JP2010270616A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2010270616A
JP2010270616A JP2009121102A JP2009121102A JP2010270616A JP 2010270616 A JP2010270616 A JP 2010270616A JP 2009121102 A JP2009121102 A JP 2009121102A JP 2009121102 A JP2009121102 A JP 2009121102A JP 2010270616 A JP2010270616 A JP 2010270616A
Authority
JP
Japan
Prior art keywords
nox
catalyst
temperature
amount
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121102A
Other languages
Japanese (ja)
Inventor
Satoshi Kobayakawa
智志 小早川
Tomihisa Oda
富久 小田
Shinji Kamoshita
伸治 鴨下
Nobumoto Ohashi
伸基 大橋
Bungo Kawaguchi
文悟 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009121102A priority Critical patent/JP2010270616A/en
Publication of JP2010270616A publication Critical patent/JP2010270616A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine, suppressing a decrease in a NOx purifying rate and occurrence of an ammonia slip. <P>SOLUTION: This exhaust emission control device for the internal combustion engine includes: a NOx adsorption catalyst 25; a NOx catalyst 35; a urea water adding valve 70 as a reducing agent supply means; and a burner 60 as a heating means. When a temperature raising process is performed to raise the bed temperature of the NOx catalyst 35 to a predetermined temperature range for relatively increasing the NOx conversion rate by the burner 60, a reducing agent required for converting the maximum emission of NOx to be emitted from the NOx adsorption catalyst 25 with temperature raised from a first temperature range toward a second temperature range with the temperature increasing process is set as the maximum supply, and the reducing agent within a range not exceeding the maximum supply is supplied before the temperature raising process for the NOx catalyst 35 is finished. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

内燃機関の排出する排気ガスに含まれる窒素酸化物(NOx)を浄化する排気浄化装置として、特許文献1は、排気通路に設けられたNOxを吸着するNOx吸着触媒(酸化触媒)と、この酸化触媒の下流側に設けられたアンモニアを還元剤としてNOxを選択的に還元して浄化するNOx触媒とを有するものを開示している。この排気浄化装置では、NOxおよびアンモニアの大気への放出を抑制するために、酸化触媒のNOx吸着量に応じて還元剤の供給量を調整する。特に、酸化触媒のNOx吸着量が飽和吸着量に近づくと、NOxの大気中への放出を防ぐために、NOx触媒のアンモニア吸着量を予め高めに維持し、酸化触媒の温度上昇によるNOxの放出量の一時的増加に備える技術を開示している。   As an exhaust purification device that purifies nitrogen oxide (NOx) contained in exhaust gas discharged from an internal combustion engine, Patent Document 1 discloses a NOx adsorption catalyst (oxidation catalyst) that adsorbs NOx provided in an exhaust passage, and this oxidation. A catalyst having a NOx catalyst that selectively reduces and purifies NOx using ammonia as a reducing agent provided downstream of the catalyst is disclosed. In this exhaust purification device, in order to suppress the release of NOx and ammonia to the atmosphere, the supply amount of the reducing agent is adjusted according to the NOx adsorption amount of the oxidation catalyst. In particular, when the NOx adsorption amount of the oxidation catalyst approaches the saturated adsorption amount, in order to prevent the release of NOx into the atmosphere, the ammonia adsorption amount of the NOx catalyst is maintained high in advance, and the NOx release amount due to the temperature increase of the oxidation catalyst Discloses a technique for preparing for a temporary increase in

特開2008−261253号公報JP 2008-261253 A

ところで、酸化触媒の床温の上昇と共に、NOx触媒の床温も上昇する。NOx触媒の床温が上昇すると、アンモニアを吸着できる最大量である飽和吸着量が低下する。このため、NOx触媒のアンモニア吸着量を予め高めに設定しておくと、床温の上昇によりアンモニアが大気中に放出される可能性がある。   By the way, as the bed temperature of the oxidation catalyst rises, the bed temperature of the NOx catalyst also rises. When the bed temperature of the NOx catalyst rises, the saturated adsorption amount, which is the maximum amount that can adsorb ammonia, decreases. For this reason, if the ammonia adsorption amount of the NOx catalyst is set to be high in advance, ammonia may be released into the atmosphere due to an increase in the bed temperature.

本発明の目的は、NOx浄化率の低下及びアンモニアスリップの発生を抑制可能な内燃機関の排気浄化装置を提供することにある。   An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can suppress a decrease in the NOx purification rate and the occurrence of ammonia slip.

