JP5053134B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP5053134B2
JP5053134B2 JP2008060521A JP2008060521A JP5053134B2 JP 5053134 B2 JP5053134 B2 JP 5053134B2 JP 2008060521 A JP2008060521 A JP 2008060521A JP 2008060521 A JP2008060521 A JP 2008060521A JP 5053134 B2 JP5053134 B2 JP 5053134B2
Authority
JP
Japan
Prior art keywords
way catalyst
nox
fuel
excess air
air ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008060521A
Other languages
Japanese (ja)
Other versions
JP2009215977A (en
Inventor
博 舟橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2008060521A priority Critical patent/JP5053134B2/en
Publication of JP2009215977A publication Critical patent/JP2009215977A/en
Application granted granted Critical
Publication of JP5053134B2 publication Critical patent/JP5053134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、排気ガス中のNOxを低減するための排気浄化装置に関するものである。   The present invention relates to an exhaust purification device for reducing NOx in exhaust gas.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にNH3(アンモニア)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、NH3のような有毒な物質を搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている(例えば、特許文献1参照)。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using NH 3 (ammonia) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with a toxic substance such as NH 3 , in recent years, the use of non-toxic urea water as a reducing agent has been studied (for example, , See Patent Document 1).

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガス中で尿素水がNH3とCO2(炭酸ガス)に分解され、選択還元型触媒上で排気ガス中のNOxがNH3により良好に還元浄化されることになる。 That is, when urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is decomposed into NH 3 and CO 2 (carbon dioxide) in the exhaust gas, and the exhaust gas is exhausted on the selective catalytic reduction catalyst. The inside NOx is reduced and purified well by NH 3 .

ただし、このように尿素水を還元剤とする選択還元型触媒を用いた排気浄化装置では、尿素水を貯溜しておくための尿素水タンクを新たに増設しなければならないため、該尿素水タンクの搭載スペースの確保が難しいという問題や、コストの高騰が避けられなくなるという問題を招く結果となり、更には、運転者が簡単に尿素水を入手できるようにインフラを整備しなければならないという社会的な問題も招くことになった。   However, in the exhaust gas purification apparatus using the selective catalytic reduction catalyst using urea water as a reducing agent in this way, a urea water tank for storing urea water must be newly added. As a result, there is a problem that it is difficult to secure the installation space for the vehicle, and that it is unavoidable that the rise in cost is unavoidable, and that the infrastructure must be improved so that the driver can easily obtain urea water. It also caused a serious problem.

そこで、本発明者は、ディーゼルエンジンの排気管途中にNOxとNH3の吸着能を持たせた三元触媒を配設し、エンジン稼働中のアクセルオフ時に約0.7付近まで深く空気過剰率を下げ、しかも、その低い空気過剰率でも無煙燃焼を保ち得るよう予混合圧縮着火をディーゼルエンジンで行うようにして、前記三元触媒で排気ガス中のNOxとH2からNH3を生成して溜め込むという新しいシステムを創案するに到った。 Therefore, the present inventor has arranged a three-way catalyst having NOx and NH 3 adsorption capacity in the middle of the exhaust pipe of a diesel engine, and has an excess air ratio deeply to about 0.7 when the accelerator is off during engine operation. In addition, premixed compression ignition is performed with a diesel engine so that smokeless combustion can be maintained even at a low excess air ratio, and NH 3 is generated from NOx and H 2 in the exhaust gas by the three-way catalyst. It came to invent a new system of collecting.

即ち、このようにエンジン稼働中のアクセルオフ時に三元触媒にNH3を生成して溜め込んでおけば、アクセルオフの状態が解除されてアクセルが踏み込まれた通常の走行状態に移行した際に、空気過剰率が通常の約1.6以上の状態に戻されて三元触媒の周囲が有酸素状態になり、三元触媒に既に吸着されているNOxや新たに吸着されたNOxが、アクセルオフ時に溜められたNH3によりN2に還元浄化される。 In other words, if NH 3 is generated and stored in the three-way catalyst when the accelerator is off while the engine is running, the accelerator off state is canceled and the accelerator is depressed, and when the vehicle shifts to the normal driving state, The excess air ratio is returned to the normal state of about 1.6 or more, the surroundings of the three-way catalyst become aerobic, and NOx already adsorbed on the three-way catalyst and newly adsorbed NOx are turned off. Sometimes it is reduced and purified to N 2 by NH 3 accumulated.

この結果、尿素水を貯溜しておくための尿素水タンクを不要として該尿素水タンクの搭載スペースの確保やコストの高騰に関する問題を解消することが可能となり、しかも、運転者が簡単に尿素水を入手できるようなインフラの整備を不要とすることが可能となる。
特開2002−161732号公報
As a result, it becomes possible to eliminate the urea water tank for storing the urea water, eliminate the problems related to securing the mounting space of the urea water tank and the cost increase, and the driver can easily It is possible to eliminate the need for infrastructure that can be obtained.
JP 2002-161732 A

しかしながら、長い登り坂を登り続けるような中高負荷での等速又は加速運転の状況が長く続いた場合、アクセルオフの状態がなかなか生じないため、三元触媒でNH3を生成して溜め込んでおく機会が得られないままNOxの吸着だけが進んでしまい、三元触媒でのNOxの吸着量が許容量を超えたところからNOxを低減できなくなってしまう虞れがあった。 However, if the condition of constant speed or acceleration operation at a medium or high load that continues to climb a long uphill continues for a long time, the accelerator off state does not occur easily, so NH 3 is generated and stored by a three-way catalyst. There is a possibility that NOx may not be reduced from the point where the adsorption amount of NOx by the three-way catalyst exceeds the allowable amount because only the NOx adsorption proceeds without obtaining an opportunity.

本発明は上述の実情に鑑みてなしたもので、NOxとNH3の吸着能を持たせた三元触媒をディーゼルエンジンに適用し、エンジン稼働中のアクセルオフ時にNOxからNH3を生成して三元触媒に吸着させて溜め込み、このNH3を用いて排気ガス中のNOxを還元浄化するようにした排気浄化装置に関し、アクセルオフの状態がなかなか生じない中高負荷の等速又は加速運転時でもNOxを確実に還元浄化し得るようにすることを目的としている。 The present invention has been made in view of the above circumstances, and applies a three-way catalyst having NOx and NH 3 adsorption capability to a diesel engine, and generates NH 3 from NOx when the accelerator is off while the engine is running. An exhaust gas purification device that adsorbs and accumulates on a three-way catalyst and uses this NH 3 to reduce and purify NOx in the exhaust gas, even during medium and high load constant speed or acceleration operation where the accelerator off state hardly occurs The object is to ensure that NOx can be reduced and purified.

本発明は、ディーゼルエンジンの排気管途中に装備されてNOxとNH3の吸着能を有する三元触媒と、エンジン稼働中のアクセルオフ時に空気過剰率を約0.7付近まで深く下げ且つその低い空気過剰率でも無煙燃焼を保ち得るよう予混合圧縮着火を前記ディーゼルエンジンに行わしめる制御装置とを備えた排気浄化装置であって、前記三元触媒より上流側の排気管に該排気管内に燃料を直接噴射し得るよう燃料添加手段を設け、前記三元触媒でのNOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時にエンジン稼働中のアクセルオフ時よりも浅く空気過剰率を下げ且つ前記燃料添加手段により排気管途中で補助的に燃料を添加して前記三元触媒の入側での空気過剰率を約1.0付近まで下げるように前記制御装置を構成したことを特徴とするものである。 The present invention is provided in the middle of the exhaust pipe of a diesel engine and has a three-way catalyst capable of adsorbing NOx and NH 3 , and when the accelerator is off while the engine is operating, the excess air ratio is lowered to about 0.7 and low. An exhaust emission control device including a control device for causing the diesel engine to perform premixed compression ignition so that smokeless combustion can be maintained even in an excess air ratio, wherein an exhaust pipe upstream of the three-way catalyst has a fuel in the exhaust pipe. A fuel addition means is provided so that the engine can be directly injected, and the accelerator that is operating the engine during constant-speed or acceleration operation at medium or high load under the condition that the NOx adsorption amount by the three-way catalyst is determined to exceed the allowable amount The excess air ratio is lowered shallower than when the engine is turned off, and fuel is supplementally added in the middle of the exhaust pipe by the fuel addition means so that the excess air ratio on the inlet side of the three-way catalyst is reduced to about 1.0. The control device is configured as described above.

