JP2010248955A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2010248955A
JP2010248955A JP2009097576A JP2009097576A JP2010248955A JP 2010248955 A JP2010248955 A JP 2010248955A JP 2009097576 A JP2009097576 A JP 2009097576A JP 2009097576 A JP2009097576 A JP 2009097576A JP 2010248955 A JP2010248955 A JP 2010248955A
Authority
JP
Japan
Prior art keywords
particulate filter
exhaust gas
catalyst
reduction catalyst
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009097576A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawada
吉弘 川田
Shinya Sato
信也 佐藤
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2009097576A priority Critical patent/JP2010248955A/en
Publication of JP2010248955A publication Critical patent/JP2010248955A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the mountability of an exhaust emission control device reducing particulates and NOx all together, more than ever before. <P>SOLUTION: An oxidation catalyst 2 for oxidation-treating HC in exhaust gas 5 and a particulate filter 1 for letting the exhaust gas 5 through the filer after passage through the oxidation catalyst 2, and collecting particulates are arranged in series at predetermined intervals in a single casing 13 interposed in the middle of an exhaust pipe 4. A selective reduction catalyst 3' having a property of selectively reacting NOx with ammonia even under the coexistence of oxygen is integrally carried by the particulate filter 1, and also just after that, a selective reduction catalyst 3 is additionally equipped with a flow-through type carrier carrying the same. A mixer 14 for agitating the flow of the exhaust gas 5 is arranged near the outlet of the oxidation catalyst 2. An urea water adding device 6 for injecting urea water 7 toward the mixer 14 is arranged between the mixer 14 and the particulate filter 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied.

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガスの熱によって尿素水が次式によりアンモニアと炭酸ガスに加水分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる。
[化1]
(NH22CO+H2O→2NH3+CO2
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is hydrolyzed into ammonia and carbon dioxide gas by the following equation by the heat of the exhaust gas, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The NOx contained therein is reduced and purified well by ammonia.
[Chemical 1]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2

他方、ディーゼルエンジンの排気浄化を図る場合、排気ガス中のNOxを除去するだけでは十分ではなく、排気ガス中に含まれるパティキュレート(Particulate Matter:粒子状物質)についてもパティキュレートフィルタを通して捕集する必要があるが、この種のパティキュレートフィルタを採用する場合には、目詰まりにより排気抵抗が増加しないうちにパティキュレートを適宜に燃焼除去してパティキュレートフィルタの再生を図る必要がある。   On the other hand, when purifying exhaust gas from a diesel engine, it is not enough to remove NOx in the exhaust gas, and particulates contained in the exhaust gas are also collected through the particulate filter. However, when this type of particulate filter is employed, it is necessary to regenerate the particulate filter by appropriately burning and removing the particulate before the exhaust resistance increases due to clogging.

このため、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を付帯装備させ、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流の排気ガス中に燃料を添加してパティキュレートフィルタを強制再生することが考えられている。   For this reason, a flow-through type oxidation catalyst is attached to the preceding stage of the particulate filter, and fuel is added to the exhaust gas upstream from the oxidation catalyst when the amount of particulate accumulation increases. It is considered to force playback.

つまり、酸化触媒より上流の排気ガス中に燃料を添加すれば、その添加燃料(HC)が前段の酸化触媒を通過する間に酸化反応するので、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生化が図られることになる。   In other words, if fuel is added to the exhaust gas upstream of the oxidation catalyst, the added fuel (HC) undergoes an oxidation reaction while passing through the preceding oxidation catalyst. The catalyst bed temperature of the particulate filter immediately after that is raised, the particulates are burned out, and the particulate filter is regenerated.

一般的に、前述した如き燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を実行して排気ガス中に燃料を添加することが考えられているが、その添加燃料を効率良く強制再生に活用し且つ排気ガスが極力温度降下しないうちに添加燃料を酸化処理するためには、例えば、図3に示す如く、パティキュレートフィルタ1及びその前段の酸化触媒2を選択還元型触媒3より上流側に配置することが好ましいものと考えられている。   In general, as a specific means for performing the fuel addition as described above, the post-injection is executed at the timing of non-ignition later than the compression top dead center following the main injection of fuel performed near the compression top dead center. It is considered that the fuel is added to the exhaust gas, and in order to efficiently use the added fuel for the forced regeneration and oxidize the added fuel while the exhaust gas does not decrease in temperature as much as possible, for example, As shown in FIG. 3, it is considered preferable to dispose the particulate filter 1 and the preceding oxidation catalyst 2 upstream of the selective catalytic reduction catalyst 3.

また、図3中における符号の4は排気管、5は排気ガス、6は尿素水7を噴射する尿素水添加装置、8はディーゼルエンジン、9はリークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒を示している。 In FIG. 3, reference numeral 4 is an exhaust pipe, 5 is exhaust gas, 6 is a urea water addition device that injects urea water 7, 8 is a diesel engine, and 9 is an NH that oxidizes surplus ammonia as a measure against leaked ammonia. 3 shows a slip catalyst.