本発明に係る内燃機関の排気浄化装置は、内燃機関の排気通路に設けられ、排気ガスに含まれるNOxをその床温に応じた飽和NOx吸着量まで吸着保持可能なNOx吸着触媒と、前記NOx吸着触媒の下流側に設けられ、供給される還元剤を吸着する機能を有するとともに、前記還元剤に基づいて前記NOx吸着触媒からのNOxを選択的に還元して浄化するNOx触媒と、前記NOx触媒に還元剤を供給する前記還元剤供給手段と、前記NOx吸着触媒およびNOx触媒に導入される排気ガスを加熱して前記NOx吸着触媒およびNOx触媒を共に昇温可能な加熱手段と、を有し、前記加熱手段により前記NOx触媒の床温をNOx浄化率を相対的に高めるための所定温度域に昇温させる昇温処理を実行するに際して、前記昇温処理に伴って第1の温度域から第2の温度域へ向けて昇温される前記NOx吸着触媒から放出され得るNOxの最大放出量を浄化するのに必要な還元剤を最大供給量として、前記最大供給量を超えない範囲の前記還元剤を前記NOx触媒に前記昇温処理を終了するまでに供給する、ことを特徴とする。
この構成によれば、NOx吸着触媒の床温に応じた吸着特性が既知であるので、昇温処理に際して、NOx吸着触媒は第1の温度域から第2の温度域に向けて昇温されたときのNOx吸着触媒から放出されるNOx量の最大放出量を確定できる。この最大量のNOxの浄化に必要な最大供給量を超えない範囲で還元剤を供給することにより、還元剤のスリップを抑制できる。
An exhaust gas purification apparatus for an internal combustion engine according to the present invention is provided in an exhaust passage of the internal combustion engine, capable of adsorbing and holding NOx contained in exhaust gas up to a saturated NOx adsorption amount corresponding to the bed temperature, and the NOx A NOx catalyst which is provided downstream of the adsorption catalyst and has a function of adsorbing the supplied reducing agent, and selectively reduces and purifies NOx from the NOx adsorption catalyst based on the reducing agent; and the NOx The reducing agent supply means for supplying a reducing agent to the catalyst, and heating means for heating the NOx adsorption catalyst and the exhaust gas introduced into the NOx catalyst to raise the temperature of both the NOx adsorption catalyst and the NOx catalyst. When the temperature raising process is performed to raise the bed temperature of the NOx catalyst to a predetermined temperature range for relatively increasing the NOx purification rate by the heating means, The maximum supply is defined as the maximum supply amount of the reducing agent necessary for purifying the maximum release amount of NOx that can be released from the NOx adsorption catalyst that is heated from the first temperature range toward the second temperature range. The reducing agent in a range not exceeding the amount is supplied to the NOx catalyst before the temperature raising process is completed.
According to this configuration, since the adsorption characteristics according to the bed temperature of the NOx adsorption catalyst are known, the temperature of the NOx adsorption catalyst was raised from the first temperature range to the second temperature range during the temperature raising process. The maximum amount of NOx released from the NOx adsorption catalyst can be determined. By supplying the reducing agent within a range that does not exceed the maximum supply amount necessary for purification of this maximum amount of NOx, slip of the reducing agent can be suppressed.

上記構成において、前記所定温度域は、前記NOx触媒が活性化する温度域である、構成を採用できる。
この構成によれば、NOx吸着触媒から放出されたNOxを効率良く浄化できる。
In the above configuration, the predetermined temperature range may be a temperature range where the NOx catalyst is activated.
According to this configuration, NOx released from the NOx adsorption catalyst can be purified efficiently.

上記構成において、前記第1の温度域における前記NOx吸着触媒のNOx吸着量の推定値に応じて前記昇温処理により前記NOx吸着触媒から放出され得るNOxを浄化するのに必要な量の還元剤を供給する、構成を採用できる。   In the above configuration, a reducing agent in an amount necessary for purifying NOx that can be released from the NOx adsorption catalyst by the temperature raising process according to an estimated value of the NOx adsorption amount of the NOx adsorption catalyst in the first temperature range. The structure which supplies can be adopted.

上記構成において、前記還元剤を前記昇温処理前に供給して前記NOx触媒に吸着させておく、構成を採用できる。   The said structure WHEREIN: The structure which supplies the said reducing agent before the said temperature rising process and makes it adsorb | suck to the said NOx catalyst is employable.

上記構成において、前記所定温度域における前記NOx触媒の飽和還元剤吸着量を超えない量の還元剤を前記昇温処理前に供給し、NOx浄化のための不足分の前記還元剤を前記昇温処理の開始後に供給する、構成を採用できる。
この構成によれば、昇温前にNOx触媒に吸着された還元剤の量が所定温度域における飽和還元剤吸着量を超えないため、還元剤のスリップを確実に防ぐことができる。また、昇温処理を開始後は、NOx触媒に吸着された還元剤は消費されるので、不足分の還元剤を供給したとしても、還元剤のスリップの発生を防ぐことができる。
In the above configuration, an amount of reducing agent that does not exceed the saturated reducing agent adsorption amount of the NOx catalyst in the predetermined temperature range is supplied before the temperature raising process, and a deficient amount of the reducing agent for NOx purification is raised in the temperature raising. It is possible to adopt a configuration that supplies after the start of processing.
According to this configuration, since the amount of the reducing agent adsorbed on the NOx catalyst before the temperature rise does not exceed the saturated reducing agent adsorption amount in the predetermined temperature range, the reducing agent slip can be reliably prevented. In addition, since the reducing agent adsorbed on the NOx catalyst is consumed after the temperature raising process is started, even if a deficient amount of reducing agent is supplied, occurrence of reducing agent slip can be prevented.

本発明によれば、NOx浄化率の低下及びアンモニアスリップの発生を抑制可能となる。   According to the present invention, it is possible to suppress a decrease in the NOx purification rate and the occurrence of ammonia slip.

本発明の一実施形態に係る内燃機関の排気浄化装置の構成を示す概略図である。1 is a schematic diagram illustrating a configuration of an exhaust gas purification apparatus for an internal combustion engine according to an embodiment of the present invention. ECUによる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process by ECU. 各種状態量の変化を示すタイミングチャートである。It is a timing chart which shows the change of various state quantities. NOx吸着触媒の床温とNOx吸着量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between the bed temperature of a NOx adsorption catalyst, and NOx adsorption amount. NOx触媒床温とアンモニア吸着量及びNOx浄化率との関係を示すグラフである。It is a graph which shows the relationship between NOx catalyst bed temperature, ammonia adsorption amount, and NOx purification rate. 本発明の他の実施形態におけるNOx吸着触媒の床温とNOx吸着量との関係を示すグラフである。It is a graph which shows the relationship between the bed temperature of the NOx adsorption catalyst in other embodiment of this invention, and NOx adsorption amount. 本発明の他の実施形態における各種状態量の変化を示すタイミングチャートである。It is a timing chart which shows the change of the various state quantities in other embodiments of the present invention. NOx触媒床温とアンモニア吸着量との関係を示すグラフである。It is a graph which shows the relationship between NOx catalyst bed temperature and ammonia adsorption amount. 本発明のさらに他の実施形態におけるECUによる処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process by ECU in further another embodiment of this invention. 本発明のさらに他の実施形態における各種状態量の変化を示すタイミングチャートである。It is a timing chart which shows the change of the various state quantity in other embodiments of the present invention.