而して、このようにすれば、エンジン稼働中のアクセルオフ時に制御装置により空気過剰率が約0.7付近まで深く下げられ、しかも、その低い空気過剰率でも無煙燃焼を保ち得るよう予混合圧縮着火がディーゼルエンジンで行われる結果、三元触媒の反応過程で生じたN(反応中の話なのでNと記す)が、低い空気過剰率によりOと反応できずに余剰したH(反応中の話なのでHと記す)と結びついてNH3が生成され、そのまま三元触媒に吸着されて溜め込まれる。 Thus, in this way, when the accelerator is off while the engine is running, the control unit can reduce the excess air ratio to about 0.7 , and premixing can maintain smokeless combustion even at the low excess air ratio. As a result of compression ignition being performed in the diesel engine, N (denoted as N because it is a reaction) is generated in the reaction process of the three-way catalyst , and is not allowed to react with O due to a low excess air ratio. NH 3 is produced in combination with H), and is adsorbed and stored in the three-way catalyst.

そして、アクセルオフの状態が解除されてアクセルが踏み込まれた通常の走行状態に移行し、空気過剰率が通常の約1.6以上の状態に戻されて三元触媒の周囲が有酸素状態になると、三元触媒に既に吸着されているNOxや新たに吸着されたNOxが、アクセルオフ時に溜められたNH3によりN2に還元浄化されることになる。 Then, the accelerator-off state is released and the accelerator travels to a normal driving state, the excess air ratio is returned to a normal state of about 1.6 or more, and the three-way catalyst is in an aerobic state. As a result, NOx already adsorbed on the three-way catalyst and newly adsorbed NOx are reduced and purified to N 2 by NH 3 stored when the accelerator is off.

更に、三元触媒でのNOxの吸着量が許容量を超えていると制御装置で判定され、その状況下で中高負荷の等速又は加速運転になると、エンジン稼働中のアクセルオフ時よりも浅く空気過剰率が下げられ、燃料添加手段により排気管途中で補助的に燃料が添加されて前記三元触媒の入側での空気過剰率が約1.0付近(1.1〜0.9程度)まで下げられる。   Furthermore, the control device determines that the NOx adsorption amount on the three-way catalyst exceeds the allowable amount, and under that condition, when the medium speed operation is accelerated or accelerated, it is shallower than when the accelerator is off while the engine is running. The excess air ratio is lowered, and fuel is supplementally added in the middle of the exhaust pipe by the fuel addition means, so that the excess air ratio on the inlet side of the three-way catalyst is about 1.0 (about 1.1 to 0.9). ).

この結果、三元触媒の周囲を流れる排気ガスの空気過剰率が1.0前後となって、排気ガス中のCO及びHCの酸化とNOxの還元を同時に行い得る環境が整い、ガソリン車に適用した場合と変わらない浄化特性が発揮されて排気ガス中の有害ガス三成分(CO、HC、NOx)が無害なCO2、H2O、N2に浄化されることになる。 As a result, the excess air ratio of the exhaust gas flowing around the three-way catalyst becomes around 1.0, and an environment in which CO and HC oxidation and NOx reduction in the exhaust gas can be performed at the same time is prepared and applied to gasoline vehicles. The purification characteristics that are the same as in the above case are exhibited, and the three harmful gas components (CO, HC, NOx) in the exhaust gas are purified to harmless CO 2 , H 2 O, and N 2 .

尚、三元触媒の入側での空気過剰率を約1.0付近まで下げるにあたり、ディーゼルエンジン側では、黒煙(多量の煤)を発生しない無煙燃焼を保つ得る範囲内で空気過剰率が1.4〜1.2程度の無理のない運転に留めておき、残りの0.5〜0.1の下げ不足分を排気管途中の燃料添加手段による燃料添加で補うようにすれば良い。   When reducing the excess air ratio on the inlet side of the three-way catalyst to about 1.0, on the diesel engine side, the excess air ratio is within a range that can maintain smokeless combustion without generating black smoke (a large amount of soot). What is necessary is just to make it the operation | use which is not overreasonable about 1.4-1.2, and to make up the remaining 0.5-0.1 lowering shortage by the fuel addition by the fuel addition means in the middle of an exhaust pipe.

また、この際に、メイン噴射後の着火可能なタイミングでアフタ噴射を追加するように制御装置を構成しても良く、このようにすれば、空気過剰率を下げることで発生し易くなった煤分がアフタ噴射の燃焼により確実に焼失されることになる。   In this case, the control device may be configured to add after-injection at a timing at which ignition is possible after main injection. In this case, the control device is likely to be generated by reducing the excess air ratio. The portion is surely burnt down by the combustion of the after injection.

また、本発明においては、三元触媒の直後にパティキュレートフィルタを配設し、前記三元触媒より上流側で排気ガス中に燃料添加を行い得るように構成することが好ましく、このようにすれば、ディーゼルエンジンにおける酸素残存量の多い排気ガスに晒された三元触媒の酸化作用が活発化し、添加燃料から生じた高濃度のHCが三元触媒で良好に酸化処理され、その反応熱で昇温した排気ガスの流入により直後のパティキュレートフィルタの床温度が更に上げられてパティキュレートが短時間のうちに効率良く焼却処理されることになる。   In the present invention, it is preferable that a particulate filter is provided immediately after the three-way catalyst so that fuel can be added to the exhaust gas upstream of the three-way catalyst. For example, the oxidation of a three-way catalyst exposed to exhaust gas with a large amount of residual oxygen in a diesel engine is activated, and high-concentration HC generated from the added fuel is well oxidized by the three-way catalyst. The inflow of the heated exhaust gas further raises the bed temperature of the particulate filter immediately after that, so that the particulates are efficiently incinerated in a short time.

しかも、本発明では、エンジン稼働中のアクセルオフ時に深く空気過剰率を下げた予混合圧縮着火が行われるため、特に走行中の減速時でのアクセルオフの場合に、ディーゼルエンジンの燃料噴射が停止して低温の吸気が燃焼行程を経ずにそのまま三元触媒及びパティキュレートフィルタへ流れ込むことがなくなり、これら三元触媒及びパティキュレートフィルタが急激に熱を奪われてしまうような不具合が未然に回避され、しかも、高温の排気ガスが三元触媒及びパティキュレートフィルタへ流れ込むことで寧ろ積極的な昇温が成されるので、パティキュレートフィルタの再生が完了するまでにかかる時間が大幅に短縮される。   Moreover, in the present invention, since premixed compression ignition is performed with a deep excess of the air excess ratio when the accelerator is off while the engine is running, the fuel injection of the diesel engine is stopped especially when the accelerator is off at the time of deceleration while traveling. As a result, low-temperature intake air does not flow directly into the three-way catalyst and the particulate filter without going through the combustion stroke, and the problem that these three-way catalyst and the particulate filter are rapidly deprived of heat is avoided. In addition, since the high temperature exhaust gas flows into the three-way catalyst and the particulate filter, the temperature rises rather positively, so the time required for completing the regeneration of the particulate filter is greatly reduced. .