そして、斯かる従来構造においては、排気ガス5に対する尿素水7の均一な混合を促進するために、酸化触媒2及びパティキュレートフィルタ1をケーシング11により抱持すると共に、選択還元型触媒3及びNH3スリップ触媒9をケーシング12により抱持し、これら各ケーシング11,12の間を絞り込んで小径部10を形成し、ここに尿素水添加装置6を配置して尿素水7の添加を行い得るようにしている。 In such a conventional structure, in order to promote uniform mixing of the urea water 7 with the exhaust gas 5, the oxidation catalyst 2 and the particulate filter 1 are held by the casing 11, and the selective reduction catalyst 3 and NH The three- slip catalyst 9 is held by the casing 12, and the space between the casings 11, 12 is narrowed to form the small-diameter portion 10, and the urea water addition device 6 can be arranged here to add the urea water 7. I have to.

即ち、このようにすれば、小径部10内の全域に偏りなく尿素水7を噴射することが可能となるので、排気ガス5に対し尿素水7を良好に混合させてから流れを拡げ、尿素水7から生じたアンモニアを選択還元型触媒3の全領域で効率良く反応させることが可能となる。   That is, in this way, it becomes possible to inject the urea water 7 over the entire area in the small diameter portion 10, so that the urea water 7 is mixed well with the exhaust gas 5 and then the flow is expanded. Ammonia generated from the water 7 can be efficiently reacted in the entire region of the selective catalytic reduction catalyst 3.

尚、この種のパティキュレートフィルタ及びその前段の酸化触媒を選択還元型触媒より上流に配置した排気浄化装置に関連する先行技術文献情報としては、例えば、本発明と同じ出願人による下記の特許文献1等が既に存在している。   In addition, as prior art document information related to this type of particulate filter and an exhaust purification device in which the preceding stage oxidation catalyst is arranged upstream of the selective reduction catalyst, for example, the following patent documents by the same applicant as the present invention are as follows: 1 etc. already exist.

特開2007−2697号公報JP 2007-2697 A

しかしながら、図3に示す如き小径部10を形成しても、尿素水7がアンモニアと炭酸ガスに分解されるまでの十分な反応時間を確保するためには、尿素水7の添加位置から選択還元型触媒3までに十分な距離をとらなければならず、また、小径部10の前後にテーパ部を介在させなければならないことからもパティキュレートフィルタ1から選択還元型触媒3までの距離が長くなってしまうため、排気浄化装置としての全長が長くなって車両への搭載性が悪くなるという問題があった。   However, even if the small-diameter portion 10 as shown in FIG. 3 is formed, in order to secure a sufficient reaction time until the urea water 7 is decomposed into ammonia and carbon dioxide, selective reduction is performed from the addition position of the urea water 7. The distance from the particulate filter 1 to the selective catalytic reduction catalyst 3 becomes long because a sufficient distance must be taken to the type catalyst 3 and a taper part must be interposed before and after the small diameter part 10. Therefore, there has been a problem that the overall length of the exhaust gas purification device becomes longer and the mounting property on the vehicle becomes worse.

本発明は、上述の実情に鑑みてなされたものであり、パティキュレートとNOxの同時低減を図り得る排気浄化装置の搭載性を従来よりも改善することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to improve the mountability of an exhaust gas purification apparatus capable of simultaneously reducing particulates and NOx as compared with the related art.

本発明は、排気ガス中のHCを酸化処理する酸化触媒と、該酸化触媒を経た排気ガスを通過させてパティキュレートを捕集するパティキュレートフィルタとを、排気管途中に介装した単一のケーシング内に所要間隔を隔てて直列配置し、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒を前記パティキュレートフィルタに一体的に担持せしめると共に、該パティキュレートフィルタの直後にもフロースルー型の担体に担持させて追加装備し、前記酸化触媒の出口近傍に、排気ガスの流れを撹拌するミキサを配置し、該ミキサと前記パティキュレートフィルタとの間に、前記ミキサに向け尿素水を噴射する尿素水添加装置を配置したことを特徴とするものである。   The present invention provides a single oxidation catalyst that oxidizes HC in exhaust gas and a particulate filter that passes exhaust gas that has passed through the oxidation catalyst and collects particulates in the middle of the exhaust pipe. A selective reduction catalyst that has a property of selectively reacting NOx with ammonia even in the presence of oxygen is arranged in series in the casing with a predetermined interval, and is supported on the particulate filter integrally with the particulate filter, and the particulate filter Immediately after that, a flow-through type carrier is additionally provided by being mounted, and a mixer for agitating the flow of the exhaust gas is disposed near the outlet of the oxidation catalyst, and the mixer and the particulate filter are disposed between A urea water addition device for injecting urea water toward the mixer is arranged.

