JP3770148B2 - Apparatus and method for exhaust gas purification of internal combustion engine - Google Patents

Apparatus and method for exhaust gas purification of internal combustion engine Download PDF

Info

Publication number
JP3770148B2
JP3770148B2 JP2001342134A JP2001342134A JP3770148B2 JP 3770148 B2 JP3770148 B2 JP 3770148B2 JP 2001342134 A JP2001342134 A JP 2001342134A JP 2001342134 A JP2001342134 A JP 2001342134A JP 3770148 B2 JP3770148 B2 JP 3770148B2
Authority
JP
Japan
Prior art keywords
fuel
temperature
exhaust
exhaust gas
exhaust passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001342134A
Other languages
Japanese (ja)
Other versions
JP2003148132A (en
Inventor
辰優 杉山
広樹 松岡
太郎 青山
康彦 大坪
丈和 伊藤
淳 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001342134A priority Critical patent/JP3770148B2/en
Priority to DE10251686A priority patent/DE10251686B4/en
Priority to FR0213948A priority patent/FR2831923B1/en
Publication of JP2003148132A publication Critical patent/JP2003148132A/en
Application granted granted Critical
Publication of JP3770148B2 publication Critical patent/JP3770148B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置の技術に関し、特に燃料添加の制御技術に関する。
【従来の技術】
【0002】
近年、自動車等に搭載される内燃機関では、内燃機関より排出される排気ガスを大気中に放出する前に、排気ガス中に含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有毒ガス成分を浄化又は除去することにより排気エミッションを向上させることが要求されている。
【0003】
特に、軽油を燃料とする圧縮着火式のディーゼル機関では、一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等に加え、排気ガス中に含まれる煤や,SOF(Solbule Organic Fraction)等の粒子状物質(PM:Particulate Matter)と呼ばれる微粒子を浄化若しくは除去することが重要である。
【0004】
前記微粒子の主成分は燃料に起因した黒煙(煤)であるが、多様の成分からなる混合物でもあり、その成分は有機溶剤に溶けるか否かで不溶分である黒煙(煤)、サルフェートと可溶分(SOF)である未燃燃料分、未燃オイル分とに分けられる。
【0005】
煤は空気不足の状態で燃料が燃焼するときに、複雑な反応が起きて生じるものと考えられるが、要約すると燃料分子は熱分解により脱水素反応を生じ、微粒子の核(煤前駆物質)を生成し、更に核が凝集、合体して煤を生成する。ディーゼル燃焼においては拡散燃焼中に大量の煤を生成するが、燃焼後期に火炎中に空気を導入することで再燃焼が起こり、煤は急速に減少する。サルフェートは燃焼中の硫黄分が酸化したもので、水と結合した硫酸ミスト状となっている。
【0006】
このためディーゼル機関では、連行空気泡からなる小さな細孔を多数内蔵して単位容積当たりの比表面積を増やした基材からなるパティキュレートフィルタを排気通路に配置し、そのパティキュレートフィルタの細孔に排気ガスを流すことにより、排気ガス中の微粒子を表面に吸着して捕集する方法が知られている。
【0007】
ところで、パティキュレートフィルタに捕集される微粒子が過剰に増加すると、パティキュレートフィルタ内の排気流路が閉塞し、排気ガスの流れが妨げられるようになる。
【0008】
パティキュレートフィルタにより排気ガスの流れが妨げられると、パティキュレートフィルタ上流の排気通路において排気圧力が高まり、その排気圧力が背圧として内燃機関に作用してしまう。
【0009】
このため、パティキュレートフィルタに捕集された微粒子が過剰に増加する前に、捕集された微粒子を浄化してパティキュレートフィルタを再生させる必要がある。
【0010】
パティキュレートフィルタを再生する方法としては、パティキュレートフィルタ内を酸化雰囲気にすることにより、捕集された微粒子を酸化、すなわち燃焼させる方法がある。
【0011】
但し、微粒子はおよそ500℃〜700℃の高温下で着火及び燃焼するため、捕集された微粒子を酸化させるためには、パティキュレートフィルタの雰囲気温度を500℃〜700℃の高温下まで高めるとともに、パティキュレートフィルタ周辺を酸素過剰雰囲気としなければならない。
【0012】
しかしながら、ディーゼル機関は、大部分の運転領域において空気過剰の希薄燃焼運転を行うため、混合気の燃焼温度が低くなりやすく、それに応じて排気ガスの温度も低くなりやすい。従ってディーゼル機関では、排気ガスの熱を利用してパティキュレートフィルタの雰囲気温度を500℃以上まで上昇させることは困難である。
【0013】
これに対し、従来では特公平7−106290号公報に記載されたようなディーゼル排気粒子用フィルタが提案されている。この公報に記載されたディーゼル排気粒子用フィルタは、白金族金属及びアルカリ土類金属酸化物の混合物を含む触媒物質をパティキュレートフィルタ上に担持させることにより、およそ350℃〜400℃の比較的低い温度条件下でも微粒子の着火及び燃焼を行えるようにしたものである。
【0014】
一方、ディーゼル機関の排気ガス温度は、高負荷運転領域では350℃以上まで上昇する場合があるが、低負荷運転領域では350℃以上には殆ど上昇しない。従って、ディーゼル機関が低負荷運転された場合、特にディーゼル機関が減速運転状態にある場合のように燃料噴射が停止された場合には、ディーゼル機関から低温の排気ガスが排出されるため、パティキュレートフィルタが低温の排気ガスにより冷却され、パティキュレートフィルタの微粒子酸化能力が低下することが想定される。
【0015】
よって、低負荷運転時においてパティキュレートフィルタ上にて微粒子を酸化させるためにはパティキュレートフィルタを最低限、微粒子が酸化可能な温度まで昇温させる必要がある。
【0016】
前記のパティキュレートフィルタを昇温させる手段の一つとして、パティキュレート上に燃料を添加し、その燃料が酸化する際に放出する熱によりパティキュレートフィルタ床温を上昇させて微粒子を酸化燃焼させる手段がある。
【0017】
パティキュレートフィルタ床温を上昇させる燃料の供給方法としては以下の方法がある。動力源としてエンジンのシリンダ内に噴射される燃料の一部を、シリンダ内で通常行われる噴射燃料の燃焼工程終了後に噴射する副次的燃料噴射を行うことにより、排気ガス中に燃焼していない未燃焼燃料を含ませて排気通路に排出し添加する方法と、排気通路中に燃料噴射装置を設けて排気ガス中に燃料を直接噴射して添加する方法とである。
【0018】
【発明が解決しようとする課題】
前記シリンダ内の未燃焼燃料として添加する方法は、その特徴として添加された燃料が十分に気化された状態になっていることである。高温の燃焼室内にて霧状に噴射されて蒸発し、燃料が十分に気化された状態になることにより、パティキュレートフィルタ上での燃焼反応性が良くなるため、パティキュレートフィルタ床温が燃料と反応可能な最低限の温度付近であっても反応することが可能となる。
【0019】
またパティキュレートフィルタの温度分布が不均一であり、下流側のみが反応温度に達し、上流側が反応温度に達していない状況においても気化された燃料であるならば上流側をすり抜けて下流側にて反応し、結果としてパティキュレートフィルタ全体を反応可能である温度に昇温することが可能となる。
【0020】
しかし、前記シリンダ内の未燃焼燃料として添加する方法は、動力に転化される燃料の一部を反応に供する燃料とするため、その絶対量が限られており、またエンジンが高負荷の状態においてはトルク低下を憂慮して、未燃焼燃料を供することが不可能な場合がある、等の問題がある。
【0021】
これに対して、前記の排気通路中に燃料を噴射して添加する方法は、エンジン内のシリンダに燃料を供給する系統とは別系統にて燃料を供給、噴射するため、噴射量も多くすることが可能であり、エンジンの運転状態に囚われずに燃料添加を行うことが可能となる。
【0022】
しかし、排気通路中に燃料を噴射して添加する方法では、液体の燃料を霧状にて噴射するため、これを反応しやすい気体の状態に変化させるには、噴射された燃料を短時間で気化可能とするために排気通路の噴射位置での排気ガス温度がある程度高い必要がある。この添加される燃料は完全に気体となっていないため、パティキュレートフィルタ上で反応する際、燃料が液体から気体へ変移するときの潜熱としてパティキュレートフィルタ床温を奪うことになる。よってこのパティキュレートフィルタ床温も最低限反応に必要な温度よりも高い必要がある。また、燃料噴射時には噴射箇所周辺の排気管に付着する燃料もあるため、排気管温度が低いとそのまま液体として溜まり、特に集合管(マニホールド)等トラップ形状を有する箇所で噴射した場合などはそれに対する対策が必要となる等の問題がある。
【0023】
本発明は、前記の問題に鑑みてなされたものであり、内燃機関、及び排気系の諸条件に基づいて、効率の良い燃料添加方法を採択してしてパティキュレートフィルタ上に堆積した微粒子を除去することを課題とする。
【0024】
【課題を解決するための手段】
前記の問題を解決するために、内燃機関の排気通路中に設けられ、排気ガス中の微粒子を捕集するフィルタと、内燃機関の燃焼室にて行われる動力転化用の主燃料噴射とは別に燃料を噴射する副次的燃料噴射を行う燃焼室中燃料添加手段と、排気通路に設けられ、排気ガス中に燃料を噴射する排気通路中燃料添加手段とを備えた排気浄化装置において、前記燃焼室にて副次的燃料噴射が可能であり、かつ前記フィルタ床温が気体燃料を酸化反応させる第1の温度以上である場合には、燃焼室中燃料添加手段により燃料添加を行い、 排気ガス温度が排気通路内にて噴射された燃料を凝縮させない第2の温度以上であり、かつ前記フィルタ床温が液滴を含む気体燃料を酸化反応させる第3の温度以上である場合には、排気通路中燃料添加手段により燃料添加を行うことを特徴とする内燃機関の排気浄化装置とする。
【0025】
本発明は、内燃機関の運転状況に応じて変化する機関周辺要素の温度状況によって、燃焼室内での副次的燃料噴射と排気通路中での燃料噴射とをそれぞれ選択的に使用して、フィルタに燃料添加を行うものである。
【0026】
これはすなわち、内燃機関が低負荷状態であって、燃焼室内にて副次的燃料噴射が可能であるという内燃機関の条件と、フィルタ床温が所定の温度以上であるというフィルタ床温の条件が揃うならば、燃焼室にて副次的燃料噴射を行うことによりフィルタに燃料を添加する。また、排気通路の温度がある一定温度以上で排気通路にて燃料噴射が可能な排気通路の条件と、フィルタ床温が所定の温度以上であるというフィルタ床温の条件が揃うならば、排気通路中で燃料を噴射することによりフィルタに燃料を添加する。
【0027】
また、前記の二つの手段を決定づける条件設定を両方とも満足している場合すなわち、前記燃焼室にて副次的燃料噴射可能であり、かつ前記のフィルタ床温が、気体燃料を酸化反応させる第1の温度、液滴を含む気体燃料を酸化反応させる第3の温度のそれぞれより高く、更に前記の排気通路温度が排気通路にて噴射された燃料を凝縮させない第2の温度以上である場合には、前記燃焼室中燃料添加手段と前記排気通路中燃料添加手段との一方、又は双方を用いて燃料添加することとする。
【0028】
前記燃焼室中燃料添加と排気通路中燃料添加との双方の燃料添加手段を行うに当たり、それぞれの燃料添加手段にフィルタ床温の条件設定があるが、燃焼室中燃料添加手段のフィルタ床温の条件である第1の温度は、気体燃料がフィルタ上で酸化反応可能となる最低限の温度である。排気通路中燃料添加手段のフィルタ床温の条件である第3の温度は、フィルタ上で液滴を含む気体燃料が完全な気体となるのに必要な潜熱を奪われても、このフィルタ上で燃料が反応可能となる最低限の温度である。よって、燃料が気体に転移するための潜熱を有するために、第3の温度が第1の温度より高くなる。
【0029】
第1の温度を条件とする燃焼室中燃料添加手段によるフィルタへの燃料添加は、高温状態である燃焼室内で噴射されて完全に気化した状態の燃料でフィルタに添加されるために反応性が良好となる。そのため、低温域である第1の温度でも昇温反応を起こすことが可能となるが、第3の温度を条件とする排気通路中での燃料噴射によるフィルタへの燃料添加は、液体を霧状で噴射した後に、噴射位置雰囲気により気化させてフィルタへ燃料添加することとなる。よって周辺雰囲気によっては噴射した燃料がすべて気化するとは限らないために、ある程度の高温域である第3の温度の状態で燃料添加を行うようにする。
【0030】
前記の第1、第3の温度と関連して、前記排気温度である第2の温度は排気通路中に噴射された燃料が凝縮しない温度であること、すなわち排気通路中に燃料を添加した際に添加した燃料が液体として排気通路中に溜まらないように保てる温度である。
【0031】
