレートフィルタの入側に、フロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流の排気ガス中に燃料を添加してパティキュレートフィルタを強制再生することが考えられている。   For this reason, a flow-through type oxidation catalyst is attached to the inlet side of the particulate filter, and fuel is added to the exhaust gas upstream from the oxidation catalyst when the amount of particulate accumulation increases. It is considered to forcibly regenerate the filter.

つまり、酸化触媒より上流の排気ガス中に燃料を添加すれば、その添加燃料(HC)が前段の酸化触媒を通過する間に酸化反応するので、その反応熱で昇温した排気ガスの流入により出側のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, if fuel is added to the exhaust gas upstream of the oxidation catalyst, the added fuel (HC) undergoes an oxidation reaction while passing through the preceding oxidation catalyst. The catalyst bed temperature of the outgoing particulate filter is raised, the particulates are burned out, and the particulate filter is regenerated.

一般的に、前述した如き燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実行して排気ガス中に燃料を添加することが考えられているが、その添加燃料を効率良く強制再生に活用し且つ排気ガスが極力温度降下しないうちに添加燃料を酸化処理するためには、パティキュレートフィルタを選択還元型触媒より上流側に配置することが好ましいものと考えられている(例えば、下記の特許文献1参照)。
特開2005−42687号公報
In general, as a specific means for performing the fuel addition as described above, the post-injection is executed at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. It is considered to add fuel to the exhaust gas, but in order to efficiently use the added fuel for forced regeneration and to oxidize the added fuel before the exhaust gas temperature drops as much as possible, It is considered that it is preferable to dispose the curate filter upstream of the selective reduction catalyst (for example, see Patent Document 1 below).
JP 2005-42687 A

しかしながら、このようにパティキュレートフィルタを選択還元型触媒より上流側に配置するとした場合、該選択還元型触媒への尿素水の添加がパティキュレートフィルタと選択還元型触媒との間で行われることになるため、排気ガス中に添加された尿素水がアンモニアと炭酸ガスに熱分解されるまでの十分な反応時間を確保しようとすれば、尿素水の添加位置から選択還元型触媒までの距離を長くする必要があり、結果的にパティキュレートフィルタと選択還元型触媒とを十分な距離を隔てて離間配置させなければならなくなって車両への搭載性が著しく損なわれるという問題があった。   However, when the particulate filter is arranged upstream of the selective catalytic reduction catalyst, urea water is added to the selective catalytic reduction catalyst between the particulate filter and the selective catalytic reduction catalyst. Therefore, if an attempt is made to secure a sufficient reaction time until the urea water added to the exhaust gas is thermally decomposed into ammonia and carbon dioxide, the distance from the urea water addition position to the selective catalytic reduction catalyst is increased. As a result, there is a problem that the particulate filter and the selective catalytic reduction catalyst have to be spaced apart from each other by a sufficient distance, so that the mountability on the vehicle is significantly impaired.

本発明は、上述の実情に鑑みてなされたものであり、尿素水からアンモニアが生成されるのに十分な反応時間を確保しながらもパティキュレートフィルタ及び選択還元型触媒のコンパクトな配置を実現して車両への搭載性を向上することを目的としている。   The present invention has been made in view of the above circumstances, and realizes a compact arrangement of the particulate filter and the selective catalytic reduction catalyst while ensuring a sufficient reaction time to generate ammonia from the urea water. The purpose is to improve the mountability to the vehicle.

本発明は、排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加し得るように構成した排気浄化装置であって、パティキュレートフィルタと選択還元型触媒とを夫々の出側端部同士を対峙させて直列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスを選択還元型触媒を迂回させて該選択還元型触媒の入側端部に導く連絡流路を設け、該連絡流路の途中に尿素水を添加するための尿素水添加手段を備えたことを特徴とするものである。   The present invention includes a particulate filter that collects particulates in exhaust gas in the middle of an exhaust pipe, and selective reduction that can selectively react NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter. An exhaust gas purification apparatus configured to add urea water as a reducing agent between the selective reduction catalyst and the particulate filter, each of the particulate filter and the selective reduction catalyst. The outlet side ends of the particulate filter are arranged in series so that the exhaust gas discharged from the outlet side end of the particulate filter bypasses the selective catalytic reduction catalyst and is guided to the inlet side end of the selective catalytic reduction catalyst. A communication flow path is provided, and urea water addition means for adding urea water in the middle of the communication flow path is provided.

而して、このようにすれば、パティキュレートフィルタの出側端部から排出された排気ガスが連絡流路を経由して選択還元型触媒の入側端部に導入されることになり、これによって、パティキュレートフィルタと選択還元型触媒とを直列に近接配置しながらも、連絡流路の途中にある尿素水の添加位置から選択還元型触媒までの距離を長く確保して尿素水と排気ガスとの混合促進を図ることが可能となり、尿素水からアンモニアが生成されるのに十分な反応時間が確保される。   Thus, in this way, the exhaust gas discharged from the outlet end portion of the particulate filter is introduced into the inlet end portion of the selective catalytic reduction catalyst via the connecting flow path. As a result, the particulate filter and the selective catalytic reduction catalyst are arranged close to each other in series, but a long distance from the urea water addition position in the middle of the connecting flow path to the selective catalytic reduction catalyst is ensured to keep the urea water and the exhaust gas. It is possible to promote mixing with the water, and a reaction time sufficient to generate ammonia from the urea water is ensured.