而して、尿素水添加装置により上流側のミキサに向けて尿素水を噴射すると、該尿素水は排気ガスの流れに抗して噴射されることになり、排気ガスの流れと尿素水の噴射流とがぶつかり合うことで該尿素水が分散し易くなると共に、排気ガスの流れ方向に噴射する場合よりも尿素水の反応時間が確保され易くなる。   Thus, when urea water is injected toward the mixer on the upstream side by the urea water addition device, the urea water is injected against the flow of the exhaust gas, and the flow of the exhaust gas and the injection of the urea water The urea water is easily dispersed by the collision with the flow, and the reaction time of the urea water is more easily secured than in the case of injecting in the flow direction of the exhaust gas.

しかも、尿素水添加装置からの尿素水は、ミキサの出側で排気ガスの流れが乱流化しているところに噴射されることになるため、尿素水の分散性がより一層向上されて排気ガスとの良好な混合化が図られることになる。   Moreover, since the urea water from the urea water addition device is injected to the place where the flow of the exhaust gas is turbulent on the outlet side of the mixer, the dispersibility of the urea water is further improved and the exhaust gas is improved. It is possible to achieve good mixing with.

この結果、従来の如き小径部を形成しなくても、排気ガスに対し尿素水を良好に混合させてアンモニア化を促進し、そのアンモニアをパティキュレートフィルタに担持された選択還元型触媒の全領域で効率良く反応させることが可能となるので、前記小径部を形成しなくて済む分だけ排気浄化装置の全長を短縮することが可能となる。   As a result, the entire range of the selective catalytic reduction catalyst in which urea water is well mixed with the exhaust gas to promote ammoniation without forming a small-diameter portion as in the prior art, and the ammonia is supported on the particulate filter. Therefore, it is possible to reduce the overall length of the exhaust emission control device by the amount that does not require the formation of the small diameter portion.

また、パティキュレートフィルタに選択還元型触媒を担持させたことにより、その直後に追加装備される選択還元型触媒は、前段のパティキュレートフィルタに担持された選択還元型触媒の処理能力の不足分を補い得る程度の小さな容量で済み、従来よりも大幅な小型化を図ることができて排気浄化装置の更なる全長の短縮化が可能となる。   In addition, since the selective reduction catalyst is supported on the particulate filter, the selective reduction catalyst that is additionally provided immediately after that reduces the processing capacity of the selective reduction catalyst supported on the preceding particulate filter. The capacity is small enough to be compensated, and the size of the exhaust gas purification device can be further reduced and the overall length of the exhaust emission control device can be further shortened.

尚、パティキュレートフィルタに選択還元型触媒を担持させるにあたり、前記パティキュレートフィルタのフィルタ能力に悪影響を及ぼさない程度に加減して担持させなければならないため、これまでの選択還元型触媒と同じNOx処理能力を全てパティキュレートフィルタ側に担わせるのは不可能であるが、パティキュレートフィルタに選択還元型触媒を担持させることは、後段の選択還元型触媒の小型化に大きく寄与することになる。   In addition, since the selective reduction catalyst is supported on the particulate filter, it must be supported with a degree that does not adversely affect the filter performance of the particulate filter, so the same NOx treatment as that of the conventional selective reduction catalyst is performed. Although it is impossible to have all the capacity on the particulate filter side, supporting the selective reduction catalyst on the particulate filter greatly contributes to downsizing of the selective reduction catalyst in the subsequent stage.

一方、排気ガス中のパティキュレートは、パティキュレートフィルタを通過する間に捕集されていくことになり、このパティキュレートフィルタを強制再生する際しては、従来と同様に、エンジン側でのポスト噴射等により排気ガス中にHCを添加し、その添加したHCを酸化触媒で酸化反応させて反応熱により排気ガスを昇温し、これによりパティキュレートフィルタの触媒床温度を上げて捕集済みパティキュレートの燃焼除去を図るようにすれば良い。   On the other hand, the particulates in the exhaust gas are collected while passing through the particulate filter. When this particulate filter is forcibly regenerated, the post on the engine side is the same as before. HC is added to the exhaust gas by injection, etc., the added HC is oxidized with an oxidation catalyst, and the temperature of the exhaust gas is raised by reaction heat, thereby raising the catalyst bed temperature of the particulate filter and collecting the collected particulates. What is necessary is just to aim at the combustion removal of curate.