以下、本発明の好適一実施形態を添付図面に基づいて詳述する。
図1は本発明の一実施形態に係る内燃機関の排気浄化装置の構成図である。
内燃機関10は、例えば、ディーゼルエンジンであり、この内燃機関10の排気通路15の上流側には、加熱手段としてのバーナー60が設けられている。バーナー60には、内燃機関10側から、空気が供給される空気供給経路61及び燃料が供給される燃料供給経路62が接続されている。バーナー60は、燃料供給経路62から供給される燃料を燃焼させ、燃焼ガスを排気通路15に供給する。また、空気供給経路61からの空気量及び燃料供給経路62からの燃料の量を制御することにより、燃焼ガスの空燃比が制御される。バーナー60は、後述するNOx吸着触媒25、DPF(ディーゼル・パティキュレート・フィルタ)30、NOx触媒35の床温を上昇させるのに用いられる。
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of an exhaust emission control device for an internal combustion engine according to an embodiment of the present invention.
The internal combustion engine 10 is, for example, a diesel engine, and a burner 60 as a heating unit is provided on the upstream side of the exhaust passage 15 of the internal combustion engine 10. An air supply path 61 for supplying air and a fuel supply path 62 for supplying fuel are connected to the burner 60 from the internal combustion engine 10 side. The burner 60 combusts the fuel supplied from the fuel supply path 62 and supplies the combustion gas to the exhaust passage 15. Further, by controlling the amount of air from the air supply path 61 and the amount of fuel from the fuel supply path 62, the air-fuel ratio of the combustion gas is controlled. The burner 60 is used to raise the bed temperature of the NOx adsorption catalyst 25, DPF (diesel particulate filter) 30, and NOx catalyst 35, which will be described later.

バーナー60から排出される燃焼ガスは、完全燃焼した状態で排気通路15に排出されてもよいし、あるいは、未燃燃料を含む状態で排気通路15に排出されてもよい。   The combustion gas exhausted from the burner 60 may be exhausted to the exhaust passage 15 in a completely burned state, or may be exhausted to the exhaust passage 15 in a state containing unburned fuel.

排気通路15のバーナー60の下流側には、NOx吸着触媒25、DPF30及びNOx触媒35が順に設けられている。   On the downstream side of the burner 60 in the exhaust passage 15, a NOx adsorption catalyst 25, a DPF 30 and a NOx catalyst 35 are provided in this order.

排気通路15において、NOx吸着触媒25の入口、出口とNOx触媒35の入口にそれぞれ窒素酸化物の濃度を検出するNOxセンサ95A,95B,95Cが設けられている。また、DPF30の入口と出口には、それぞれ、排気温度センサ90A,90Bが設けられている。これらセンサの検出信号は、ECU100へ入力される。   In the exhaust passage 15, NOx sensors 95 </ b> A, 95 </ b> B, and 95 </ b> C that detect the concentration of nitrogen oxide are provided at the inlet and outlet of the NOx adsorption catalyst 25 and the inlet of the NOx catalyst 35, respectively. Further, exhaust temperature sensors 90A and 90B are provided at the inlet and the outlet of the DPF 30, respectively. Detection signals from these sensors are input to the ECU 100.

さらに、排気通路15において、DPF30とNOx触媒35との間には、排気通路15に尿素水溶液を添加するための還元剤供給手段としての尿素水添加弁70と、この尿素水添加弁70の下流に設けられて排気ガスEGと尿素水溶液を混合させるための添加弁下流ミキサ80とが設けられている。   Further, in the exhaust passage 15, between the DPF 30 and the NOx catalyst 35, a urea water addition valve 70 as a reducing agent supply means for adding an aqueous urea solution to the exhaust passage 15, and downstream of the urea water addition valve 70. And an addition valve downstream mixer 80 for mixing the exhaust gas EG and the urea aqueous solution.

NOx吸着触媒25は、ゼオライト等の吸着触媒から構成され、排気ガスEGに含まれるNOxを吸着する。なお、NOx吸着触媒25の吸着可能な最大のNOx吸着量である飽和NOx吸着量は、後述するように、その床温に応じて変化する。この特性を利用して、NOx吸着触媒25の床温を変化させて飽和NOx吸着量を変化させることにより、吸着されたNOxをパージ可能に構成されている。   The NOx adsorption catalyst 25 is composed of an adsorption catalyst such as zeolite and adsorbs NOx contained in the exhaust gas EG. The saturated NOx adsorption amount, which is the maximum NOx adsorption amount that can be adsorbed by the NOx adsorption catalyst 25, varies according to the bed temperature, as will be described later. Utilizing this characteristic, the NOx adsorbed catalyst 25 is purged by changing the bed temperature of the NOx adsorption catalyst 25 to change the saturated NOx adsorption amount.

DPF30は、排気ガスEGに含まれる粒子状物質(PM)を捕集するフィルタである。DPF30の構造は、周知のように、例えば、金属やセラミクス製のハニカム体で構成されている。DPF30は、PMが所定量堆積すると再生処理が必要である。具体的には、バーナー60により昇温された排気ガスEG及び未燃燃料をDPF30に供給する。これにより、捕集したPMが燃焼処理され、フィルタ機能が再生される。この再生処理におけるDPF30の温度は、例えば、600〜700℃程度となる。なお、DPF30に所定量のPMが堆積したかの判断は、周知技術であるので、説明を省略する。また、DPF30は、貴金属からなる酸化触媒を担持する構成としてもよい。   The DPF 30 is a filter that collects particulate matter (PM) contained in the exhaust gas EG. As is well known, the structure of the DPF 30 is composed of, for example, a honeycomb body made of metal or ceramics. The DPF 30 needs to be regenerated when a predetermined amount of PM is deposited. Specifically, exhaust gas EG and unburned fuel heated by the burner 60 are supplied to the DPF 30. As a result, the collected PM is burned and the filter function is regenerated. The temperature of the DPF 30 in this regeneration process is, for example, about 600 to 700 ° C. Note that the determination of whether a predetermined amount of PM has accumulated on the DPF 30 is a well-known technique, and a description thereof will be omitted. Further, the DPF 30 may be configured to carry an oxidation catalyst made of a noble metal.