また、本発明においては、パティキュレートフィルタと選択還元型触媒とを夫々の入側端部同士を対峙させて直列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスをパティキュレートフィルタを迂回させて該パティキュレートフィルタの入側端部に導く連絡流路を設け、該連絡流路の途中に尿素水を添加するための尿素水添加手段を備えるようにしても良い。   Further, in the present invention, the particulate filter and the selective catalytic reduction catalyst are arranged in series with their inlet ends facing each other, and the exhaust gas discharged from the outlet end of the particulate filter is particulated. A communication flow path that bypasses the filter and leads to the inlet side end of the particulate filter may be provided, and urea water addition means for adding urea water may be provided in the middle of the communication flow path.

更に、本発明をより具体的に実施するに際しては、パティキュレートフィルタの出側端部と選択還元型触媒の入側端部との間を連絡する連絡流路が、パティキュレートフィルタの出側端部を包囲し且つ該出側端部から出た直後の排気ガスを壁面に衝突させて略直角な向きに方向転換させつつ集合せしめるガス集合室と、該ガス集合室で集められた排気ガスを選択還元型触媒の入側端部に向けて抜き出すミキシングパイプと、該ミキシングパイプにより導かれた排気ガスを壁面に衝突させて略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガスを選択還元型触媒の入側端部に導入し得るよう該入側端部を包囲するガス分散室とにより構成されていることが好ましい。   Furthermore, when carrying out the present invention more specifically, the communication flow path that communicates between the outlet side end portion of the particulate filter and the inlet side end portion of the selective catalytic reduction catalyst has an outlet side end portion of the particulate filter. An exhaust gas collected in the gas collecting chamber, and a gas collecting chamber that collects exhaust gas immediately after exiting from the outlet end portion by colliding with a wall surface and changing the direction in a substantially perpendicular direction. Mixing pipe extracted toward the inlet side end of the selective catalytic reduction catalyst, and exhaust gas introduced by the mixing pipe collide with the wall surface and disperse it while changing the direction in a substantially right angle, and the dispersed exhaust gas Is preferably constituted by a gas dispersion chamber surrounding the inlet side end so that can be introduced into the inlet side end of the selective catalytic reduction catalyst.

また、本発明においては、パティキュレートフィルタの入側に排気ガス中の未燃燃料分を酸化処理する酸化触媒が装備され、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段が備えられていることが好ましく、このようにすれば、燃料添加手段により添加された燃料が酸化触媒上で酸化処理される結果、その反応熱で昇温した排気ガスの流入により出側のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られる。   Further, in the present invention, an oxidation catalyst for oxidizing the unburned fuel content in the exhaust gas is provided on the inlet side of the particulate filter, and the fuel addition means for adding fuel to the exhaust gas upstream of the oxidation catalyst In this case, the fuel added by the fuel addition means is oxidized on the oxidation catalyst, and as a result, the exhaust gas that has been heated by the reaction heat flows into the outlet side. The catalyst bed temperature of the curate filter is raised, the particulates are burned out, and the particulate filter is regenerated.

このようにした際には、エンジンの各気筒に燃料を噴射する燃料噴射装置を燃料添加手段として採用し、気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことで燃料添加を実行するように構成すると良い。   When doing so, a fuel injection device that injects fuel into each cylinder of the engine is adopted as a fuel addition means, and fuel injection into the cylinder is controlled to leave a large amount of unburned fuel in the exhaust gas. In this case, it is preferable that the fuel is added.

また、本発明においては、選択還元型触媒の出側に余剰のアンモニアを酸化処理するアンモニア低減触媒が装備されていることが好ましく、このようにすれば、選択還元型触媒での還元反応に使用されて余剰したアンモニアが、出側のアンモニア低減触媒にて酸化処理される。   In the present invention, it is preferable that an ammonia reduction catalyst for oxidizing excess ammonia is provided on the exit side of the selective catalytic reduction catalyst. In this way, the selective catalytic reduction catalyst can be used for the reduction reaction. The excess ammonia is oxidized by the ammonia reduction catalyst on the exit side.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1、2、3に記載の発明によれば、尿素水からアンモニアが生成されるのに十分な反応時間を確保しながらもパティキュレートフィルタ及び選択還元型触媒のコンパクトな配置を実現することができるので、従来よりも車両への搭載性を大幅に向上することができる。   (I) According to the first, second, and third aspects of the present invention, the particulate filter and the selective reduction catalyst are compact while ensuring a sufficient reaction time for ammonia to be produced from the urea water. Therefore, it is possible to significantly improve the mounting property on the vehicle as compared with the conventional case.

(II)本発明の請求項4、5に記載の発明によれば、燃料添加手段により添加した燃料を酸化触媒上で酸化処理させ、その反応熱で昇温した排気ガスの流入により出側のパティキュレートフィルタの触媒床温度を上げてパティキュレートを燃やし尽くすことができ、パティキュレートフィルタの積極的な再生化を図ることができる。   (II) According to the inventions described in claims 4 and 5 of the present invention, the fuel added by the fuel addition means is oxidized on the oxidation catalyst, and the exhaust gas heated by the reaction heat flows into the outlet side. It is possible to burn up the particulates by raising the catalyst bed temperature of the particulate filter, and to actively regenerate the particulate filter.