また、本発明においては、パティキュレートフィルタとフロースルー型の選択還元型触媒との間にも更なるミキサを追加することが好ましく、また、フロースルー型の選択還元型触媒の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒を配置することが可能であり、或いは、フロースルー型の選択還元型触媒の一部にリークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒を担持させることも可能である。 Further, in the present invention, it is preferable to add a further mixer between the particulate filter and the flow-through type selective reduction catalyst, and a leak is immediately after the flow-through type selective reduction catalyst. It is possible to arrange an NH 3 slip catalyst that oxidizes surplus ammonia as a countermeasure against ammonia, or NH 3 that oxidizes surplus ammonia as a countermeasure against leaked ammonia in a part of the flow-through type selective reduction catalyst. It is also possible to carry a slip catalyst.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、パティキュレートフィルタと選択還元型触媒との間に小径部を形成しなくても、排気ガスに対し尿素水を良好に混合させてアンモニア化を促進し、そのアンモニアをパティキュレートフィルタに担持された選択還元型触媒の全領域で効率良く反応させることができるので、前記小径部を形成しなくて済む分だけ排気浄化装置の全長を短縮することができ、しかも、パティキュレートフィルタに選択還元型触媒を担持させたことにより、その直後に追加装備される選択還元型触媒の大幅な小型化を図ることができて排気浄化装置の更なる全長の短縮化を図ることができるので、パティキュレートとNOxの同時低減を図り得る排気浄化装置の搭載性を従来より大幅に向上することができる。   (I) According to the invention described in claim 1 of the present invention, urea water can be mixed well with exhaust gas without forming a small diameter portion between the particulate filter and the selective catalytic reduction catalyst. Ammonia is promoted, and the ammonia can be reacted efficiently in the entire range of the selective catalytic reduction catalyst supported on the particulate filter. In addition, since the selective reduction catalyst is supported on the particulate filter, the selective reduction catalyst that is additionally provided immediately after that can be greatly reduced in size, and the exhaust purification device can be further reduced. Therefore, the mountability of the exhaust gas purification device capable of simultaneously reducing particulates and NOx can be greatly improved.

(II)本発明の請求項2に記載の発明によれば、パティキュレートフィルタを経た排気ガス中に残る尿素水をミキサにより更に撹拌して分散性を高め、排気ガスとの良好な混合化を図ることで前記尿素水のアンモニア化を促進することができるので、そのアンモニアをパティキュレートフィルタの直後の選択還元型触媒における全領域で効率良く反応させることができる。   (II) According to the invention described in claim 2 of the present invention, the urea water remaining in the exhaust gas that has passed through the particulate filter is further stirred by a mixer to enhance dispersibility, and good mixing with the exhaust gas is achieved. As a result, ammoniating of the urea water can be promoted, so that the ammonia can be efficiently reacted in the entire region of the selective catalytic reduction catalyst immediately after the particulate filter.

(III)本発明の請求項3に記載の発明によれば、パティキュレートフィルタの直後の選択還元型触媒で処理しきれずに未処理のまま通り抜けてしまった余剰のアンモニアを後段のNH3スリップ触媒で酸化処理することができ、余剰のアンモニアが未処理のまま排気ガスと一緒に車外へ排出されてしまう虞れを未然に防止することができる。 (III) According to the invention described in claim 3 of the present invention, the excess ammonia which has not been treated with the selective reduction catalyst immediately after the particulate filter and has passed through untreated is passed through the NH 3 slip catalyst in the subsequent stage. Thus, it is possible to prevent the possibility that excess ammonia is discharged to the outside of the vehicle together with the exhaust gas without being treated.

(IV)本発明の請求項4に記載の発明によれば、選択還元型触媒で処理しきれずに未処理のまま通り抜けようとする余剰のアンモニアを前記選択還元型触媒の一部に担持されたNH3スリップ触媒で酸化処理することができ、余剰のアンモニアが未処理のまま排気ガスと一緒に車外へ排出されてしまう虞れを未然に防止することができると共に、余剰のアンモニアの対策を極めてコンパクトな構成で実現することができる。 (IV) According to the invention described in claim 4 of the present invention, surplus ammonia that is not completely treated with the selective reduction catalyst and tries to pass through untreated is supported on a part of the selective reduction catalyst. It can be oxidized with an NH 3 slip catalyst, and it is possible to prevent the possibility that excess ammonia will be discharged out of the vehicle together with the exhaust gas without being treated. It can be realized with a compact configuration.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 本発明の別の形態例を示す概略図である。It is the schematic which shows another form example of this invention. 従来例を示す概略図である。It is the schematic which shows a prior art example.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、本形態例の排気浄化装置においては、排気管4途中に介装した単一のケーシング13内に、排気ガス5中のHCを酸化処理する酸化触媒2と、該酸化触媒2を経た排気ガス5を通過させてパティキュレートを捕集するパティキュレートフィルタ1とが所要間隔を隔てて直列配置されており、このパティキュレートフィルタ1には、白金等の酸化触媒を担持させることに代えて、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒3’が担持されている。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust purification apparatus of this embodiment, HC in the exhaust gas 5 is oxidized in a single casing 13 interposed in the middle of the exhaust pipe 4. An oxidation catalyst 2 to be treated and a particulate filter 1 that collects particulates through exhaust gas 5 that has passed through the oxidation catalyst 2 are arranged in series at a required interval. Instead of supporting an oxidation catalyst such as platinum, a selective catalytic reduction catalyst 3 'having the property of selectively reacting NOx with ammonia even in the presence of oxygen is supported.

また、前記パティキュレートフィルタ1の直後にもフロースルー型の担体に担持させて選択還元型触媒3が追加装備されているが、この選択還元型触媒3は、前段のパティキュレートフィルタ1に担持された選択還元型触媒3’の処理能力の不足分を補い得る程度の小さな容量としたものであり、これまでの選択還元型触媒よりも大幅に小型化したものとなっている。   Further, a selective reduction catalyst 3 is additionally provided immediately after the particulate filter 1 by being carried on a flow-through type carrier, and this selective reduction catalyst 3 is carried on the particulate filter 1 at the preceding stage. Further, the capacity of the selective catalytic reduction catalyst 3 ′ is small enough to compensate for the shortage of the processing capacity, and it is much smaller than the conventional selective catalytic reduction catalyst.