前記フィルタは、排気ガス中の酸素濃度が高いときには排気ガス中の窒素酸化物を保持し、前記酸素濃度が低下して還元剤である燃料が存在するときには保持していた窒素酸化物を還元する吸蔵還元型NOx触媒を担持することができる。
【0032】
前記吸蔵還元型NOx触媒は、前記の特性の他に排気ガス中の酸素濃度が高いときには排気ガス中の酸素を活性化し、前記酸素濃度が低下し、かつ還元剤である燃料が存在するときには窒素酸化物を還元すると共に、活性酸素も生成する。よって、この活性酸素を用いて排気ガス中の窒素酸化物を浄化すると同時に微粒子を燃焼させる際の酸化剤の役割を果たす。
【0033】
本発明を実行することにより、パティキュレートフィルタ上に堆積した微粒子を内燃機関、及び排気系の諸条件に応じて効率よく除去することが可能となる。
【発明の実施の形態】
【0034】
以下、本発明に係る内燃機関の燃料噴射制御装置及び方法を、ディーゼルエンジンシステムに適用した実施の形態について説明する。
【0035】
図1において、内燃機関(以下、エンジンという)1は、燃料供給系10,燃焼室20,吸気系30及び排気系40等を主要部として構成される直列4気筒のディーゼルエンジンシステムである。
【0036】
燃料供給系10は、サプライポンプ11,蓄圧室(コモンレール)12、燃料噴射弁13、遮断弁14、燃料添加ノズル17、機関燃料通路P1及び添加燃料通路P2等を備えて構成される。
【0037】
サプライポンプ11は燃料タンク(図外)からくみ上げた燃料を高圧にし、機関燃料通路P1を介してコモンレール12に供給する。コモンレール12はサプライポンプ11から供給された高圧燃料を所定の圧力に保持(蓄圧)する機能を有し、この蓄圧した燃料を各燃料噴射弁13に分配する。燃料噴射弁13はその内部に電磁ソレノイド(図外)を備えた電磁弁であり、適宜開弁して燃焼室20内に燃料を供給噴射する。
【0038】
他方、サプライポンプ11は、燃料タンクからくみ上げた燃料の一部を添加燃料通路P2を介して燃料添加ノズル17に供給する。燃料通路P2にはサプライポンプ11から燃料添加ノズル17に向かって遮断弁14が配設されている。遮断弁14は緊急時において、添加燃料通路P2を遮断し、燃料供給を中止する。燃料添加ノズル17は燃料噴射弁13と同様な電磁弁であり、排気系40内に還元剤としての燃料を噴射添加する本発明でいう排気通路中燃料添加手段である。
【0039】
吸気系30は、各燃焼室20内に供給される吸気空気の通路(吸気通路)を形成する。一方、排気系40は、各燃焼室20から排出される排気ガスの通路(排気通路)を形成する。
【0040】
また、このエンジン1には、周知の過給器(ターボチャージャ)50が備えられている。ターボチャージャ50は、シャフト51を介して連結されたタービンホイール52とコンプレッサ53とを備える。一方のコンプレッサ53は吸気系30内の吸気に晒され、他方のタービンホイール52は排気系40内の排気ガスに晒されている。このような構成を有するターボチャージャ50は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサ53を回転させ、吸気圧を高める効果(過給効果)を有する。
【0041】
吸気系30において、ターボチャージャ50に設けられたインタークーラ31は、過給によって昇温した吸入空気を強制冷却する。インタークーラ31よりも更に下流に設けられたスロットル弁32は、その開度を無段階に調節することができる電子制御式の開閉弁であり、所定の条件下において吸気通路の流路面積を絞り、同吸入空気の供給量を調整(低減)する機能を有する。
【0042】
また、エンジン1には、燃焼室20の上流(吸気系30)及び下流(排気系40)をバイパスする排気環流通路(EGR通路)60が形成されている。具体的には、EGR通路60は排気系40におけるターボチャージャ50上流の排気集合管40aと吸気系30におけるスロットル弁32の下流側を連通している。このEGR通路60は、排気ガスの一部を適宜吸気系30に戻す機能を有する。EGR通路60には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調節することが可能なEGR弁61と、EGR通路60を通過(環流)する排気ガスを冷却するためのEGRクーラ62が設けられている。
【0043】
また、排気系40において、燃焼室より接続する排気集合管40a、タービンホイール52が設けられた部位より下流側には、排気ガスの流路に沿って排気通路40b、その下流にNOx触媒ケーシング42、更に下流に排気通路40cが順次連結されている。NOx触媒ケーシング42には、後述するように排気ガス中に含まれるNOx等の有害成分を浄化する吸蔵還元型NOx触媒42b及び、排気ガス中に含まれる煤等の微粒子(PM)をNOx等の有害成分と併せて浄化するパティキュレートフィルタ42aが収容されている(図3を参照)。
【0044】
また、エンジン1の各部位には、各種センサが取り付けられており、当該部位の環境条件やエンジン1の運転状態に関する信号を出力する。
【0045】
すなわち、レール圧センサ70は、コモンレール12内に蓄えられている燃料の圧力に応じた検出信号を出力する。燃圧センサ71は、添加燃料通路P2内を流通する燃料のうち、燃料添加ノズル17へ導入される燃料の圧力(燃圧)Pgに応じた検出信号を出力する。エアフローメータ72は、吸気系30内のスロットル弁32上流において吸入空気の流量(吸気量)Gaに応じた検出信号を出力する。空燃比(A/F)センサ73は、排気系40の触媒ケーシング42上流において排気ガス中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温度センサ74は、同じく排気系40の触媒ケーシング42下流において排気ガスの温度(排気温度)TEXに応じた検出信号を出力する。NOxセンサ75は、同じく排気系40の触媒ケーシング42下流において排気ガス中のNOx濃度に応じて連続的に変化する検出信号を出力する。触媒流入排気温度センサ78は触媒ケーシング42入口において流入する排気ガスの温度に応じた検出信号を出力する。触媒温度センサ79は触媒ケーシング42中において触媒床温に応じた検出信号を出力する。圧力センサ90は触媒ケーシング42上流に設けられ、排気通路の圧力に応じた検出信号を出力する。
【0046】
また、アクセル開度センサ76はエンジン1のアクセルペダル(図外)に取り付けられ、同ペダルの踏込量ACCに応じてエンジン1において要求する仕事量の基となる検出信号を出力する。クランク角センサ77は、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力する。これら各センサ70〜79、90は、電子制御装置(ECU)80と電気的に接続されている。
【0047】
図2に示すように、ECU80は中央演算処理装置(CPU)81、読み出し専用メモリ(ROM)82、ランダムアクセスメモリ(RAM)83及び運転停止後も記憶した情報が消去されないバックアップRAM84、タイマカウンタ85等と、A/D変換器を含む外部入力回路86と、外部出力回路87とが、双方向性バス88により接続されて構成される論理演算回路を備える。
【0048】
ECU80は、前記各種センサの検出信号を外部入力回路を介して入力し、これら信号に基づいてECU80に有するCPU81において、ROM82に記憶されているプログラムから、エンジン1の燃料噴射等についての基本制御を行う他、還元剤(還元剤として機能する燃料)添加に係る燃料噴射の供給量の決定や添加時期等に関する還元剤(燃料)添加制御等、エンジン1の運転状態に関係する各種制御を行う。
【0049】
尚、燃料噴射弁13を通じて各気筒に燃料を供給する燃料供給系10、排気系40に備えられたNOx触媒やパティキュレートフィルタ、及びこれら燃料供給係10やNOx触媒及びパティキュレートフィルタの機能を制御するECU80等は、併せて本実施の形態に係るエンジン1の排気浄化装置を構成する。前記燃料添加制御等は、当該制御に関する指令信号を出力するECU80を含め、この排気浄化装置を構成する各種部材の作動を通じて実施される。
【0050】
次に、以上説明したエンジン1の構成要素のうち、排気系40に設けられた触媒ケーシング42について、その構成及び機能を詳しく説明する。
【0051】
図3は、図1に示した触媒ケーシング42を、その内部構造の一部と共に拡大して示す断面図である。触媒ケーシング42は、その内部に吸蔵還元型NOx触媒42bを担持したパティキュレートフィルタ42aを収容する。
【0052】
NOx触媒42bは、例えばアルミナ(AL23)を主材料とした担体とし、この担体の表面にNOx吸収剤として機能する、例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)、のようなアルカリ土類金属、あるいはイットリウム(Y)のような希土類と、酸化触媒(貴金属触媒)として機能する、例えば白金(Pt)のような貴金属とが担持されることによって構成される。
【0053】
パティキュレートフィルタ42aは、例えばコージライトのような多孔質材料から形成されており、従って排気流入通路に流入した排気ガスは、端部が閉鎖されているために矢印で示されるように周囲の多孔質材料からなる隔壁を通り、隣接する排気流入通路に流出する。
【0054】
尚、本実施の形態では、パティキュレートフィルタ42aの隔壁の表面上、及び隔壁の細孔の内壁面に、前記のアルミナ等からなる担体の層が形成されており、この担体上に貴金属触媒とNOx吸収剤からなるNOx触媒42bが担持されている。
【0055】
NOx吸収剤は、排気ガス中の酸素濃度が高い状態ではNOxを保持し、排気ガス中の酸素濃度が低い状態ではNOxを放出する特性を有する。また、排気ガス中にNOxが放出されたとき、排気ガス中にHCやCO等が存在していれば、貴金属触媒がこれらHCやCOの酸化反応を促すことで、NOxを酸化成分、HCやCOを還元成分とする酸化還元反応が両者間で起こる。すなわち、HCやCOはCO2やH2Oに酸化され、NOxはN2に還元される。
【0056】
また、NOx触媒42bを構成している貴金属触媒はHCの酸化を促して、HCの酸化反応熱により床温を昇温する。
【0057】
また、NOx吸収剤は排気ガス中の酸素濃度が高い状態であるときにでも所定の限界量のNOxを保持すると、それ以上NOxを保持しなくなる。エンジン1では、触媒ケーシング42内に収容されたNOx触媒42bのNOx保持量が限界に達する前に、排気通路の触媒ケーシング42上流に還元剤を添加供給することで、NOx触媒42bを活性化して保持されたNOxを還元浄化し、NOx触媒42bのNOx保持能力を回復させるといった制御を所定のインターバルで繰り返す。
【0058】
前記のパティキュレートフィルタ42aにおいては、その表面に担持するNOx触媒42bが、NOxを保持、還元及び浄化を繰り返し行うことは上述した通りであるが、その一方、NOx触媒42bはこのようなNOxの浄化を行う過程で昇温して、副次的に活性酸素を生成する特性を有する。パティキュレートフィルタ42aを排気ガスが通過する際にその排気ガス中に含まれる煤等のPM成分は多孔質材料により、捕捉される。ここで、NOx触媒42bの生成する活性酸素は、酸化剤として極めて高い反応性(活性)を有するため、捕捉されたPM成分は、燃料添加によって昇温した状態でこの活性酸素と輝炎を発することなく速やかに反応し、浄化されることとなる。
【0059】
以下NOx浄化について具体的に述べる。
【0060】
一般に、ディーゼルエンジンでは、燃焼室内で燃焼に供される燃料及び空気の混合気の酸素濃度が、殆どの運転領域で高濃度状態にある。燃焼に供される混合気の酸素濃度は、燃焼に供された酸素を差し引いてそのまま排気ガス中の酸素濃度に反映されるのが通常であり、混合気中の酸素濃度(空燃比)が高ければ、排気ガス中の酸素濃度(空燃比)も基本的には同様に高くなる。
【0061】
一方、上述したように、NOx触媒42bは排気ガス中の酸素濃度が高ければNOxを保持し、低ければNOxをNO2若しくはNOに還元する特性を有するため、排気ガス中の酸素が高濃度にある限りNOxを保持し続ける。但し、当該NOx触媒42bのNOx保持量には限界が存在し、同NOx触媒42bが限界量のNOxを保持した状態では、排気ガス中のNOxは同NOx触媒42bに保持されず触媒ケーシング42を素通りする。
【0062】
NOx触媒のNOx保持作用を復帰させるため、還元剤をNOx吸収材に添加する必要があるが、エンジンの構成上、通常の燃料噴射を行った場合に、酸素濃度が低い、すなわち還元剤である燃料を多量に含んだ排気ガスは排出され難い。
【0063】
よって、内燃機関の燃焼室にて行われる動力転化用の主燃料噴射とは別に主に未燃焼燃料として燃料を噴射する副次的燃料噴射を行う方法や、排気通路に設けられ、排気ガス中に燃料を噴射する方法などにより燃料を排気ガス中に添加して排気ガス中の還元剤成分を増量させ、この還元成分によりNOx保持作用を復帰させる。
【0064】
エンジン1のECU80は、NOxセンサ75の出力信号に基づいてNOx触媒42b下流における排気ガス中のNOx濃度を連続的に観測する。NOx触媒42bによるNOxの保持能力(保持効率)は、当該NOx触媒42bに保持されているNOx量が多くなるほど、言い換えれば、NOx触媒42bに保持されているNOx量が当該NOx触媒42bの保持し得るNOxの最大量(飽和量)に近づくほど低くなる。すなわち、NOx触媒42b内におけるNOxの保持量が増大すれば、当該触媒ケーシング42を素通りして下流に排出されるNOx濃度も上昇するようになる。こうした両者の推移様態には、十分な相関性があるため、NOx濃度の推移様態に基づいてNOx触媒42b内におけるNOxの保持量を把握することができる。
【0065】
そこで、ECU80は、触媒ケーシング42下流におけるNOx濃度が所定濃度を上回ったところで、NOx触媒42b内のNOx保持量が所定量に達したものと判断して、燃料添加手段を用いて、排気ガス中に未燃焼燃料を含ませることにより、排気系40の触媒ケーシング42上流に燃料を添加して、触媒ケーシング42内に流入する排気ガス中の還元成分量を一時的に増量し、空燃比を低下させて、触媒中のNOxを還元剤である燃料と反応させて浄化する。
【0066】
次に排気ガス中に含まれる微粒子(以下PMと称す)の浄化について述べる。
【0067】