尿素水添加弁70は、尿素水溶液を収容するタンク75から尿素水が供給され、ECU100からの制御信号に応じた量の尿素水を排気通路15に添加する。   The urea water addition valve 70 is supplied with urea water from a tank 75 that stores a urea aqueous solution, and adds an amount of urea water according to a control signal from the ECU 100 to the exhaust passage 15.

NOx触媒(以下、SCR触媒ともいう。)35は、尿素添加弁70から添加される尿素水溶液を還元剤として用いて、排気ガスEGに含まれるNOxを選択的に還元して窒素ガスと水にする。具体的には、排気ガスEG中に添加された尿素水溶液は、排気ガスEGの熱により加水分解されて還元剤としてのアンモニアに変化し、NOx触媒35に吸着保持される。このNOx触媒35に吸着保持されたアンモニアがNOxと反応し、水と無害な窒素に還元される。NOx触媒35のアンモニア吸着量が飽和吸着量を超えると、アンモニアスリップが発生する可能性があり、少なすぎると、NOxを十分に浄化できない可能性がある。なお、尿素水の代わりに、アンモニアを直接供給することも可能である。   The NOx catalyst (hereinafter also referred to as SCR catalyst) 35 selectively reduces NOx contained in the exhaust gas EG into nitrogen gas and water by using a urea aqueous solution added from the urea addition valve 70 as a reducing agent. To do. Specifically, the urea aqueous solution added to the exhaust gas EG is hydrolyzed by the heat of the exhaust gas EG, changed to ammonia as a reducing agent, and adsorbed and held on the NOx catalyst 35. The ammonia adsorbed and held by the NOx catalyst 35 reacts with NOx and is reduced to water and harmless nitrogen. If the ammonia adsorption amount of the NOx catalyst 35 exceeds the saturated adsorption amount, ammonia slip may occur, and if it is too small, NOx may not be sufficiently purified. In addition, it is also possible to supply ammonia directly instead of urea water.

NOx触媒35は、周知の構造であり、例えば、Si、O、Alを主成分とすると共にFeイオンを含むゼオライトから構成されたものや、例えば、酸化アルミニウムアルミナからなる基材の表面にバナジウム触媒(V2O5)を担持させたものなどを用いることができ、特に、これらに限定されるわけではない。   The NOx catalyst 35 has a well-known structure. For example, the NOx catalyst 35 is composed of zeolite containing Si, O, and Al as main components and containing Fe ions, for example, a vanadium catalyst on the surface of a base material made of aluminum oxide alumina. A material carrying (V2O5) or the like can be used, and is not particularly limited thereto.

ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、EEPROM(Electronically Erasable and Programmable Read Only Memory)等のバックアップ用メモリ、A/D変換器やバッファ等を含む入力インターフェース回路、駆動回路等を含む出力インターフェース回路を含むハードウエアと所要のソフトウエアで構成される。ECU100は、排気温度センサ90A、90B、NOxセンサ95A〜95cなどからの信号に基づいて、尿素水添加弁70からの尿素水の添加量の制御や、後述するバーナー60によるNO吸着触媒25の床温及びNOx触媒35の床温の制御を実行する。   The ECU 100 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a backup memory such as an EEPROM (Electronically Erasable and Programmable Read Only Memory), an A / D converter, a buffer, and the like. It comprises hardware including an output interface circuit including an input interface circuit, a drive circuit, etc., and necessary software. The ECU 100 controls the amount of urea water added from the urea water addition valve 70 based on signals from the exhaust temperature sensors 90A and 90B, NOx sensors 95A to 95c, and the bed of the NO adsorption catalyst 25 by a burner 60 described later. Control of the temperature and the bed temperature of the NOx catalyst 35 is executed.

次に、ECU100による昇温処理の一例について図2ないし図5を参照して説明する。
まず、バーナー60を起動してNOx吸着触媒25の床温を活性温度域(第1の温度域)Ta(℃)に達するまで昇温させる(ステップS1)。ここで、NOx吸着触媒25は、図4に示すように、NOxの最大吸着量である飽和NOx吸着量がその床温に応じて変化する。具体的には、NOx吸着触媒25は、冷間始動時等の低温状態から温度が上昇していくと、温度域Taで飽和NOx吸着量が最大となり、その後の温度上昇に従って吸着量が減少していく。このため、NOx吸着量を最大化するためにNOx吸着触媒25の床温を温度域Taに制御する。
Next, an example of the temperature raising process by the ECU 100 will be described with reference to FIGS.
First, the burner 60 is activated to raise the bed temperature of the NOx adsorption catalyst 25 until it reaches the activation temperature range (first temperature range) Ta (° C.) (step S1). Here, as shown in FIG. 4, in the NOx adsorption catalyst 25, the saturated NOx adsorption amount, which is the maximum NOx adsorption amount, changes according to the bed temperature. Specifically, when the temperature of the NOx adsorption catalyst 25 rises from a low temperature state such as during cold start, the saturated NOx adsorption amount becomes maximum in the temperature range Ta, and the adsorption amount decreases as the temperature rises thereafter. To go. For this reason, in order to maximize the NOx adsorption amount, the bed temperature of the NOx adsorption catalyst 25 is controlled to the temperature range Ta.