即ち、パティキュレートフィルタ1に選択還元型触媒3’を担持させるにあたっては、前記パティキュレートフィルタ1のフィルタ能力に悪影響を及ぼさない程度に加減して担持させなければならないため、これまでの選択還元型触媒と同じNOx処理能力を全てパティキュレートフィルタ1側に担わせるのは不可能であり、前記パティキュレートフィルタ1の直後にも選択還元型触媒3を追加装備する必要がある。   That is, when the selective reduction catalyst 3 'is supported on the particulate filter 1, it must be supported with a degree that does not adversely affect the filter performance of the particulate filter 1. It is impossible to have the same NOx treatment capacity as that of the catalyst on the particulate filter 1 side, and it is necessary to additionally equip the selective reduction catalyst 3 immediately after the particulate filter 1.

更に、前記酸化触媒2の出口近傍には、排気ガス5の流れを撹拌するミキサ14が配設され、該ミキサ14と前記パティキュレートフィルタ1との間には、前記ミキサ14に向け尿素水7を噴射する尿素水添加装置6が配設されており、また、ここに図示している例では、パティキュレートフィルタ1とフロースルー型の選択還元型触媒3との間にも更なるミキサ15が別途配設されている。   Further, a mixer 14 for stirring the flow of the exhaust gas 5 is disposed in the vicinity of the outlet of the oxidation catalyst 2. Between the mixer 14 and the particulate filter 1, urea water 7 is directed toward the mixer 14. In the example illustrated here, a further mixer 15 is also provided between the particulate filter 1 and the flow-through type selective reduction catalyst 3. Separately arranged.

尚、前述した図3の従来例の場合と同様に、ケーシング13内におけるフロースルー型の選択還元型触媒3の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒9が配設されているが、このNH3スリップ触媒9は、必要に応じて配設すれば良いものである。 As in the case of the conventional example of FIG. 3 described above, immediately after the flow-through type selective reduction catalyst 3 in the casing 13, an NH 3 slip catalyst 9 that oxidizes surplus ammonia as a countermeasure for leaked ammonia is provided. However, the NH 3 slip catalyst 9 may be provided as necessary.

而して、尿素水添加装置6により上流側のミキサ14に向けて尿素水7を噴射すると、該尿素水7は排気ガス5の流れに抗して噴射されることになり、排気ガス5の流れと尿素水7の噴射流とがぶつかり合うことで該尿素水7が分散し易くなると共に、排気ガス5の流れ方向に噴射する場合よりも尿素水7の反応時間が確保され易くなる。   Thus, when urea water 7 is injected toward the upstream mixer 14 by the urea water addition device 6, the urea water 7 is injected against the flow of the exhaust gas 5. When the flow and the jet flow of the urea water 7 collide with each other, the urea water 7 is easily dispersed, and the reaction time of the urea water 7 is more easily ensured than when jetting in the flow direction of the exhaust gas 5.

しかも、尿素水添加装置6からの尿素水7は、ミキサ14の出側で排気ガス5の流れが乱流化しているところに噴射されることになるため、尿素水7の分散性がより一層向上されて排気ガス5との良好な混合化が図られることになる。   Moreover, since the urea water 7 from the urea water addition device 6 is injected to the place where the flow of the exhaust gas 5 is turbulent on the outlet side of the mixer 14, the dispersibility of the urea water 7 is further increased. Thus, good mixing with the exhaust gas 5 is achieved.

この結果、従来の如き小径部10(図3参照)を形成しなくても、排気ガス5に対し尿素水7を良好に混合させてアンモニア化を促進し、そのアンモニアをパティキュレートフィルタ1に担持された選択還元型触媒3’の全領域で効率良く反応させることが可能となるので、前記小径部10(図3参照)を形成しなくて済む分だけ排気浄化装置の全長を短縮することが可能となる。   As a result, even if the conventional small diameter portion 10 (see FIG. 3) is not formed, the urea gas 7 is mixed well with the exhaust gas 5 to promote ammoniating, and the ammonia is supported on the particulate filter 1. Since the reaction can be efficiently performed in the entire range of the selective catalytic reduction catalyst 3 ′, the entire length of the exhaust purification device can be shortened by the amount that the small diameter portion 10 (see FIG. 3) is not required to be formed. It becomes possible.