(III)本発明の請求項6に記載の発明によれば、選択還元型触媒を未反応のまま通過してしまった余剰のアンモニアを酸化処理して無害化させることができ、最終的に大気中へ排出される排気ガス中にアンモニアが残存してしまう虞れを未然に回避することができる。   (III) According to the invention described in claim 6 of the present invention, surplus ammonia that has passed through the selective reduction catalyst in an unreacted state can be oxidized and rendered harmless, and finally the atmosphere The possibility that ammonia may remain in the exhaust gas discharged into the exhaust gas can be avoided.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、ディーゼルエンジン1から排気マニホールド2を介して排出される排気ガス3が流通する排気管4の途中に、排気ガス3中のパティキュレートを捕集するパティキュレートフィルタ5と、該パティキュレートフィルタ5の下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒6とをケーシング7,8により夫々抱持し且つ夫々の出側端部同士を対峙させて直列に配置しており、しかも、パティキュレートフィルタ5の出側端部と選択還元型触媒6の入側端部との間を連絡流路9により接続し、パティキュレートフィルタ5の出側端部から排出された排気ガス3が選択還元型触媒6を迂回して該選択還元型触媒6の入側端部に導入されるようにしてある。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, the exhaust pipe 4 through which the exhaust gas 3 discharged from the diesel engine 1 through the exhaust manifold 2 flows is shown. In addition, a particulate filter 5 that collects particulates in the exhaust gas 3 and a selective reduction type catalyst that has the property of selectively reacting NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter 5. 6 are respectively held in series by casings 7 and 8 and are arranged in series with their respective outlet ends facing each other, and the outlet end of the particulate filter 5 and the selective catalytic reduction catalyst 6 are inserted. The exhaust gas 3 discharged from the outlet side end of the particulate filter 5 bypasses the selective catalytic reduction catalyst 6 and is connected to the side end by the communication channel 9. It is made to introduce into the entrance side end of.

図2及び図3に要部を拡大して示す如く、前記連絡流路9は、パティキュレートフィルタ5の出側端部を包囲し且つ該出側端部から出た直後の排気ガス3を壁面に衝突させて略直角な向きに方向転換させつつ集合せしめるガス集合室9Aと、該ガス集合室9Aで集められた排気ガス3を選択還元型触媒6の入側端部に向けて抜き出し且つその途中に尿素水添加用インジェクタ11(尿素水添加手段)を備えたミキシングパイプ9Bと、該ミキシングパイプ9Bにより導かれた排気ガス3を壁面に衝突させて略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガス3を選択還元型触媒6の入側端部に導入し得るよう該入側端部を包囲するガス分散室9Cとによりコ字構造を成すように構成されている。   2 and 3, the communication channel 9 surrounds the outlet end of the particulate filter 5 and wall the exhaust gas 3 immediately after exiting from the outlet end. A gas collecting chamber 9A that is caused to collide with the gas and collect in an approximately perpendicular direction, and the exhaust gas 3 collected in the gas collecting chamber 9A is extracted toward the inlet side end of the selective catalytic reduction catalyst 6 and A mixing pipe 9B provided with a urea water addition injector 11 (urea water addition means) in the middle and the exhaust gas 3 guided by the mixing pipe 9B collide with the wall surface and are dispersed while being changed in a direction substantially at right angles. In addition, a U-shaped structure is formed by the gas dispersion chamber 9 </ b> C surrounding the inlet side end so that the dispersed exhaust gas 3 can be introduced into the inlet side end of the selective catalytic reduction catalyst 6.

ただし、ここでは尿素水添加用インジェクタ11をミキシングパイプ9Bの途中に備えた場合を例示しているが、ガス集合室9Aに尿素水添加用インジェクタ11を備えることも可能である。   However, although the case where the urea water addition injector 11 is provided in the middle of the mixing pipe 9B is illustrated here, it is also possible to provide the urea water addition injector 11 in the gas collecting chamber 9A.

更に、特に本形態例においては、パティキュレートフィルタ5が抱持されているケーシング7内の入側に、排気ガス3中の未燃燃料分を酸化処理する酸化触媒14が装備されていると共に、選択還元型触媒6が抱持されているケーシング8内の出側に、余剰のアンモニアを酸化処理するアンモニア低減触媒15が装備されており、前記ケーシング8の出側端部には、テールパイプを側方へ向けて装備した排気室16が形成されている。   Further, particularly in the present embodiment, an oxidation catalyst 14 that oxidizes unburned fuel in the exhaust gas 3 is provided on the entry side in the casing 7 in which the particulate filter 5 is held, An ammonia reduction catalyst 15 for oxidizing excess ammonia is provided on the exit side of the casing 8 in which the selective catalytic reduction catalyst 6 is held, and a tail pipe is provided at the exit end of the casing 8. An exhaust chamber 16 equipped to the side is formed.

また、図1に示してある通り、運転席のアクセルに、アクセル開度をディーゼルエンジン1の負荷として検出するアクセルセンサ17(負荷センサ)が備えられていると共に、ディーゼルエンジン1の適宜位置には、その回転数を検出する回転センサ18が装備されており、これらアクセルセンサ17及び回転センサ18からのアクセル開度信号17a及び回転数信号18aがエンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置19に入力されるようになっている。   Further, as shown in FIG. 1, an accelerator sensor 17 (load sensor) for detecting the accelerator opening as a load of the diesel engine 1 is provided in the accelerator of the driver's seat, and at an appropriate position of the diesel engine 1. A rotation sensor 18 for detecting the rotation speed is provided, and the accelerator opening signal 17a and the rotation speed signal 18a from the accelerator sensor 17 and the rotation sensor 18 constitute an engine control computer (ECU: Electronic Control Unit). It is input to the device 19.