NOx吸着触媒25の床温が温度域Taに向かって上昇していくと、図3に示すように、NOx吸着触媒25に吸着されるNOx吸着量も増大する。また、NOx吸着触媒25の昇温に伴って、NOx触媒の床温(SCR床温)も上昇していく。   As the bed temperature of the NOx adsorption catalyst 25 increases toward the temperature range Ta, the NOx adsorption amount adsorbed by the NOx adsorption catalyst 25 also increases as shown in FIG. Further, as the NOx adsorption catalyst 25 rises in temperature, the NOx catalyst bed temperature (SCR bed temperature) also rises.

ここで、NOx触媒35は、図5に示すように、アンモニアの最大吸着量である飽和アンモニア吸着量がその床温に応じて変化する。具体的には、NOx触媒35は、冷間始動時等の低温状態から温度が上昇していくと、温度域T1で飽和アンモニア吸着量が最大となり、その後の温度上昇に従って飽和アンモニア吸着量が減少していく。一方、NOx触媒35は、低温状態から床温の上昇に伴ってNOx浄化率が増大していき、温度域T1よりも高温の温度域T2で活性化した相対的に浄化率の高い状態となる。このため、NOxを浄化する際には、NOx触媒35の床温を温度域T2に制御する必要がある。   Here, in the NOx catalyst 35, as shown in FIG. 5, the saturated ammonia adsorption amount, which is the maximum ammonia adsorption amount, changes according to the bed temperature. Specifically, as the temperature of the NOx catalyst 35 rises from a low temperature state such as during cold start, the saturated ammonia adsorption amount becomes maximum in the temperature range T1, and the saturated ammonia adsorption amount decreases as the temperature rises thereafter. I will do it. On the other hand, the NOx catalyst 35 increases in the NOx purification rate as the bed temperature rises from the low temperature state, and is activated in the temperature range T2 that is higher than the temperature range T1 and has a relatively high purification rate. . For this reason, when purifying NOx, it is necessary to control the bed temperature of the NOx catalyst 35 to the temperature range T2.

NOx触媒35の昇温制御をするには、先ず、SCR床温が所定温度域T0に達したかを判断する(ステップS2)。所定温度域T0は、図5に示すように、NOx触媒35が十分量のアンモニアを吸着可能な状態となる温度域である。   In order to control the temperature increase of the NOx catalyst 35, it is first determined whether or not the SCR bed temperature has reached a predetermined temperature range T0 (step S2). The predetermined temperature range T0 is a temperature range in which the NOx catalyst 35 can adsorb a sufficient amount of ammonia, as shown in FIG.

ステップS2において、SCR床温が所定温度域T0に達した場合には、尿素水(アンモニア)を供給する(ステップS3)。ここで、供給するアンモニア量は、NOx触媒35の昇温処理に伴って昇温されるNOx吸着触媒25から放出され得るNOxの最大放出量を浄化するのに必要なアンモニア量を最大供給量Amaxとして、この最大供給量Amaxを超えない範囲の量とする。具体的には、図4に示すように、NOx吸着触媒25の床温が温度域Ta及びTbにおける飽和NOx吸着量をγ及びβとしたとき、NOx触媒35の昇温処理により、NOx吸着触媒25の床温が温度域Taから温度域Tbへ上昇すると、放出される可能性のあるNOxの最大放出量Emaxは、β−γである。アンモニアの最大供給量Amaxは、最大放出量EmaxのNOxを浄化できる量である。   In step S2, urea water (ammonia) is supplied when the SCR bed temperature reaches a predetermined temperature range T0 (step S3). Here, the amount of ammonia to be supplied is the maximum amount of ammonia Amax that is required to purify the maximum amount of NOx that can be released from the NOx adsorption catalyst 25 that is heated in accordance with the temperature raising process of the NOx catalyst 35. The amount is in a range not exceeding the maximum supply amount Amax. Specifically, as shown in FIG. 4, when the bed temperature of the NOx adsorption catalyst 25 is γ and β when the saturated NOx adsorption amounts in the temperature ranges Ta and Tb are γ and β, the NOx catalyst 35 is heated to perform the NOx adsorption catalyst 25. When the bed temperature of 25 rises from the temperature range Ta to the temperature range Tb, the maximum NOx release amount Emax that may be released is β-γ. The maximum supply amount Amax of ammonia is an amount capable of purifying NOx of the maximum release amount Emax.

本実施形態では、図3に示すように、最大供給量Amaxのアンモニア(尿素水)を、アンモニアスリップが発生しないように、NOx触媒35の昇温処理を開始する前に一定量(単位時間当り)を添加する。   In the present embodiment, as shown in FIG. 3, ammonia (urea water) having a maximum supply amount Amax is set at a constant amount (per unit time) before starting the temperature raising process of the NOx catalyst 35 so that ammonia slip does not occur. ) Is added.

次いで、NOx触媒35の床温が所定温度域T1に達したかを判断する(ステップS4)。温度域T1は、図5に示すように、アンモニア吸着量が最大となる温度域である。アンモニアの吸着量を最大化する観点から、この温度域に達したところでNOx触媒35の昇温処理を開始する(ステップS6)。なお、所定温度域T1はこれに限定されるわけではなく、適宜設定可能である。ステップS4において、NOx触媒35の床温が所定温度域T1に達していない場合には、NOx触媒35の推定したNOx吸着量が閾値Nに達していないかを判断する(ステップS5)。閾値Nは、例えば、飽和NOx吸着量βに設定する。そして、NOx触媒35の床温が所定温度域T1に達していない場合であっても、NOx触媒35のアンモニア吸着量が飽和した場合には、NOx触媒35の昇温処理を開始する(ステップS6)。   Next, it is determined whether the bed temperature of the NOx catalyst 35 has reached a predetermined temperature range T1 (step S4). As shown in FIG. 5, the temperature range T1 is a temperature range where the ammonia adsorption amount becomes maximum. From the viewpoint of maximizing the amount of adsorption of ammonia, the temperature raising process of the NOx catalyst 35 is started when this temperature range is reached (step S6). The predetermined temperature range T1 is not limited to this, and can be set as appropriate. In step S4, when the bed temperature of the NOx catalyst 35 has not reached the predetermined temperature range T1, it is determined whether the NOx adsorption amount estimated by the NOx catalyst 35 has reached the threshold value N (step S5). The threshold value N is set to, for example, the saturated NOx adsorption amount β. Even when the bed temperature of the NOx catalyst 35 does not reach the predetermined temperature range T1, if the ammonia adsorption amount of the NOx catalyst 35 is saturated, the temperature raising process of the NOx catalyst 35 is started (step S6). ).