また、停車中のアイドリング時でのアクセルオフの場合は、従来の極端に低い排気温度と比較して大幅に排気温度の上昇を図ることが可能となるので、特に始動時等において、排気系全体の暖機を短時間のうちに済ませることが可能となり、パティキュレートフィルタの再生が完了するまでにかかる時間が大幅に短縮される。   In addition, when the accelerator is off when idling while the vehicle is stopped, the exhaust temperature can be significantly increased compared to the conventional extremely low exhaust temperature. It is possible to complete the warm-up of the filter within a short time, and the time required for completing the regeneration of the particulate filter is greatly reduced.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、NOxとNH3の吸着能を持たせた三元触媒をディーゼルエンジンに適用し、エンジン稼働中のアクセルオフ時にNOxからNH3を生成して三元触媒に吸着させて溜め込み、このNH3を用いて排気ガス中のNOxを還元浄化するようにした排気浄化装置に関し、アクセルオフの状態がなかなか生じない中高負荷の等速又は加速運転時でも、三元触媒でのNOxの吸着量が許容量を超えていると制御装置で判定された状況下では、制御装置によりエンジン稼働中のアクセルオフ時よりも浅く空気過剰率を下げ且つ前記燃料添加手段により排気管途中で補助的に燃料を添加して前記三元触媒の入側での空気過剰率を約1.0付近まで下げ、三元触媒で排気ガス中のCO及びHCの酸化とNOxの還元を同時に行わせ得る環境を整えて排気ガス中のNOxをCOやHCと一緒に浄化することができ、中高負荷の等速又は加速運転時でNOxを低減できなくなってしまう虞れを未然に回避することができる。 (I) According to the invention described in claim 1 of the present invention, a three-way catalyst having NOx and NH 3 adsorption capacity is applied to a diesel engine, and NH 3 is removed from NOx when the accelerator is off while the engine is running. This is an exhaust gas purification device that is generated and adsorbed on a three-way catalyst and stored, and this NO 3 is used to reduce and purify NOx in the exhaust gas. Even during operation, when the control device determines that the NOx adsorption amount on the three-way catalyst exceeds the allowable amount, the control device lowers the excess air ratio more shallowly than when the accelerator is off while the engine is running, and The fuel addition means supplementarily adds fuel in the middle of the exhaust pipe to lower the excess air ratio on the inlet side of the three-way catalyst to about 1.0, and the three-way catalyst reduces the CO and HC in the exhaust gas. Oxidation and reduction of NOx It is possible to clean the NOx in the exhaust gas together with CO and HC by preparing an environment that can sometimes be performed, and avoid the possibility that NOx cannot be reduced at the constant speed or acceleration operation at medium and high loads. be able to.

(II)本発明の請求項2に記載の発明によれば、三元触媒でのNOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時に、メイン噴射後の着火可能なタイミングでアフタ噴射を追加するようにしているので、空気過剰率を下げることで発生し易くなった煤分をアフタ噴射の燃焼により焼失させることができ、黒煙(多量の煤)の発生をより確実に回避することができる。   (II) According to the invention described in claim 2 of the present invention, at the time of medium-high load constant speed or acceleration operation under the condition where the NOx adsorption amount on the three-way catalyst is determined to exceed the allowable amount, After injection is added at the timing when ignition is possible after main injection, soot that has become easy to occur by lowering the excess air ratio can be burned off by combustion of after injection, and black smoke ( The occurrence of 回避) can be avoided more reliably.

(III)本発明の請求項3に記載の発明によれば、三元触媒及びパティキュレートフィルタの床温度が低くなりがちなエンジン稼働中のアクセルオフ時に、空気過剰率を深く下げて予混合圧縮着火を実行することによりディーゼルエンジンから高温の排気ガスを送り込んで三元触媒及びパティキュレートフィルタの床温度を上げることができるので、空気過剰率を通常付近に戻して燃料添加による強制再生に移行した際に、パティキュレートフィルタを従来よりも効率良く迅速に再生することができ、パティキュレートフィルタの再生が完了するまでにかかる時間を大幅に短縮することができる。   (III) According to the invention described in claim 3 of the present invention, when the accelerator is off during engine operation, the bed temperature of the three-way catalyst and the particulate filter tends to be low, the excess air ratio is deeply reduced and the premix compression is performed. By performing ignition, high-temperature exhaust gas can be sent from the diesel engine to raise the bed temperature of the three-way catalyst and particulate filter, so the excess air ratio was returned to the normal vicinity and the process shifted to forced regeneration by adding fuel. At this time, the particulate filter can be regenerated more efficiently and quickly than before, and the time taken to complete the regeneration of the particulate filter can be greatly reduced.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1及び図2は本発明を実施する形態の一例を示すもので、図中1はターボチャージャ2を装備したディーゼルエンジンを示しており、エアクリーナ3から導かれた吸気4が吸気管5を通し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された吸気4がインタークーラ6へと送られて冷却され、該インタークーラ6から更に吸気マニホールド7へと吸気4が導かれてディーゼルエンジン1の各気筒8(図1では直列6気筒の場合を例示している)に分配されるようになっている。   FIG. 1 and FIG. 2 show an example of an embodiment for carrying out the present invention. In FIG. 1, 1 shows a diesel engine equipped with a turbocharger 2, and intake air 4 guided from an air cleaner 3 passes through an intake pipe 5. The intake air 4 sent to the compressor 2 a of the turbocharger 2 and pressurized by the compressor 2 a is sent to the intercooler 6 to be cooled, and the intake air 4 is further guided from the intercooler 6 to the intake manifold 7. Thus, the fuel is distributed to each cylinder 8 of the diesel engine 1 (in FIG. 1, the case of in-line 6 cylinders is illustrated).

また、前記ディーゼルエンジン1の各気筒8から排出された排気ガス9は、排気マニホールド10を介しターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス9が排気管11(排気流路)を介し車外へ排出されるようにしてある。   Further, the exhaust gas 9 discharged from each cylinder 8 of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 10, and the exhaust gas 9 driving the turbine 2b is discharged to the exhaust pipe 11 (exhaust gas). It is designed to be discharged out of the vehicle through the flow path).

そして、前記排気管11の途中には、フィルタケース12が介装されており、フィルタケース12内における後段側に、酸化触媒を一体的に担持して成る触媒再生型のパティキュレートフィルタ13が収容されている。   In the middle of the exhaust pipe 11, a filter case 12 is interposed, and a catalyst regeneration type particulate filter 13 that integrally supports an oxidation catalyst is accommodated on the rear stage side in the filter case 12. Has been.

即ち、このパティキュレートフィルタ13は、セラミックから成る多孔質のハニカム構造を有し、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排気ガス9のみが下流側へ排出されるようにしてある。   In other words, this particulate filter 13 has a porous honeycomb structure made of ceramic, and the inlets of the respective flow paths partitioned in a lattice pattern are alternately sealed, and the flow paths in which the inlets are not sealed are used. The outlet is sealed, and only the exhaust gas 9 that has permeated through the porous thin wall defining each flow path is discharged to the downstream side.

そして、前記フィルタケース12内におけるパティキュレートフィルタ13の前段には、NOxとNH3の吸着能を持たせたフロースルー型の三元触媒14が装備されており、より具体的には、従来周知のPtやPd、Rh、ZeO、CeO等から成る三元触媒に、排気ガス9中のNOxとNH3を物理的に吸着する能力に優れたゼオライト系触媒(例えばCu/ゼオライト触媒やFe/ゼオライト触媒等)をコーティングしたり、この種のゼオライト系触媒を原料段階から混ぜて一緒に担持させたりした三元触媒14を適用している。 In addition, a flow-through type three-way catalyst 14 having NOx and NH 3 adsorption ability is provided in the preceding stage of the particulate filter 13 in the filter case 12, and more specifically, conventionally known. Zeolite catalyst (for example, Cu / zeolite catalyst or Fe / zeolite) having excellent ability to physically adsorb NOx and NH 3 in the exhaust gas 9 to a three-way catalyst composed of Pt, Pd, Rh, ZeO, CeO, etc. A three-way catalyst 14 in which a catalyst or the like is coated, or this type of zeolitic catalyst is mixed and supported together from the raw material stage is applied.

ここで、従来周知の三元触媒とは、排気ガス9中のCO及びHCの酸化とNOxの還元を同時に行い、排気ガス9中の有害ガス三成分を無害なCO2、H2O、N2に浄化するものであり、空気過剰率が1.0前後の理論空燃比付近でだけ有効に働くものであるが、通常の走行状態で空気過剰率が1.6以上にもなるディーゼルエンジンでは、排気ガス9中の残存酸素量が多すぎて三元触媒を有効利用することができず、これまではガソリン車にのみ適用されてきた経緯がある。 Here, the conventionally known three-way catalyst simultaneously performs oxidation of CO and HC in the exhaust gas 9 and reduction of NOx, and removes the three harmful gas components in the exhaust gas 9 as harmless CO 2 , H 2 O, N it is intended to purify the 2, but in which the excess air ratio of 1.0 works only effective in the vicinity of the stoichiometric air-fuel ratio before and after, in a diesel engine air excess ratio is also 1.6 or more under normal running state The remaining oxygen amount in the exhaust gas 9 is too large to effectively use the three-way catalyst, and there has been a history of being applied only to gasoline vehicles so far.