一方、前記制御装置19においては、アクセル開度信号17a及び回転数信号18aから判断される現在の運転状態に応じ、各気筒内に燃料を噴射する燃料噴射装置20に向け燃料の噴射タイミング及び噴射量を指令する燃料噴射信号20aが出力されるようになっている。   On the other hand, in the control device 19, the fuel injection timing and the injection toward the fuel injection device 20 for injecting the fuel into each cylinder according to the current operation state determined from the accelerator opening signal 17a and the rotation speed signal 18a. A fuel injection signal 20a for commanding the amount is output.

ここで、前記燃料噴射装置20は、各気筒毎に装備される図示しない複数のインジェクタにより構成されており、これら各インジェクタの電磁弁が前記制御装置19からの燃料噴射信号20aにより適宜に開弁制御されて燃料の噴射タイミング及び噴射量(開弁時間)が適切に制御されるようになっている。   Here, the fuel injection device 20 is constituted by a plurality of injectors (not shown) provided for each cylinder, and the electromagnetic valves of these injectors are appropriately opened by a fuel injection signal 20 a from the control device 19. Thus, the fuel injection timing and the injection amount (valve opening time) are appropriately controlled.

ただし、本形態例においては、制御装置19でアクセル開度信号17a及び回転数信号18aに基づき通常モードの燃料噴射信号20aが決定されるようになっている一方、パティキュレートフィルタ5の強制再生を行う必要が生じた際に、通常モードから再生モードに切り替わり、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミング(開始時期がクランク角90゜〜130゜の範囲)でポスト噴射を行うような燃料噴射信号20aが決定されるようになっている。   However, in the present embodiment, the control device 19 determines the fuel injection signal 20a in the normal mode based on the accelerator opening signal 17a and the rotation speed signal 18a, while the particulate filter 5 is forcedly regenerated. When it is necessary to perform this, the normal mode is switched to the regeneration mode, and the non-ignition timing (start timing) later than the compression top dead center following the main injection of fuel performed near the compression top dead center (crank angle 0 °) The fuel injection signal 20a is determined so as to perform post injection at a crank angle of 90 ° to 130 °.

つまり、ここに図示している例では、燃料噴射装置20を燃料添加手段として採用しており、前述のようにメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排気ガス3中に未燃の燃料(主としてHC:炭化水素)が添加されることになり、この未燃の燃料がパティキュレートフィルタ5の前段の酸化触媒14を通過する間に酸化反応し、その反応熱で昇温した排気ガス3の流入により出側のパティキュレートフィルタ5の触媒床温度が上げられてパティキュレートが燃焼除去されることになる。   That is, in the example shown here, the fuel injection device 20 is employed as the fuel addition means, and the post injection is performed at the non-ignition timing later than the compression top dead center following the main injection as described above. As a result of this post-injection, unburned fuel (mainly HC: hydrocarbon) is added to the exhaust gas 3, and the unburned fuel passes through the oxidation catalyst 14 at the front stage of the particulate filter 5. The catalyst bed temperature of the particulate filter 5 on the outlet side is raised by the inflow of the exhaust gas 3 heated by the reaction heat, and the particulates are burned and removed.

また、この制御装置19においては、ディーゼルエンジン1の回転数と燃料噴射信号20aの出力値から判る燃料の噴射量とを抽出し、これら回転数と噴射量とによるパティキュレートの発生量マップからディーゼルエンジン1の現在の運転状態に基づくパティキュレートの基本的な発生量を推定し、この基本的な発生量に対しパティキュレートの発生にかかわる各種の条件を考慮した補正係数を掛け且つ現在の運転状態におけるパティキュレートの処理量を減算して最終的な発生量を求め、この最終的な発生量を時々刻々積算してパティキュレートの堆積量を推定し、その堆積量が所定の目標値に達したものと推定された際に、燃料噴射制御が通常モードから再生モードへ切り替わり、パティキュレートフィルタ5の上流側の排気ガス3中に燃料が添加されるようになっている。   Further, the control device 19 extracts the fuel injection amount determined from the rotational speed of the diesel engine 1 and the output value of the fuel injection signal 20a, and the diesel generation from the particulate generation map based on the rotational speed and the injection amount. The basic generation amount of particulates based on the current operation state of the engine 1 is estimated, and the basic generation amount is multiplied by a correction coefficient considering various conditions relating to the generation of particulates, and the current operation state The final generation amount is obtained by subtracting the particulate processing amount at, and the final generation amount is momentarily accumulated to estimate the particulate deposition amount. The deposition amount has reached a predetermined target value. When it is estimated, the fuel injection control is switched from the normal mode to the regeneration mode, and the exhaust gas 3 in the upstream side of the particulate filter 5 Fuel is adapted to be added.

尚、このようなパティキュレートの堆積量を推定する方法には各種の考え方があり、ここに例示した推定方法以外の手法を用いてパティキュレートの堆積量を推定することも勿論可能であり、パティキュレートフィルタの前後の差圧に基づいてパティキュレートの堆積量を推定したり、運転時間や走行距離を目安としてパティキュレートの堆積量を推定したりすることも可能である。   There are various ways of estimating the amount of particulate deposition, and it is of course possible to estimate the amount of particulate deposition using a method other than the estimation method exemplified here. It is also possible to estimate the accumulated amount of particulates based on the differential pressure before and after the curate filter, or to estimate the accumulated amount of particulates based on the operation time and travel distance.

また、前記制御装置19においては、ディーゼルエンジン1の回転数と燃料の噴射量等に基づきNOxの発生量も推定され、このNOxの発生量に見合う必要量の尿素水の添加が前記尿素水添加用インジェクタ11に向け開弁指令信号11aとして指示されるようになっている。   Further, the control device 19 estimates the amount of NOx generated based on the rotational speed of the diesel engine 1 and the amount of fuel injected, and the addition of a necessary amount of urea water corresponding to the amount of NOx generated is added to the urea water addition. It is instructed to the injector 11 as a valve opening command signal 11a.