更に、パティキュレートフィルタ1を経た排気ガス5中に残る尿素水7がミキサ15により更に撹拌されて分散性を高められ、排気ガス5との良好な混合化が図られて前記尿素水7のアンモニア化が促進され、そのアンモニアがパティキュレートフィルタ1直後の選択還元型触媒3における全領域で効率良く反応されることになり、また、パティキュレートフィルタ1直後の選択還元型触媒3で処理しきれずに未処理のまま通り抜けてしまった余剰のアンモニアは、NH3スリップ触媒9で酸化処理されることになる。 Further, the urea water 7 remaining in the exhaust gas 5 that has passed through the particulate filter 1 is further stirred by the mixer 15 to enhance dispersibility, and good mixing with the exhaust gas 5 is achieved, so that the ammonia of the urea water 7 can be obtained. The ammonia is reacted efficiently in the entire region of the selective catalytic reduction catalyst 3 immediately after the particulate filter 1, and the ammonia cannot be completely treated by the selective catalytic reduction catalyst 3 immediately after the particulate filter 1. Excess ammonia that has passed through untreated is oxidized by the NH 3 slip catalyst 9.

一方、排気ガス5中のパティキュレートは、パティキュレートフィルタ1を通過する間に捕集されていくことになり、このパティキュレートフィルタ1を強制再生する際しては、従来と同様に、エンジン側でのポスト噴射等により排気ガス5中にHCを添加し、その添加したHCを酸化触媒2で酸化反応させて反応熱により排気ガス5を昇温し、これによりパティキュレートフィルタ1の触媒床温度を上げて捕集済みパティキュレートの燃焼除去を図るようにすれば良い。   On the other hand, the particulates in the exhaust gas 5 are collected while passing through the particulate filter 1, and when this particulate filter 1 is forcibly regenerated, the engine side, HC is added to the exhaust gas 5 by post-injection in the catalyst, and the added HC is oxidized by the oxidation catalyst 2 to raise the temperature of the exhaust gas 5 by reaction heat, whereby the catalyst bed temperature of the particulate filter 1 is increased. Is raised to burn and remove the collected particulates.

従って、上記形態例によれば、パティキュレートフィルタ1と選択還元型触媒3との間に小径部10(図3参照)を形成しなくても、排気ガス5に対し尿素水7を良好に混合させてアンモニア化を促進し、そのアンモニアをパティキュレートフィルタ1に担持された選択還元型触媒3の全領域で効率良く反応させることができるので、前記小径部10(図3参照)を形成しなくて済む分だけ排気浄化装置の全長を短縮することができ、しかも、パティキュレートフィルタ1に選択還元型触媒3を担持させたことにより、その直後に追加装備される選択還元型触媒3の大幅な小型化を図ることができて排気浄化装置の更なる全長の短縮化を図ることができるので、パティキュレートとNOxの同時低減を図り得る排気浄化装置の搭載性を従来より大幅に向上することができる。   Therefore, according to the above embodiment, the urea water 7 is mixed well with the exhaust gas 5 without forming the small-diameter portion 10 (see FIG. 3) between the particulate filter 1 and the selective catalytic reduction catalyst 3. As a result, the ammonia can be promoted and the ammonia can be reacted efficiently in the entire region of the selective catalytic reduction catalyst 3 supported on the particulate filter 1, so that the small diameter portion 10 (see FIG. 3) is not formed. The total length of the exhaust gas purification device can be shortened as much as necessary, and the selective reduction catalyst 3 additionally provided immediately after the particulate filter 1 is supported by the particulate filter 1 is greatly improved. Since it is possible to reduce the size and further shorten the overall length of the exhaust gas purification device, it is possible to install an exhaust gas purification device that can simultaneously reduce particulates and NOx. It can be greatly improved.

更に、パティキュレートフィルタ1を経た排気ガス5中に残る尿素水7をミキサ15により更に撹拌して分散性を高め、排気ガス5との良好な混合化を図ることで前記尿素水7のアンモニア化を促進することができるので、そのアンモニアをパティキュレートフィルタ1直後の選択還元型触媒3における全領域で効率良く反応させることができる。   Further, the urea water 7 remaining in the exhaust gas 5 that has passed through the particulate filter 1 is further agitated by the mixer 15 to improve dispersibility, and good mixing with the exhaust gas 5 is achieved so that the urea water 7 is ammoniated. Therefore, the ammonia can be reacted efficiently in the entire region of the selective catalytic reduction catalyst 3 immediately after the particulate filter 1.

また、パティキュレートフィルタ1直後の選択還元型触媒3で処理しきれずに未処理のまま通り抜けてしまった余剰のアンモニアをNH3スリップ触媒9で酸化処理することができ、余剰のアンモニアが未処理のまま排気ガス5と一緒に車外へ排出されてしまう虞れを未然に防止することができる。 Further, surplus ammonia that has not been treated with the selective catalytic reduction catalyst 3 immediately after the particulate filter 1 and has passed through untreated can be oxidized with the NH 3 slip catalyst 9, and the surplus ammonia is not treated. It is possible to prevent the possibility that the exhaust gas 5 is discharged to the outside of the vehicle.