尚、従来周知の三元触媒の浄化特性は、空気過剰率(空燃比)により大きく変化し、空気過剰率が高い時(空燃比が薄い時)に、排気ガス9中の残存酸素量が多いことから酸化作用が活発化して還元作用が不活発となり、空気過剰率が低い時(空燃比が濃い時)に、逆に還元作用が活発化して酸化作用が不活発となることが知られている。   Note that the purification characteristics of the conventionally known three-way catalyst greatly change depending on the excess air ratio (air-fuel ratio), and when the excess air ratio is high (when the air-fuel ratio is low), the amount of residual oxygen in the exhaust gas 9 is large. Therefore, it is known that when the excess air ratio is low (when the air-fuel ratio is high), the reduction action becomes active and the oxidation action becomes inactive when the oxidation action becomes active and the reduction action becomes inactive. Yes.

一方、ゼオライトはアルミナケイ酸塩質の多孔性結晶材料であり、結晶中に均一な分子レベルの細孔を規則正しく配向して備えていることを特徴とし、この細孔を通じて各種の分子を空洞又は孔路内に吸着する性質を備えており、このような性質以外にも、細孔が均一であることに基づく分子ふるい作用を持つ性質(細孔の孔径より小さい分子しか吸着しない)、結晶構造中のカチオンとアニオンの作用により極性物質を強く吸着する性質、触媒作用を持つ性質も兼ね備えている。   Zeolite, on the other hand, is an alumina silicate porous crystal material, characterized by having uniform molecular level pores regularly oriented in the crystal, through which various molecules are hollow or In addition to these properties, it has the property of adsorbing inside pores, and has the function of molecular sieving based on the uniform pores (adsorbs only molecules smaller than the pore diameter), crystal structure It also has the property of strongly adsorbing polar substances by the action of the cations and anions therein and the property of having a catalytic action.

また、この種のゼオライトは、その骨格構造の型に基づき多種類に分類されるが、細孔内へNOxとNH3を吸着する能力と、NOxとNH3との反応を促進する能力と、高耐熱性、高耐久性とに優れたものを適宜に選定すれば良く、同様の性質を備えたゼオライト類縁化合物の中から選定することも可能である。 Also, this type of zeolite is classified into various types based on the type of its backbone structure, the ability to adsorb NOx and NH 3 into the pores, and the ability to promote the reaction between NOx and NH 3, What is necessary is just to select suitably the thing excellent in high heat resistance and high durability, and it is also possible to select from the zeolite related compounds provided with the same property.

更に、このようにしてNOxとNH3の吸着能を持たせた三元触媒14より上流側の排気管11には、該排気管11内に燃料を直接噴射するための燃料添加弁15が燃料添加手段として装備されており、この燃料添加弁15には、所要場所に配置された燃料タンク16から導いた燃料添加ライン17が接続されており、該燃料添加ライン17の途中に装備したポンプ18の駆動により燃料タンク16内の燃料が抜き出されて前記燃料添加弁15に向けて供給されるようになっている。 Further, a fuel addition valve 15 for directly injecting fuel into the exhaust pipe 11 is provided in the exhaust pipe 11 upstream of the three-way catalyst 14 having the NOx and NH 3 adsorption capability in this way. A fuel addition line 17 led from a fuel tank 16 disposed at a required place is connected to the fuel addition valve 15, and a pump 18 provided in the middle of the fuel addition line 17 is provided as an addition means. As a result, the fuel in the fuel tank 16 is extracted and supplied to the fuel addition valve 15.

また、前記ディーゼルエンジン1には、各気筒8毎に装備された図示しないインジェクタから成る燃料噴射装置19が搭載されており、該燃料噴射装置19における各インジェクタの電磁弁が、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置20により負荷や回転数に基づいて適切に噴射タイミングや噴射量(開弁時間)を適切に制御されるようにしてあるが、エンジン稼働中のアクセルオフ時には、空気過剰率(λ)を約0.7付近まで深く下げ且つその低い空気過剰率でも無煙燃焼を保ち得る予混合圧縮着火が実行されるようにしてある。 Further, the diesel engine 1 is equipped with a fuel injection device 19 composed of an injector (not shown) provided for each cylinder 8, and an electromagnetic valve of each injector in the fuel injection device 19 is connected to an engine control computer (ECU). : The control device 20 forming the Electronic Control Unit) appropriately controls the injection timing and the injection amount (valve opening time) based on the load and the rotational speed. When the accelerator is off while the engine is running, Premixed compression ignition is performed so that the excess air ratio (λ) is lowered to about 0.7 and smokeless combustion can be maintained even at the low excess air ratio.

ただし、エンジン稼働中のアクセルオフ時とは、走行中の減速時や停車中のアイドリング時等のように特にエンジン出力を要求されない場面であるため、単純に燃料噴射量を増やして空気過剰率を下げるだけでなく適宜に吸気バルブ21の開度を絞る空気絞り(ターボチャージャ2をバリアブルジオメトリーターボチャージャとしてタービン効率を下げることで吸入空気量を減らしても良い)も併用して空気過剰率を下げ、これにより不必要なエンジン出力が発生しないようにする。   However, when the accelerator is off while the engine is running, the engine output is not particularly required, such as when the vehicle is decelerating or when the vehicle is idling, so simply increase the fuel injection amount to increase the excess air ratio. In addition to reducing the air intake, the air throttle (which may reduce the intake air amount by reducing the turbine efficiency by using the turbocharger 2 as a variable geometry turbocharger) is used in combination to reduce the air excess rate. To avoid unnecessary engine power.

また、この際に併用される予混合圧縮着火とは、通常であれば圧縮上死点近辺で行われるべきメイン噴射を圧縮上死点より早いタイミングで行い、気筒8内への燃料の先行投入により燃料の予混合化を促進してから着火燃焼させるようにする燃焼方式のことを指しており、従来にあっては、NOxの生成を抑制するための燃焼方式として知られているものであるが、ここでは空気過剰率を深く下げることで寧ろNOxを生成し易くし、このNOxを利用することで後述の如く三元触媒14上でNH3を生成して吸着し得るようにしている。 In addition, the premixed compression ignition used in this case is that the main injection that should normally be performed in the vicinity of the compression top dead center is performed at a timing earlier than the compression top dead center, and the fuel is put into the cylinder 8 in advance. Refers to a combustion method that promotes premixing of fuel and then performs ignition and combustion, and is conventionally known as a combustion method for suppressing the generation of NOx However, NOx is more easily generated by lowering the excess air ratio deeply, and by using this NOx, NH 3 can be generated and adsorbed on the three-way catalyst 14 as described later.

しかも、前記制御装置20においては、三元触媒14でのNOxの吸着量が許容量を超えているか否かが判定されるようになっており、NOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時には、前述したエンジン稼働中のアクセルオフ時よりも浅く空気過剰率を下げ且つ前記燃料添加弁15により排気管11途中で補助的に燃料を添加して前記三元触媒14の入側での空気過剰率を約1.0付近まで下げる制御が実行されるようにしてある。   Moreover, in the control device 20, it is determined whether or not the amount of NOx adsorbed by the three-way catalyst 14 exceeds the allowable amount, and the amount of NOx adsorbed exceeds the allowable amount. During constant speed or acceleration operation at medium and high loads under the determined conditions, the excess air ratio is lowered more shallowly than when the accelerator is off while the engine is operating, and fuel is supplementally supplied in the middle of the exhaust pipe 11 by the fuel addition valve 15. Addition is performed so that the excess air ratio on the inlet side of the three-way catalyst 14 is reduced to about 1.0.