而して、このように排気浄化装置を構成すれば、パティキュレートフィルタ5により排気ガス3中のパティキュレートが捕集されると共に、その下流側のミキシングパイプ9Bの途中で尿素水添加用インジェクタ11から尿素水が排気ガス3中に添加されてアンモニアと炭酸ガスに熱分解され、選択還元型触媒6上で排気ガス3中のNOxがアンモニアにより良好に還元浄化される結果、排気ガス3中のパティキュレートとNOxの同時低減が図られる。   Thus, if the exhaust gas purification apparatus is configured in this way, the particulate filter 5 collects the particulates in the exhaust gas 3 and also the urea water addition injector 11 in the middle of the mixing pipe 9B on the downstream side thereof. As a result, urea water is added to the exhaust gas 3 and thermally decomposed into ammonia and carbon dioxide, and the NOx in the exhaust gas 3 is reduced and purified well by ammonia on the selective catalytic reduction catalyst 6. Simultaneous reduction of particulates and NOx is achieved.

この際、パティキュレートフィルタ5の出側端部から排出された排気ガス3が連絡流路9を経由して選択還元型触媒6の入側端部に導入されるようになっているので、パティキュレートフィルタ5と選択還元型触媒6とを直列に近接配置しながらも、前記連絡流路9の途中にある尿素水の添加位置から選択還元型触媒6までの距離を長く確保して尿素水と排気ガス3との混合促進を図ることが可能となり、尿素水からアンモニアが生成されるのに十分な反応時間が確保される。   At this time, the exhaust gas 3 discharged from the outlet end portion of the particulate filter 5 is introduced into the inlet end portion of the selective catalytic reduction catalyst 6 via the connecting flow path 9. While the curative filter 5 and the selective catalytic reduction catalyst 6 are arranged close to each other in series, a long distance from the urea water addition position in the middle of the connecting flow path 9 to the selective catalytic reduction catalyst 6 is secured to Mixing with the exhaust gas 3 can be promoted, and a sufficient reaction time is secured for the generation of ammonia from the urea water.

特に本形態例においては、パティキュレートフィルタ5の出側端部から出た直後の排気ガス3をガス集合室9Aの壁面に衝突させて略直角な向きに方向転換させつつ集合させるようにしているので、排気ガス3が効果的に乱流化された状態でミキシングパイプ9Bに導入されることになり、該ミキシングパイプ9Bの途中で添加される尿素水が極めて良好に混合促進される。   In particular, in the present embodiment, the exhaust gas 3 immediately after coming out from the outlet end of the particulate filter 5 collides with the wall surface of the gas collecting chamber 9A and is gathered while changing its direction in a substantially perpendicular direction. Therefore, the exhaust gas 3 is effectively introduced into the mixing pipe 9B in a turbulent state, and the urea water added in the middle of the mixing pipe 9B is promoted very well.

また、ミキシングパイプ9Bにより導かれた排気ガス3をガス分散室9Cの壁面に衝突させて略直角な向きに方向転換させつつ分散させるようにしているので、選択還元型触媒6の入側端部に対し排気ガス3が偏りを生じることなく分散して導入される。   Further, the exhaust gas 3 guided by the mixing pipe 9B collides with the wall surface of the gas dispersion chamber 9C and is dispersed while being changed in a direction substantially perpendicular, so that the inlet side end portion of the selective catalytic reduction catalyst 6 can be dispersed. In contrast, the exhaust gas 3 is introduced in a dispersed manner without causing a bias.

尚、本形態例において、パティキュレートフィルタ5の強制再生を行う必要が生じた際には、制御装置19における燃料噴射制御が通常モードから再生モードに切り替わり、ポスト噴射によりディーゼルエンジン1側で添加された燃料が前段の酸化触媒14で酸化反応し、その反応熱で昇温した排気ガス3の流入により出側のパティキュレートフィルタ5の触媒床温度が上昇してパティキュレートが燃やし尽くされ、パティキュレートフィルタ5の積極的な再生化が図られることは勿論である。   In this embodiment, when it becomes necessary to perform forced regeneration of the particulate filter 5, the fuel injection control in the control device 19 is switched from the normal mode to the regeneration mode, and is added on the diesel engine 1 side by post injection. The oxidized fuel is oxidized by the oxidation catalyst 14 in the previous stage, and the catalyst bed temperature of the particulate filter 5 on the outlet side rises due to the inflow of the exhaust gas 3 heated by the reaction heat, and the particulates are burned out. Of course, the filter 5 can be actively regenerated.

従って、上記形態例によれば、尿素水からアンモニアが生成されるのに十分な反応時間を確保しながらもパティキュレートフィルタ5及び選択還元型触媒6のコンパクトな配置を実現することができ、従来よりも車両への搭載性を大幅に向上することができる。   Therefore, according to the above embodiment, it is possible to realize a compact arrangement of the particulate filter 5 and the selective catalytic reduction catalyst 6 while ensuring a sufficient reaction time for ammonia to be generated from urea water. As a result, the mountability on the vehicle can be greatly improved.