NOx触媒35の床温を活性化させるための所定温度域T2に向けて上昇させると、図3に示すように、NOx吸着触媒25の床温も上昇し、第2の温度域としての温度域Tbに達する。NOx吸着触媒25の床温の上昇に伴い、NOx吸着触媒25の飽和NOx吸着量は、図4に示したように低下していく。このため、NOx吸着触媒25からNOxが放出され、NOx吸着触媒25のNOx吸着量も減少していく。また、NOx触媒35のアンモニア吸着量は、図5に示すように、NOx触媒35の昇温処理の開始と同時に減少していき、昇温処理中にアンモニア吸着量が増加することはない。このため、アンモニアスリップが発生しにくくなる。   When the temperature of the NOx catalyst 35 is increased toward the predetermined temperature range T2 for activating the NOx catalyst 35, as shown in FIG. 3, the bed temperature of the NOx adsorption catalyst 25 also increases, and the temperature range as the second temperature range. Tb is reached. As the bed temperature of the NOx adsorption catalyst 25 increases, the saturated NOx adsorption amount of the NOx adsorption catalyst 25 decreases as shown in FIG. For this reason, NOx is released from the NOx adsorption catalyst 25, and the NOx adsorption amount of the NOx adsorption catalyst 25 also decreases. Further, as shown in FIG. 5, the ammonia adsorption amount of the NOx catalyst 35 decreases simultaneously with the start of the temperature raising process of the NOx catalyst 35, and the ammonia adsorption amount does not increase during the temperature raising process. For this reason, ammonia slip hardly occurs.

上記実施形態では、NOx触媒35の昇温処理の開始前にNOx触媒35へ供給するアンモニアの量をNOxの最大放出量Emaxを浄化できる最大供給量Amaxとした。しかし、例えば、図6に示すように、NOx吸着触媒25の床温を温度域Taまで上昇した際に、実際のNOx吸着量Xが飽和NOx吸着量βに達していない場合も想定される。このような場合に、最大供給量Amaxのアンモニアを供給すると、アンモニアが過剰となる可能性がある。   In the above embodiment, the amount of ammonia supplied to the NOx catalyst 35 before the start of the temperature raising process of the NOx catalyst 35 is the maximum supply amount Amax that can purify the maximum NOx release amount Emax. However, as shown in FIG. 6, for example, when the bed temperature of the NOx adsorption catalyst 25 is raised to the temperature range Ta, the actual NOx adsorption amount X may not reach the saturated NOx adsorption amount β. In such a case, if ammonia with the maximum supply amount Amax is supplied, ammonia may become excessive.

このため、図7に示すように、NOx吸着触媒25に温度域Taにおいて吸着されている推定されるNOx吸着量Xに応じて、アンモニア供給量をAmに調整することも可能である。アンモニア供給量Amは、NOx吸着触媒25が温度域Taから温度域Tbまで昇温したときに放出されるNOx量(X−γ)を浄化するのに必要なアンモニアの量である。   For this reason, as shown in FIG. 7, it is also possible to adjust the ammonia supply amount to Am in accordance with the estimated NOx adsorption amount X adsorbed on the NOx adsorption catalyst 25 in the temperature range Ta. The ammonia supply amount Am is the amount of ammonia necessary to purify the NOx amount (X−γ) released when the NOx adsorption catalyst 25 is heated from the temperature range Ta to the temperature range Tb.

次に、図8ないし図10を参照して本発明のさらに他の実施形態について説明する。
図8に示すように、NOx触媒35は床温に応じてアンモニア吸着量が変化する。例えば、床温が所定温度域T1およびT2におけるアンモニア吸着量をそれぞれA1およびA2とすると、床温が所定温度域T1からT2へ上昇すると、NOx触媒35からA1−A2に相当するアンモニアが放出される。このA1−A2に相当するアンモニアは、NOx浄化によってすべて消費されない場合には、残りがスリップして外部へ放出されてしまう。本実施形態では、NOx触媒35の床温の上昇に伴うアンモニアスリップを確実に防ぐために、所定温度域T2におけるNOx触媒25の飽和アンモニア吸着量A2を超えない量のアンモニアをNOx触媒35の昇温処理前に供給し、NOx浄化のための不足分のアンモニアを昇温処理の開始後に供給する。
Next, still another embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 8, the NOx catalyst 35 has an ammonia adsorption amount that changes according to the bed temperature. For example, assuming that the ammonia adsorption amounts in the predetermined temperature range T1 and T2 are A1 and A2, respectively, when the bed temperature rises from the predetermined temperature range T1 to T2, ammonia corresponding to A1-A2 is released from the NOx catalyst 35. The When all of the ammonia corresponding to A1-A2 is not consumed by NOx purification, the rest slips and is discharged to the outside. In the present embodiment, in order to reliably prevent ammonia slip due to an increase in the bed temperature of the NOx catalyst 35, an amount of ammonia that does not exceed the saturated ammonia adsorption amount A2 of the NOx catalyst 25 in the predetermined temperature region T2 is increased in temperature of the NOx catalyst 35. It is supplied before the treatment, and a shortage of ammonia for NOx purification is supplied after the temperature raising treatment is started.

図9は、ECU100による処理の一例を示すフローチャートである。
先ず、ステップS11及びS12は、図2で説明したステップS1及びS2と同様である。
FIG. 9 is a flowchart illustrating an example of processing by the ECU 100.
First, steps S11 and S12 are the same as steps S1 and S2 described in FIG.