即ち、その具体的な制御手順について図2にフローチャートを用いて以下に説明すると、先ずステップS1において、三元触媒14でのNOxの吸着量が許容量を超えているか否かが判定されるようになっているが、ここではディーゼルエンジン1の運転状態に基づき三元触媒14でのNOxの吸着量が計算により求められるようになっており、その算出された吸着量が許容量を超えているか否かが判定されるようになっている。   That is, the specific control procedure will be described below with reference to the flowchart of FIG. 2. First, in step S1, it is determined whether or not the NOx adsorption amount in the three-way catalyst 14 exceeds the allowable amount. However, here, the adsorption amount of NOx at the three-way catalyst 14 is obtained by calculation based on the operating state of the diesel engine 1, and is the calculated adsorption amount exceeding the allowable amount? Whether or not is determined.

ここで、三元触媒14で吸着可能なNOxの許容量は、基本的にゼオライト系触媒の担持量に依存するが、排気ガス9の温度や流速(温度や流速が高いほど吸着し続けられる量が下がる傾向がある)により増減するため、これらを全て勘案すれば、現在の運転条件における許容量が制御装置20で決められることになる。   Here, the allowable amount of NOx that can be adsorbed by the three-way catalyst 14 basically depends on the amount of the zeolite-based catalyst supported, but the temperature and flow rate of the exhaust gas 9 (the amount that can be continuously adsorbed as the temperature and flow rate increase). If all of these are taken into consideration, the allowable amount under the current operating conditions is determined by the control device 20.

一方、制御装置20で把握されているディーゼルエンジン1の負荷や回転数に基づきNOxの発生量が算出できるので、このうちの何%(初期条件として既に把握されている数値)かが三元触媒14に吸着されるものとして積算すれば、NOxの吸着量の累計が求められ、これを前述の許容量と比較すれば、三元触媒14でのNOxの吸着量が許容量を超えているか否かを判定することができる。   On the other hand, since the amount of NOx generated can be calculated based on the load and rotation speed of the diesel engine 1 ascertained by the control device 20, what percentage of these (a numerical value already known as the initial condition) is the three-way catalyst. 14 is calculated as the amount adsorbed by NO.14, the total amount of NOx adsorbed is obtained, and if this is compared with the above-mentioned allowable amount, the NOx adsorbed amount at the three-way catalyst 14 exceeds the allowable amount. Can be determined.

ただし、ここまで厳密に判定を行わなくても、前回のアクセルオフ時からの経過時間をタイマで計測して規定時間以上が経過した時に三元触媒14でのNOxの吸着量が許容量を超えたものと判定したり、更には、三元触媒14の前後でNOxセンサによりNOx濃度を実測して三元触媒14でのNOxの吸着能力が規定以下に低下した時に三元触媒14でのNOxの吸着量が許容量を超えたものと判定したりすることも可能である。   However, even if it is not strictly determined so far, the amount of NOx adsorbed on the three-way catalyst 14 exceeds the allowable amount when the elapsed time from the previous accelerator off time is measured with a timer and the specified time or more has elapsed. Furthermore, when the NOx concentration is measured by the NOx sensor before and after the three-way catalyst 14 and the NOx adsorption capacity of the three-way catalyst 14 falls below a specified level, the NOx at the three-way catalyst 14 is reduced. It is also possible to determine that the amount of adsorbed exceeds the allowable amount.

そして、ステップS1で三元触媒14でのNOxの吸着量が許容量を超えたものと判定されたら、ステップS2へと進んで現在の運転状態が中高負荷の等速又は加速運転状態にあるか否かが判定され、中高負荷の等速又は加速運転状態にない場合は、ステップS3で先に説明したアクセルオフ時に深く空気過剰率を下げ且つ予混合圧縮着火をディーゼルエンジンに行わしめる制御が選択されるが、中高負荷の等速又は加速運転状態となっている場合には、ステップS4とステップS5に進んで以下のような制御が実行される。   If it is determined in step S1 that the amount of NOx adsorbed by the three-way catalyst 14 exceeds the allowable amount, the process proceeds to step S2 to determine whether the current operation state is a medium or high load constant speed or acceleration operation state. If it is not determined and the vehicle is not in a medium-high load constant speed or acceleration operation state, the control for reducing the excess air ratio and performing premixed compression ignition on the diesel engine at the time of accelerator off described earlier in step S3 is selected. However, when the vehicle is in a medium-high load constant speed or acceleration operation state, the process proceeds to step S4 and step S5, and the following control is executed.

即ち、ステップS4において、ディーゼルエンジン1におけるメイン噴射が減じられ、その減じられた分をアフタ噴射としてメイン噴射後の着火可能なタイミングで追加すると共に、吸気バルブ21の開度を絞る空気絞り(ターボチャージャ2をバリアブルジオメトリーターボチャージャとしてタービン効率を下げることで吸入空気量を減らしても良い)も併用して空気過剰率を約1.3前後に下げる制御が規定時間に亘りディーゼルエンジン1側で継続して実行される。   That is, in step S4, the main injection in the diesel engine 1 is reduced, and the reduced amount is added as after-injection at a timing at which ignition is possible after the main injection, and the air throttle (turbo turbo) for reducing the opening of the intake valve 21 The charger 2 can be used as a variable geometry turbocharger to reduce the turbine efficiency to reduce the intake air amount. It is executed continuously.

また、ステップS5において、燃料添加弁15により排気管11途中で補助的に燃料を添加して前記三元触媒14の入側での空気過剰率を約1.0付近まで下げる制御が規定時間に亘り継続して実行される。   In step S5, the fuel addition valve 15 supplementarily adds fuel in the middle of the exhaust pipe 11 to reduce the excess air ratio on the inlet side of the three-way catalyst 14 to about 1.0 at a specified time. Continuously executed.

しかも、本形態例において、パティキュレートフィルタ13の強制再生を行う必要が生じた際には、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミング(開始時期がクランク角90゜〜120゜の範囲)でポスト噴射が追加されるようになっている。   In addition, in this embodiment, when it is necessary to perform forced regeneration of the particulate filter 13, the main injection of fuel performed near the compression top dead center (crank angle 0 °) is followed by the compression top dead center. Post-injection is added at a late non-ignition timing (starting time is in the range of crank angle 90 ° to 120 °).

つまり、このポスト噴射により排気ガス9中に未燃の燃料が添加されることになり、この未燃の燃料から生じた高濃度のHCが三元触媒14を通過する間に酸化反応し、その反応熱で昇温した排気ガス9の流入により直後のパティキュレートフィルタ13の床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタ13の再生化が図られるようになっている。   That is, unburned fuel is added to the exhaust gas 9 by this post injection, and high-concentration HC generated from the unburned fuel undergoes an oxidation reaction while passing through the three-way catalyst 14, The inflow of the exhaust gas 9 raised in temperature by the reaction heat raises the bed temperature of the particulate filter 13 immediately after that to burn out the particulate filter 13 so that the particulate filter 13 can be regenerated.

尚、図1中の符号の22は排気管11におけるタービン2bの出口付近に設けられた排気ブレーキ、23は排気ガス9を排気側から吸気側へ再循環するためのEGRライン、24はその再循環される排気ガス9の一部を冷却する水冷式のEGRクーラ、25はEGRバルブを夫々示している。   In FIG. 1, reference numeral 22 denotes an exhaust brake provided near the outlet of the turbine 2b in the exhaust pipe 11, 23 denotes an EGR line for recirculating the exhaust gas 9 from the exhaust side to the intake side, and 24 denotes the recirculation. A water-cooled EGR cooler 25 for cooling a part of the exhaust gas 9 to be circulated, and 25 respectively indicate EGR valves.

而して、エンジン稼働中のアクセルオフ時に、制御装置20により燃料噴射装置19と吸気バルブ21とが制御されて空気過剰率が深く下げられ、しかも、その低い空気過剰率でも無煙燃焼を保ち得るよう予混合圧縮着火をディーゼルエンジン1に行わしめると、三元触媒14の反応過程で生じたN(反応中の話なのでNと記す)が、低い空気過剰率によりOと反応できずに余剰したH(反応中の話なのでHと記す)と結びついてNH3が生成され、そのまま三元触媒に14吸着されて溜め込まれる。 Thus, when the accelerator is off while the engine is running, the fuel injection device 19 and the intake valve 21 are controlled by the control device 20 so that the excess air ratio is deeply reduced , and smokeless combustion can be maintained even at the low excess air ratio. Yo When the HCCI accounted performed diesel engine 1, N generated in the reaction process of the three-way catalyst 14 (since story in the reaction referred to as N) is, surplus unable react with O by low air excess ratio NH 3 is produced in combination with H (denoted as H because it is a reaction) and is adsorbed and stored in the three-way catalyst as it is.