また、燃料噴射装置20によりポスト噴射で添加した燃料を酸化触媒14上で酸化処理させ、その反応熱で昇温した排気ガス3の流入により出側のパティキュレートフィルタ5の触媒床温度を上げてパティキュレートを燃やし尽くすことができるので、パティキュレートフィルタ5の積極的な再生化を図ることができる。   Further, the fuel added by the post injection by the fuel injection device 20 is oxidized on the oxidation catalyst 14, and the catalyst bed temperature of the particulate filter 5 on the outlet side is raised by the inflow of the exhaust gas 3 heated by the reaction heat. Since the particulates can be burned out, the particulate filter 5 can be actively regenerated.

しかも、選択還元型触媒6を未反応のまま通過してしまった余剰のアンモニアをアンモニア低減触媒15により酸化処理して無害化させることができるので、最終的に大気中へ排出される排気ガス3中にアンモニアが残存してしまう虞れを未然に回避することもできる。   Moreover, since the excess ammonia that has passed through the selective reduction catalyst 6 in an unreacted state can be oxidized by the ammonia reduction catalyst 15 to be rendered harmless, the exhaust gas 3 that is finally discharged into the atmosphere It is also possible to avoid the possibility of ammonia remaining therein.

図4及び図5は本発明の別の形態例を示すもので、ここに図示している例では、前述の図1〜図3の形態例で出側端部同士を対峙させて直列に配置していたパティキュレートフィルタ5と選択還元型触媒6とのレイアウトを、夫々の入側端部同士を対峙させて直列に配置するようにした逆向きのレイアウトに変更し、パティキュレートフィルタ5の出側端部と選択還元型触媒6の入側端部との間を前述と同様の連絡流路9により接続し、パティキュレートフィルタ5の出側端部から排出された排気ガス3がパティキュレートフィルタ5を迂回して前記選択還元型触媒6の入側端部に導入されるようにしてある。   4 and 5 show another embodiment of the present invention, and in the example shown here, the output side end portions are opposed to each other in the embodiment shown in FIGS. 1 to 3 and arranged in series. The layout of the particulate filter 5 and the selective catalytic reduction catalyst 6 was changed to a reverse layout in which the inlet end portions of the particulate filter 5 and the selective reduction type catalyst 6 are arranged in series, and the particulate filter 5 The side end portion and the inlet side end portion of the selective catalytic reduction catalyst 6 are connected by the same communication flow path 9 as described above, and the exhaust gas 3 discharged from the outlet side end portion of the particulate filter 5 is the particulate filter. 5 is introduced to the inlet side end of the selective catalytic reduction catalyst 6.

而して、このように排気浄化装置を構成した場合であっても、パティキュレートフィルタ5の出側端部から排出された排気ガス3が連絡流路9を経由して選択還元型触媒6の入側端部に導入されることは同じであり、パティキュレートフィルタ5と選択還元型触媒6とを直列に近接配置しながらも、前記連絡流路9の途中にある尿素水の添加位置から選択還元型触媒6までの距離を長く確保して尿素水と排気ガス3との混合促進を図ることが可能となる。   Thus, even when the exhaust gas purification device is configured in this way, the exhaust gas 3 discharged from the outlet side end portion of the particulate filter 5 passes through the communication flow path 9 to form the selective reduction catalyst 6. It is the same that it is introduced into the inlet side end, and the particulate filter 5 and the selective catalytic reduction catalyst 6 are arranged in close proximity in series, but selected from the urea water addition position in the middle of the connecting flow path 9 It becomes possible to promote the mixing of urea water and the exhaust gas 3 by ensuring a long distance to the reduction catalyst 6.

この結果、前述の図1〜図3の形態例の場合と同様に、尿素水からアンモニアが生成されるのに十分な反応時間を確保しながらもパティキュレートフィルタ5及び選択還元型触媒6のコンパクトな配置を実現することができ、従来よりも車両への搭載性を大幅に向上することができる。   As a result, the particulate filter 5 and the selective catalytic reduction catalyst 6 are compact while securing a reaction time sufficient for ammonia to be generated from the urea water, as in the case of the above-described embodiments of FIGS. Arrangement can be realized, and mounting on a vehicle can be greatly improved as compared with the conventional arrangement.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、先の形態例においては、燃料添加手段として燃料噴射装置を採用し、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行うことで排気ガス中に燃料を添加するようにしているが、気筒内へのメイン噴射の時期を通常より遅らせることで排気ガス中に燃料を添加するようにしても良く、更には、このように気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことにより燃料添加を行う手段だけでなく、排気管の適宜位置(排気マニホールドでも可)に燃料添加手段としてインジェクタを貫通装着し、このインジェクタにより排気ガス中に燃料を直噴して添加するようにしても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The exhaust emission control device of the present invention is not limited to the above-described embodiment. In the above embodiment, the fuel injection device is employed as the fuel addition means, and the fuel is performed near the compression top dead center. Fuel is added to the exhaust gas by performing post-injection at a timing of non-ignition later than the compression top dead center following the main injection of the engine, but the timing of main injection into the cylinder is delayed from normal The fuel may be added to the exhaust gas, and only the means for adding fuel by controlling the fuel injection into the cylinder and leaving a large amount of unburned fuel in the exhaust gas. In addition, an injector may be provided as a fuel addition means at an appropriate position of the exhaust pipe (or an exhaust manifold), and fuel may be directly injected into the exhaust gas by this injector, It is of course that various changes and modifications may be made without departing from the scope and spirit of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の要部を拡大して示す詳細図である。FIG. 2 is an enlarged detailed view showing a main part of FIG. 1. 図2の排気浄化装置の斜視図である。FIG. 3 is a perspective view of the exhaust purification device of FIG. 2. 本発明の別の形態例を示す詳細図である。It is detail drawing which shows another form example of this invention. 図4の排気浄化装置の斜視図である。It is a perspective view of the exhaust emission control device of FIG.