NOx触媒35の床温が所定温度域T0を超えた場合には、NOx触媒35へアンモニア(尿素水)の添加を開始する(ステップS13)。そして、アンモニア添加量Aが所定温度域T2の飽和アンモニア吸着量A2に達したかを判断する(ステップS14)。アンモニア添加量Aが飽和アンモニア吸着量A2に達した場合には、アンモニアの添加を停止する(ステップS15)。これにより、図10に示すように、NOx触媒35に飽和アンモニア吸着量A2のアンモニアが吸着される。   When the bed temperature of the NOx catalyst 35 exceeds the predetermined temperature range T0, addition of ammonia (urea water) to the NOx catalyst 35 is started (step S13). Then, it is determined whether the ammonia addition amount A has reached the saturated ammonia adsorption amount A2 in the predetermined temperature range T2 (step S14). When the ammonia addition amount A reaches the saturated ammonia adsorption amount A2, the ammonia addition is stopped (step S15). As a result, as shown in FIG. 10, the saturated ammonia adsorption amount A2 of ammonia is adsorbed to the NOx catalyst 35.

次いで、NOx触媒35の床温が所定温度域T1に達したかを判断する(ステップS16)。温度域T1は、図8に示した温度域である。この温度域に達したところでNOx触媒35の昇温処理を開始する(ステップS18)。ステップS16において、NOx触媒35の床温が所定温度域T1に達していない場合には、NOx触媒35の推定したNOx吸着量が閾値Nに達していないかを判断する(ステップS17)。閾値Nは、例えば、温度域T1における飽和NOx吸着量に設定する。そして、NOx触媒35の床温が所定温度域T1に達していない場合であっても、NOx触媒35のアンモニア吸着量が飽和した場合には、NOx触媒35の昇温処理を開始する(ステップS18)。   Next, it is determined whether the bed temperature of the NOx catalyst 35 has reached a predetermined temperature range T1 (step S16). The temperature range T1 is the temperature range shown in FIG. When reaching this temperature range, the temperature raising process of the NOx catalyst 35 is started (step S18). In step S16, if the bed temperature of the NOx catalyst 35 has not reached the predetermined temperature range T1, it is determined whether the NOx adsorption amount estimated by the NOx catalyst 35 has reached the threshold value N (step S17). The threshold value N is set to, for example, the saturated NOx adsorption amount in the temperature range T1. Even when the bed temperature of the NOx catalyst 35 does not reach the predetermined temperature range T1, if the ammonia adsorption amount of the NOx catalyst 35 is saturated, the temperature raising process of the NOx catalyst 35 is started (step S18). ).

NOx触媒35の床温を活性化する温度域Tbに向けて開始すると、図10に示すように、NOx触媒35のアンモニア吸着量がNOx浄化のために消費されて減少していく。これと同時に、NOx浄化に必要な不足分のアンモニア(A1−A2)を添加する(ステップS19)。なお、不足分のアンモニア(A1−A2)は、NOx触媒35の床温が所定温度域Tbに達するまでにすべて添加する。   When starting toward the temperature range Tb in which the bed temperature of the NOx catalyst 35 is activated, the ammonia adsorption amount of the NOx catalyst 35 is consumed for NOx purification and decreases, as shown in FIG. At the same time, a shortage of ammonia (A1-A2) necessary for NOx purification is added (step S19). Note that the short amount of ammonia (A1-A2) is all added until the bed temperature of the NOx catalyst 35 reaches the predetermined temperature range Tb.

NOx触媒35の昇温処理前に所定温度域T2の飽和アンモニア吸着量A2を超えない量のアンモニアを予め添加し、NOx触媒35が活性化されてNOx浄化が開始された後に不足分のアンモニア(A1−A2)を添加することにより、NOx触媒35の昇温に起因するアンモニアスリップを確実に抑制できる。   Before the NOx catalyst 35 is heated, an amount of ammonia that does not exceed the saturated ammonia adsorption amount A2 in the predetermined temperature range T2 is added in advance, and after the NOx catalyst 35 is activated and NOx purification is started, a shortage of ammonia ( By adding A1-A2), it is possible to reliably suppress ammonia slip caused by the temperature rise of the NOx catalyst 35.

上記実施形態では、加熱手段としてバーナー60を用いたが、例えば、排気ガス自体を加熱するヒータ等の他の加熱手段を用いることも可能である。   In the above embodiment, the burner 60 is used as the heating means. However, for example, other heating means such as a heater for heating the exhaust gas itself may be used.

10…内燃機関
15…排気通路
25…NOx吸着触媒
30…DPF(フィルタ)
35…NOx触媒
60…バーナー
70…尿素水添加弁
100…ECU
90A,90B…排気温度センサ
95A〜95c…NOxセンサ
DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine 15 ... Exhaust passage 25 ... NOx adsorption catalyst 30 ... DPF (filter)
35 ... NOx catalyst 60 ... Burner 70 ... Urea water addition valve 100 ... ECU
90A, 90B ... exhaust temperature sensors 95A to 95c ... NOx sensors

Claims (5)