NOxの浄化と同様に、PMの浄化についても燃料を利用してこれを行うが、NOx浄化は燃料の主成分であるHCとNOxとの化学反応を利用して浄化を行うのに対し、PMの浄化は主にHCを熱源として昇温させ、その温度によってPM及び酸素(O2)を活性化し、酸化させて浄化する。
【0068】
よって、PMの浄化に関しては添加された燃料をパティキュレートフィルタ42aでの熱源としての利用、すなわち燃料の燃焼反応性を基にしてその浄化を行う。
【0069】
主な制御方法としては、アクセル開度センサ76,クランク角センサ77,タイマカウンタ85等の出力信号等をバックアップRAM84上に蓄積した運転履歴、及び排気通路中に設置された圧力センサ90よりの信号等からCPU81にてROM82に記憶してあるプログラムと比較して浄化方法である燃料添加を行うかどうかを判断する。
【0070】
前記の燃料添加を行う方法についてもNOx触媒42bにおける燃料添加と同様に、図4に示すよう、内燃機関の燃焼室にて行われる動力転化用の主燃料噴射の一部が燃焼工程後に噴射されることにより未燃焼燃料を発生させる副次的燃料噴射を行う方法(燃焼室中燃料添加手段)と、図5に示すよう、排気通路に燃料噴射装置を設けて、排気ガス中に直接燃料を噴射する方法(排気通路中燃料添加手段)とがある。前記の方法にはそれぞれ個々異なる特徴があるため、それら特徴も前記判断材料の1因子となる。
【0071】
以下、前記の燃焼室中燃料添加手段と、排気通路中燃料添加手段とのそれぞれの特徴を述べる。
【0072】
燃焼室中燃料添加手段については、
▲1▼燃焼室内にて燃料を噴射するため、燃焼室内の熱にて十分に気化すること、
▲2▼気化して活性化された状態の燃料が触媒ケーシング42に流入するため、触媒床温が、気化して活性化された燃料が反応可能な最低限の温度である第1の温度(200℃程度を想定)でも昇温反応可能であること、
▲3▼噴射量はアクセルペダル踏込量より要求される燃料量に左右され、直接的には噴射量を変化することができない、またその量も多量では無いこと、
▲4▼エンジンの負荷が大きい場合や、エンジン始動時等では副次的燃料噴射を行った場合にエンジンにトルク段差等が発生するため、これらの状態では燃料添加を行えないこと、
等が挙げられる。
【0073】
排気通路中燃料添加手段については、
▲1▼排気通路中に噴射するため、排気通路内部温度が第2の温度(300℃程度を想定)以上で無いと気化せずに排気通路内面に付着して液溜まりを形成する虞があること、
▲2▼噴射された燃料すべてが気化せずに、液滴状態のまま触媒ケーシング42に流入する場合もあるため、フィルタ上で液滴を含む気体である燃料が完全な気体となるに必要な潜熱を奪っても、このフィルタ上で燃料が反応可能となる最低限の温度であって第1の温度より高温である第3の温度(250℃程度を想定)以上であること、
▲3▼エンジンに添加する燃料系統とは別系統での燃料噴射のため、エンジンの動作に影響されず、噴射量も直接制御可能であり、その量も多量とすることが可能であること、
等が挙げられる。
【0074】
前記の特徴をまとめると燃焼室中燃料添加手段については、触媒床温が低くても燃料添加可能であるが、エンジンの運転状況に左右され、その噴射量も多くはなく、噴射量の調節も難しいということである。排気通路中燃料添加手段については、エンジンの運転状況に関係なく、噴射量も調節可能であるが、触媒床温はある程度高い状態が必要で、排気通路温度にも制約がある、と言うこととなる。
【0075】
以上の条件を加味して燃料添加の可否についてのプログラムを説明する。先ず、PMが蓄積して除去する必要があるとされた場合、温度センサ74により触媒出ガス温度を測定する。ここで触媒出ガス温度を測るのは、触媒ケーシング42が高温側(≧700℃)にある場合に、燃料添加を行うことによって更に高温になり、結果的にNOx触媒42bが熱劣化するのを防止することが主な目的である。
【0076】
次に燃焼室中燃料添加の可否について説明する。前記の触媒出ガス温度を測定した後、アクセル開度センサ76,クランク角センサ77より、エンジン1の負荷が大きいかどうかを判断すると共に水温計(図外)よりエンジンの冷却水温を測定する。ここで水温を測るのは、特にエンジン1を始動した直後では回転が不安定であり、この状態では燃料添加を行えないため、エンジン1を始動後、暖機運転が終了したか否かの判断材料の一つとしてエンジンの冷却水温を採用した。次に触媒床温センサ79より触媒床温を測定し所定の第1の温度(200℃)以上なら燃焼室にて燃料添加を行う。
【0077】
続いて排気通路中燃料添加の可否について説明する。同様に前記の触媒出ガス温度を測定した後、触媒流入排気温度センサ78にて触媒入ガス温度を測定する。本来は燃料噴射位置での温度を測定するのが望ましいが、センサの配置等の問題から触媒入ガス温度を測定し、その値から燃料噴射位置の温度を推定する。触媒入ガス温度が所定の第2の温度(300℃)以上ある場合には、次に触媒床温センサ79により、触媒床温を測定し、所定の第3の温度(250℃)以上なら排気通路中にて燃料添加を行い、PM再生のための燃料添加制御を終了する。
【0078】
以下、本実施の形態に係るエンジン1のECU80が実施する「燃料添加制御」に関し、具体的な処理手順について図6に示すフローチャートを参照して説明する。
【0079】
図6にはPM再生制御を行うに当たり、その再生に要する燃料添加方法や添加量を制御するために実施される「パティキュレートフィルタPM再生ルーチン」の処理内容を示す。このルーチン処理はECU80を通じてエンジン1の始動と同時にその実行が開始される。
【0080】
処理がこのルーチンに移行すると、ECU80はステップS101において、PM再生が必要かどうかを、アクセル開度センサ76、クランク角センサ77、タイマカウンタ85等のデータの蓄積より得られる運転履歴、及び圧力センサ90等から再生制御が必要かどうかを判断し、必要なしと判断されればS112に進んで燃焼室中燃料添加及び排気通路中燃料添加を行うことなく、S113にて通常燃焼を実行して本ルーチンを終了し、必要であるならば次のステップへ進む。
【0081】
次にS102において、触媒出ガス温度より、触媒ケーシング42の状況を判断する。ここでは出ガス温度≧700℃の場合はS112に進んで燃焼室中燃料添加及び排気通路中燃料添加を行うことなく、S113にて通常燃焼を実行して本ルーチンを終了し、出ガス温度<700℃の場合は次のステップに進む。
【0082】
次にS103以下において、燃焼室中燃料添加が行えるかどうかを判断する。先ずS103では、エンジン1の冷却水温を測定する。、水温<60℃ならS107に進んで燃焼室中燃料添加を行うことなく、その後S108へ進み、水温≧60℃なら次のステップへ進む。
【0083】
次にS104において、エンジンの負荷状態を判断する。高負荷ならS107に進んで燃焼室中燃料添加を行うことなく、その後S108へ進み、低負荷なら次のステップへ進む。
【0084】
次にS105において、触媒床温を測定する。触媒床温<200℃ならS107に進んで燃焼室中燃料添加を行うことなく、その後S108へ進み、触媒床温≧200℃ならS106へ進んで燃焼室中燃料添加を行った後S108へ進む。
【0085】
次にS108以下において、排気通路中燃料添加手段が行えるかどうかを判断する。先ず、S108にて触媒入ガス温度を測定する。入ガス温度<300℃ならS111に進んで排気通路中燃料添加を行うことなく本ルーチンを終了し、入ガス温度≧300℃なら次のステップへ進む。
【0086】
次のS109において、触媒床温を測定する。触媒床温<250℃ならS111に進んで排気通路中燃料添加を行うことなく本ルーチンを終了し、触媒床温≧250℃ならS110へ進んで排気通路中燃料添加を行った後本ルーチンを終了する。
【0087】
尚、本ルーチンにおいては燃焼室中燃料添加の可否を論じた後に、排気通路中燃料添加についての可否を論じたが、この二つの燃料添加はそれぞれ独立に行うものであり本来ならば並列関係にて表すものであるが、処理の都合上前記に示したように先ず燃焼室中燃料添加を行い、その後に排気通路中燃料添加を行うこととした。従って、逆に先に排気通路中燃料添加の可否を論じ、その後に燃焼室中燃料添加の可否を論じても実際の制御上では違いはない。
【0088】
本実施の形態では各条件において所定の温度を定めたが、実際にはこの値に縛られるものでは無く、各内燃機関及び排気装置において固有の値があり、その値に準ずるものとする。また、前記ルーチンS108のステップにおいて触媒入ガス温度を判定条件としたが、これは前述の通り排気通路中の燃料噴射位置の温度を推定するための一手段であり、他の手段、例えば水温、吸気温、噴射量、回転数等から算出して温度を推定しても良い。要は燃料噴射位置の温度が推定可能ならば手段は問わないと言うことである。これは他の条件設定でも同様であり、例えばS103、S104のステップにおいては水温及びエンジンの負荷状態を論じているが、これはつまりはエンジンが副次的噴射を行えるかどうかの条件設定であって、S103,S104ではそれを表している一手段に過ぎない。
【0089】
また、前記の燃焼室中燃料添加及び排気通路中燃料添加双方を実行可能な条件下においては、双方の燃料添加を行っても良く、どちらか一方のみを行っても良い。例えば排気系の温度条件が排気通路中燃料添加を行うのに十分な温度にある場合においても、エンジンがアイドリング状態であるならば燃焼室中燃料添加のみを行い、排気通路中燃料添加を行う必要はなく、逆にエンジンが高負荷状態と低負荷状態を交互に繰り返すような運転をしている場合等には、その低負荷時に燃焼室中燃料添加を行わなくとも排気通路中燃料添加のみでPMの再生を行うことは十分に可能である。
【発明の効果】
【0090】
本発明に係る内燃機関の排気浄化装置では排気ガス中のPMを酸化する機能を有したパティキュレートフィルタを昇温させる際に、内燃機関、及び排気系の諸条件に応じて、PMを効率よくより正確に除去するために燃料添加を行うことが可能となる。
【0091】
つまりは内燃機関の稼働状況、及び排気系の温度性状に応じてそれに適したPMの再生のための燃料添加方法を選択することにより、PMがパティキュレートフィルタ上で燃焼される際の不安定性、及び、触媒ケーシングを通過する排気ガス成分の悪化、触媒ケーシングの添加燃料による詰まりを起こすことなく、PMを燃焼させることが可能となる。
【図面の簡単な説明】
【図1】本発明実施の形態に係るディーゼルエンジンシステムを示す概略構成図。
【図2】同実施の形態に係る、ECU周りの構成概念図。
【図3】同実施の形態に係る、触媒ケーシングの断面概念図。
【図4】同実施の形態に係る、燃焼室中燃料添加を示すエンジン及び排気系断面概略図。
【図5】同実施の形態に係る、燃排気通路中燃料添加を示すエンジン及び排気系断面概略図。
【図6】同実施の形態に係る、PM再生制御を示すフローチャート。
【符号の説明】
1 エンジン(内燃機関)
10 燃料供給系
11 サプライポンプ
12 コモンレール(蓄圧室)
13 燃料噴射弁
14 制御弁
17 燃料添加ノズル
20 燃焼室
30 吸気系
31 インタークーラ
32 スロットル弁
40 排気系
40a 排気集合管
40b、c 排気通路
42 触媒ケーシング
42a パティキュレートフィルタ
42b 吸蔵還元型NOx触媒(NOx触媒)
42c 栓詰め
43 噴射燃料溜まり
50 ターボチャージャ
51 シャフト
52 タービンホイール
53 コンプレッサ
60 EGR通路
61 EGR弁
62 EGRクーラ
70 レール圧センサ
71 燃焼センサ
72 エアフローメータ
73 空燃比(A/F)センサ
74 排気温度センサ
75 NOxセンサ
76 アクセル開度センサ
77 クランク角センサ
78 触媒流入排気温度センサ
80 電子制御装置(ECU)
81 中央演算処理装置(CPU)
82 読み出し専用メモリ(ROM)
83 ランダムアクセスメモリ(RAM)
84 バックアップRAM
85 タイマカウンタ
86 外部入力回路
87 外部出力回路
88 双方向バス
90 圧力センサ
P1 機関燃料通路
P2 添加燃料通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technology for an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a technology for controlling fuel addition.
[Prior art]
[0002]
In recent years, in an internal combustion engine mounted on an automobile or the like, before the exhaust gas discharged from the internal combustion engine is released into the atmosphere, carbon monoxide (CO), hydrocarbon (HC), nitrogen oxidation contained in the exhaust gas It is required to improve exhaust emission by purifying or removing toxic gas components such as substances (NOx).
[0003]
In particular, in a compression ignition type diesel engine using light oil as fuel, in addition to carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx), etc., soot contained in exhaust gas, SOF (Solbule It is important to purify or remove particulates called PM (Particulate Matter) such as Organic Fraction.
[0004]
The main component of the fine particles is black smoke (soot) caused by fuel, but it is also a mixture of various components, and the components are insoluble depending on whether they are soluble in organic solvents or not. And the unburned fuel and soluble oil (SOF).
[0005]
Soot is thought to be caused by a complex reaction that occurs when fuel burns in an air-deficient state, but in summary, fuel molecules undergo a dehydrogenation reaction through thermal decomposition, resulting in particulate nuclei (soot precursor). And the nuclei aggregate and coalesce to form soot. In diesel combustion, a large amount of soot is produced during diffusion combustion, but recombustion occurs when air is introduced into the flame at a later stage of combustion, and soot is rapidly reduced. Sulfate is oxidized sulfur of combustion and is in the form of sulfuric acid mist combined with water.
[0006]
For this reason, in a diesel engine, a particulate filter made of a base material with a large number of small pores made of entrained air bubbles and a specific surface area per unit volume increased is arranged in the exhaust passage, and the particulate filter has pores. There is known a method in which fine particles in exhaust gas are adsorbed on the surface and collected by flowing exhaust gas.
[0007]
By the way, if the particulates collected by the particulate filter increase excessively, the exhaust passage in the particulate filter is blocked, and the flow of exhaust gas is hindered.
[0008]
When the flow of exhaust gas is blocked by the particulate filter, the exhaust pressure increases in the exhaust passage upstream of the particulate filter, and the exhaust pressure acts on the internal combustion engine as a back pressure.
[0009]
For this reason, it is necessary to regenerate the particulate filter by purifying the collected fine particles before the fine particles collected by the particulate filter increase excessively.
[0010]
As a method for regenerating the particulate filter, there is a method in which the collected fine particles are oxidized, that is, burned by making the inside of the particulate filter an oxidizing atmosphere.
[0011]
However, since the fine particles are ignited and burned at a high temperature of about 500 ° C. to 700 ° C., in order to oxidize the collected fine particles, the ambient temperature of the particulate filter is raised to a high temperature of 500 ° C. to 700 ° C. In addition, the atmosphere around the particulate filter must be an oxygen-excess atmosphere.
[0012]
However, since a diesel engine performs a lean combustion operation with excess air in most operating regions, the combustion temperature of the air-fuel mixture tends to be low, and the temperature of the exhaust gas tends to be low accordingly. Therefore, in a diesel engine, it is difficult to raise the atmospheric temperature of the particulate filter to 500 ° C. or higher by using the heat of the exhaust gas.
[0013]
On the other hand, a diesel exhaust particle filter as described in Japanese Patent Publication No. 7-106290 has been proposed. The diesel exhaust particle filter described in this publication has a relatively low temperature of about 350 ° C. to 400 ° C. by supporting a catalytic material containing a mixture of a platinum group metal and an alkaline earth metal oxide on a particulate filter. It enables ignition and combustion of fine particles even under temperature conditions.
[0014]
On the other hand, the exhaust gas temperature of the diesel engine may rise to 350 ° C. or higher in the high load operation region, but hardly rises to 350 ° C. or higher in the low load operation region. Therefore, when the diesel engine is operated at a low load, particularly when the fuel injection is stopped, such as when the diesel engine is in a decelerating operation state, low temperature exhaust gas is discharged from the diesel engine. It is assumed that the filter is cooled by the low temperature exhaust gas, and the particulate oxidation ability of the particulate filter is reduced.
[0015]
Therefore, in order to oxidize the fine particles on the particulate filter during low load operation, it is necessary to raise the temperature of the particulate filter to a temperature at which the fine particles can be oxidized at a minimum.
[0016]
As one of means for raising the temperature of the particulate filter, means for adding fuel on the particulate and raising the particulate filter bed temperature by heat released when the fuel is oxidized to oxidize and burn the particulates. There is.
[0017]
There are the following methods for supplying the fuel for raising the particulate filter bed temperature. A part of the fuel injected into the engine cylinder as a power source is not burned into the exhaust gas by performing a secondary fuel injection after the combustion process of the injected fuel normally performed in the cylinder is completed. There are a method in which unburned fuel is included and discharged and added to the exhaust passage, and a method in which a fuel injection device is provided in the exhaust passage and fuel is directly injected into the exhaust gas and added.
[0018]
[Problems to be solved by the invention]
The method of adding as unburned fuel in the cylinder is that the added fuel is sufficiently vaporized. Since the fuel is sufficiently vaporized by being sprayed in the form of a mist in a high-temperature combustion chamber, the combustion reactivity on the particulate filter is improved. It is possible to react even in the vicinity of the minimum temperature at which reaction is possible.
[0019]
Also, if the temperature distribution of the particulate filter is uneven, only the downstream side reaches the reaction temperature, and the upstream side does not reach the reaction temperature, and if it is vaporized fuel, it will pass through the upstream side and on the downstream side. As a result, it becomes possible to raise the temperature of the entire particulate filter to a temperature at which reaction is possible.
[0020]
However, the method of adding as unburned fuel in the cylinder uses a part of the fuel converted to motive power for the reaction, so the absolute amount thereof is limited, and the engine is in a high load state. However, there is a problem that it may be impossible to supply unburned fuel in consideration of torque reduction.
[0021]
On the other hand, in the method of injecting and adding fuel into the exhaust passage, the fuel is supplied and injected in a system different from the system for supplying fuel to the cylinders in the engine, so the injection amount is also increased. It is possible to add fuel without being restricted by the operating state of the engine.
[0022]
However, in the method of adding fuel by injecting it into the exhaust passage, liquid fuel is injected in the form of a mist, so in order to change this into a gas state that is easy to react, the injected fuel can be changed in a short time. In order to enable vaporization, the exhaust gas temperature at the injection position of the exhaust passage needs to be high to some extent. Since the added fuel is not completely gas, when reacting on the particulate filter, the particulate filter bed temperature is deprived as latent heat when the fuel changes from liquid to gas. Therefore, this particulate filter bed temperature also needs to be higher than the minimum temperature required for the reaction. In addition, there is fuel that adheres to the exhaust pipe around the injection location during fuel injection, so if the exhaust pipe temperature is low, it accumulates as a liquid, especially when it is injected at a trap-shaped location such as a collecting pipe (manifold). There are problems such as the need for countermeasures.
[0023]
The present invention has been made in view of the above-mentioned problems. Fine particles deposited on the particulate filter by adopting an efficient fuel addition method based on various conditions of the internal combustion engine and the exhaust system are collected. The problem is to remove.
[0024]
[Means for Solving the Problems]
In order to solve the above problems, a filter provided in the exhaust passage of the internal combustion engine for collecting particulates in the exhaust gas and a main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine are separately provided. In the exhaust purification apparatus, comprising: a combustion chamber fuel addition means for performing secondary fuel injection for injecting fuel; and an exhaust passage fuel addition means for injecting fuel into the exhaust gas provided in the exhaust passage. When the secondary fuel injection is possible in the chamber and the filter bed temperature is equal to or higher than the first temperature at which the gaseous fuel is oxidized, the fuel is added by the fuel addition means in the combustion chamber, and the exhaust gas When the temperature is equal to or higher than the second temperature that does not condense the fuel injected in the exhaust passage, and the filter bed temperature is equal to or higher than the third temperature that causes oxidation reaction of gaseous fuel containing droplets, By means of fuel addition in the passage Thus, an exhaust gas purification apparatus for an internal combustion engine is provided.
[0025]
The present invention selectively uses a secondary fuel injection in the combustion chamber and a fuel injection in the exhaust passage according to the temperature conditions of the engine peripheral elements that change according to the operating conditions of the internal combustion engine. In this case, fuel is added.
[0026]
This means that the internal combustion engine is in a low-load state and secondary fuel injection is possible in the combustion chamber, and the filter bed temperature condition is that the filter bed temperature is equal to or higher than a predetermined temperature. If all of the above are satisfied, fuel is added to the filter by performing secondary fuel injection in the combustion chamber. In addition, if the conditions of the exhaust passage in which fuel can be injected in the exhaust passage when the temperature of the exhaust passage is equal to or higher than a certain temperature and the filter floor temperature condition that the filter floor temperature is equal to or higher than a predetermined temperature, the exhaust passage Fuel is added to the filter by injecting fuel therein.
[0027]
Further, when both of the condition settings that determine the two means are satisfied, that is, secondary fuel injection is possible in the combustion chamber, and the filter bed temperature is used to oxidize the gaseous fuel. 1 is higher than each of the third temperatures at which the gaseous fuel containing droplets undergoes an oxidation reaction, and the exhaust passage temperature is equal to or higher than the second temperature at which the fuel injected in the exhaust passage is not condensed. The fuel is added using one or both of the fuel adding means in the combustion chamber and the fuel adding means in the exhaust passage.
[0028]
In performing the fuel addition means for both the fuel addition in the combustion chamber and the fuel addition in the exhaust passage, each fuel addition means has a condition for the filter bed temperature. The first temperature as a condition is a minimum temperature at which the gaseous fuel can be oxidized on the filter. The third temperature, which is the condition of the filter bed temperature of the fuel addition means in the exhaust passage, is the same as that on the filter even if the latent heat necessary for the gaseous fuel containing droplets to become a complete gas is deprived on the filter. This is the minimum temperature at which the fuel can react. Accordingly, the third temperature is higher than the first temperature because the fuel has latent heat for transferring to the gas.
[0029]
The fuel addition to the filter by the fuel addition means in the combustion chamber on the condition of the first temperature is added to the filter with the fuel that has been injected into the combustion chamber in a high temperature state and is completely vaporized, so that the reactivity is high. It becomes good. Therefore, it is possible to cause a temperature rising reaction even at the first temperature which is a low temperature region, but the addition of fuel to the filter by fuel injection in the exhaust passage on the condition of the third temperature causes the liquid to be atomized. After injection, the fuel is vaporized by the injection position atmosphere and fuel is added to the filter. Therefore, depending on the surrounding atmosphere, not all of the injected fuel is vaporized, so that the fuel addition is performed at a third temperature that is a certain high temperature range.
[0030]
In relation to the first and third temperatures, the second temperature, which is the exhaust temperature, is a temperature at which the fuel injected into the exhaust passage does not condense, that is, when fuel is added to the exhaust passage. It is a temperature at which the fuel added to can be kept so as not to accumulate in the exhaust passage as a liquid.
[0031]
The filter retains nitrogen oxides in the exhaust gas when the oxygen concentration in the exhaust gas is high, and reduces the retained nitrogen oxides when the oxygen concentration decreases and fuel as a reducing agent is present. An NOx storage reduction catalyst can be supported.
[0032]
In addition to the above characteristics, the NOx storage reduction catalyst activates oxygen in the exhaust gas when the oxygen concentration in the exhaust gas is high, decreases the oxygen concentration, and nitrogen exists when fuel as a reducing agent is present. While reducing the oxide, it also generates active oxygen. Therefore, this active oxygen is used to purify nitrogen oxides in the exhaust gas, and at the same time, serves as an oxidant when burning fine particles.
[0033]
By carrying out the present invention, it is possible to efficiently remove the fine particles deposited on the particulate filter according to various conditions of the internal combustion engine and the exhaust system.
DETAILED DESCRIPTION OF THE INVENTION
[0034]
Hereinafter, an embodiment in which a fuel injection control device and method for an internal combustion engine according to the present invention is applied to a diesel engine system will be described.
[0035]
In FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 is an in-line four-cylinder diesel engine system having a fuel supply system 10, a combustion chamber 20, an intake system 30, an exhaust system 40, and the like as main parts.
[0036]
The fuel supply system 10 includes a supply pump 11, a pressure accumulation chamber (common rail) 12, a fuel injection valve 13, a cutoff valve 14, a fuel addition nozzle 17, an engine fuel passage P1, an addition fuel passage P2, and the like.
[0037]
The supply pump 11 increases the pressure of the fuel pumped up from the fuel tank (not shown) and supplies it to the common rail 12 through the engine fuel passage P1. The common rail 12 has a function of holding (accumulating) high-pressure fuel supplied from the supply pump 11 at a predetermined pressure, and distributes the accumulated fuel to each fuel injection valve 13. The fuel injection valve 13 is an electromagnetic valve provided with an electromagnetic solenoid (not shown) therein, and is appropriately opened to supply and inject fuel into the combustion chamber 20.
[0038]
On the other hand, the supply pump 11 supplies a part of the fuel pumped up from the fuel tank to the fuel addition nozzle 17 via the added fuel passage P2. A shutoff valve 14 is disposed in the fuel passage P2 from the supply pump 11 toward the fuel addition nozzle 17. In an emergency, the shutoff valve 14 shuts off the added fuel passage P2 and stops the fuel supply. The fuel addition nozzle 17 is an electromagnetic valve similar to the fuel injection valve 13 and is a fuel addition means in the exhaust passage according to the present invention that injects and adds fuel as a reducing agent into the exhaust system 40.
[0039]
The intake system 30 forms a passage (intake passage) for intake air supplied into each combustion chamber 20. On the other hand, the exhaust system 40 forms a passage (exhaust passage) for exhaust gas discharged from each combustion chamber 20.
[0040]
The engine 1 is provided with a known supercharger (turbocharger) 50. The turbocharger 50 includes a turbine wheel 52 and a compressor 53 that are connected via a shaft 51. One compressor 53 is exposed to the intake air in the intake system 30, and the other turbine wheel 52 is exposed to the exhaust gas in the exhaust system 40. The turbocharger 50 having such a configuration has an effect of increasing the intake pressure (supercharging effect) by rotating the compressor 53 using the exhaust flow (exhaust pressure) received by the turbine wheel 52.
[0041]
In the intake system 30, an intercooler 31 provided in the turbocharger 50 forcibly cools the intake air whose temperature has been raised by supercharging. The throttle valve 32 provided further downstream than the intercooler 31 is an electronically controlled on-off valve whose opening degree can be adjusted in a stepless manner, and restricts the flow passage area of the intake passage under predetermined conditions. The function of adjusting (reducing) the supply amount of the intake air is provided.
[0042]
Further, an exhaust gas circulation passage (EGR passage) 60 that bypasses the upstream (intake system 30) and the downstream (exhaust system 40) of the combustion chamber 20 is formed in the engine 1. Specifically, the EGR passage 60 communicates the exhaust collecting pipe 40 a upstream of the turbocharger 50 in the exhaust system 40 and the downstream side of the throttle valve 32 in the intake system 30. The EGR passage 60 has a function of returning a part of the exhaust gas to the intake system 30 as appropriate. The EGR passage 60 is opened and closed steplessly by electronic control, and an EGR valve 61 that can freely adjust an exhaust flow rate flowing through the passage, and an exhaust gas that passes through (circulates) the EGR passage 60 is cooled. EGR cooler 62 is provided.
[0043]
Further, in the exhaust system 40, an exhaust passage 40b along the exhaust gas flow path is provided downstream of the exhaust collecting pipe 40a connected from the combustion chamber and a portion where the turbine wheel 52 is provided, and a NOx catalyst casing 42 is provided downstream thereof. Further, the exhaust passage 40c is sequentially connected further downstream. As will be described later, the NOx catalyst casing 42 includes a NOx storage reduction catalyst 42b that purifies harmful components such as NOx contained in the exhaust gas, and particulates (PM) such as soot contained in the exhaust gas, such as NOx. A particulate filter 42a for purification along with harmful components is accommodated (see FIG. 3).
[0044]
Further, various sensors are attached to each part of the engine 1, and signals related to the environmental conditions of the part and the operating state of the engine 1 are output.
[0045]
That is, the rail pressure sensor 70 outputs a detection signal corresponding to the fuel pressure stored in the common rail 12. The fuel pressure sensor 71 outputs a detection signal corresponding to the pressure (fuel pressure) Pg of the fuel introduced into the fuel addition nozzle 17 among the fuel flowing through the added fuel passage P2. The air flow meter 72 outputs a detection signal corresponding to the flow rate (intake amount) Ga of intake air upstream of the throttle valve 32 in the intake system 30. The air-fuel ratio (A / F) sensor 73 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas upstream of the catalyst casing 42 of the exhaust system 40. Similarly, the exhaust temperature sensor 74 outputs a detection signal corresponding to the temperature (exhaust temperature) TEX of the exhaust gas downstream of the catalyst casing 42 of the exhaust system 40. Similarly, the NOx sensor 75 outputs a detection signal that continuously changes in accordance with the NOx concentration in the exhaust gas downstream of the catalyst casing 42 of the exhaust system 40. The catalyst inflow exhaust gas temperature sensor 78 outputs a detection signal corresponding to the temperature of the exhaust gas flowing in at the catalyst casing 42 inlet. The catalyst temperature sensor 79 outputs a detection signal corresponding to the catalyst bed temperature in the catalyst casing 42. The pressure sensor 90 is provided upstream of the catalyst casing 42 and outputs a detection signal corresponding to the pressure in the exhaust passage.
[0046]
The accelerator opening sensor 76 is attached to an accelerator pedal (not shown) of the engine 1 and outputs a detection signal that is a basis of a work amount required in the engine 1 in accordance with the depression amount ACC of the pedal. The crank angle sensor 77 outputs a detection signal (pulse) every time the output shaft (crankshaft) of the engine 1 rotates by a certain angle. These sensors 70 to 79 and 90 are electrically connected to an electronic control unit (ECU) 80.
[0047]
As shown in FIG. 2, the ECU 80 includes a central processing unit (CPU) 81, a read only memory (ROM) 82, a random access memory (RAM) 83, a backup RAM 84 in which stored information is not erased even after the operation is stopped, and a timer counter 85. , An external input circuit 86 including an A / D converter, and an external output circuit 87 are provided with a logical operation circuit configured by being connected by a bidirectional bus 88.
[0048]
The ECU 80 inputs detection signals from the various sensors via an external input circuit, and based on these signals, the CPU 81 included in the ECU 80 performs basic control on the fuel injection of the engine 1 from the program stored in the ROM 82. In addition to the control, various controls related to the operating state of the engine 1 such as determination of the supply amount of the fuel injection related to the addition of the reducing agent (fuel that functions as the reducing agent) and the reducing agent (fuel) addition control related to the addition timing and the like are performed.
[0049]
The fuel supply system 10 for supplying fuel to each cylinder through the fuel injection valve 13, the NOx catalyst and particulate filter provided in the exhaust system 40, and the functions of the fuel supply unit 10 and the NOx catalyst and particulate filter are controlled. The ECU 80 and the like that together constitute an exhaust purification device for the engine 1 according to the present embodiment. The fuel addition control and the like are performed through the operation of various members constituting the exhaust gas purification apparatus, including the ECU 80 that outputs a command signal related to the control.
[0050]
Next, among the components of the engine 1 described above, the configuration and functions of the catalyst casing 42 provided in the exhaust system 40 will be described in detail.
[0051]
FIG. 3 is an enlarged sectional view of the catalyst casing 42 shown in FIG. 1 together with a part of its internal structure. The catalyst casing 42 accommodates therein a particulate filter 42a carrying an NOx storage reduction catalyst 42b.
[0052]
The NOx catalyst 42b is, for example, alumina (AL 2 O Three ) As a main material, and functions as a NOx absorbent on the surface of the carrier. For example, alkali metals such as potassium (K), sodium (Na), lithium (Li), and cesium (Cs), barium (Ba ), An alkaline earth metal such as calcium (Ca), or a rare earth such as yttrium (Y), and a noble metal such as platinum (Pt) that functions as an oxidation catalyst (noble metal catalyst) is supported. Consists of.
[0053]
The particulate filter 42a is formed of a porous material such as cordierite, for example. Therefore, the exhaust gas that has flowed into the exhaust inflow passage is surrounded by a porous material as indicated by an arrow because the end is closed. It flows through the partition wall made of a material and flows into the adjacent exhaust inflow passage.
[0054]
In the present embodiment, a carrier layer made of alumina or the like is formed on the surface of the partition wall of the particulate filter 42a and on the inner wall surface of the pores of the partition wall. A NOx catalyst 42b made of NOx absorbent is supported.
[0055]
The NOx absorbent has a characteristic of retaining NOx when the oxygen concentration in the exhaust gas is high and releasing NOx when the oxygen concentration in the exhaust gas is low. Further, when NOx is released into the exhaust gas, if HC, CO, or the like is present in the exhaust gas, the noble metal catalyst promotes an oxidation reaction of these HC and CO, thereby converting NOx into an oxidizing component, HC, A redox reaction using CO as a reducing component occurs between the two. That is, HC and CO are CO 2 And H 2 Oxidized to O, NOx is N 2 Reduced to
[0056]
Further, the noble metal catalyst constituting the NOx catalyst 42b promotes the oxidation of HC and raises the bed temperature by the heat of oxidation reaction of HC.
[0057]
Further, even when the NOx absorbent has a high oxygen concentration in the exhaust gas, if it retains a predetermined limit amount of NOx, it will no longer hold NOx. In the engine 1, before the NOx retention amount of the NOx catalyst 42b accommodated in the catalyst casing 42 reaches a limit, the NOx catalyst 42b is activated by adding and supplying a reducing agent upstream of the catalyst casing 42 in the exhaust passage. The control of reducing and purifying the held NOx and restoring the NOx holding ability of the NOx catalyst 42b is repeated at a predetermined interval.
[0058]
In the particulate filter 42a, as described above, the NOx catalyst 42b supported on the surface of the particulate filter 42a repeatedly holds and reduces and purifies NOx. On the other hand, the NOx catalyst 42b has such NOx. It has the characteristic of raising the temperature in the course of purification and generating active oxygen as a secondary. When exhaust gas passes through the particulate filter 42a, PM components such as soot contained in the exhaust gas are captured by the porous material. Here, since the active oxygen generated by the NOx catalyst 42b has extremely high reactivity (activity) as an oxidant, the trapped PM component emits this active oxygen and luminous flame in a state where the temperature is increased by the addition of fuel. It reacts quickly without being purified.
[0059]
The NOx purification will be specifically described below.
[0060]
In general, in a diesel engine, the oxygen concentration of a mixture of fuel and air used for combustion in a combustion chamber is in a high concentration state in most operating regions. The oxygen concentration of the mixture used for combustion is usually reflected in the oxygen concentration in the exhaust gas as it is after subtracting the oxygen used for combustion, and the oxygen concentration (air-fuel ratio) in the mixture is high. For example, the oxygen concentration (air-fuel ratio) in the exhaust gas basically increases similarly.
[0061]
On the other hand, as described above, the NOx catalyst 42b holds NOx if the oxygen concentration in the exhaust gas is high, and NOx if the oxygen concentration is low. 2 Or, since it has a characteristic of reducing to NO, as long as the oxygen in the exhaust gas has a high concentration, it keeps holding NOx. However, there is a limit in the amount of NOx retained by the NOx catalyst 42b. When the NOx catalyst 42b retains the limit amount of NOx, NOx in the exhaust gas is not retained by the NOx catalyst 42b and the catalyst casing 42 is Go through.
[0062]
In order to restore the NOx retention action of the NOx catalyst, it is necessary to add a reducing agent to the NOx absorbent. However, due to the engine configuration, when normal fuel injection is performed, the oxygen concentration is low, that is, the reducing agent is used. Exhaust gas containing a large amount of fuel is difficult to exhaust.
[0063]
Therefore, in addition to the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine, a method of performing secondary fuel injection that mainly injects fuel as unburned fuel, or provided in the exhaust passage, The fuel is added to the exhaust gas by a method of injecting the fuel into the exhaust gas to increase the amount of the reducing agent component in the exhaust gas, and the NOx holding action is restored by this reducing component.
[0064]
The ECU 80 of the engine 1 continuously observes the NOx concentration in the exhaust gas downstream of the NOx catalyst 42b based on the output signal of the NOx sensor 75. The NOx retention capability (retention efficiency) by the NOx catalyst 42b is such that the NOx amount retained by the NOx catalyst 42b increases, that is, the NOx amount retained by the NOx catalyst 42b retains the NOx catalyst 42b. The closer to the maximum amount (saturation amount) of NOx to be obtained, the lower the value. In other words, if the amount of NOx retained in the NOx catalyst 42b increases, the concentration of NOx that passes through the catalyst casing 42 and is discharged downstream also increases. Since these two transition modes have a sufficient correlation, the amount of NOx retained in the NOx catalyst 42b can be grasped based on the transition mode of the NOx concentration.
[0065]
Therefore, when the NOx concentration downstream of the catalyst casing 42 exceeds a predetermined concentration, the ECU 80 determines that the amount of NOx retained in the NOx catalyst 42b has reached a predetermined amount, and uses the fuel addition means to increase the NOx concentration in the exhaust gas. By adding unburned fuel to the exhaust system 40, the fuel is added to the upstream of the catalyst casing 42 of the exhaust system 40, the amount of reducing components in the exhaust gas flowing into the catalyst casing 42 is temporarily increased, and the air-fuel ratio is lowered. Thus, NOx in the catalyst is purified by reacting with fuel as a reducing agent.
[0066]
Next, purification of fine particles (hereinafter referred to as PM) contained in the exhaust gas will be described.
[0067]
Similar to NOx purification, PM is also purified using fuel. However, NOx purification is performed using a chemical reaction between HC and NOx, which are the main components of fuel, whereas PM is purified. In the purification, the temperature is raised mainly using HC as a heat source, and PM and oxygen (O 2 ) Is activated, oxidized and purified.
[0068]
Therefore, regarding the purification of PM, the added fuel is used as a heat source in the particulate filter 42a, that is, the purification is performed based on the combustion reactivity of the fuel.
[0069]
The main control methods include an operation history in which output signals of the accelerator opening sensor 76, the crank angle sensor 77, the timer counter 85, etc. are stored on the backup RAM 84, and a signal from the pressure sensor 90 installed in the exhaust passage. The CPU 81 determines whether or not to perform fuel addition as a purification method as compared with the program stored in the ROM 82.
[0070]
As for the fuel addition method, as in the case of fuel addition in the NOx catalyst 42b, as shown in FIG. 4, part of the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine is injected after the combustion process. As shown in FIG. 5, a fuel injection device is provided in the exhaust passage so that the fuel is directly injected into the exhaust gas. There is a method of injecting (fuel addition means in the exhaust passage). Since each of the above methods has different characteristics, these characteristics are also a factor of the judgment material.
[0071]
The characteristics of the fuel adding means in the combustion chamber and the fuel adding means in the exhaust passage will be described below.
[0072]
For fuel addition means in the combustion chamber,
(1) Since fuel is injected into the combustion chamber, it must be sufficiently vaporized by the heat in the combustion chamber.
(2) Since the vaporized and activated fuel flows into the catalyst casing 42, the catalyst bed temperature is the first temperature (minimum temperature at which the vaporized and activated fuel can react) (Assuming about 200 ° C)
(3) The injection amount depends on the fuel amount required from the accelerator pedal depression amount, and the injection amount cannot be changed directly, and the amount is not large.
(4) When the engine is heavily loaded, or when secondary fuel injection is performed at the time of starting the engine, a torque step or the like occurs in the engine.
Etc.
[0073]
Regarding fuel addition means in the exhaust passage,
(1) Since it is injected into the exhaust passage, if the internal temperature of the exhaust passage is not higher than the second temperature (assuming about 300 ° C.), there is a possibility that it will not vaporize and adhere to the inner surface of the exhaust passage to form a liquid pool. thing,
(2) Since all of the injected fuel does not vaporize and may flow into the catalyst casing 42 in a droplet state, it is necessary for the fuel that is a gas containing droplets to become a complete gas on the filter. Even if it takes latent heat, it is not less than a third temperature (assuming about 250 ° C.) that is a minimum temperature at which fuel can react on the filter and is higher than the first temperature,
(3) Because the fuel injection is performed separately from the fuel system added to the engine, the injection amount can be directly controlled without being affected by the operation of the engine, and the amount can be increased.
Etc.
[0074]
In summary, the fuel addition means in the combustion chamber can be added even if the catalyst bed temperature is low, but it depends on the operating condition of the engine, and the injection amount is not so much, and the injection amount can be adjusted. It is difficult. Regarding the fuel addition means in the exhaust passage, the injection amount can be adjusted regardless of the operating condition of the engine, but the catalyst bed temperature needs to be somewhat high, and the exhaust passage temperature is also restricted. Become.
[0075]
Considering the above conditions, a program for determining whether or not fuel can be added will be described. First, when it is determined that PM needs to be accumulated and removed, the temperature of the catalyst outgas is measured by the temperature sensor 74. Here, the catalyst outgas temperature is measured when the catalyst casing 42 is on the high temperature side (≧ 700 ° C.), and the temperature is further increased by adding the fuel, and as a result, the NOx catalyst 42b is thermally deteriorated. Prevention is the main purpose.
[0076]
Next, the possibility of fuel addition in the combustion chamber will be described. After measuring the catalyst exhaust gas temperature, the accelerator opening sensor 76 and the crank angle sensor 77 determine whether the load on the engine 1 is large and measure the engine coolant temperature from a water temperature gauge (not shown). Here, the water temperature is measured because the rotation is unstable immediately after the engine 1 is started, and fuel cannot be added in this state. Therefore, it is determined whether or not the warm-up operation is finished after the engine 1 is started. The engine cooling water temperature was adopted as one of the materials. Next, the catalyst bed temperature is measured by the catalyst bed temperature sensor 79. If the temperature is equal to or higher than a predetermined first temperature (200 ° C.), fuel is added in the combustion chamber.
[0077]
Next, the possibility of fuel addition in the exhaust passage will be described. Similarly, after measuring the catalyst outlet gas temperature, the catalyst inflow exhaust gas temperature sensor 78 measures the catalyst inlet gas temperature. Originally, it is desirable to measure the temperature at the fuel injection position. However, the temperature at the catalyst injection gas is measured from problems such as sensor placement, and the temperature at the fuel injection position is estimated from the measured value. If the catalyst inlet gas temperature is equal to or higher than the predetermined second temperature (300 ° C.), then the catalyst bed temperature is measured by the catalyst bed temperature sensor 79, and if it is equal to or higher than the predetermined third temperature (250 ° C.), exhaust is performed. Fuel addition is performed in the passage, and fuel addition control for PM regeneration is completed.
[0078]
Hereinafter, with respect to “fuel addition control” performed by the ECU 80 of the engine 1 according to the present embodiment, a specific processing procedure will be described with reference to a flowchart shown in FIG. 6.
[0079]
FIG. 6 shows the processing contents of the “particulate filter PM regeneration routine” that is executed to control the fuel addition method and amount required for regeneration when performing PM regeneration control. The routine processing is started simultaneously with the start of the engine 1 through the ECU 80.
[0080]
When the processing shifts to this routine, the ECU 80 determines whether or not PM regeneration is necessary in step S101, an operation history obtained from accumulation of data such as the accelerator opening sensor 76, the crank angle sensor 77, the timer counter 85, and the pressure sensor. 90, it is determined whether regeneration control is necessary, and if it is determined that it is not necessary, the routine proceeds to S112, and normal combustion is performed in S113 without adding fuel in the combustion chamber and fuel in the exhaust passage. Exit the routine and proceed to the next step if necessary.
[0081]
Next, in S102, the status of the catalyst casing 42 is determined from the catalyst outgas temperature. Here, if the output gas temperature ≧ 700 ° C., the routine proceeds to S112, the normal combustion is performed in S113 without adding the fuel in the combustion chamber and the fuel in the exhaust passage, and this routine is terminated. In the case of 700 ° C., it proceeds to the next step.
[0082]
Next, in S103 and after, it is determined whether or not fuel addition in the combustion chamber can be performed. First, in S103, the coolant temperature of the engine 1 is measured. If the water temperature <60 ° C., the process proceeds to S107, without adding fuel in the combustion chamber, and then proceeds to S108, and if the water temperature ≧ 60 ° C., the process proceeds to the next step.
[0083]
Next, in S104, the engine load state is determined. If the load is high, the process proceeds to S107, and without adding fuel in the combustion chamber, the process proceeds to S108. If the load is low, the process proceeds to the next step.
[0084]
Next, in S105, the catalyst bed temperature is measured. If the catalyst bed temperature <200 ° C., the process proceeds to S107 without adding fuel in the combustion chamber, and then proceeds to S108. If the catalyst bed temperature ≧ 200 ° C., the process proceeds to S106, and fuel addition in the combustion chamber is performed, and then the process proceeds to S108.
[0085]
Next, in S108 and after, it is determined whether or not the fuel addition means in the exhaust passage can be performed. First, in S108, the catalyst input gas temperature is measured. If the inlet gas temperature <300 ° C., the routine proceeds to S111, and this routine is terminated without adding fuel in the exhaust passage. If the inlet gas temperature ≧ 300 ° C., the routine proceeds to the next step.
[0086]
In the next S109, the catalyst bed temperature is measured. If the catalyst bed temperature <250 ° C., the routine proceeds to S111 and the routine is terminated without adding fuel in the exhaust passage. If the catalyst bed temperature ≧ 250 ° C., the routine proceeds to S110 and fuel is added to the exhaust passage and then this routine is terminated. To do.
[0087]
In this routine, the possibility of fuel addition in the combustion chamber was discussed, and then the possibility of fuel addition in the exhaust passage was discussed. However, these two fuel additions are performed independently and are essentially in a parallel relationship. However, for the convenience of processing, as described above, fuel in the combustion chamber is first added, and then fuel in the exhaust passage is added. Therefore, conversely, whether or not fuel can be added to the exhaust passage is discussed first, and then whether or not fuel is added to the combustion chamber is discussed, there is no difference in actual control.
[0088]
In the present embodiment, a predetermined temperature is set under each condition, but in actuality, it is not limited to this value, and there is a unique value in each internal combustion engine and exhaust system, and it shall be based on that value. Further, in the step of the routine S108, the catalyst inlet gas temperature is used as the determination condition. As described above, this is one means for estimating the temperature of the fuel injection position in the exhaust passage, and other means such as water temperature, The temperature may be estimated by calculating from the intake air temperature, the injection amount, the rotation speed, and the like. The point is that any means can be used if the temperature at the fuel injection position can be estimated. This also applies to other condition settings. For example, in steps S103 and S104, the water temperature and the engine load state are discussed. This is a condition setting for determining whether or not the engine can perform secondary injection. S103 and S104 are just one means for representing it.
[0089]
In addition, under the condition where both the fuel addition in the combustion chamber and the fuel addition in the exhaust passage can be performed, both fuel additions may be performed, or only one of them may be performed. For example, even when the temperature condition of the exhaust system is sufficient to add fuel in the exhaust passage, it is necessary to add only fuel in the combustion chamber and add fuel in the exhaust passage if the engine is idling. On the contrary, when the engine is operated so as to alternately repeat a high load state and a low load state, the fuel in the exhaust passage is only added without adding fuel in the combustion chamber at the low load. It is possible to regenerate PM.
【The invention's effect】
[0090]
In the exhaust gas purification apparatus for an internal combustion engine according to the present invention, when raising the temperature of a particulate filter having a function of oxidizing PM in exhaust gas, the PM is efficiently converted according to various conditions of the internal combustion engine and the exhaust system. Fuel can be added for more accurate removal.
[0091]
That is, instability when PM is burned on the particulate filter by selecting a fuel addition method for regeneration of PM suitable for the operating condition of the internal combustion engine and the temperature property of the exhaust system, And PM can be burned without causing deterioration of exhaust gas components passing through the catalyst casing and clogging of the catalyst casing with the added fuel.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a diesel engine system according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a configuration around an ECU according to the embodiment.
FIG. 3 is a conceptual cross-sectional view of a catalyst casing according to the same embodiment.
FIG. 4 is a schematic cross-sectional view of an engine and an exhaust system showing fuel addition in the combustion chamber according to the same embodiment.
FIG. 5 is a schematic cross-sectional view of an engine and an exhaust system showing fuel addition in a fuel exhaust passage according to the same embodiment.
FIG. 6 is a flowchart showing PM regeneration control according to the embodiment;
[Explanation of symbols]
1 engine (internal combustion engine)
10 Fuel supply system
11 Supply pump
12 Common rail (accumulation chamber)
13 Fuel injection valve
14 Control valve
17 Fuel addition nozzle
20 Combustion chamber
30 Intake system
31 Intercooler
32 Throttle valve
40 Exhaust system
40a Exhaust collecting pipe
40b, c Exhaust passage
42 Catalyst casing
42a Particulate filter
42b NOx storage reduction catalyst (NOx catalyst)
42c plugging
43 Injection fuel pool
50 turbocharger
51 shaft
52 Turbine wheel
53 Compressor
60 EGR passage
61 EGR valve
62 EGR cooler
70 Rail pressure sensor
71 Combustion sensor
72 Air Flow Meter
73 Air-fuel ratio (A / F) sensor
74 Exhaust temperature sensor
75 NOx sensor
76 Accelerator position sensor
77 Crank angle sensor
78 Catalyst inflow exhaust temperature sensor
80 Electronic control unit (ECU)
81 Central processing unit (CPU)
82 Read-only memory (ROM)
83 Random access memory (RAM)
84 Backup RAM
85 Timer counter
86 External input circuit
87 External output circuit
88 bidirectional bus
90 Pressure sensor
P1 Engine fuel passage
P2 added fuel passage

Claims (7)

内燃機関の排気通路中に設けられ、排気ガス中の微粒子を捕集するフィルタと、
内燃機関の燃焼室にて行われる動力転化用の主燃料噴射とは別に燃料を噴射する副次的燃料噴射を行う燃焼室中燃料添加手段と、
排気通路に設けられ、排気ガス中に燃料を噴射する排気通路中燃料添加手段とを備えた排気浄化装置において、
前記燃焼室にて副次的燃料噴射が可能であり、かつ前記フィルタ床温が気体燃料を酸化反応させる第1の温度以上である場合には、燃焼室中燃料添加手段により燃料添加を行い、
排気ガス温度が排気通路にて噴射された燃料を凝縮させない第2の温度以上であり、かつ前記フィルタ床温が液滴を含む気体燃料を酸化反応させる第3の温度以上である場合には、排気通路中燃料添加手段により燃料添加を行うことを特徴とする内燃機関の排気浄化装置。
A filter provided in the exhaust passage of the internal combustion engine for collecting particulates in the exhaust gas;
Fuel addition means in the combustion chamber for performing secondary fuel injection for injecting fuel separately from the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine;
In the exhaust emission control device provided in the exhaust passage and provided with fuel addition means in the exhaust passage for injecting fuel into the exhaust gas,
When secondary fuel injection is possible in the combustion chamber and the filter bed temperature is equal to or higher than the first temperature for oxidizing the gaseous fuel, fuel is added by the fuel addition means in the combustion chamber,
When the exhaust gas temperature is equal to or higher than the second temperature that does not condense the fuel injected in the exhaust passage, and the filter bed temperature is equal to or higher than the third temperature that causes oxidation reaction of the gaseous fuel containing droplets, An exhaust emission control device for an internal combustion engine, wherein fuel is added by fuel addition means in the exhaust passage.
前記燃焼室にて副次的燃料噴射噴射可能であり、かつ前記のフィルタ床温が気体燃料を酸化反応させる第1の温度、液滴を含む気体燃料を酸化反応させる第3の温度のそれぞれより高く、更に前記の排気通路温度が排気通路にて噴射された燃料を凝縮させない第2の温度以上である場合には、前記燃焼室中燃料添加手段と前記排気通路中燃料添加手段との一方、又は双方を用いて燃料添加することを特徴とする請求項1に記載の内燃機関の排気浄化装置。Secondary fuel injection injection is possible in the combustion chamber, and the filter bed temperature is from a first temperature at which gaseous fuel is oxidized and a third temperature at which gaseous fuel containing droplets is oxidized. When the exhaust passage temperature is higher than a second temperature at which the fuel injected in the exhaust passage is not condensed, one of the fuel addition means in the combustion chamber and the fuel addition means in the exhaust passage; 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein fuel is added using both of them. 前記フィルタ床温である第1の温度は気体状の燃料が酸化反応可能な200℃以上の温度であり、第3の温度は液滴を含む気体状の燃料が酸化反応可能な250℃以上の温度であり、かつ第3の温度が第1の温度より高いことを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。The first temperature which is the filter bed temperature is a temperature of 200 ° C. or higher at which gaseous fuel can be oxidized, and the third temperature is 250 ° C. or higher at which gaseous fuel containing droplets can be oxidized. 3. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the temperature is a temperature and the third temperature is higher than the first temperature. 4. 前記排気ガス温度である第2の温度は排気通路中に噴射された燃料が凝縮しない300℃以上の温度であることを特徴とする請求項1〜3何れかに記載の内燃機関の排気浄化装置。The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the second temperature which is the exhaust gas temperature is a temperature of 300 ° C or higher at which the fuel injected into the exhaust passage does not condense. . 前記フィルタが、排気ガス中の酸素濃度が高いときには排気ガス中の窒素酸化物を保持し、
前記酸素濃度が低下し、かつ還元剤である燃料が存在するときには保持していた窒素酸化物を還元する吸蔵還元型NOx触媒を担持することを特徴とする請求項1〜4何れかに記載の内燃機関の排気浄化装置。
When the oxygen concentration in the exhaust gas is high, the filter retains nitrogen oxides in the exhaust gas,
5. The storage reduction type NOx catalyst for reducing the nitrogen oxide held when the oxygen concentration is reduced and the fuel as the reducing agent is present is supported. 6. An exhaust purification device for an internal combustion engine.
内燃機関の排気通路に設けられた、排気ガス中の微粒子を捕集するフィルタに、内燃機関の燃焼室にて行われる動力転化用の主噴射燃料の他に副次的燃料を噴射して燃料添加する第1の方法と、
排気通路内の排気ガス中に直接燃料を噴射して燃料添加する第2の方法と、を適宜選択して燃料を添加する排気浄化方法において、
燃焼室にて副次的燃料噴射可能であり、かつ前記フィルタ床温が気体状の燃料が酸化反応可能である温度以上ならば前記未燃焼燃料を添加する第1の方法を採択し、
前記排気通路内の排ガス温度が排気通路中に噴射された燃料が凝縮しない温度以上であり、かつ前記フィルタ床温が液滴を含んだ気体状の燃料が酸化反応可能である温度以上ならば前記直接燃料を添加する第2の方法を採択する排気浄化方法。
In addition to the main injection fuel for power conversion performed in the combustion chamber of the internal combustion engine, secondary fuel is injected into a filter provided in the exhaust passage of the internal combustion engine for collecting particulates in the exhaust gas. A first method of adding;
In an exhaust purification method of adding fuel by appropriately selecting a second method of adding fuel by directly injecting fuel into the exhaust gas in the exhaust passage,
Adopting the first method of adding the unburned fuel if the secondary fuel injection is possible in the combustion chamber and the filter bed temperature is equal to or higher than the temperature at which the gaseous fuel can be oxidized.
If the exhaust gas temperature in the exhaust passage is equal to or higher than the temperature at which the fuel injected into the exhaust passage does not condense, and the filter bed temperature is equal to or higher than the temperature at which gaseous fuel containing droplets can be oxidized. An exhaust purification method adopting the second method of directly adding fuel.
燃焼室にて副次的燃料噴射可能であり、かつ前記フィルタ床温が気体状の燃料が酸化反応可能な温度及び液滴を含んだ気体状の燃料が酸化反応可能な温度各々より高く、更に前記排気通路内の排ガス温度が排気通路中に噴射された燃料が凝縮しない温度以上ならば前記未燃焼燃料を添加する第1の方法と前記直接燃料を添加する第2の方法との何れか一方、若しくは双方を採用する請求項6に記載の排気浄化方法。The secondary fuel injection is possible in the combustion chamber, and the filter bed temperature is higher than the temperature at which the gaseous fuel can be oxidized and the temperature at which the gaseous fuel containing droplets can be oxidized, If the exhaust gas temperature in the exhaust passage is equal to or higher than the temperature at which the fuel injected into the exhaust passage does not condense, either the first method of adding the unburned fuel or the second method of adding the direct fuel The exhaust gas purification method according to claim 6, wherein both are employed.
JP2001342134A 2001-11-07 2001-11-07 Apparatus and method for exhaust gas purification of internal combustion engine Expired - Lifetime JP3770148B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001342134A JP3770148B2 (en) 2001-11-07 2001-11-07 Apparatus and method for exhaust gas purification of internal combustion engine
DE10251686A DE10251686B4 (en) 2001-11-07 2002-11-06 Emission control system and method for an internal combustion engine
FR0213948A FR2831923B1 (en) 2001-11-07 2002-11-07 SYSTEM AND METHOD FOR PURIFYING EXHAUST GAS FOR AN INTERNAL COMBUSTION ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342134A JP3770148B2 (en) 2001-11-07 2001-11-07 Apparatus and method for exhaust gas purification of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2003148132A JP2003148132A (en) 2003-05-21
JP3770148B2 true JP3770148B2 (en) 2006-04-26

Family

ID=19156044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342134A Expired - Lifetime JP3770148B2 (en) 2001-11-07 2001-11-07 Apparatus and method for exhaust gas purification of internal combustion engine

Country Status (3)

Country Link
JP (1) JP3770148B2 (en)
DE (1) DE10251686B4 (en)
FR (1) FR2831923B1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344216A1 (en) * 2003-09-22 2005-05-04 Eberspaecher J Gmbh & Co Exhaust system with particle filter and associated heating device and associated regeneration method
FR2862097B1 (en) 2003-11-07 2006-02-17 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE
FR2862098B1 (en) 2003-11-07 2006-02-17 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE
FR2862099B1 (en) 2003-11-07 2006-04-14 Peugeot Citroen Automobiles Sa SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE
GB2408470B (en) * 2003-11-25 2007-06-13 Arvin Internat An internal combustion engine exhaust system
DE10361220B4 (en) * 2003-12-24 2015-01-08 Volkswagen Ag Method of regenerating a particulate filter
DE102004016538A1 (en) * 2004-03-31 2005-11-03 J. Eberspächer GmbH & Co. KG Regeneration process for a particle filter and exhaust system with particle filter
US8056325B2 (en) 2005-01-14 2011-11-15 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus regeneration system of internal combustion engine
EP1921288A4 (en) * 2005-09-01 2008-11-26 Hino Motors Ltd Method for regenerating particulate filter
FR2897641B1 (en) * 2006-02-20 2011-03-04 Renault Sas METHOD AND DEVICE FOR REGENERATING THE PARTICLE FILTER OF AN INTERNAL COMBUSTION ENGINE OF THE DIESEL TYPE DURING IDLING PHASES
DE102006009099A1 (en) 2006-02-28 2007-08-30 Daimlerchrysler Ag Fuel injection system for use in e.g. diesel internal combustion engine, has pressure regulating valve that is arranged between check valve and dosing valve and is connected with system by outlet
JP4905415B2 (en) * 2007-11-13 2012-03-28 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2010150941A (en) * 2008-12-24 2010-07-08 Ud Trucks Corp Exhaust emission control device
CN102713189B (en) * 2010-09-02 2014-10-15 丰田自动车株式会社 Exhaust gas purification device of internal combustion engine
US9074503B2 (en) 2012-04-26 2015-07-07 Ccts Technology Group, Inc. Clean exhaust system and method for diesel engines of marine vessels

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0070619A3 (en) * 1981-07-16 1984-01-04 Johnson Matthey, Inc., Regenerating diesel emissions control devices
US4592899A (en) * 1984-12-26 1986-06-03 Texaco Inc. Smoke filter with frangible supported filter bed
JPH0441914A (en) * 1990-06-01 1992-02-12 Nissan Motor Co Ltd Exhaust gas processor for internal combustion engine
JPH07106290A (en) 1993-09-30 1995-04-21 Matsushita Electric Ind Co Ltd Foreign matter eliminating equipment for electronic component
EP1138890B1 (en) * 2000-03-27 2005-05-18 Toyota Jidosha Kabushiki Kaisha Exhaust purifying method and apparatus for an internal combustion engine
JP3835241B2 (en) * 2001-10-15 2006-10-18 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
DE10251686A1 (en) 2003-10-23
JP2003148132A (en) 2003-05-21
DE10251686B4 (en) 2011-08-11
FR2831923A1 (en) 2003-05-09
FR2831923B1 (en) 2007-06-29

Similar Documents

Publication Publication Date Title
KR100613646B1 (en) Exhaust gas purifying device and method for internal combustion engine
US7533523B2 (en) Optimized desulfation trigger control for an adsorber
JP4720054B2 (en) Exhaust gas purification device for internal combustion engine
JP3770148B2 (en) Apparatus and method for exhaust gas purification of internal combustion engine
JP3201237B2 (en) Exhaust gas purification device for internal combustion engine
JP3800016B2 (en) Exhaust gas purification device for internal combustion engine
KR100441481B1 (en) Exhaust gas purification device for internal combustion engine
JP2003120392A (en) Exhaust emission control device of internal combustion engine
JP3945350B2 (en) Exhaust gas purification device for internal combustion engine
JP2003254042A (en) Exhaust emission control device for internal combustion engine
JP3736417B2 (en) Exhaust gas purification device for internal combustion engine
JP2002155724A (en) Exhaust emission control device
JP2003184551A (en) Exhaust emission control system
JP2003020930A (en) Exhaust emission control device for internal combustion engine
JP2003269155A (en) Exhaust emission control device for internal combustion engine
JP4357241B2 (en) Exhaust purification equipment
JP3888115B2 (en) Control device for internal combustion engine
JP2003293747A (en) Exhaust emission control device for internal combustion engine and method of managing catalyst function
JP3496607B2 (en) Exhaust gas purification device for internal combustion engine
JP3656496B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP4474775B2 (en) Exhaust gas purification device for internal combustion engine
JP2009167957A (en) Exhaust gas purification system for internal combustion engine
JP2005090249A (en) Temperature control device
JP2003013732A (en) Exhaust emission purifier for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Ref document number: 3770148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

EXPY Cancellation because of completion of term