即ち、空気過剰率を深く下げて予混合圧縮着火を行うと、単位空気量に対する燃料投入量の割合が増して2000K以上の燃焼温度となり、吸気中の水分(H2O)がH2、O2、OH、Hに熱分解し、本来安定なN2がこれらと反応してNOxが生成され易い環境となるが、三元触媒14の活発化した還元作用によりNOxの還元反応も進み、この還元反応時に生じたNが排気ガス9中の余剰のHと反応してNH3が生成されることになる。 That is, when premixed compression ignition is performed with the air excess ratio lowered deeply, the ratio of the fuel input amount to the unit air amount increases to a combustion temperature of 2000 K or more, and the moisture (H 2 O) in the intake air is H 2 , O 2 , which decomposes thermally into OH and H and reacts with the originally stable N 2 to generate NOx, but the NOx reduction reaction is promoted by the active reduction action of the three-way catalyst 14, and this N generated during the reduction reaction reacts with excess H in the exhaust gas 9 to generate NH 3 .

この際、空気過剰率は約0.7付近まで深く下げることが好ましいが、ここまで空気過剰率を下げても予混合圧縮着火を行うことで燃焼性が著しく良化されるので、黒煙(多量の煤)を発生しない無煙燃焼を保つことが可能である。   At this time, it is preferable to reduce the excess air ratio deeply to about 0.7. However, even if the excess air ratio is lowered so far, the pre-mixed compression ignition improves the combustibility significantly. It is possible to keep smokeless combustion without generating a large amount of soot).

即ち、この種の予混合圧縮着火によれば、通常の場合に圧縮上死点近辺で行われるべき燃料のメイン噴射が圧縮上死点より早いタイミングで行われ、気筒内への燃料の先行投入により燃料の予混合化が促進されてから着火燃焼することになるため、燃料が良好に分散混合して均等に薄まった状態で同時全域着火により燃焼が行われて燃焼性が著しく良化される。   That is, according to this type of premixed compression ignition, the main injection of fuel that should be performed in the vicinity of the compression top dead center in a normal case is performed at a timing earlier than the compression top dead center, and the fuel is first introduced into the cylinder. Since the premixing of the fuel is promoted by this, ignition combustion is performed, so that the fuel is well dispersed and mixed, and combustion is performed by simultaneous global ignition in a state where the fuel is evenly diluted, and the combustibility is remarkably improved. .

ただし、エンジン稼働中のアクセルオフ時とは、走行中の減速時や停車中のアイドリング時等のように特にエンジン出力を要求されない場面であるため、単純に燃料噴射量を増やして空気過剰率を下げるだけでなく適宜に空気絞りも併用して空気過剰率を下げ、これにより不必要なエンジン出力が発生しないようにする。   However, when the accelerator is off while the engine is running, the engine output is not particularly required, such as when the vehicle is decelerating or when the vehicle is idling, so simply increase the fuel injection amount to increase the excess air ratio. Not only lowering, but also using an air throttle as appropriate, the excess air ratio is lowered to prevent unnecessary engine output.

尚、このようなアクセルオフ時における空気過剰率の調整や予混合圧縮着火の着火タイミングの調整には、EGRライン23による排気ガス9の再循環量の制御を併用するようにしても良い。   In addition, you may make it use together control of the recirculation amount of the exhaust gas 9 by the EGR line 23 for adjustment of the excess air ratio at the time of such an accelerator off, and adjustment of the ignition timing of premixed compression ignition.

そして、アクセルオフの状態が解除されてアクセルが踏み込まれた通常の走行状態に移行し、空気過剰率が通常の約1.6以上の状態に戻されて三元触媒14の周囲が有酸素状態になると、三元触媒14に既に吸着されているNOxや新たに吸着されたNOxが、アクセルオフ時に溜められたNH3によりN2に還元浄化されることになる。 Then, the accelerator-off state is released and the vehicle is shifted to a normal driving state where the accelerator is depressed, the excess air ratio is returned to a normal state of about 1.6 or more, and the three-way catalyst 14 is in an aerobic state. Then, NOx already adsorbed on the three-way catalyst 14 and newly adsorbed NOx are reduced and purified to N 2 by NH 3 stored when the accelerator is off.

更に、三元触媒14でのNOxの吸着量が許容量を超えていると制御装置20で判定され、その状況下で中高負荷の等速又は加速運転になると、前述したエンジン稼働中のアクセルオフ時よりも浅く空気過剰率が下げられ、燃料添加弁15により排気管11途中で補助的に燃料が添加されて前記三元触媒14の入側での空気過剰率が約1.0付近(1.1〜0.9程度)まで下げられる。   Further, the control device 20 determines that the amount of NOx adsorbed by the three-way catalyst 14 exceeds an allowable amount, and when the medium-high load constant speed or acceleration operation is performed under the circumstances, the accelerator off during engine operation described above is performed. The excess air ratio is lowered shallower than the time, and fuel is supplementally added in the middle of the exhaust pipe 11 by the fuel addition valve 15 so that the excess air ratio on the inlet side of the three-way catalyst 14 is about 1.0 (1 .About 0.9 to 0.9).

この結果、三元触媒14の周囲を流れる排気ガス9の空気過剰率が1.0前後となって、排気ガス9中のCO及びHCの酸化とNOxの還元を同時に行い得る環境が整い、ガソリン車に適用した場合と変わらない浄化特性が発揮されて排気ガス9中の有害ガス三成分(CO、HC、NOx)が無害なCO2、H2O、N2に浄化されることになる。 As a result, the excess air ratio of the exhaust gas 9 flowing around the three-way catalyst 14 becomes around 1.0, and an environment in which CO and HC oxidation and NOx reduction in the exhaust gas 9 can be performed simultaneously is prepared. The purification characteristics that are the same as when applied to a vehicle are exhibited, and the three harmful gas components (CO, HC, NOx) in the exhaust gas 9 are purified to harmless CO 2 , H 2 O, and N 2 .

尚、三元触媒14の入側での空気過剰率を約1.0付近まで下げるにあたり、ディーゼルエンジン1側では、黒煙(多量の煤)を発生しない無煙燃焼を保ち得る範囲内で空気過剰率が1.4〜1.2程度の無理のない運転に留めておき、残りの0.5〜0.1の下げ不足分を排気管11途中の燃料添加弁15による燃料添加で補うようにする。   In reducing the excess air ratio on the inlet side of the three-way catalyst 14 to about 1.0, the diesel engine 1 side has excess air within a range that can maintain smokeless combustion without generating black smoke (a large amount of soot). Keep the operation at a reasonable rate of 1.4 to 1.2, and make up for the remaining shortage of 0.5 to 0.1 by adding fuel with the fuel addition valve 15 in the middle of the exhaust pipe 11. To do.

この際、本形態例においては、メイン噴射後の着火可能なタイミングでアフタ噴射を追加するようにしているので、空気過剰率を下げることで発生し易くなった煤分がアフタ噴射の燃焼により確実に焼失されることになる。   At this time, in this embodiment, after injection is added at the timing when ignition is possible after main injection, the apportionment that is likely to occur by lowering the excess air ratio is surely caused by the combustion of after injection. Will be burned down.

また、パティキュレートフィルタ13に強制再生を行う必要が生じた際に、制御装置20により燃料噴射装置19でポスト噴射による燃料添加を行わしめて強制再生を開始すると、ディーゼルエンジン1における酸素残存量の多い排気ガス9に晒された三元触媒14の酸化作用が活発化し、添加燃料から生じた高濃度のHCが三元触媒14で良好に酸化処理され、その反応熱で昇温した排気ガス9の流入により直後のパティキュレートフィルタ13の床温度が更に上げられてパティキュレートが短時間のうちに効率良く焼却処理されることになる。   In addition, when it is necessary to perform forced regeneration on the particulate filter 13, if the control device 20 performs fuel addition by post-injection in the fuel injection device 19 and starts forced regeneration, a large amount of oxygen remains in the diesel engine 1. The oxidation action of the three-way catalyst 14 exposed to the exhaust gas 9 is activated, and the high-concentration HC generated from the added fuel is oxidized well by the three-way catalyst 14, and the exhaust gas 9 heated by the reaction heat is heated. The bed temperature immediately after the particulate filter 13 is further raised by the inflow, and the particulates are efficiently incinerated in a short time.