符号の説明Explanation of symbols

1 ディーゼルエンジン(エンジン)
3 排気ガス
4 排気管
5 パティキュレートフィルタ
6 選択還元型触媒
9 連絡流路
9A ガス集合室
9B ミキシングパイプ
9C ガス分散室
11 尿素水添加用インジェクタ(尿素水添加手段)
14 酸化触媒
15 アンモニア低減触媒
20 燃料噴射装置(燃料添加手段)
1 Diesel engine (engine)
DESCRIPTION OF SYMBOLS 3 Exhaust gas 4 Exhaust pipe 5 Particulate filter 6 Selective reduction type catalyst 9 Connection flow path 9A Gas collection chamber 9B Mixing pipe 9C Gas dispersion chamber 11 Urea water addition injector (urea water addition means)
14 Oxidation catalyst 15 Ammonia reduction catalyst 20 Fuel injection device (fuel addition means)

Claims (6)

排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加し得るように構成した排気浄化装置であって、パティキュレートフィルタと選択還元型触媒とを夫々の出側端部同士を対峙させて直列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスを選択還元型触媒を迂回させて該選択還元型触媒の入側端部に導く連絡流路を設け、該連絡流路の途中に尿素水を添加するための尿素水添加手段を備えたことを特徴とする排気浄化装置。   A particulate filter for collecting particulates in the exhaust gas is provided in the middle of the exhaust pipe, and a selective reduction catalyst capable of selectively reacting NOx with ammonia even in the presence of oxygen on the downstream side of the particulate filter. An exhaust emission control device configured to be able to add urea water as a reducing agent between the selective reduction catalyst and the particulate filter, wherein the particulate filter and the selective reduction catalyst are respectively connected to the outlet ends. A connecting flow path that leads the exhaust gas exhausted from the outlet end portion of the particulate filter to the inlet end portion of the selective catalytic reduction catalyst by bypassing the selective catalytic reduction catalyst. An exhaust gas purification apparatus provided with urea water addition means for adding urea water in the middle of the communication channel. 排気管の途中に排気ガス中のパティキュレートを捕集するパティキュレートフィルタを備えると共に、該パティキュレートフィルタの下流側に酸素共存下でも選択的にNOxをアンモニアと反応させ得る選択還元型触媒を備え、該選択還元型触媒と前記パティキュレートフィルタとの間に還元剤として尿素水を添加し得るように構成した排気浄化装置であって、パティキュレートフィルタと選択還元型触媒とを夫々の入側端部同士を対峙させて直列に配置し、パティキュレートフィルタの出側端部から排出された排気ガスをパティキュレートフィルタを迂回させて該パティキュレートフィルタの入側端部に導く連絡流路を設け、該連絡流路の途中に尿素水を添加するための尿素水添加手段を備えたことを特徴とする排気浄化装置。   A particulate filter for collecting particulates in the exhaust gas is provided in the middle of the exhaust pipe, and a selective reduction catalyst capable of selectively reacting NOx with ammonia even in the presence of oxygen is provided downstream of the particulate filter. An exhaust gas purification apparatus configured to be able to add urea water as a reducing agent between the selective reduction catalyst and the particulate filter, wherein the particulate filter and the selective reduction catalyst are respectively connected to the respective inlet ends. The parts are arranged in series so that the exhaust gas discharged from the outlet end of the particulate filter bypasses the particulate filter and is connected to the inlet end of the particulate filter to provide a communication channel, An exhaust gas purification apparatus comprising urea water addition means for adding urea water in the middle of the communication channel. パティキュレートフィルタの出側端部と選択還元型触媒の入側端部との間を連絡する連絡流路が、パティキュレートフィルタの出側端部を包囲し且つ該出側端部から出た直後の排気ガスを壁面に衝突させて略直角な向きに方向転換させつつ集合せしめるガス集合室と、該ガス集合室で集められた排気ガスを選択還元型触媒の入側端部に向けて抜き出すミキシングパイプと、該ミキシングパイプにより導かれた排気ガスを壁面に衝突させて略直角な向きに方向転換させつつ分散せしめ且つその分散された排気ガスを選択還元型触媒の入側端部に導入し得るよう該入側端部を包囲するガス分散室とにより構成されていることを特徴とする請求項1又は2に記載の排気浄化装置。   Immediately after the communication flow path communicating between the exit end of the particulate filter and the entrance end of the selective catalytic reduction catalyst surrounds the exit end of the particulate filter and exits from the exit end Gas collecting chamber that collides the exhaust gas with the wall surface and changes the direction in a substantially perpendicular direction, and the exhaust gas collected in the gas collecting chamber is extracted toward the inlet end of the selective catalytic reduction catalyst The pipe and the exhaust gas guided by the mixing pipe collide with the wall surface and can be dispersed while changing the direction in a substantially perpendicular direction, and the dispersed exhaust gas can be introduced into the inlet side end portion of the selective catalytic reduction catalyst. The exhaust gas purification apparatus according to claim 1 or 2, wherein the exhaust gas purification chamber is constituted by a gas dispersion chamber surrounding the inlet side end portion. パティキュレートフィルタの入側に排気ガス中の未燃燃料分を酸化処理する酸化触媒が装備され、該酸化触媒より上流側で排気ガス中に燃料を添加する燃料添加手段が備えられていることを特徴とする請求項1、2又は3に記載の排気浄化装置。   An oxidation catalyst for oxidizing unburned fuel in the exhaust gas is provided on the inlet side of the particulate filter, and a fuel addition means for adding fuel to the exhaust gas on the upstream side of the oxidation catalyst is provided. The exhaust emission control device according to claim 1, 2, or 3. エンジンの各気筒に燃料を噴射する燃料噴射装置を燃料添加手段として採用し、気筒内への燃料噴射を制御して排気ガス中に未燃燃料分を多く残すことで燃料添加を実行するように構成されていることを特徴とする請求項4に記載の排気浄化装置。   Fuel injection device that injects fuel into each cylinder of the engine is adopted as fuel addition means, and fuel addition is executed by controlling fuel injection into the cylinder and leaving a large amount of unburned fuel in the exhaust gas The exhaust emission control device according to claim 4, wherein the exhaust purification device is configured. 選択還元型触媒の出側に余剰のアンモニアを酸化処理するアンモニア低減触媒が装備されていることを特徴とする請求項1、2、3、4又は5に記載の排気浄化装置。   6. The exhaust emission control device according to claim 1, wherein an ammonia reduction catalyst that oxidizes surplus ammonia is provided on the exit side of the selective catalytic reduction catalyst.
JP2007119543A 2007-04-27 2007-04-27 Exhaust emission control device Pending JP2008274850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007119543A JP2008274850A (en) 2007-04-27 2007-04-27 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007119543A JP2008274850A (en) 2007-04-27 2007-04-27 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2008274850A true JP2008274850A (en) 2008-11-13