ここで、本形態例においては、フロースルー型の選択還元型触媒3の直後にNH3スリップ触媒9を別途配置した場合を例示しているが、図2に示す如く、選択還元型触媒3の一部に余剰のアンモニアを酸化処理するNH3スリップ触媒9を担持させるようにしても良い。 Here, in the present embodiment, the case where the NH 3 slip catalyst 9 is separately arranged immediately after the flow-through type selective reduction catalyst 3 is illustrated, but as shown in FIG. some NH 3 slip catalyst 9 for oxidization treatment of surplus ammonia may be carried on the.

即ち、選択還元型触媒3の下流側端部付近における所要範囲にNH3スリップ触媒9を塗り分けたり、或いは、全体の下地としてNH3スリップ触媒9をコーティングした上に選択還元型触媒3を重ね塗りしてリークアンモニア対策とすることが可能である。 That is, the NH 3 slip catalyst 9 is applied to the required range in the vicinity of the downstream end of the selective catalytic reduction catalyst 3, or the selective catalytic reduction catalyst 3 is stacked on the NH 3 slip catalyst 9 as a whole base. It can be applied to prevent leakage ammonia.

このようにした場合には、選択還元型触媒3で処理しきれずに未処理のまま通り抜けようとする余剰のアンモニアを前記選択還元型触媒3の一部に担持されたNH3スリップ触媒9で酸化処理することができ、余剰のアンモニアが未処理のまま排気ガス5と一緒に車外へ排出されてしまう虞れを未然に防止することができると共に、余剰のアンモニアの対策を極めてコンパクトな構成で実現することができる。 In this case, surplus ammonia that is not completely treated by the selective catalytic reduction catalyst 3 but is untreated is oxidized by the NH 3 slip catalyst 9 supported on a part of the selective catalytic reduction catalyst 3. It can be treated, and it is possible to prevent the excess ammonia from being discharged out of the vehicle together with the exhaust gas 5 without being treated, and the measure for the surplus ammonia is realized with an extremely compact configuration. can do.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、パティキュレートフィルタとフロースルー型の選択還元型触媒との間の更なるミキサは必要に応じて追加すれば良く、NH3スリップ触媒についても必要に応じて追加すれば良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and a further mixer between the particulate filter and the flow-through type selective reduction catalyst may be added as necessary. Of course, the NH 3 slip catalyst may be added as necessary, and various modifications may be made without departing from the scope of the present invention.

1 パティキュレートフィルタ
2 酸化触媒
3 選択還元型触媒
3’ 選択還元型触媒
4 排気管
5 排気ガス
6 尿素水添加装置
7 尿素水
9 NH3スリップ触媒
13 ケーシング
14 ミキサ
15 ミキサ
1 particulate filter 2 oxidation catalyst 3 selective catalytic reduction catalyst 3 'selective reduction catalyst 4 exhaust pipe 5 exhaust gas 6 the urea water addition device 7 urea water 9 NH 3 slip catalyst 13 casing 14 mixer 15 Mixer

Claims (4)

排気ガス中のHCを酸化処理する酸化触媒と、該酸化触媒を経た排気ガスを通過させてパティキュレートを捕集するパティキュレートフィルタとを、排気管途中に介装した単一のケーシング内に所要間隔を隔てて直列配置し、酸素共存下でも選択的にNOxをアンモニアと反応させる性質を備えた選択還元型触媒を前記パティキュレートフィルタに一体的に担持せしめると共に、該パティキュレートフィルタの直後にもフロースルー型の担体に担持させて追加装備し、前記酸化触媒の出口近傍に、排気ガスの流れを撹拌するミキサを配置し、該ミキサと前記パティキュレートフィルタとの間に、前記ミキサに向け尿素水を噴射する尿素水添加装置を配置したことを特徴とする排気浄化装置。   An oxidation catalyst that oxidizes HC in the exhaust gas and a particulate filter that passes the exhaust gas that passes through the oxidation catalyst and collects particulates are required in a single casing interposed in the middle of the exhaust pipe. The selective reduction catalyst having the property of being arranged in series at an interval and selectively reacting NOx with ammonia even in the presence of oxygen is integrally supported on the particulate filter, and immediately after the particulate filter. A mixer that stirs the flow of the exhaust gas is arranged near the outlet of the oxidation catalyst, and is mounted on a flow-through type carrier, and urea is directed to the mixer between the mixer and the particulate filter. An exhaust gas purification apparatus comprising a urea water addition apparatus for injecting water. パティキュレートフィルタとフロースルー型の選択還元型触媒との間にも更なるミキサを追加したことを特徴とする請求項1に記載の排気浄化装置。   2. The exhaust emission control device according to claim 1, further comprising a mixer added between the particulate filter and the flow-through type selective reduction catalyst. フロースルー型の選択還元型触媒の直後にリークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒を配置したことを特徴とする請求項1又は2に記載の排気浄化装置。 The exhaust emission control device according to claim 1 or 2, wherein an NH 3 slip catalyst that oxidizes surplus ammonia is disposed immediately after the flow-through type selective reduction catalyst as a measure against leakage ammonia. フロースルー型の選択還元型触媒の一部にリークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒を担持させたことを特徴とする請求項1又は2に記載の排気浄化装置。 The exhaust purification apparatus according to claim 1 or 2, wherein a part of the flow-through type selective reduction catalyst carries an NH 3 slip catalyst that oxidizes surplus ammonia as a countermeasure against leakage ammonia.
JP2009097576A 2009-04-14 2009-04-14 Exhaust emission control device Pending JP2010248955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097576A JP2010248955A (en) 2009-04-14 2009-04-14 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097576A JP2010248955A (en) 2009-04-14 2009-04-14 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2010248955A true JP2010248955A (en) 2010-11-04