この際、メイン噴射の燃料の一部をメイン噴射直後の燃焼可能なタイミングでアフタ噴射として振り分け、若干遅めのタイミングで燃焼させることによりディーゼルエンジン1の熱効率を下げ、燃料の発熱量のうちの動力に利用されない熱量を増やして排気温度の更なる上昇を図るようにしても良い。   At this time, a part of the fuel of the main injection is distributed as after-injection at a combustible timing immediately after the main injection, and burned at a slightly later timing to lower the thermal efficiency of the diesel engine 1, The amount of heat not used for power may be increased to further increase the exhaust gas temperature.

また、パティキュレートフィルタ13の強制再生時には、吸気バルブ21の開度を絞る空気絞りを併用することも可能であり、このようにすれば、吸気バルブ21により吸気4が絞り込まれ、ディーゼルエンジン1での燃焼による排気ガス9の発生量が投入熱量に対し減少することで排気温度の更なる上昇が図られる。   In addition, when the particulate filter 13 is forcibly regenerated, an air throttle that throttles the opening of the intake valve 21 can be used together. In this way, the intake 4 is throttled by the intake valve 21, and the diesel engine 1 The amount of generated exhaust gas 9 due to combustion of the gas decreases with respect to the amount of input heat, so that the exhaust temperature can be further increased.

更に、パティキュレートフィルタ13の強制再生時には、排気ブレーキ22の開度を絞り込む排気絞りを併用することも可能であり、このようにすれば、アクセルオフ時に排気が絞り込まれ、これより上流側の排気ガス9が昇圧されることで排気温度の上昇が図られ、しかも、エンジンの排気抵抗が高まることにより気筒8内に比較的温度の低い吸気4が流入し難くなって比較的温度の高い排気ガス9の残留量が増加し、この比較的温度の高い排気ガス9を多く含む気筒8内の空気が次の圧縮行程で圧縮されて爆発行程を迎えることでも排気温度の更なる上昇が図られる。   In addition, when the particulate filter 13 is forcibly regenerated, an exhaust throttle that narrows the opening of the exhaust brake 22 can be used together. In this way, the exhaust is throttled when the accelerator is off, and the exhaust on the upstream side of this is throttled. By increasing the pressure of the gas 9, the exhaust temperature is raised, and the exhaust resistance of the engine is increased, so that the intake air 4 having a relatively low temperature does not easily flow into the cylinder 8 and the exhaust gas having a relatively high temperature is exhausted. The exhaust gas temperature can be further increased by increasing the amount of residual gas 9 and the air in the cylinder 8 containing a large amount of the relatively high-temperature exhaust gas 9 being compressed in the next compression stroke to reach the explosion stroke.

また、本形態例では、エンジン稼働中のアクセルオフ時に深く空気過剰率を下げた予混合圧縮着火が行われるため、特に走行中の減速時でのアクセルオフの場合に、ディーゼルエンジン1の燃料噴射が停止して低温の吸気が燃焼行程を経ずにそのまま三元触媒14及びパティキュレートフィルタ13へ流れ込むことがなくなり、これら三元触媒14及びパティキュレートフィルタ13が急激に熱を奪われてしまうような不具合が未然に回避され、しかも、高温の排気ガス9が三元触媒14及びパティキュレートフィルタ13へ流れ込むことで寧ろ積極的な昇温が成されるので、パティキュレートフィルタ13の再生が完了するまでにかかる時間が大幅に短縮される。   Further, in the present embodiment, since premixed compression ignition is performed in which the excess air ratio is deeply reduced when the accelerator is off while the engine is operating, the fuel injection of the diesel engine 1 is performed particularly when the accelerator is off during deceleration during traveling. The low-temperature intake air does not flow into the three-way catalyst 14 and the particulate filter 13 without going through the combustion stroke, and the three-way catalyst 14 and the particulate filter 13 are suddenly deprived of heat. In addition, since the high temperature exhaust gas 9 flows into the three-way catalyst 14 and the particulate filter 13 to increase the temperature actively, the regeneration of the particulate filter 13 is completed. The time it takes to be significantly reduced.

また、停車中のアイドリング時でのアクセルオフの場合は、従来の極端に低い排気温度と比較して大幅に排気温度の上昇を図ることが可能となるので、特に始動時等において、排気系全体の暖機を短時間のうちに済ませることが可能となり、パティキュレートフィルタ13の再生が完了するまでにかかる時間が大幅に短縮される。   In addition, when the accelerator is off when idling while the vehicle is stopped, the exhaust temperature can be significantly increased compared to the conventional extremely low exhaust temperature. It is possible to complete the warm-up in a short time, and the time required for the regeneration of the particulate filter 13 to be completed is greatly reduced.

従って、上記形態例によれば、NOxとNH3の吸着能を持たせた三元触媒14をディーゼルエンジン1に適用し、エンジン稼働中のアクセルオフ時にNOxからNH3を生成して三元触媒14に吸着させて溜め込み、このNH3を用いて排気ガス9中のNOxを還元浄化するようにした排気浄化装置に関し、アクセルオフの状態がなかなか生じない中高負荷の等速又は加速運転時でも、三元触媒14でのNOxの吸着量が許容量を超えていると制御装置20で判定された状況下では、制御装置20によりエンジン稼働中のアクセルオフ時よりも浅く空気過剰率を下げ且つ前記燃料添加弁15により排気管11途中で補助的に燃料を添加して前記三元触媒14の入側での空気過剰率を約1.0付近まで下げ、三元触媒14で排気ガス9中のCO及びHCの酸化とNOxの還元を同時に行わせ得る環境を整えて排気ガス9中のNOxをCOやHCと一緒に浄化することができ、中高負荷の等速又は加速運転時でNOxを低減できなくなってしまう虞れを未然に回避することができる。 Therefore, according to the above embodiment, the three-way catalyst 14 having the ability to adsorb NOx and NH 3 is applied to the diesel engine 1, and NH 3 is generated from NOx when the accelerator is turned off while the engine is operating to produce the three-way catalyst. 14, the exhaust gas purifying apparatus which adsorbs and accumulates the NOx in the exhaust gas 9 by using this NH 3 to reduce and purify the exhaust gas 9, even during a medium and high load constant speed or acceleration operation where the accelerator off state hardly occurs. Under the situation where the control device 20 determines that the NOx adsorption amount at the three-way catalyst 14 exceeds the allowable amount, the control device 20 reduces the excess air ratio more shallowly than when the accelerator is off while the engine is running, and A fuel addition valve 15 supplementarily adds fuel in the middle of the exhaust pipe 11 to reduce the excess air ratio on the inlet side of the three-way catalyst 14 to about 1.0. CO and H It is possible to clean the NOx in the exhaust gas 9 together with CO and HC by preparing an environment in which C oxidation and NOx reduction can be performed at the same time, making it impossible to reduce NOx during medium and high load constant speed or acceleration operation. It is possible to avoid the fear that it will occur.

更に、本形態例においては、三元触媒14でのNOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時に、メイン噴射後の着火可能なタイミングでアフタ噴射を追加するようにしているので、空気過剰率を下げることで発生し易くなった煤分をアフタ噴射の燃焼により焼失させることができ、黒煙(多量の煤)の発生をより確実に回避することができる。   Furthermore, in the present embodiment, the timing at which ignition is possible after main injection during constant-speed or acceleration operation at a medium to high load in a situation where the NOx adsorption amount at the three-way catalyst 14 is determined to exceed the allowable amount Since after-injection is added, the soot that was easily generated by lowering the excess air ratio can be burned down by the after-injection combustion, and the generation of black smoke (a large amount of soot) is more reliable. Can be avoided.