Family

ID=40053112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007119543A Pending JP2008274850A (en) 2007-04-27 2007-04-27 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2008274850A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012642A (en) * 2009-07-03 2011-01-20 Isuzu Motors Ltd Reducing agent supply device of urea scr catalyst
EP2388449A1 (en) * 2009-01-13 2011-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust purifying device for internal combustion engine
US8460610B2 (en) 2009-12-22 2013-06-11 Caterpillar Inc. Canister aftertreatment module
US8596049B2 (en) 2009-12-22 2013-12-03 Caterpillar Inc. Exhaust system having an aftertreatment module
JP2021504627A (en) * 2017-12-01 2021-02-15 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl List Gmbh Exhaust gas aftertreatment system
CN114345064A (en) * 2021-12-14 2022-04-15 苏州市大象印刷包装有限公司 Printing packaging printing ink waste gas collecting and treating device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056336A (en) * 2001-08-10 2003-02-26 Hino Motors Ltd Exhaust emission control device
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine
JP2006342735A (en) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007021422A (en) * 2005-07-20 2007-02-01 Hino Motors Ltd Selective reduction catalyst and engine exhaust control system using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056336A (en) * 2001-08-10 2003-02-26 Hino Motors Ltd Exhaust emission control device
JP2005155404A (en) * 2003-11-25 2005-06-16 Komatsu Ltd Exhaust emission control device for internal combustion engine
JP2006342735A (en) * 2005-06-09 2006-12-21 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device
JP2007021422A (en) * 2005-07-20 2007-02-01 Hino Motors Ltd Selective reduction catalyst and engine exhaust control system using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2388449A1 (en) * 2009-01-13 2011-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust purifying device for internal combustion engine
EP2388449A4 (en) * 2009-01-13 2013-01-23 Toyota Motor Co Ltd Exhaust purifying device for internal combustion engine
JP2011012642A (en) * 2009-07-03 2011-01-20 Isuzu Motors Ltd Reducing agent supply device of urea scr catalyst
US8460610B2 (en) 2009-12-22 2013-06-11 Caterpillar Inc. Canister aftertreatment module
US8596049B2 (en) 2009-12-22 2013-12-03 Caterpillar Inc. Exhaust system having an aftertreatment module
JP2021504627A (en) * 2017-12-01 2021-02-15 アー・ファウ・エル・リスト・ゲー・エム・ベー・ハーAvl List Gmbh Exhaust gas aftertreatment system
CN114345064A (en) * 2021-12-14 2022-04-15 苏州市大象印刷包装有限公司 Printing packaging printing ink waste gas collecting and treating device

Similar Documents

Publication Publication Date Title
JP4785766B2 (en) Exhaust purification device
JP4785803B2 (en) Exhaust purification device
JP5173308B2 (en) Exhaust purification device
JP4881213B2 (en) Exhaust purification device
JP5449009B2 (en) Exhaust purification device
US8347606B2 (en) Exhaust gas after treatment system and method for operating an exhaust gas after treatment system for internal combustion engine
JP5846488B2 (en) Exhaust gas purification device for internal combustion engine
US20090241521A1 (en) Apparatus for purifying exhaust gas
KR100999616B1 (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
US8327624B2 (en) System for purifying exhaust gas
JP2009114930A (en) Exhaust purification device
JP2009091909A (en) Exhaust emission control device
JP2005002968A (en) Exhaust emission control device of internal combustion engine
JP2008274850A (en) Exhaust emission control device
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP3620291B2 (en) Exhaust gas purification device for internal combustion engine
JP2007002697A (en) Exhaust emission control device
JP2010038034A (en) Control method of exhaust emission control device
JP2007205267A (en) Exhaust emission control device
JP2010248955A (en) Exhaust emission control device
JP2008075620A (en) Exhaust emission control device
JP4729990B2 (en) Exhaust gas purification device for internal combustion engine
WO2008072013A1 (en) System and method for exhaust gas after-treatment
JP2005002925A (en) Exhaust emission control device
JP5681267B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204