Family

ID=43311562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097576A Pending JP2010248955A (en) 2009-04-14 2009-04-14 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2010248955A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219625A (en) * 2011-04-04 2012-11-12 Hitachi Constr Mach Co Ltd Construction machine
JP2013217350A (en) * 2012-04-12 2013-10-24 Hino Motors Ltd Mixing structure
JP2014510867A (en) * 2011-03-07 2014-05-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust system having ammonia slip catalyst in EGR circuit
DE102012224198A1 (en) * 2012-12-21 2014-06-26 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing additive into gas stream in exhaust system, has mixer blades, which are arranged and designed such that together they form opaque region, via which passage of droplets of additive is prevented by mixing device
JP2017198097A (en) * 2016-04-25 2017-11-02 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257721U (en) * 1985-09-30 1987-04-10
JP2007501353A (en) * 2003-08-05 2007-01-25 エンゲルハード・コーポレーシヨン Exhaust treatment system and method using SCR filter
JP2008031996A (en) * 2006-07-12 2008-02-14 Delphi Technologies Inc Fluid dosing device
JP2008279334A (en) * 2007-05-09 2008-11-20 Ne Chemcat Corp Selective reduction catalyst and apparatus for cleaning exhaust gas using the same, and method of cleaning exhaust gas
JP2008309000A (en) * 2007-06-12 2008-12-25 Nissan Diesel Motor Co Ltd Exhaust emission control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6257721U (en) * 1985-09-30 1987-04-10
JP2007501353A (en) * 2003-08-05 2007-01-25 エンゲルハード・コーポレーシヨン Exhaust treatment system and method using SCR filter
JP2008031996A (en) * 2006-07-12 2008-02-14 Delphi Technologies Inc Fluid dosing device
JP2008279334A (en) * 2007-05-09 2008-11-20 Ne Chemcat Corp Selective reduction catalyst and apparatus for cleaning exhaust gas using the same, and method of cleaning exhaust gas
JP2008309000A (en) * 2007-06-12 2008-12-25 Nissan Diesel Motor Co Ltd Exhaust emission control device for internal combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014510867A (en) * 2011-03-07 2014-05-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー Exhaust system having ammonia slip catalyst in EGR circuit
JP2012219625A (en) * 2011-04-04 2012-11-12 Hitachi Constr Mach Co Ltd Construction machine
JP2013217350A (en) * 2012-04-12 2013-10-24 Hino Motors Ltd Mixing structure
US9649595B2 (en) 2012-04-12 2017-05-16 Hino Motors, Ltd. Mixing structure
DE102012224198A1 (en) * 2012-12-21 2014-06-26 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing additive into gas stream in exhaust system, has mixer blades, which are arranged and designed such that together they form opaque region, via which passage of droplets of additive is prevented by mixing device
DE102012224198B4 (en) 2012-12-21 2023-07-06 Friedrich Boysen Gmbh & Co. Kg Arrangement for introducing an additive into a gas stream and exhaust system
JP2017198097A (en) * 2016-04-25 2017-11-02 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP5173308B2 (en) Exhaust purification device
EP2819769B1 (en) Method for the removal of noxious compounds from engine exhaust gas
JP2009114930A (en) Exhaust purification device
JP4881213B2 (en) Exhaust purification device
JP4785766B2 (en) Exhaust purification device
US10989096B2 (en) Close coupled single module aftertreatment system
CN101550859B (en) Apparatus for purifying exhaust gas
EP2230001A1 (en) Exhaust gas treatment
JP5846488B2 (en) Exhaust gas purification device for internal combustion engine
KR100999616B1 (en) Apparatus for reducing nitrogen oxide cotained in exhaust gas
US20130047583A1 (en) Aftertreatment system
JP2009091909A (en) Exhaust emission control device
CN207363741U (en) Exhaust after treatment system for diesel engine
JP2010248955A (en) Exhaust emission control device
CN103806989A (en) Exhaust gas purification system of vehicle
JP2011099333A (en) Exhaust emission control device
US8105560B2 (en) System for treating a gas stream
JP2008075610A (en) Exhaust gas treating device
JP2008274850A (en) Exhaust emission control device
KR100999614B1 (en) Apparatus for reducing nitrogen oxide in exhaust pipe
KR101518959B1 (en) Exhaust gas processing device
US11846223B2 (en) Diesel exhaust treatement apparatus and methods
JP5950631B2 (en) Exhaust purification device
JP5500959B2 (en) Exhaust purification device
JP2005264894A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130625

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131203