内燃機関の排気通路に設けられ、排気ガスに含まれるNOxをその床温に応じた飽和NOx吸着量まで吸着保持可能なNOx吸着触媒と、
前記NOx吸着触媒の下流側に設けられ、供給される還元剤を吸着する機能を有するとともに、前記還元剤に基づいて前記NOx吸着触媒からのNOxを選択的に還元して浄化するNOx触媒と、
前記NOx触媒に還元剤を供給する前記還元剤供給手段と、
前記NOx吸着触媒およびNOx触媒に導入される排気ガスを加熱して前記NOx吸着触媒およびNOx触媒を共に昇温可能な加熱手段と、を有し、
前記加熱手段により前記NOx触媒の床温をNOx浄化率を相対的に高めるための所定温度域に昇温させる昇温処理を実行するに際して、前記昇温処理に伴って第1の温度域から第2の温度域へ向けて昇温される前記NOx吸着触媒から放出され得るNOxの最大放出量を浄化するのに必要な還元剤を最大供給量として、前記最大供給量を超えない範囲の前記還元剤を前記NOx触媒に前記昇温処理を終了するまでに供給する、
ことを特徴とする内燃機関の排気浄化装置。
A NOx adsorption catalyst provided in the exhaust passage of the internal combustion engine, capable of adsorbing and holding NOx contained in the exhaust gas up to a saturated NOx adsorption amount corresponding to the bed temperature;
A NOx catalyst provided on the downstream side of the NOx adsorption catalyst, having a function of adsorbing the supplied reducing agent, and selectively reducing and purifying NOx from the NOx adsorption catalyst based on the reducing agent;
The reducing agent supply means for supplying a reducing agent to the NOx catalyst;
Heating means capable of heating the NOx adsorption catalyst and the exhaust gas introduced into the NOx catalyst to raise the temperature of both the NOx adsorption catalyst and the NOx catalyst,
When performing the temperature raising process in which the heating means raises the bed temperature of the NOx catalyst to a predetermined temperature range for relatively increasing the NOx purification rate, the heating temperature increases from the first temperature range to the first temperature range. The reduction within a range not exceeding the maximum supply amount, with the maximum supply amount being a reducing agent necessary to purify the maximum release amount of NOx that can be released from the NOx adsorption catalyst heated to the temperature range of 2. An agent is supplied to the NOx catalyst before the temperature raising process is completed.
An exhaust emission control device for an internal combustion engine.
前記所定温度域は、前記NOx触媒が活性化する温度域である、ことを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the predetermined temperature range is a temperature range where the NOx catalyst is activated. 前記第1の温度域における前記NOx吸着触媒のNOx吸着量の推定値に応じて前記昇温処理により前記NOx吸着触媒から放出され得るNOxを浄化するのに必要な量の還元剤を供給する、ことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   Supplying a reducing agent in an amount necessary for purifying NOx that can be released from the NOx adsorption catalyst by the temperature raising process according to an estimated value of the NOx adsorption amount of the NOx adsorption catalyst in the first temperature range; The exhaust emission control device for an internal combustion engine according to claim 1 or 2. 前記還元剤を前記昇温処理前に供給して前記NOx触媒に吸着させておく、ことを特徴とする請求項1乃至3のいずれかに記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the reducing agent is supplied and adsorbed to the NOx catalyst before the temperature raising process. 前記所定温度域における前記NOx触媒の飽和還元剤吸着量を超えない量の還元剤を前記昇温処理前に供給し、NOx浄化のための不足分の前記還元剤を前記昇温処理の開始後に供給する、ことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。   An amount of reducing agent that does not exceed the saturated reducing agent adsorption amount of the NOx catalyst in the predetermined temperature range is supplied before the temperature raising process, and a deficient amount of the reducing agent for NOx purification is supplied after the temperature raising process is started The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is supplied.
JP2009121102A 2009-05-19 2009-05-19 Exhaust emission control device for internal combustion engine Pending JP2010270616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121102A JP2010270616A (en) 2009-05-19 2009-05-19 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121102A JP2010270616A (en) 2009-05-19 2009-05-19 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2010270616A true JP2010270616A (en) 2010-12-02

Family

ID=43418849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121102A Pending JP2010270616A (en) 2009-05-19 2009-05-19 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2010270616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
JP2017150357A (en) * 2016-02-23 2017-08-31 日野自動車株式会社 Exhaust emission control device
US9840954B2 (en) 2013-10-22 2017-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183153A1 (en) * 2012-06-07 2013-12-12 トヨタ自動車株式会社 Engine system
JPWO2013183153A1 (en) * 2012-06-07 2016-01-28 トヨタ自動車株式会社 Engine system
US9840954B2 (en) 2013-10-22 2017-12-12 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2017150357A (en) * 2016-02-23 2017-08-31 日野自動車株式会社 Exhaust emission control device

Similar Documents

Publication Publication Date Title
JP5348539B2 (en) Exhaust gas purification device for internal combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
JP2010261423A (en) Exhaust emission control device of internal combustion engine
JP5158214B2 (en) Exhaust gas purification device for internal combustion engine
JP5062539B2 (en) Exhaust gas purification device for internal combustion engine
WO2014076815A1 (en) Exhaust gas purification system for internal-combustion engine
JP4919178B2 (en) Exhaust gas purification device for internal combustion engine
JP2011089434A (en) Exhaust emission control device in internal combustion engine
WO2011125089A1 (en) Exhaust gas purifying system of internal combustion engine
CN107882617B (en) Exhaust gas control system for internal combustion engine
JP5251711B2 (en) Exhaust gas purification device for internal combustion engine
WO2010087005A1 (en) Exhaust purifying device
JP2010229929A (en) Exhaust emission control device for internal combustion engine
JP2010127151A (en) Exhaust emission control device for internal combustion engine
JP7035676B2 (en) Exhaust gas purification device and method for internal combustion engine that obtains driving force by combustion of ammonia
JP5338973B2 (en) Exhaust gas purification device for internal combustion engine
JP2010270616A (en) Exhaust emission control device for internal combustion engine
JP5900653B2 (en) Exhaust gas purification system for internal combustion engine
JP6742060B2 (en) Exhaust gas purification apparatus and method for internal combustion engine that obtains driving force by combustion of ammonia
JP2010261387A (en) Exhaust emission control device of internal combustion engine
JP2021148068A (en) Exhaust emission control system
JP6400457B2 (en) Exhaust purification device
JP4924756B2 (en) Exhaust gas purification device for internal combustion engine
JP3465584B2 (en) Exhaust gas purification device for internal combustion engine
JP5347996B2 (en) Exhaust gas purification device