また、三元触媒14及びパティキュレートフィルタ13の床温度が低くなりがちなエンジン稼働中のアクセルオフ時に、空気過剰率を深く下げて予混合圧縮着火を実行することによりディーゼルエンジン1から高温の排気ガス9を送り込んで三元触媒14及びパティキュレートフィルタ13の床温度を上げることができるので、空気過剰率を通常付近に戻して燃料添加による強制再生に移行した際に、パティキュレートフィルタ13を従来よりも効率良く迅速に再生することができ、パティキュレートフィルタ13の再生が完了するまでにかかる時間を大幅に短縮することができる。   Further, when the accelerator is off while the engine is operating, the bed temperature of the three-way catalyst 14 and the particulate filter 13 tends to be low, the exhaust air at a high temperature is exhausted from the diesel engine 1 by performing premixed compression ignition with the excess air ratio lowered deeply. Since the gas 9 can be fed and the bed temperature of the three-way catalyst 14 and the particulate filter 13 can be raised, the particulate filter 13 is used when the excess air ratio is returned to the normal vicinity and the forced regeneration is performed by adding fuel. It is possible to regenerate more efficiently and quickly, and the time taken to complete the regeneration of the particulate filter 13 can be greatly reduced.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、強制再生時の燃料添加を行うに際しては、ディーゼルエンジン側でのポスト噴射に替えて、排気管途中への直接噴射を採用することも可能であり、ポスト噴射と排気管途中への直接噴射の両方を適宜に併用しても良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment. When adding fuel at the time of forced regeneration, instead of post-injection at the diesel engine side, Direct injection can also be adopted, and both post injection and direct injection in the middle of the exhaust pipe may be used together as appropriate, and various other modifications may be made without departing from the scope of the present invention. Of course.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の制御装置における制御手順を示すフローチャートである。It is a flowchart which shows the control procedure in the control apparatus of FIG.

符号の説明Explanation of symbols

1 ディーゼルエンジン
9 排気ガス
11 排気管
13 パティキュレートフィルタ
14 三元触媒
15 燃料添加弁(燃料添加手段)
20 制御装置
DESCRIPTION OF SYMBOLS 1 Diesel engine 9 Exhaust gas 11 Exhaust pipe 13 Particulate filter 14 Three-way catalyst 15 Fuel addition valve (fuel addition means)
20 Control device

Claims (3)

ディーゼルエンジンの排気管途中に装備されてNOxとNH3の吸着能を有する三元触媒と、エンジン稼働中のアクセルオフ時に空気過剰率を約0.7付近まで深く下げ且つその低い空気過剰率でも無煙燃焼を保ち得るよう予混合圧縮着火を前記ディーゼルエンジンに行わしめる制御装置とを備えた排気浄化装置であって、前記三元触媒より上流側の排気管に該排気管内に燃料を直接噴射し得るよう燃料添加手段を設け、前記三元触媒でのNOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時にエンジン稼働中のアクセルオフ時よりも浅く空気過剰率を下げ且つ前記燃料添加手段により排気管途中で補助的に燃料を添加して前記三元触媒の入側での空気過剰率を約1.0付近まで下げるように前記制御装置を構成したことを特徴とする排気浄化装置。 A three-way catalyst is installed in the middle exhaust pipe of a diesel engine having an adsorption ability of the NOx and NH 3, even deeper down and the lower the excess air ratio of the excess air ratio to about 0.7 near the time of accelerator pedal during engine operation An exhaust emission control device including a control device that performs premixed compression ignition on the diesel engine so as to maintain smokeless combustion, and directly injects fuel into the exhaust pipe upstream of the three-way catalyst. The fuel addition means is provided so that the amount of NOx adsorbed on the three-way catalyst is determined to exceed the allowable amount than when the accelerator is off while the engine is operating during medium-high load constant speed or acceleration operation. The control is performed such that the excess air ratio is shallowly lowered and fuel is supplementally added in the middle of the exhaust pipe by the fuel addition means to reduce the excess air ratio on the inlet side of the three-way catalyst to about 1.0. An exhaust emission control device comprising an apparatus. 前記三元触媒でのNOxの吸着量が許容量を超えていると判定された状況下における中高負荷の等速又は加速運転時にメイン噴射後の着火可能なタイミングでアフタ噴射を追加するように制御装置を構成したことを特徴とする請求項1に記載の排気浄化装置。   Control to add after-injection at the timing when ignition is possible after main injection during medium- and high-load constant speed or acceleration operation under the condition that the amount of NOx adsorbed by the three-way catalyst exceeds the allowable amount The exhaust emission control device according to claim 1, wherein the device is configured. 三元触媒の直後にパティキュレートフィルタを配設し、前記三元触媒より上流側で排気ガス中に燃料添加を行い得るように構成したことを特徴とする請求項1又は2に記載の排気浄化装置。   The exhaust gas purification according to claim 1 or 2, wherein a particulate filter is disposed immediately after the three-way catalyst so that fuel can be added to the exhaust gas upstream of the three-way catalyst. apparatus.
JP2008060521A 2008-03-11 2008-03-11 Exhaust purification device Expired - Fee Related JP5053134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008060521A JP5053134B2 (en) 2008-03-11 2008-03-11 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008060521A JP5053134B2 (en) 2008-03-11 2008-03-11 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2009215977A JP2009215977A (en) 2009-09-24
JP5053134B2 true JP5053134B2 (en) 2012-10-17

Family

ID=41188088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008060521A Expired - Fee Related JP5053134B2 (en) 2008-03-11 2008-03-11 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5053134B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620715B2 (en) * 2010-05-18 2014-11-05 日野自動車株式会社 Exhaust purification device
JP5774300B2 (en) * 2010-12-15 2015-09-09 日野自動車株式会社 Exhaust purification equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818822B2 (en) * 1989-04-06 1996-02-28 工業技術院長 Ammonia synthesis method
JPWO2005103461A1 (en) * 2004-04-19 2008-03-13 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2007291980A (en) * 2006-04-26 2007-11-08 Hino Motors Ltd Exhaust emission control device
JP4463248B2 (en) * 2006-07-31 2010-05-19 本田技研工業株式会社 Control method for NOx reduction system
JP4934082B2 (en) * 2008-02-29 2012-05-16 日野自動車株式会社 Exhaust purification device

Also Published As

Publication number Publication date
JP2009215977A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
RU2481478C2 (en) Method and device for cold start of internal combustion engine
JP2007291980A (en) Exhaust emission control device
US20160040569A1 (en) Exhaust gas purifying filter, system and regenerating gasoline particulate filter, and method thereof
JP2006522272A (en) Exhaust mechanism for lean burn engine including particulate matter filter and NOx absorbent
US7900441B2 (en) Precat-NOx adsorber exhaust aftertreatment system for internal combustion engines
US20170058743A1 (en) EXHAUST PURIFICATION SYSTEM AND METHOD OF DESULFURIZING LEAN NOx TRAP OF EXHAUST PURIFICATION SYSTEM PROVIDED WITH LEAN NOx TRAP AND SELECTIVE CATALYTIC REDUCTION CATALYST
JP2010540818A (en) Nitrogen oxide emission reduction method for vehicles equipped with lean combustion internal combustion engine
JP2006242020A (en) Exhaust emission control device
JP2009513868A (en) Device for treating nitric oxide in automobile exhaust gas
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
JP2009013932A (en) Exhaust emission control device
JP2009250135A (en) Exhaust emission control device
JP3770148B2 (en) Apparatus and method for exhaust gas purification of internal combustion engine
KR101231132B1 (en) Exhaust Gas Reducing Device for Vehicles with Burner to Improve Purification Performance
JP2007002697A (en) Exhaust emission control device
JP2009264320A (en) Exhaust emission control device for internal combustion engine
JP4007046B2 (en) Exhaust gas purification device for internal combustion engine
JP2009150279A (en) Exhaust gas treatment device
JP4934082B2 (en) Exhaust purification device
JP5053134B2 (en) Exhaust purification device
JP2010185369A (en) Fuel supply device of engine
JP4233393B2 (en) Exhaust purification equipment
JP2004176636A (en) Exhaust emission control device for internal combustion engine
GB2529925A (en) A method of operating a vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Ref document number: 5053134

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees