JP2003148132A - Exhaust emission control device and method for internal combustion engine - Google Patents
Exhaust emission control device and method for internal combustion engineInfo
- Publication number
- JP2003148132A JP2003148132A JP2001342134A JP2001342134A JP2003148132A JP 2003148132 A JP2003148132 A JP 2003148132A JP 2001342134 A JP2001342134 A JP 2001342134A JP 2001342134 A JP2001342134 A JP 2001342134A JP 2003148132 A JP2003148132 A JP 2003148132A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- temperature
- exhaust gas
- exhaust
- exhaust passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/146—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
- F02D41/1463—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
- F02D41/405—Multiple injections with post injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1439—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
- F02D41/1441—Plural sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1446—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は内燃機関の排気浄化
装置の技術に関し、特に燃料添加の制御技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology of an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a fuel addition control technology.
【0002】近年、自動車等に搭載される内燃機関で
は、内燃機関より排出される排気ガスを大気中に放出す
る前に、排気ガス中に含まれる一酸化炭素(CO)、炭
化水素(HC)、窒素酸化物(NOx)等の有毒ガス成
分を浄化又は除去することにより排気エミッションを向
上させることが要求されている。In recent years, in internal combustion engines mounted on automobiles and the like, carbon monoxide (CO) and hydrocarbons (HC) contained in the exhaust gas are discharged before the exhaust gas discharged from the internal combustion engine is released into the atmosphere. It is required to improve exhaust emission by purifying or removing toxic gas components such as nitrogen oxides (NOx).
【0003】特に、軽油を燃料とする圧縮着火式のディ
ーゼル機関では、一酸化炭素(CO)、炭化水素(H
C)、窒素酸化物(NOx)等に加え、排気ガス中に含
まれる煤や,SOF(Solbule Organic Fraction)等の
粒子状物質(PM:Particulate Matter)と呼ばれる微
粒子を浄化若しくは除去することが重要である。Particularly, in a compression ignition type diesel engine that uses light oil as a fuel, carbon monoxide (CO) and hydrocarbon (H
In addition to C), nitrogen oxides (NOx), etc., it is important to purify or remove soot contained in the exhaust gas and particulates called PM (Particulate Matter) such as SOF (Solbule Organic Fraction). Is.
【0004】前記微粒子の主成分は燃料に起因した黒煙
(煤)であるが、多様の成分からなる混合物でもあり、
その成分は有機溶剤に溶けるか否かで不溶分である黒煙
(煤)、サルフェートと可溶分(SOF)である未燃燃
料分、未燃オイル分とに分けられる。The main component of the fine particles is black smoke (soot) caused by the fuel, but it is also a mixture of various components,
The component is divided into black smoke (soot) which is an insoluble component, unburned fuel component which is a soluble component (SOF) and unburned oil component which is a soluble component (SOF) depending on whether or not it is soluble in an organic solvent.
【0005】煤は空気不足の状態で燃料が燃焼するとき
に、複雑な反応が起きて生じるものと考えられるが、要
約すると燃料分子は熱分解により脱水素反応を生じ、微
粒子の核(煤前駆物質)を生成し、更に核が凝集、合体
して煤を生成する。ディーゼル燃焼においては拡散燃焼
中に大量の煤を生成するが、燃焼後期に火炎中に空気を
導入することで再燃焼が起こり、煤は急速に減少する。
サルフェートは燃焼中の硫黄分が酸化したもので、水と
結合した硫酸ミスト状となっている。It is considered that soot is caused by a complicated reaction when fuel burns in a state of insufficient air. In summary, the fuel molecule undergoes a dehydrogenation reaction by thermal decomposition, and a nucleus of fine particles (soot precursor) is generated. Substance), and the nuclei aggregate and coalesce to form soot. In diesel combustion, a large amount of soot is produced during diffusion combustion, but re-combustion occurs by introducing air into the flame in the latter stage of combustion, and soot is rapidly reduced.
Sulfate is the oxidation of sulfur during combustion and is in the form of a sulfuric acid mist that is bound to water.
【0006】このためディーゼル機関では、連行空気泡
からなる小さな細孔を多数内蔵して単位容積当たりの比
表面積を増やした基材からなるパティキュレートフィル
タを排気通路に配置し、そのパティキュレートフィルタ
の細孔に排気ガスを流すことにより、排気ガス中の微粒
子を表面に吸着して捕集する方法が知られている。For this reason, in a diesel engine, a particulate filter made of a base material having a large number of small pores of entrained air bubbles incorporated therein and having an increased specific surface area per unit volume is arranged in the exhaust passage. A method is known in which exhaust gas is flowed through the pores to adsorb and collect the fine particles in the exhaust gas on the surface.
【0007】ところで、パティキュレートフィルタに捕
集される微粒子が過剰に増加すると、パティキュレート
フィルタ内の排気流路が閉塞し、排気ガスの流れが妨げ
られるようになる。By the way, when the amount of fine particles trapped in the particulate filter increases excessively, the exhaust passage in the particulate filter is blocked, and the flow of exhaust gas is obstructed.
【0008】パティキュレートフィルタにより排気ガス
の流れが妨げられると、パティキュレートフィルタ上流
の排気通路において排気圧力が高まり、その排気圧力が
背圧として内燃機関に作用してしまう。When the flow of exhaust gas is blocked by the particulate filter, the exhaust pressure rises in the exhaust passage upstream of the particulate filter, and the exhaust pressure acts as back pressure on the internal combustion engine.
【0009】このため、パティキュレートフィルタに捕
集された微粒子が過剰に増加する前に、捕集された微粒
子を浄化してパティキュレートフィルタを再生させる必
要がある。Therefore, it is necessary to regenerate the particulate filter by purifying the collected particulates before the particulates collected by the particulate filter increase excessively.
【0010】パティキュレートフィルタを再生する方法
としては、パティキュレートフィルタ内を酸化雰囲気に
することにより、捕集された微粒子を酸化、すなわち燃
焼させる方法がある。As a method of regenerating the particulate filter, there is a method of oxidizing, that is, burning, the collected fine particles by making the inside of the particulate filter an oxidizing atmosphere.
【0011】但し、微粒子はおよそ500℃〜700℃
の高温下で着火及び燃焼するため、捕集された微粒子を
酸化させるためには、パティキュレートフィルタの雰囲
気温度を500℃〜700℃の高温下まで高めるととも
に、パティキュレートフィルタ周辺を酸素過剰雰囲気と
しなければならない。However, the fine particles are approximately 500 ° C to 700 ° C.
In order to oxidize the collected fine particles, the ambient temperature of the particulate filter is raised to a high temperature of 500 ° C. to 700 ° C., and the surrounding area of the particulate filter is made an oxygen excess atmosphere. There must be.
【0012】しかしながら、ディーゼル機関は、大部分
の運転領域において空気過剰の希薄燃焼運転を行うた
め、混合気の燃焼温度が低くなりやすく、それに応じて
排気ガスの温度も低くなりやすい。従ってディーゼル機
関では、排気ガスの熱を利用してパティキュレートフィ
ルタの雰囲気温度を500℃以上まで上昇させることは
困難である。However, since the diesel engine performs lean combustion operation with excess air in most operating regions, the combustion temperature of the air-fuel mixture is likely to be low, and accordingly the temperature of exhaust gas is also likely to be low. Therefore, in a diesel engine, it is difficult to raise the atmospheric temperature of the particulate filter to 500 ° C. or higher by utilizing the heat of exhaust gas.
【0013】これに対し、従来では特公平7−1062
90号公報に記載されたようなディーゼル排気粒子用フ
ィルタが提案されている。この公報に記載されたディー
ゼル排気粒子用フィルタは、白金族金属及びアルカリ土
類金属酸化物の混合物を含む触媒物質をパティキュレー
トフィルタ上に担持させることにより、およそ350℃
〜400℃の比較的低い温度条件下でも微粒子の着火及
び燃焼を行えるようにしたものである。On the other hand, in the past, Japanese Patent Publication No. 7-1062
A diesel exhaust particle filter as described in Japanese Patent No. 90 has been proposed. The filter for diesel exhaust particles described in this publication has a catalyst material containing a mixture of a platinum group metal and an alkaline earth metal oxide supported on a particulate filter, and thereby has a temperature of about 350 ° C.
Ignition and combustion of fine particles can be performed even under relatively low temperature conditions of up to 400 ° C.
【0014】一方、ディーゼル機関の排気ガス温度は、
高負荷運転領域では350℃以上まで上昇する場合があ
るが、低負荷運転領域では350℃以上には殆ど上昇し
ない。従って、ディーゼル機関が低負荷運転された場
合、特にディーゼル機関が減速運転状態にある場合のよ
うに燃料噴射が停止された場合には、ディーゼル機関か
ら低温の排気ガスが排出されるため、パティキュレート
フィルタが低温の排気ガスにより冷却され、パティキュ
レートフィルタの微粒子酸化能力が低下することが想定
される。On the other hand, the exhaust gas temperature of the diesel engine is
In the high load operating region, the temperature may rise to 350 ° C. or higher, but in the low load operating region, it hardly rises to 350 ° C. or higher. Therefore, when the diesel engine is operated at a low load, especially when the fuel injection is stopped as in the case where the diesel engine is in the decelerating operation state, low temperature exhaust gas is discharged from the diesel engine, so the particulates are discharged. It is assumed that the filter is cooled by the low temperature exhaust gas and the particulate oxidation ability of the particulate filter is reduced.
【0015】よって、低負荷運転時においてパティキュ
レートフィルタ上にて微粒子を酸化させるためにはパテ
ィキュレートフィルタを最低限、微粒子が酸化可能な温
度まで昇温させる必要がある。Therefore, in order to oxidize the particulates on the particulate filter during low load operation, it is necessary to raise the temperature of the particulate filter to a temperature at which the particulates can be oxidized at a minimum.
【0016】前記のパティキュレートフィルタを昇温さ
せる手段の一つとして、パティキュレート上に燃料を添
加し、その燃料が酸化する際に放出する熱によりパティ
キュレートフィルタ床温を上昇させて微粒子を酸化燃焼
させる手段がある。As one of the means for raising the temperature of the particulate filter, a fuel is added on the particulate, and the heat released when the fuel oxidizes raises the particulate filter bed temperature to oxidize the particulates. There is a means to burn.
【0017】パティキュレートフィルタ床温を上昇させ
る燃料の供給方法としては以下の方法がある。動力源と
してエンジンのシリンダ内に噴射される燃料の一部を、
シリンダ内で通常行われる噴射燃料の燃焼工程終了後に
噴射する副次的燃料噴射を行うことにより、排気ガス中
に燃焼していない未燃焼燃料を含ませて排気通路に排出
し添加する方法と、排気通路中に燃料噴射装置を設けて
排気ガス中に燃料を直接噴射して添加する方法とであ
る。There are the following methods for supplying fuel for raising the particulate filter bed temperature. Part of the fuel injected into the cylinder of the engine as a power source,
By performing a secondary fuel injection that is injected after the end of the combustion process of the injected fuel that is normally performed in the cylinder, a method of including unburned unburned fuel in the exhaust gas and discharging and adding it to the exhaust passage, A method of providing a fuel injection device in the exhaust passage and directly injecting and adding the fuel into the exhaust gas.
【0018】[0018]
【発明が解決しようとする課題】前記シリンダ内の未燃
焼燃料として添加する方法は、その特徴として添加され
た燃料が十分に気化された状態になっていることであ
る。高温の燃焼室内にて霧状に噴射されて蒸発し、燃料
が十分に気化された状態になることにより、パティキュ
レートフィルタ上での燃焼反応性が良くなるため、パテ
ィキュレートフィルタ床温が燃料と反応可能な最低限の
温度付近であっても反応することが可能となる。The method of adding as unburned fuel in the cylinder is that the added fuel is in a sufficiently vaporized state. Since the fuel is sprayed in a mist state in a high-temperature combustion chamber and evaporated, and the fuel becomes sufficiently vaporized, the combustion reactivity on the particulate filter improves, so the particulate filter bed temperature becomes It becomes possible to react even near the minimum temperature at which reaction is possible.
【0019】またパティキュレートフィルタの温度分布
が不均一であり、下流側のみが反応温度に達し、上流側
が反応温度に達していない状況においても気化された燃
料であるならば上流側をすり抜けて下流側にて反応し、
結果としてパティキュレートフィルタ全体を反応可能で
ある温度に昇温することが可能となる。Further, even if the temperature distribution of the particulate filter is non-uniform and only the downstream side reaches the reaction temperature and the upstream side does not reach the reaction temperature, if it is vaporized fuel, it will pass through the upstream side and the downstream side. React on the side,
As a result, it becomes possible to raise the temperature of the entire particulate filter to a temperature at which it can react.
【0020】しかし、前記シリンダ内の未燃焼燃料とし
て添加する方法は、動力に転化される燃料の一部を反応
に供する燃料とするため、その絶対量が限られており、
またエンジンが高負荷の状態においてはトルク低下を憂
慮して、未燃焼燃料を供することが不可能な場合があ
る、等の問題がある。However, in the method of adding as unburned fuel in the cylinder, since a part of the fuel converted to power is used as the fuel for the reaction, the absolute amount thereof is limited,
Further, when the engine is under a high load, there is a problem in that it may be impossible to supply unburned fuel due to concern about a decrease in torque.
【0021】これに対して、前記の排気通路中に燃料を
噴射して添加する方法は、エンジン内のシリンダに燃料
を供給する系統とは別系統にて燃料を供給、噴射するた
め、噴射量も多くすることが可能であり、エンジンの運
転状態に囚われずに燃料添加を行うことが可能となる。On the other hand, in the method of injecting and adding the fuel into the exhaust passage, the fuel is supplied and injected by a system different from the system for supplying the fuel to the cylinder in the engine, and therefore the injection amount It is also possible to increase the fuel consumption, and fuel can be added without being restricted by the operating state of the engine.
【0022】しかし、排気通路中に燃料を噴射して添加
する方法では、液体の燃料を霧状にて噴射するため、こ
れを反応しやすい気体の状態に変化させるには、噴射さ
れた燃料を短時間で気化可能とするために排気通路の噴
射位置での排気ガス温度がある程度高い必要がある。こ
の添加される燃料は完全に気体となっていないため、パ
ティキュレートフィルタ上で反応する際、燃料が液体か
ら気体へ変移するときの潜熱としてパティキュレートフ
ィルタ床温を奪うことになる。よってこのパティキュレ
ートフィルタ床温も最低限反応に必要な温度よりも高い
必要がある。また、燃料噴射時には噴射箇所周辺の排気
管に付着する燃料もあるため、排気管温度が低いとその
まま液体として溜まり、特に集合管(マニホールド)等
トラップ形状を有する箇所で噴射した場合などはそれに
対する対策が必要となる等の問題がある。However, in the method of injecting fuel into the exhaust passage and adding it, since the liquid fuel is injected in the form of mist, in order to change it into a gas state in which it easily reacts, the injected fuel is used. In order to enable vaporization in a short time, the exhaust gas temperature at the injection position of the exhaust passage needs to be high to some extent. Since the added fuel is not completely gas, when it reacts on the particulate filter, it deprives the particulate filter bed temperature as latent heat when the fuel is changed from liquid to gas. Therefore, the bed temperature of this particulate filter also needs to be higher than the temperature required for the minimum reaction. In addition, when fuel is injected, some fuel adheres to the exhaust pipe around the injection point, so if the exhaust pipe temperature is low, it accumulates as a liquid as it is, and especially when injecting at a trap-shaped place such as a collecting pipe (manifold) There are problems such as the need for countermeasures.
【0023】本発明は、前記の問題に鑑みてなされたも
のであり、内燃機関、及び排気系の諸条件に基づいて、
効率の良い燃料添加方法を採択してしてパティキュレー
トフィルタ上に堆積した微粒子を除去することを課題と
する。The present invention has been made in view of the above problems, and based on various conditions of an internal combustion engine and an exhaust system,
An object is to adopt an efficient fuel addition method to remove fine particles deposited on the particulate filter.
【0024】[0024]
【課題を解決するための手段】前記の問題を解決するた
めに、内燃機関の排気通路中に設けられ、排気ガス中の
微粒子を捕集するフィルタと、内燃機関の燃焼室にて行
われる動力転化用の主燃料噴射とは別に燃料を噴射する
副次的燃料噴射を行う燃焼室中燃料添加手段と、排気通
路に設けられ、排気ガス中に燃料を噴射する排気通路中
燃料添加手段とを備えた排気浄化装置において、前記燃
焼室にて副次的燃料噴射が可能であり、かつ前記フィル
タ床温が気体燃料を酸化反応させる第1の温度以上であ
る場合には、燃焼室中燃料添加手段により燃料添加を行
い、 排気ガス温度が排気通路内にて噴射された燃料を
凝縮させない第2の温度以上であり、かつ前記フィルタ
床温が液滴を含む気体燃料を酸化反応させる第3の温度
以上である場合には、排気通路中燃料添加手段により燃
料添加を行うことを特徴とする内燃機関の排気浄化装置
とする。In order to solve the above problems, a filter provided in an exhaust passage of an internal combustion engine for collecting fine particles in exhaust gas, and a power used in a combustion chamber of the internal combustion engine A combustion chamber fuel addition means for injecting fuel separately from the main fuel injection for conversion, and an exhaust passage fuel addition means for injecting fuel into the exhaust gas. In the exhaust gas purification device provided, when secondary fuel injection is possible in the combustion chamber and the filter bed temperature is equal to or higher than a first temperature at which the gaseous fuel is oxidized and reacted, fuel addition in the combustion chamber is performed. A fuel is added by the means, the exhaust gas temperature is equal to or higher than a second temperature at which the fuel injected in the exhaust passage is not condensed, and the filter bed temperature causes an oxidation reaction of the gaseous fuel containing droplets. If above temperature The exhaust gas purification device for an internal combustion engine is characterized in that the fuel is added by the fuel addition means in the exhaust passage.
【0025】本発明は、内燃機関の運転状況に応じて変
化する機関周辺要素の温度状況によって、燃焼室内での
副次的燃料噴射と排気通路中での燃料噴射とをそれぞれ
選択的に使用して、フィルタに燃料添加を行うものであ
る。According to the present invention, the secondary fuel injection in the combustion chamber and the fuel injection in the exhaust passage are selectively used depending on the temperature condition of the engine peripheral elements which changes according to the operating condition of the internal combustion engine. Then, the fuel is added to the filter.
【0026】これはすなわち、内燃機関が低負荷状態で
あって、燃焼室内にて副次的燃料噴射が可能であるとい
う内燃機関の条件と、フィルタ床温が所定の温度以上で
あるというフィルタ床温の条件が揃うならば、燃焼室に
て副次的燃料噴射を行うことによりフィルタに燃料を添
加する。また、排気通路の温度がある一定温度以上で排
気通路にて燃料噴射が可能な排気通路の条件と、フィル
タ床温が所定の温度以上であるというフィルタ床温の条
件が揃うならば、排気通路中で燃料を噴射することによ
りフィルタに燃料を添加する。This means that the condition of the internal combustion engine is that the internal combustion engine is in a low load state and secondary fuel injection is possible in the combustion chamber, and that the filter bed temperature is equal to or higher than a predetermined temperature. If the temperature conditions are met, fuel is added to the filter by performing secondary fuel injection in the combustion chamber. If the conditions of the exhaust passage where the temperature of the exhaust passage is higher than a certain temperature and fuel can be injected in the exhaust passage and the condition of the filter floor temperature that the filter floor temperature is equal to or higher than a predetermined temperature are met, the exhaust passage Fuel is added to the filter by injecting fuel therein.
【0027】また、前記の二つの手段を決定づける条件
設定を両方とも満足している場合すなわち、前記燃焼室
にて副次的燃料噴射可能であり、かつ前記のフィルタ床
温が、気体燃料を酸化反応させる第1の温度、液滴を含
む気体燃料を酸化反応させる第3の温度のそれぞれより
高く、更に前記の排気通路温度が排気通路にて噴射され
た燃料を凝縮させない第2の温度以上である場合には、
前記燃焼室中燃料添加手段と前記排気通路中燃料添加手
段との一方、又は双方を用いて燃料添加することとす
る。When both of the condition settings that determine the above two means are satisfied, that is, secondary fuel injection is possible in the combustion chamber, and the filter bed temperature oxidizes the gaseous fuel. It is higher than each of the first temperature for reacting and the third temperature for oxidizing the gaseous fuel containing droplets, and the exhaust passage temperature is equal to or higher than the second temperature at which the fuel injected in the exhaust passage is not condensed. In some cases,
The fuel is added using one or both of the fuel addition means in the combustion chamber and the fuel addition means in the exhaust passage.
【0028】前記燃焼室中燃料添加と排気通路中燃料添
加との双方の燃料添加手段を行うに当たり、それぞれの
燃料添加手段にフィルタ床温の条件設定があるが、燃焼
室中燃料添加手段のフィルタ床温の条件である第1の温
度は、気体燃料がフィルタ上で酸化反応可能となる最低
限の温度である。排気通路中燃料添加手段のフィルタ床
温の条件である第3の温度は、フィルタ上で液滴を含む
気体燃料が完全な気体となるのに必要な潜熱を奪われて
も、このフィルタ上で燃料が反応可能となる最低限の温
度である。よって、燃料が気体に転移するための潜熱を
有するために、第3の温度が第1の温度より高くなる。When performing the fuel addition means for both the fuel addition in the combustion chamber and the fuel addition in the exhaust passage, the condition of the filter bed temperature is set in each of the fuel addition means. The first temperature, which is the bed temperature condition, is the minimum temperature at which the gaseous fuel can undergo an oxidation reaction on the filter. The third temperature, which is the condition of the filter bed temperature of the fuel addition means in the exhaust passage, is on this filter even if the latent heat required for the gaseous fuel containing droplets to become a complete gas is deprived on this filter. This is the minimum temperature at which the fuel can react. Therefore, the third temperature becomes higher than the first temperature because the fuel has latent heat for transferring to gas.
【0029】第1の温度を条件とする燃焼室中燃料添加
手段によるフィルタへの燃料添加は、高温状態である燃
焼室内で噴射されて完全に気化した状態の燃料でフィル
タに添加されるために反応性が良好となる。そのため、
低温域である第1の温度でも昇温反応を起こすことが可
能となるが、第3の温度を条件とする排気通路中での燃
料噴射によるフィルタへの燃料添加は、液体を霧状で噴
射した後に、噴射位置雰囲気により気化させてフィルタ
へ燃料添加することとなる。よって周辺雰囲気によって
は噴射した燃料がすべて気化するとは限らないために、
ある程度の高温域である第3の温度の状態で燃料添加を
行うようにする。The addition of fuel to the filter by the fuel addition means in the combustion chamber under the condition of the first temperature is added to the filter by the fuel which is injected in the combustion chamber in the high temperature state and is completely vaporized. The reactivity becomes good. for that reason,
Although it is possible to cause a temperature rising reaction even at the first temperature which is a low temperature range, the addition of fuel to the filter by the fuel injection in the exhaust passage on the condition of the third temperature causes the liquid to be atomized. After that, the fuel is added to the filter after being vaporized by the atmosphere at the injection position. Therefore, not all injected fuel may be vaporized depending on the surrounding atmosphere.
The fuel is added at the third temperature, which is a high temperature range to some extent.
【0030】前記の第1、第3の温度と関連して、前記
排気温度である第2の温度は排気通路中に噴射された燃
料が凝縮しない温度であること、すなわち排気通路中に
燃料を添加した際に添加した燃料が液体として排気通路
中に溜まらないように保てる温度である。In connection with the first and third temperatures, the second temperature which is the exhaust temperature is a temperature at which the fuel injected into the exhaust passage does not condense, that is, the fuel is introduced into the exhaust passage. It is the temperature at which the added fuel can be kept so as not to accumulate in the exhaust passage as a liquid when added.
【0031】前記フィルタは、排気ガス中の酸素濃度が
高いときには排気ガス中の窒素酸化物を保持し、前記酸
素濃度が低下して還元剤である燃料が存在するときには
保持していた窒素酸化物を還元する吸蔵還元型NOx触
媒を担持することができる。The filter retains the nitrogen oxides in the exhaust gas when the oxygen concentration in the exhaust gas is high, and retains the nitrogen oxides when the oxygen concentration decreases and fuel as a reducing agent exists. It is possible to carry an occlusion-reduction type NOx catalyst that reduces NO.
【0032】前記吸蔵還元型NOx触媒は、前記の特性
の他に排気ガス中の酸素濃度が高いときには排気ガス中
の酸素を活性化し、前記酸素濃度が低下し、かつ還元剤
である燃料が存在するときには窒素酸化物を還元すると
共に、活性酸素も生成する。よって、この活性酸素を用
いて排気ガス中の窒素酸化物を浄化すると同時に微粒子
を燃焼させる際の酸化剤の役割を果たす。In addition to the characteristics described above, the NOx storage reduction catalyst activates oxygen in the exhaust gas when the oxygen concentration in the exhaust gas is high, lowers the oxygen concentration, and the fuel as a reducing agent is present. When this is done, nitrogen oxides are reduced and active oxygen is also produced. Therefore, the active oxygen serves to purify the nitrogen oxides in the exhaust gas and at the same time, plays a role of an oxidant when burning the fine particles.
【0033】本発明を実行することにより、パティキュ
レートフィルタ上に堆積した微粒子を内燃機関、及び排
気系の諸条件に応じて効率よく除去することが可能とな
る。By carrying out the present invention, it becomes possible to efficiently remove the particulates deposited on the particulate filter according to various conditions of the internal combustion engine and the exhaust system.
【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION
【0034】以下、本発明に係る内燃機関の燃料噴射制
御装置及び方法を、ディーゼルエンジンシステムに適用
した実施の形態について説明する。An embodiment in which the fuel injection control device and method for an internal combustion engine according to the present invention are applied to a diesel engine system will be described below.
【0035】図1において、内燃機関(以下、エンジン
という)1は、燃料供給系10,燃焼室20,吸気系3
0及び排気系40等を主要部として構成される直列4気
筒のディーゼルエンジンシステムである。In FIG. 1, an internal combustion engine (hereinafter referred to as an engine) 1 includes a fuel supply system 10, a combustion chamber 20, and an intake system 3.
It is an in-line four-cylinder diesel engine system mainly composed of 0 and an exhaust system 40.
【0036】燃料供給系10は、サプライポンプ11,
蓄圧室(コモンレール)12、燃料噴射弁13、遮断弁
14、燃料添加ノズル17、機関燃料通路P1及び添加
燃料通路P2等を備えて構成される。The fuel supply system 10 includes a supply pump 11,
A pressure accumulating chamber (common rail) 12, a fuel injection valve 13, a shutoff valve 14, a fuel addition nozzle 17, an engine fuel passage P1 and an addition fuel passage P2 are provided.
【0037】サプライポンプ11は燃料タンク(図外)
からくみ上げた燃料を高圧にし、機関燃料通路P1を介
してコモンレール12に供給する。コモンレール12は
サプライポンプ11から供給された高圧燃料を所定の圧
力に保持(蓄圧)する機能を有し、この蓄圧した燃料を
各燃料噴射弁13に分配する。燃料噴射弁13はその内
部に電磁ソレノイド(図外)を備えた電磁弁であり、適
宜開弁して燃焼室20内に燃料を供給噴射する。The supply pump 11 is a fuel tank (not shown)
The fuel drawn up is made into a high pressure and supplied to the common rail 12 through the engine fuel passage P1. The common rail 12 has a function of holding (accumulating) the high-pressure fuel supplied from the supply pump 11 at a predetermined pressure, and distributes the accumulated fuel to each fuel injection valve 13. The fuel injection valve 13 is an electromagnetic valve having an electromagnetic solenoid (not shown) inside, and is opened appropriately to supply and inject fuel into the combustion chamber 20.
【0038】他方、サプライポンプ11は、燃料タンク
からくみ上げた燃料の一部を添加燃料通路P2を介して
燃料添加ノズル17に供給する。燃料通路P2にはサプ
ライポンプ11から燃料添加ノズル17に向かって遮断
弁14が配設されている。遮断弁14は緊急時におい
て、添加燃料通路P2を遮断し、燃料供給を中止する。
燃料添加ノズル17は燃料噴射弁13と同様な電磁弁で
あり、排気系40内に還元剤としての燃料を噴射添加す
る本発明でいう排気通路中燃料添加手段である。On the other hand, the supply pump 11 supplies a part of the fuel pumped up from the fuel tank to the fuel addition nozzle 17 through the addition fuel passage P2. A shutoff valve 14 is arranged in the fuel passage P2 from the supply pump 11 toward the fuel addition nozzle 17. In an emergency, the shutoff valve 14 shuts off the additional fuel passage P2 and stops the fuel supply.
The fuel addition nozzle 17 is an electromagnetic valve similar to the fuel injection valve 13, and is an exhaust passage fuel addition means in the present invention for injecting and adding fuel as a reducing agent into the exhaust system 40.
【0039】吸気系30は、各燃焼室20内に供給され
る吸気空気の通路(吸気通路)を形成する。一方、排気
系40は、各燃焼室20から排出される排気ガスの通路
(排気通路)を形成する。The intake system 30 forms a passage (intake passage) for intake air supplied into each combustion chamber 20. On the other hand, the exhaust system 40 forms a passage (exhaust passage) for exhaust gas discharged from each combustion chamber 20.
【0040】また、このエンジン1には、周知の過給器
(ターボチャージャ)50が備えられている。ターボチ
ャージャ50は、シャフト51を介して連結されたター
ビンホイール52とコンプレッサ53とを備える。一方
のコンプレッサ53は吸気系30内の吸気に晒され、他
方のタービンホイール52は排気系40内の排気ガスに
晒されている。このような構成を有するターボチャージ
ャ50は、タービンホイール52が受ける排気流(排気
圧)を利用してコンプレッサ53を回転させ、吸気圧を
高める効果(過給効果)を有する。The engine 1 is also provided with a known supercharger (turbocharger) 50. The turbocharger 50 includes a turbine wheel 52 and a compressor 53 that are connected via a shaft 51. One compressor 53 is exposed to intake air in the intake system 30, and the other turbine wheel 52 is exposed to exhaust gas in the exhaust system 40. The turbocharger 50 having such a structure has an effect of increasing the intake pressure (supercharging effect) by rotating the compressor 53 using the exhaust flow (exhaust pressure) received by the turbine wheel 52.
【0041】吸気系30において、ターボチャージャ5
0に設けられたインタークーラ31は、過給によって昇
温した吸入空気を強制冷却する。インタークーラ31よ
りも更に下流に設けられたスロットル弁32は、その開
度を無段階に調節することができる電子制御式の開閉弁
であり、所定の条件下において吸気通路の流路面積を絞
り、同吸入空気の供給量を調整(低減)する機能を有す
る。In the intake system 30, the turbocharger 5
The intercooler 31 provided at 0 forcibly cools the intake air whose temperature has risen due to supercharging. The throttle valve 32, which is provided further downstream than the intercooler 31, is an electronically controlled on-off valve whose opening can be adjusted steplessly, and reduces the flow passage area of the intake passage under predetermined conditions. , Has a function of adjusting (reducing) the supply amount of the intake air.
【0042】また、エンジン1には、燃焼室20の上流
(吸気系30)及び下流(排気系40)をバイパスする
排気環流通路(EGR通路)60が形成されている。具
体的には、EGR通路60は排気系40におけるターボ
チャージャ50上流の排気集合管40aと吸気系30に
おけるスロットル弁32の下流側を連通している。この
EGR通路60は、排気ガスの一部を適宜吸気系30に
戻す機能を有する。EGR通路60には、電子制御によ
って無段階に開閉され、同通路を流れる排気流量を自在
に調節することが可能なEGR弁61と、EGR通路6
0を通過(環流)する排気ガスを冷却するためのEGR
クーラ62が設けられている。The engine 1 is also provided with an exhaust gas recirculation passage (EGR passage) 60 that bypasses the upstream side (intake system 30) and the downstream side (exhaust system 40) of the combustion chamber 20. Specifically, the EGR passage 60 connects the exhaust collecting pipe 40a upstream of the turbocharger 50 in the exhaust system 40 and the downstream side of the throttle valve 32 in the intake system 30. The EGR passage 60 has a function of appropriately returning a part of the exhaust gas to the intake system 30. The EGR passage 60 is opened and closed steplessly by electronic control, and an EGR valve 61 capable of freely adjusting the flow rate of exhaust gas flowing through the passage and an EGR passage 6 are provided.
EGR for cooling exhaust gas passing through 0 (circulation)
A cooler 62 is provided.
【0043】また、排気系40において、燃焼室より接
続する排気集合管40a、タービンホイール52が設け
られた部位より下流側には、排気ガスの流路に沿って排
気通路40b、その下流にNOx触媒ケーシング42、
更に下流に排気通路40cが順次連結されている。NO
x触媒ケーシング42には、後述するように排気ガス中
に含まれるNOx等の有害成分を浄化する吸蔵還元型N
Ox触媒42b及び、排気ガス中に含まれる煤等の微粒
子(PM)をNOx等の有害成分と併せて浄化するパテ
ィキュレートフィルタ42aが収容されている(図3を
参照)。Further, in the exhaust system 40, an exhaust passage 40b along a flow path of exhaust gas is provided downstream of a portion where an exhaust collecting pipe 40a connected to a combustion chamber and a turbine wheel 52 are provided, and NOx is provided downstream thereof. Catalyst casing 42,
Further, the exhaust passage 40c is sequentially connected downstream. NO
The x-catalyst casing 42 has an occlusion reduction type N that purifies harmful components such as NOx contained in the exhaust gas as described later.
An Ox catalyst 42b and a particulate filter 42a that purifies particulates (PM) such as soot contained in the exhaust gas together with harmful components such as NOx are housed (see FIG. 3).
【0044】また、エンジン1の各部位には、各種セン
サが取り付けられており、当該部位の環境条件やエンジ
ン1の運転状態に関する信号を出力する。Various sensors are attached to each part of the engine 1 to output signals relating to the environmental conditions of the part and the operating state of the engine 1.
【0045】すなわち、レール圧センサ70は、コモン
レール12内に蓄えられている燃料の圧力に応じた検出
信号を出力する。燃圧センサ71は、添加燃料通路P2
内を流通する燃料のうち、燃料添加ノズル17へ導入さ
れる燃料の圧力(燃圧)Pgに応じた検出信号を出力す
る。エアフローメータ72は、吸気系30内のスロット
ル弁32上流において吸入空気の流量(吸気量)Gaに
応じた検出信号を出力する。空燃比(A/F)センサ7
3は、排気系40の触媒ケーシング42上流において排
気ガス中の酸素濃度に応じて連続的に変化する検出信号
を出力する。排気温度センサ74は、同じく排気系40
の触媒ケーシング42下流において排気ガスの温度(排
気温度)TEXに応じた検出信号を出力する。NOxセ
ンサ75は、同じく排気系40の触媒ケーシング42下
流において排気ガス中のNOx濃度に応じて連続的に変
化する検出信号を出力する。触媒流入排気温度センサ7
8は触媒ケーシング42入口において流入する排気ガス
の温度に応じた検出信号を出力する。触媒温度センサ7
9は触媒ケーシング42中において触媒床温に応じた検
出信号を出力する。圧力センサ90は触媒ケーシング4
2上流に設けられ、排気通路の圧力に応じた検出信号を
出力する。That is, the rail pressure sensor 70 outputs a detection signal corresponding to the pressure of the fuel stored in the common rail 12. The fuel pressure sensor 71 has an additional fuel passage P2.
A detection signal corresponding to the pressure (fuel pressure) Pg of the fuel introduced into the fuel addition nozzle 17 among the fuel flowing inside is output. The air flow meter 72 outputs a detection signal according to the flow rate (intake amount) Ga of intake air upstream of the throttle valve 32 in the intake system 30. Air-fuel ratio (A / F) sensor 7
3 outputs a detection signal that continuously changes according to the oxygen concentration in the exhaust gas upstream of the catalyst casing 42 of the exhaust system 40. The exhaust temperature sensor 74 is the same as the exhaust system 40.
A detection signal corresponding to the exhaust gas temperature (exhaust temperature) TEX is output downstream of the catalyst casing 42. Similarly, the NOx sensor 75 outputs a detection signal that continuously changes according to the NOx concentration in the exhaust gas downstream of the catalyst casing 42 of the exhaust system 40. Catalyst inflow exhaust temperature sensor 7
8 outputs a detection signal according to the temperature of the exhaust gas flowing in at the inlet of the catalyst casing 42. Catalyst temperature sensor 7
9 outputs a detection signal in the catalyst casing 42 according to the catalyst bed temperature. The pressure sensor 90 is the catalyst casing 4
2 is provided upstream and outputs a detection signal corresponding to the pressure in the exhaust passage.
【0046】また、アクセル開度センサ76はエンジン
1のアクセルペダル(図外)に取り付けられ、同ペダル
の踏込量ACCに応じてエンジン1において要求する仕
事量の基となる検出信号を出力する。クランク角センサ
77は、エンジン1の出力軸(クランクシャフト)が一
定角度回転する毎に検出信号(パルス)を出力する。こ
れら各センサ70〜79、90は、電子制御装置(EC
U)80と電気的に接続されている。Further, the accelerator opening sensor 76 is attached to an accelerator pedal (not shown) of the engine 1 and outputs a detection signal which is a basis of the work amount required in the engine 1 according to the depression amount ACC of the pedal. The crank angle sensor 77 outputs a detection signal (pulse) every time the output shaft (crankshaft) of the engine 1 rotates by a certain angle. Each of these sensors 70 to 79, 90 is an electronic control unit (EC
U) 80 is electrically connected.
【0047】図2に示すように、ECU80は中央演算
処理装置(CPU)81、読み出し専用メモリ(RO
M)82、ランダムアクセスメモリ(RAM)83及び
運転停止後も記憶した情報が消去されないバックアップ
RAM84、タイマカウンタ85等と、A/D変換器を
含む外部入力回路86と、外部出力回路87とが、双方
向性バス88により接続されて構成される論理演算回路
を備える。As shown in FIG. 2, the ECU 80 includes a central processing unit (CPU) 81 and a read-only memory (RO).
M) 82, random access memory (RAM) 83, backup RAM 84 in which stored information is not erased even after operation stop, timer counter 85, etc., external input circuit 86 including A / D converter, and external output circuit 87. , A logical operation circuit configured by being connected by a bidirectional bus 88.
【0048】ECU80は、前記各種センサの検出信号
を外部入力回路を介して入力し、これら信号に基づいて
ECU80に有するCPU81において、ROM82に
記憶されているプログラムから、エンジン1の燃料噴射
等についての基本制御を行う他、還元剤(還元剤として
機能する燃料)添加に係る燃料噴射の供給量の決定や添
加時期等に関する還元剤(燃料)添加制御等、エンジン
1の運転状態に関係する各種制御を行う。The ECU 80 inputs the detection signals of the various sensors through an external input circuit, and in the CPU 81 of the ECU 80 based on these signals, a program stored in the ROM 82 is used to detect fuel injection of the engine 1 or the like. In addition to performing basic control, various controls related to the operating state of the engine 1, such as determining the supply amount of fuel injection related to addition of a reducing agent (fuel that functions as a reducing agent) and reducing agent (fuel) addition control regarding the addition timing, etc. I do.
【0049】尚、燃料噴射弁13を通じて各気筒に燃料
を供給する燃料供給系10、排気系40に備えられたN
Ox触媒やパティキュレートフィルタ、及びこれら燃料
供給係10やNOx触媒及びパティキュレートフィルタ
の機能を制御するECU80等は、併せて本実施の形態
に係るエンジン1の排気浄化装置を構成する。前記燃料
添加制御等は、当該制御に関する指令信号を出力するE
CU80を含め、この排気浄化装置を構成する各種部材
の作動を通じて実施される。The N provided in the fuel supply system 10 and the exhaust system 40 for supplying fuel to each cylinder through the fuel injection valve 13.
The Ox catalyst and the particulate filter, and the ECU 80 that controls the functions of the fuel supply section 10, the NOx catalyst and the particulate filter, and the like together constitute the exhaust gas purification device of the engine 1 according to the present embodiment. The fuel addition control or the like outputs an instruction signal related to the control E
It is carried out through the operation of various members constituting the exhaust emission control device including the CU80.
【0050】次に、以上説明したエンジン1の構成要素
のうち、排気系40に設けられた触媒ケーシング42に
ついて、その構成及び機能を詳しく説明する。Next, of the components of the engine 1 described above, the configuration and function of the catalyst casing 42 provided in the exhaust system 40 will be described in detail.
【0051】図3は、図1に示した触媒ケーシング42
を、その内部構造の一部と共に拡大して示す断面図であ
る。触媒ケーシング42は、その内部に吸蔵還元型NO
x触媒42bを担持したパティキュレートフィルタ42
aを収容する。FIG. 3 shows the catalyst casing 42 shown in FIG.
FIG. 3 is a cross-sectional view showing, in an enlarged manner, with a part of its internal structure. The catalyst casing 42 has a storage reduction type NO inside.
Particulate filter 42 carrying x catalyst 42b
accommodates a.
【0052】NOx触媒42bは、例えばアルミナ(A
L2O3)を主材料とした担体とし、この担体の表面にN
Ox吸収剤として機能する、例えばカリウム(K)、ナ
トリウム(Na)、リチウム(Li)、セシウム(C
s)のようなアルカリ金属、バリウム(Ba)、カルシ
ウム(Ca)、のようなアルカリ土類金属、あるいはイ
ットリウム(Y)のような希土類と、酸化触媒(貴金属
触媒)として機能する、例えば白金(Pt)のような貴
金属とが担持されることによって構成される。The NOx catalyst 42b is made of, for example, alumina (A
L 2 O 3 ) as the main material, and the surface of this carrier is N
Functions as an Ox absorbent, for example, potassium (K), sodium (Na), lithium (Li), cesium (C
Alkali metal such as s), alkaline earth metal such as barium (Ba), calcium (Ca), or rare earth such as yttrium (Y), and platinum (e.g. platinum (metal) that functions as an oxidation catalyst (precious metal catalyst)). It is constituted by carrying a noble metal such as Pt).
【0053】パティキュレートフィルタ42aは、例え
ばコージライトのような多孔質材料から形成されてお
り、従って排気流入通路に流入した排気ガスは、端部が
閉鎖されているために矢印で示されるように周囲の多孔
質材料からなる隔壁を通り、隣接する排気流入通路に流
出する。The particulate filter 42a is made of a porous material such as cordierite. Therefore, the exhaust gas flowing into the exhaust gas inflow passage is closed as shown by the arrow since it is closed. It passes through the surrounding partition wall made of a porous material and flows out to the adjacent exhaust gas inflow passage.
【0054】尚、本実施の形態では、パティキュレート
フィルタ42aの隔壁の表面上、及び隔壁の細孔の内壁
面に、前記のアルミナ等からなる担体の層が形成されて
おり、この担体上に貴金属触媒とNOx吸収剤からなる
NOx触媒42bが担持されている。In the present embodiment, the carrier layer made of alumina or the like is formed on the surface of the partition wall of the particulate filter 42a and on the inner wall surface of the pores of the partition wall, and on this carrier. A NOx catalyst 42b including a noble metal catalyst and a NOx absorbent is carried.
【0055】NOx吸収剤は、排気ガス中の酸素濃度が
高い状態ではNOxを保持し、排気ガス中の酸素濃度が
低い状態ではNOxを放出する特性を有する。また、排
気ガス中にNOxが放出されたとき、排気ガス中にHC
やCO等が存在していれば、貴金属触媒がこれらHCや
COの酸化反応を促すことで、NOxを酸化成分、HC
やCOを還元成分とする酸化還元反応が両者間で起こ
る。すなわち、HCやCOはCO2やH2Oに酸化され、
NOxはN2に還元される。The NOx absorbent has a characteristic that it retains NOx when the oxygen concentration in the exhaust gas is high and releases NOx when the oxygen concentration in the exhaust gas is low. Further, when NOx is released into the exhaust gas, HC is contained in the exhaust gas.
If CO, CO, etc. are present, the noble metal catalyst promotes the oxidation reaction of these HC and CO, thereby converting NOx into an oxidizing component, HC
A redox reaction using CO or CO as a reducing component occurs between the two. That is, HC and CO are oxidized to CO 2 and H 2 O,
NOx is reduced to N 2 .
【0056】また、NOx触媒42bを構成している貴
金属触媒はHCの酸化を促して、HCの酸化反応熱によ
り床温を昇温する。Further, the noble metal catalyst forming the NOx catalyst 42b promotes the oxidation of HC, and the bed temperature is raised by the heat of the oxidation reaction of HC.
【0057】また、NOx吸収剤は排気ガス中の酸素濃
度が高い状態であるときにでも所定の限界量のNOxを
保持すると、それ以上NOxを保持しなくなる。エンジ
ン1では、触媒ケーシング42内に収容されたNOx触
媒42bのNOx保持量が限界に達する前に、排気通路
の触媒ケーシング42上流に還元剤を添加供給すること
で、NOx触媒42bを活性化して保持されたNOxを
還元浄化し、NOx触媒42bのNOx保持能力を回復
させるといった制御を所定のインターバルで繰り返す。When the NOx absorbent holds a predetermined limit amount of NOx even when the oxygen concentration in the exhaust gas is high, the NOx absorbent does not hold NOx any more. In the engine 1, before the NOx retention amount of the NOx catalyst 42b housed in the catalyst casing 42 reaches a limit, the reducing agent is added and supplied upstream of the catalyst casing 42 in the exhaust passage to activate the NOx catalyst 42b. The control of reducing and purifying the retained NOx and recovering the NOx retaining capacity of the NOx catalyst 42b is repeated at predetermined intervals.
【0058】前記のパティキュレートフィルタ42aに
おいては、その表面に担持するNOx触媒42bが、N
Oxを保持、還元及び浄化を繰り返し行うことは上述し
た通りであるが、その一方、NOx触媒42bはこのよ
うなNOxの浄化を行う過程で昇温して、副次的に活性
酸素を生成する特性を有する。パティキュレートフィル
タ42aを排気ガスが通過する際にその排気ガス中に含
まれる煤等のPM成分は多孔質材料により、捕捉され
る。ここで、NOx触媒42bの生成する活性酸素は、
酸化剤として極めて高い反応性(活性)を有するため、
捕捉されたPM成分は、燃料添加によって昇温した状態
でこの活性酸素と輝炎を発することなく速やかに反応
し、浄化されることとなる。In the particulate filter 42a, the NOx catalyst 42b supported on the surface thereof is N
The repeated holding, reduction and purification of Ox are as described above. On the other hand, the NOx catalyst 42b rises in temperature in the process of purifying NOx, and secondarily produces active oxygen. Have characteristics. When exhaust gas passes through the particulate filter 42a, PM components such as soot contained in the exhaust gas are captured by the porous material. Here, the active oxygen generated by the NOx catalyst 42b is
Since it has extremely high reactivity (activity) as an oxidant,
The trapped PM component reacts rapidly with the active oxygen without emitting a bright flame and is purified in a state where the temperature is raised by the addition of fuel.
【0059】以下NOx浄化について具体的に述べる。The NOx purification will be specifically described below.
【0060】一般に、ディーゼルエンジンでは、燃焼室
内で燃焼に供される燃料及び空気の混合気の酸素濃度
が、殆どの運転領域で高濃度状態にある。燃焼に供され
る混合気の酸素濃度は、燃焼に供された酸素を差し引い
てそのまま排気ガス中の酸素濃度に反映されるのが通常
であり、混合気中の酸素濃度(空燃比)が高ければ、排
気ガス中の酸素濃度(空燃比)も基本的には同様に高く
なる。Generally, in a diesel engine, the oxygen concentration of the mixture of fuel and air used for combustion in the combustion chamber is high in most operating regions. The oxygen concentration of the air-fuel mixture used for combustion is normally reflected in the oxygen concentration in the exhaust gas as it is after subtracting the oxygen used for combustion, and the oxygen concentration (air-fuel ratio) in the air-fuel mixture is high. For example, the oxygen concentration (air-fuel ratio) in the exhaust gas also basically becomes high.
【0061】一方、上述したように、NOx触媒42b
は排気ガス中の酸素濃度が高ければNOxを保持し、低
ければNOxをNO2若しくはNOに還元する特性を有
するため、排気ガス中の酸素が高濃度にある限りNOx
を保持し続ける。但し、当該NOx触媒42bのNOx
保持量には限界が存在し、同NOx触媒42bが限界量
のNOxを保持した状態では、排気ガス中のNOxは同
NOx触媒42bに保持されず触媒ケーシング42を素
通りする。On the other hand, as described above, the NOx catalyst 42b
Has the property of holding NOx if the oxygen concentration in the exhaust gas is high, and reducing NOx to NO 2 or NO if it is low, so long as the oxygen concentration in the exhaust gas is high.
Keep holding. However, the NOx of the NOx catalyst 42b concerned
There is a limit to the holding amount, and when the NOx catalyst 42b holds the limiting amount of NOx, NOx in the exhaust gas is not held by the NOx catalyst 42b and passes through the catalyst casing 42 as it is.
【0062】NOx触媒のNOx保持作用を復帰させる
ため、還元剤をNOx吸収材に添加する必要があるが、
エンジンの構成上、通常の燃料噴射を行った場合に、酸
素濃度が低い、すなわち還元剤である燃料を多量に含ん
だ排気ガスは排出され難い。In order to restore the NOx retention function of the NOx catalyst, it is necessary to add a reducing agent to the NOx absorbent.
Due to the structure of the engine, when normal fuel injection is performed, exhaust gas having a low oxygen concentration, that is, containing a large amount of fuel that is a reducing agent is difficult to be discharged.
【0063】よって、内燃機関の燃焼室にて行われる動
力転化用の主燃料噴射とは別に主に未燃焼燃料として燃
料を噴射する副次的燃料噴射を行う方法や、排気通路に
設けられ、排気ガス中に燃料を噴射する方法などにより
燃料を排気ガス中に添加して排気ガス中の還元剤成分を
増量させ、この還元成分によりNOx保持作用を復帰さ
せる。Therefore, in addition to the main fuel injection for power conversion that is performed in the combustion chamber of the internal combustion engine, a method for performing secondary fuel injection that mainly injects fuel as unburned fuel, and a method provided in the exhaust passage, The fuel is added to the exhaust gas by a method of injecting the fuel into the exhaust gas to increase the amount of the reducing agent component in the exhaust gas, and the reducing component restores the NOx retention action.
【0064】エンジン1のECU80は、NOxセンサ
75の出力信号に基づいてNOx触媒42b下流におけ
る排気ガス中のNOx濃度を連続的に観測する。NOx
触媒42bによるNOxの保持能力(保持効率)は、当
該NOx触媒42bに保持されているNOx量が多くな
るほど、言い換えれば、NOx触媒42bに保持されて
いるNOx量が当該NOx触媒42bの保持し得るNO
xの最大量(飽和量)に近づくほど低くなる。すなわ
ち、NOx触媒42b内におけるNOxの保持量が増大
すれば、当該触媒ケーシング42を素通りして下流に排
出されるNOx濃度も上昇するようになる。こうした両
者の推移様態には、十分な相関性があるため、NOx濃
度の推移様態に基づいてNOx触媒42b内におけるN
Oxの保持量を把握することができる。The ECU 80 of the engine 1 continuously observes the NOx concentration in the exhaust gas downstream of the NOx catalyst 42b based on the output signal of the NOx sensor 75. NOx
The NOx retention capacity (retention efficiency) of the catalyst 42b can be retained by the NOx catalyst 42b as the NOx amount retained by the NOx catalyst 42b increases, in other words, the NOx amount retained by the NOx catalyst 42b can be retained by the NOx catalyst 42b. NO
It becomes lower as it approaches the maximum amount (saturation amount) of x. That is, as the amount of NOx retained in the NOx catalyst 42b increases, the concentration of NOx that passes through the catalyst casing 42 and is discharged downstream also increases. Since there is a sufficient correlation between the transitional states of the two, the Nx in the NOx catalyst 42b is determined based on the transitional state of the NOx concentration.
The amount of Ox retained can be grasped.
【0065】そこで、ECU80は、触媒ケーシング4
2下流におけるNOx濃度が所定濃度を上回ったところ
で、NOx触媒42b内のNOx保持量が所定量に達し
たものと判断して、燃料添加手段を用いて、排気ガス中
に未燃焼燃料を含ませることにより、排気系40の触媒
ケーシング42上流に燃料を添加して、触媒ケーシング
42内に流入する排気ガス中の還元成分量を一時的に増
量し、空燃比を低下させて、触媒中のNOxを還元剤で
ある燃料と反応させて浄化する。Therefore, the ECU 80 controls the catalyst casing 4
2 When the NOx concentration in the downstream reaches a predetermined concentration, it is judged that the NOx holding amount in the NOx catalyst 42b has reached a predetermined amount, and the fuel addition means is used to include the unburned fuel in the exhaust gas. As a result, fuel is added upstream of the catalyst casing 42 of the exhaust system 40 to temporarily increase the amount of reducing components in the exhaust gas flowing into the catalyst casing 42, lower the air-fuel ratio, and reduce NOx in the catalyst. Reacts with the fuel that is a reducing agent to purify it.
【0066】次に排気ガス中に含まれる微粒子(以下P
Mと称す)の浄化について述べる。Next, the fine particles contained in the exhaust gas (hereinafter P
Purification of (referred to as M) will be described.
【0067】NOxの浄化と同様に、PMの浄化につい
ても燃料を利用してこれを行うが、NOx浄化は燃料の
主成分であるHCとNOxとの化学反応を利用して浄化
を行うのに対し、PMの浄化は主にHCを熱源として昇
温させ、その温度によってPM及び酸素(O2)を活性
化し、酸化させて浄化する。Similar to the purification of NOx, the purification of PM is also performed by using the fuel, but the purification of NOx is performed by utilizing the chemical reaction between HC and NOx which are the main components of the fuel. On the other hand, in the purification of PM, mainly by using HC as a heat source to raise the temperature, PM and oxygen (O 2 ) are activated by the temperature and oxidized to purify.
【0068】よって、PMの浄化に関しては添加された
燃料をパティキュレートフィルタ42aでの熱源として
の利用、すなわち燃料の燃焼反応性を基にしてその浄化
を行う。Therefore, regarding the purification of PM, the added fuel is used as a heat source in the particulate filter 42a, that is, the purification is performed based on the combustion reactivity of the fuel.
【0069】主な制御方法としては、アクセル開度セン
サ76,クランク角センサ77,タイマカウンタ85等
の出力信号等をバックアップRAM84上に蓄積した運
転履歴、及び排気通路中に設置された圧力センサ90よ
りの信号等からCPU81にてROM82に記憶してあ
るプログラムと比較して浄化方法である燃料添加を行う
かどうかを判断する。The main control method is as follows: the operation history in which the output signals of the accelerator opening sensor 76, the crank angle sensor 77, the timer counter 85, etc. are accumulated in the backup RAM 84, and the pressure sensor 90 installed in the exhaust passage. The CPU 81 compares it with a program stored in the ROM 82 to determine whether to add fuel, which is a purification method, based on the signal from the above.
【0070】前記の燃料添加を行う方法についてもNO
x触媒42bにおける燃料添加と同様に、図4に示すよ
う、内燃機関の燃焼室にて行われる動力転化用の主燃料
噴射の一部が燃焼工程後に噴射されることにより未燃焼
燃料を発生させる副次的燃料噴射を行う方法(燃焼室中
燃料添加手段)と、図5に示すよう、排気通路に燃料噴
射装置を設けて、排気ガス中に直接燃料を噴射する方法
(排気通路中燃料添加手段)とがある。前記の方法には
それぞれ個々異なる特徴があるため、それら特徴も前記
判断材料の1因子となる。NO for the above method for adding fuel
Similarly to the fuel addition in the x catalyst 42b, as shown in FIG. 4, a part of the main fuel injection for power conversion performed in the combustion chamber of the internal combustion engine is injected after the combustion process to generate unburned fuel. A method of performing secondary fuel injection (combustion chamber fuel addition means) and a method of providing a fuel injection device in the exhaust passage to inject fuel directly into the exhaust gas as shown in FIG. 5 (exhaust passage fuel addition) Means). Since each of the above methods has different characteristics, those characteristics are also one factor of the judgment factor.
【0071】以下、前記の燃焼室中燃料添加手段と、排
気通路中燃料添加手段とのそれぞれの特徴を述べる。The features of the above-mentioned fuel addition means in the combustion chamber and the fuel addition means in the exhaust passage will be described below.
【0072】燃焼室中燃料添加手段については、
燃焼室内にて燃料を噴射するため、燃焼室内の熱にて
十分に気化すること、
気化して活性化された状態の燃料が触媒ケーシング4
2に流入するため、触媒床温が、気化して活性化された
燃料が反応可能な最低限の温度である第1の温度(20
0℃程度を想定)でも昇温反応可能であること、
噴射量はアクセルペダル踏込量より要求される燃料量
に左右され、直接的には噴射量を変化することができな
い、またその量も多量では無いこと、
エンジンの負荷が大きい場合や、エンジン始動時等で
は副次的燃料噴射を行った場合にエンジンにトルク段差
等が発生するため、これらの状態では燃料添加を行えな
いこと、等が挙げられる。Regarding the fuel addition means in the combustion chamber, since the fuel is injected in the combustion chamber, the fuel in the combustion chamber must be sufficiently vaporized by the heat in the combustion chamber.
As the catalyst bed temperature flows into the first temperature (20), the catalyst bed temperature is the minimum temperature at which the vaporized and activated fuel can react.
It is possible to raise the temperature even at 0 ° C), and the injection amount depends on the fuel amount required from the accelerator pedal depression amount, and the injection amount cannot be changed directly. However, there is a torque step in the engine when the engine load is large, or when secondary fuel injection is performed at the time of starting the engine, so fuel addition cannot be performed in these conditions. Can be mentioned.
【0073】排気通路中燃料添加手段については、
排気通路中に噴射するため、排気通路内部温度が第2
の温度(300℃程度を想定)以上で無いと気化せずに
排気通路内面に付着して液溜まりを形成する虞があるこ
と、
噴射された燃料すべてが気化せずに、液滴状態のまま
触媒ケーシング42に流入する場合もあるため、フィル
タ上で液滴を含む気体である燃料が完全な気体となるに
必要な潜熱を奪っても、このフィルタ上で燃料が反応可
能となる最低限の温度であって第1の温度より高温であ
る第3の温度(250℃程度を想定)以上であること、
エンジンに添加する燃料系統とは別系統での燃料噴射
のため、エンジンの動作に影響されず、噴射量も直接制
御可能であり、その量も多量とすることが可能であるこ
と、等が挙げられる。With regard to the fuel addition means in the exhaust passage, the temperature inside the exhaust passage is the second because the fuel is injected into the exhaust passage.
If it is not higher than the temperature (assuming about 300 ° C), it may vaporize and adhere to the inner surface of the exhaust passage to form a liquid pool. All the injected fuel does not vaporize and remains in a droplet state. Since it may flow into the catalyst casing 42, even if the latent heat necessary for the fuel, which is a gas containing droplets, to become a complete gas on the filter is taken away, the minimum amount of fuel that can react on the filter The temperature is higher than the third temperature, which is higher than the first temperature (assuming about 250 ° C), and the fuel injection from a system different from the fuel system added to the engine affects the operation of the engine. However, the injection amount can be directly controlled, and the injection amount can be increased.
【0074】前記の特徴をまとめると燃焼室中燃料添加
手段については、触媒床温が低くても燃料添加可能であ
るが、エンジンの運転状況に左右され、その噴射量も多
くはなく、噴射量の調節も難しいということである。排
気通路中燃料添加手段については、エンジンの運転状況
に関係なく、噴射量も調節可能であるが、触媒床温はあ
る程度高い状態が必要で、排気通路温度にも制約があ
る、と言うこととなる。In summary of the above characteristics, the fuel addition means in the combustion chamber can add fuel even if the catalyst bed temperature is low, but the injection amount is not so large depending on the operating conditions of the engine, and the injection amount is small. It is also difficult to adjust. Regarding the fuel addition means in the exhaust passage, the injection amount can be adjusted regardless of the operating condition of the engine, but the catalyst bed temperature needs to be high to some extent, and the exhaust passage temperature is also limited. Become.
【0075】以上の条件を加味して燃料添加の可否につ
いてのプログラムを説明する。先ず、PMが蓄積して除
去する必要があるとされた場合、温度センサ74により
触媒出ガス温度を測定する。ここで触媒出ガス温度を測
るのは、触媒ケーシング42が高温側(≧700℃)に
ある場合に、燃料添加を行うことによって更に高温にな
り、結果的にNOx触媒42bが熱劣化するのを防止す
ることが主な目的である。A program regarding whether or not fuel can be added will be described with the above conditions taken into consideration. First, when PM is required to be accumulated and removed, the temperature sensor 74 measures the catalyst outlet gas temperature. Here, the catalyst outlet gas temperature is measured because when the catalyst casing 42 is on the high temperature side (≧ 700 ° C.), the temperature is further increased by adding fuel, and as a result, the NOx catalyst 42b is thermally deteriorated. The main purpose is to prevent.
【0076】次に燃焼室中燃料添加の可否について説明
する。前記の触媒出ガス温度を測定した後、アクセル開
度センサ76,クランク角センサ77より、エンジン1
の負荷が大きいかどうかを判断すると共に水温計(図
外)よりエンジンの冷却水温を測定する。ここで水温を
測るのは、特にエンジン1を始動した直後では回転が不
安定であり、この状態では燃料添加を行えないため、エ
ンジン1を始動後、暖機運転が終了したか否かの判断材
料の一つとしてエンジンの冷却水温を採用した。次に触
媒床温センサ79より触媒床温を測定し所定の第1の温
度(200℃)以上なら燃焼室にて燃料添加を行う。Next, whether or not fuel can be added to the combustion chamber will be described. After measuring the catalyst outlet gas temperature, the engine 1 is measured by the accelerator opening sensor 76 and the crank angle sensor 77.
Determine whether the load is heavy and measure the engine cooling water temperature with a water temperature gauge (not shown). The water temperature is measured here, especially since the rotation is unstable immediately after the engine 1 is started, and fuel cannot be added in this state. Therefore, it is determined whether or not the warm-up operation is finished after the engine 1 is started. The engine cooling water temperature was adopted as one of the materials. Next, the catalyst bed temperature is measured by the catalyst bed temperature sensor 79, and if the temperature is equal to or higher than a predetermined first temperature (200 ° C.), fuel is added in the combustion chamber.
【0077】続いて排気通路中燃料添加の可否について
説明する。同様に前記の触媒出ガス温度を測定した後、
触媒流入排気温度センサ78にて触媒入ガス温度を測定
する。本来は燃料噴射位置での温度を測定するのが望ま
しいが、センサの配置等の問題から触媒入ガス温度を測
定し、その値から燃料噴射位置の温度を推定する。触媒
入ガス温度が所定の第2の温度(300℃)以上ある場
合には、次に触媒床温センサ79により、触媒床温を測
定し、所定の第3の温度(250℃)以上なら排気通路
中にて燃料添加を行い、PM再生のための燃料添加制御
を終了する。Next, whether or not fuel can be added to the exhaust passage will be described. Similarly, after measuring the catalyst outlet gas temperature,
The catalyst inlet gas temperature sensor 78 measures the catalyst inlet gas temperature. Originally, it is desirable to measure the temperature at the fuel injection position, but the catalyst inlet gas temperature is measured due to problems such as sensor arrangement, and the temperature at the fuel injection position is estimated from that value. When the catalyst inlet gas temperature is equal to or higher than the predetermined second temperature (300 ° C.), the catalyst bed temperature sensor 79 then measures the catalyst bed temperature, and if the temperature is equal to or higher than the predetermined third temperature (250 ° C.), exhaust is performed. Fuel is added in the passage, and the fuel addition control for PM regeneration is completed.
【0078】以下、本実施の形態に係るエンジン1のE
CU80が実施する「燃料添加制御」に関し、具体的な
処理手順について図6に示すフローチャートを参照して
説明する。Hereinafter, E of the engine 1 according to this embodiment will be described.
Regarding the "fuel addition control" executed by the CU 80, a specific processing procedure will be described with reference to the flowchart shown in FIG.
【0079】図6にはPM再生制御を行うに当たり、そ
の再生に要する燃料添加方法や添加量を制御するために
実施される「パティキュレートフィルタPM再生ルーチ
ン」の処理内容を示す。このルーチン処理はECU80
を通じてエンジン1の始動と同時にその実行が開始され
る。FIG. 6 shows the processing contents of the "particulate filter PM regeneration routine" which is carried out to control the fuel addition method and the addition amount required for regeneration when performing the PM regeneration control. This routine process is executed by the ECU 80.
The execution of the engine 1 is started at the same time when the engine 1 is started.
【0080】処理がこのルーチンに移行すると、ECU
80はステップS101において、PM再生が必要かど
うかを、アクセル開度センサ76、クランク角センサ7
7、タイマカウンタ85等のデータの蓄積より得られる
運転履歴、及び圧力センサ90等から再生制御が必要か
どうかを判断し、必要なしと判断されればS112に進
んで燃焼室中燃料添加及び排気通路中燃料添加を行うこ
となく、S113にて通常燃焼を実行して本ルーチンを
終了し、必要であるならば次のステップへ進む。When the processing shifts to this routine, the ECU
In step S101, the controller 80 determines whether PM regeneration is necessary by checking the accelerator opening sensor 76 and the crank angle sensor 7.
7. Whether or not regeneration control is necessary is determined from the operation history obtained by accumulating data of the timer counter 85 and the pressure sensor 90, and if it is determined that it is not necessary, the process proceeds to S112 and fuel addition and exhaust in the combustion chamber are performed. Without adding fuel in the passage, normal combustion is executed in S113 to end this routine, and if necessary, proceed to the next step.
【0081】次にS102において、触媒出ガス温度よ
り、触媒ケーシング42の状況を判断する。ここでは出
ガス温度≧700℃の場合はS112に進んで燃焼室中
燃料添加及び排気通路中燃料添加を行うことなく、S1
13にて通常燃焼を実行して本ルーチンを終了し、出ガ
ス温度<700℃の場合は次のステップに進む。Next, in step S102, the condition of the catalyst casing 42 is judged from the catalyst outlet gas temperature. Here, if the outlet gas temperature is ≧ 700 ° C., the process proceeds to S112, where S1 is performed without adding fuel in the combustion chamber and fuel in the exhaust passage.
In step 13, normal combustion is executed to end this routine. When the temperature of the discharged gas is <700 ° C., the process proceeds to the next step.
【0082】次にS103以下において、燃焼室中燃料
添加が行えるかどうかを判断する。先ずS103では、
エンジン1の冷却水温を測定する。、水温<60℃なら
S107に進んで燃焼室中燃料添加を行うことなく、そ
の後S108へ進み、水温≧60℃なら次のステップへ
進む。Next, in S103 and subsequent steps, it is determined whether fuel addition in the combustion chamber can be performed. First, in S103,
The cooling water temperature of the engine 1 is measured. If the water temperature <60 ° C., the process proceeds to S107 without adding fuel in the combustion chamber, and then proceeds to S108, and if the water temperature ≧ 60 ° C., proceeds to the next step.
【0083】次にS104において、エンジンの負荷状
態を判断する。高負荷ならS107に進んで燃焼室中燃
料添加を行うことなく、その後S108へ進み、低負荷
なら次のステップへ進む。Next, in S104, the load state of the engine is determined. If the load is high, the process proceeds to S107 without adding fuel in the combustion chamber, and then proceeds to S108. If the load is low, the process proceeds to the next step.
【0084】次にS105において、触媒床温を測定す
る。触媒床温<200℃ならS107に進んで燃焼室中
燃料添加を行うことなく、その後S108へ進み、触媒
床温≧200℃ならS106へ進んで燃焼室中燃料添加
を行った後S108へ進む。Next, in S105, the catalyst bed temperature is measured. If the catalyst bed temperature <200 ° C., the process proceeds to S107 without adding fuel in the combustion chamber, and then proceeds to S108. If the catalyst bed temperature ≧ 200 ° C., proceeds to S106 and performs fuel addition in the combustion chamber, and then proceeds to S108.
【0085】次にS108以下において、排気通路中燃
料添加手段が行えるかどうかを判断する。先ず、S10
8にて触媒入ガス温度を測定する。入ガス温度<300
℃ならS111に進んで排気通路中燃料添加を行うこと
なく本ルーチンを終了し、入ガス温度≧300℃なら次
のステップへ進む。Next, in S108 and thereafter, it is judged whether or not the means for adding fuel in the exhaust passage can be performed. First, S10
At 8, the temperature of gas entering the catalyst is measured. Input gas temperature <300
If the temperature is ° C, the process proceeds to S111 to end this routine without adding fuel in the exhaust passage, and if the inlet gas temperature is ≥300 ° C, the process proceeds to the next step.
【0086】次のS109において、触媒床温を測定す
る。触媒床温<250℃ならS111に進んで排気通路
中燃料添加を行うことなく本ルーチンを終了し、触媒床
温≧250℃ならS110へ進んで排気通路中燃料添加
を行った後本ルーチンを終了する。In step S109, the catalyst bed temperature is measured. If the catalyst bed temperature is <250 ° C., the routine proceeds to S111 to end the routine without adding fuel in the exhaust passage, and if the catalyst bed temperature ≧ 250 ° C., proceeds to S110 to add fuel in the exhaust passage and then terminates this routine. To do.
【0087】尚、本ルーチンにおいては燃焼室中燃料添
加の可否を論じた後に、排気通路中燃料添加についての
可否を論じたが、この二つの燃料添加はそれぞれ独立に
行うものであり本来ならば並列関係にて表すものである
が、処理の都合上前記に示したように先ず燃焼室中燃料
添加を行い、その後に排気通路中燃料添加を行うことと
した。従って、逆に先に排気通路中燃料添加の可否を論
じ、その後に燃焼室中燃料添加の可否を論じても実際の
制御上では違いはない。In this routine, the possibility of adding fuel in the combustion chamber was discussed, and then the possibility of adding fuel in the exhaust passage was discussed. These two fuel additions are performed independently of each other. Although expressed in parallel, for the convenience of processing, as described above, the fuel addition in the combustion chamber was first performed, and then the fuel addition in the exhaust passage was performed. Therefore, on the contrary, even if the possibility of adding fuel in the exhaust passage is discussed first and then the possibility of adding fuel in the combustion chamber is discussed, there is no difference in actual control.
【0088】本実施の形態では各条件において所定の温
度を定めたが、実際にはこの値に縛られるものでは無
く、各内燃機関及び排気装置において固有の値があり、
その値に準ずるものとする。また、前記ルーチンS10
8のステップにおいて触媒入ガス温度を判定条件とした
が、これは前述の通り排気通路中の燃料噴射位置の温度
を推定するための一手段であり、他の手段、例えば水
温、吸気温、噴射量、回転数等から算出して温度を推定
しても良い。要は燃料噴射位置の温度が推定可能ならば
手段は問わないと言うことである。これは他の条件設定
でも同様であり、例えばS103、S104のステップ
においては水温及びエンジンの負荷状態を論じている
が、これはつまりはエンジンが副次的噴射を行えるかど
うかの条件設定であって、S103,S104ではそれ
を表している一手段に過ぎない。In the present embodiment, the predetermined temperature is set under each condition, but it is not limited to this value in practice, and each internal combustion engine and exhaust system has a unique value.
It shall be based on that value. In addition, the routine S10
In step 8, the catalyst inlet gas temperature was used as the determination condition, but this is one means for estimating the temperature of the fuel injection position in the exhaust passage as described above, and other means such as water temperature, intake temperature, injection The temperature may be estimated by calculating from the amount, the number of revolutions, and the like. The point is that the means does not matter as long as the temperature at the fuel injection position can be estimated. This also applies to other condition settings. For example, in steps S103 and S104, the water temperature and the load state of the engine are discussed. This is the condition setting of whether the engine can perform the secondary injection. Then, S103 and S104 are only one means of expressing it.
【0089】また、前記の燃焼室中燃料添加及び排気通
路中燃料添加双方を実行可能な条件下においては、双方
の燃料添加を行っても良く、どちらか一方のみを行って
も良い。例えば排気系の温度条件が排気通路中燃料添加
を行うのに十分な温度にある場合においても、エンジン
がアイドリング状態であるならば燃焼室中燃料添加のみ
を行い、排気通路中燃料添加を行う必要はなく、逆にエ
ンジンが高負荷状態と低負荷状態を交互に繰り返すよう
な運転をしている場合等には、その低負荷時に燃焼室中
燃料添加を行わなくとも排気通路中燃料添加のみでPM
の再生を行うことは十分に可能である。Further, under the condition that both the fuel addition in the combustion chamber and the fuel addition in the exhaust passage can be executed, both fuels may be added, or only one of them may be added. For example, even when the temperature condition of the exhaust system is sufficient to add fuel in the exhaust passage, it is necessary to add fuel in the combustion chamber only and add fuel in the exhaust passage if the engine is idling. On the contrary, when the engine is operating such that high load state and low load state are alternately repeated, it is only necessary to add fuel in the exhaust passage without adding fuel in the combustion chamber at that low load. PM
It is fully possible to regenerate.
【0090】本発明に係る内燃機関の排気浄化装置では
排気ガス中のPMを酸化する機能を有したパティキュレ
ートフィルタを昇温させる際に、内燃機関、及び排気系
の諸条件に応じて、PMを効率よくより正確に除去する
ために燃料添加を行うことが可能となる。In the exhaust gas purification apparatus for an internal combustion engine according to the present invention, when raising the temperature of the particulate filter having the function of oxidizing PM in the exhaust gas, the PM according to various conditions of the internal combustion engine and the exhaust system is It is possible to add fuel in order to efficiently and more accurately remove.
【0091】つまりは内燃機関の稼働状況、及び排気系
の温度性状に応じてそれに適したPMの再生のための燃
料添加方法を選択することにより、PMがパティキュレ
ートフィルタ上で燃焼される際の不安定性、及び、触媒
ケーシングを通過する排気ガス成分の悪化、触媒ケーシ
ングの添加燃料による詰まりを起こすことなく、PMを
燃焼させることが可能となる。That is, by selecting the fuel addition method suitable for the regeneration of PM according to the operating condition of the internal combustion engine and the temperature property of the exhaust system, PM is burned on the particulate filter. It becomes possible to burn PM without causing instability, deterioration of exhaust gas components passing through the catalyst casing, and clogging of the catalyst casing with the added fuel.
【図1】本発明実施の形態に係るディーゼルエンジンシ
ステムを示す概略構成図。FIG. 1 is a schematic configuration diagram showing a diesel engine system according to an embodiment of the present invention.
【図2】同実施の形態に係る、ECU周りの構成概念
図。FIG. 2 is a conceptual diagram of a configuration around an ECU according to the same embodiment.
【図3】同実施の形態に係る、触媒ケーシングの断面概
念図。FIG. 3 is a conceptual sectional view of a catalyst casing according to the same embodiment.
【図4】同実施の形態に係る、燃焼室中燃料添加を示す
エンジン及び排気系断面概略図。FIG. 4 is a schematic cross-sectional view of an engine and an exhaust system showing fuel addition in a combustion chamber according to the same embodiment.
【図5】同実施の形態に係る、燃排気通路中燃料添加を
示すエンジン及び排気系断面概略図。FIG. 5 is a schematic cross-sectional view of an engine and an exhaust system showing fuel addition in a fuel exhaust passage according to the same embodiment.
【図6】同実施の形態に係る、PM再生制御を示すフロ
ーチャート。FIG. 6 is a flowchart showing PM regeneration control according to the embodiment.
1 エンジン(内燃機関) 10 燃料供給系 11 サプライポンプ 12 コモンレール(蓄圧室) 13 燃料噴射弁 14 制御弁 17 燃料添加ノズル 20 燃焼室 30 吸気系 31 インタークーラ 32 スロットル弁 40 排気系 40a 排気集合管 40b、c 排気通路 42 触媒ケーシング 42a パティキュレートフィルタ 42b 吸蔵還元型NOx触媒(NOx触媒) 42c 栓詰め 43 噴射燃料溜まり 50 ターボチャージャ 51 シャフト 52 タービンホイール 53 コンプレッサ 60 EGR通路 61 EGR弁 62 EGRクーラ 70 レール圧センサ 71 燃焼センサ 72 エアフローメータ 73 空燃比(A/F)センサ 74 排気温度センサ 75 NOxセンサ 76 アクセル開度センサ 77 クランク角センサ 78 触媒流入排気温度センサ 80 電子制御装置(ECU) 81 中央演算処理装置(CPU) 82 読み出し専用メモリ(ROM) 83 ランダムアクセスメモリ(RAM) 84 バックアップRAM 85 タイマカウンタ 86 外部入力回路 87 外部出力回路 88 双方向バス 90 圧力センサ P1 機関燃料通路 P2 添加燃料通路 1 engine (internal combustion engine) 10 Fuel supply system 11 Supply pump 12 common rail (accumulation chamber) 13 Fuel injection valve 14 Control valve 17 Fuel addition nozzle 20 Combustion chamber 30 Intake system 31 Intercooler 32 Throttle valve 40 exhaust system 40a Exhaust collecting pipe 40b, c exhaust passage 42 catalyst casing 42a particulate filter 42b NOx storage reduction catalyst (NOx catalyst) 42c plugging 43 Fuel injection pool 50 turbocharger 51 shaft 52 turbine wheel 53 Compressor 60 EGR passage 61 EGR valve 62 EGR cooler 70 Rail pressure sensor 71 Combustion sensor 72 Air flow meter 73 Air-fuel ratio (A / F) sensor 74 Exhaust temperature sensor 75 NOx sensor 76 Accelerator position sensor 77 Crank angle sensor 78 Catalyst inflow exhaust temperature sensor 80 Electronic Control Unit (ECU) 81 Central processing unit (CPU) 82 Read-only memory (ROM) 83 Random access memory (RAM) 84 Backup RAM 85 timer counter 86 External input circuit 87 External output circuit 88 two-way bus 90 Pressure sensor P1 engine fuel passage P2 additional fuel passage
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R F02D 41/04 385 F02D 41/04 385E 385M (72)発明者 青山 太郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 大坪 康彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 伊藤 丈和 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 田原 淳 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 3G090 AA03 BA01 DA02 DA12 DA18 DA20 DB07 3G091 AA10 AA11 AA18 AB04 AB06 AB09 BA04 CA18 CA26 DA03 EA01 EA05 EA07 EA16 EA17 EA18 EA34 GA06 GB02W GB03W GB04W GB05W GB06W GB10X 3G301 HA02 HA11 HA13 JA24 JA25 KA08 KA16 LA03 LB11 MA19 MA23 NE13 PA01Z PB08Z PD11Z PD12Z PE03Z PE08Z─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) F01N 3/24 F01N 3/24 R F02D 41/04 385 F02D 41/04 385E 385M (72) Inventor Taro Aoyama 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Yasuhiko Otsubo 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (72) Inventor Takekazu Ito 1 Toyota Town, Toyota City, Aichi Prefecture Address Toyota Motor Co., Ltd. (72) Inventor Atsushi Tahara 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto Car Co., Ltd. F-term (reference) 3G090 AA03 BA01 DA02 DA12 DA18 DA20 DB07 3G091 AA10 AA11 AA18 AB04 AB06 AB09 BA04 CA18 CA26 DA03 EA01 EA05 EA07 EA16 EA17 EA18 EA34 GA06 GB02W GB03W GB04W GB05W GB06W GB10X 3G301 HA02 HA11 HA13 JA24 JA2 5 KA08 KA16 LA03 LB11 MA19 MA23 NE13 PA01Z PB08Z PD11Z PD12Z PE03Z PE08Z
Claims (7)
ス中の微粒子を捕集するフィルタと、 内燃機関の燃焼室にて行われる動力転化用の主燃料噴射
とは別に燃料を噴射する副次的燃料噴射を行う燃焼室中
燃料添加手段と、 排気通路に設けられ、排気ガス中に燃料を噴射する排気
通路中燃料添加手段とを備えた排気浄化装置において、 前記燃焼室にて副次的燃料噴射が可能であり、かつ前記
フィルタ床温が気体燃料を酸化反応させる第1の温度以
上である場合には、燃焼室中燃料添加手段により燃料添
加を行い、 排気ガス温度が排気通路にて噴射された燃料を凝縮させ
ない第2の温度以上であり、かつ前記フィルタ床温が液
滴を含む気体燃料を酸化反応させる第3の温度以上であ
る場合には、排気通路中燃料添加手段により燃料添加を
行うことを特徴とする内燃機関の排気浄化装置。1. A fuel is injected separately from a filter provided in an exhaust passage of an internal combustion engine for collecting fine particles in exhaust gas and a main fuel injection for power conversion performed in a combustion chamber of the internal combustion engine. In an exhaust gas purification device provided with a fuel addition device in a combustion chamber for secondary fuel injection and a fuel addition device in an exhaust passage provided in an exhaust passage for injecting fuel into exhaust gas, When the secondary fuel injection is possible and the filter bed temperature is equal to or higher than the first temperature for oxidizing the gaseous fuel, the fuel is added by the fuel addition means in the combustion chamber, and the exhaust gas temperature becomes the exhaust passage. When the temperature is not lower than the second temperature at which the fuel injected in step S3 is not condensed and the filter bed temperature is not lower than the third temperature at which the gaseous fuel containing droplets is oxidized, the fuel addition means in the exhaust passage Add fuel by An exhaust emission control device for an internal combustion engine, which is characterized in that:
あり、かつ前記のフィルタ床温が気体燃料を酸化反応さ
せる第1の温度、液滴を含む気体燃料を酸化反応させる
第3の温度のそれぞれより高く、更に前記の排気通路温
度が排気通路にて噴射された燃料を凝縮させない第2の
温度以上である場合には、前記燃焼室中燃料添加手段と
前記排気通路中燃料添加手段との一方、又は双方を用い
て燃料添加することを特徴とする請求項1に記載の内燃
機関の排気浄化装置。2. A first temperature at which a secondary fuel injection can be performed in the combustion chamber, and the filter bed temperature is a first temperature at which a gaseous fuel is oxidized, and a gaseous fuel containing droplets is oxidized at a third temperature. If the exhaust passage temperature is higher than or equal to a second temperature at which the fuel injected in the exhaust passage is not condensed, the combustion chamber fuel addition means and the exhaust passage fuel addition are performed. The exhaust gas purification device for an internal combustion engine according to claim 1, wherein fuel is added by using one or both of the means.
状の燃料が酸化反応可能な200℃以上の温度であり、
第3の温度は液滴を含む気体状の燃料が酸化反応可能な
250℃以上の温度であり、かつ第3の温度が第1の温
度より高いことを特徴とする請求項1又は2に記載の内
燃機関の排気浄化装置。3. The first temperature, which is the filter bed temperature, is a temperature of 200 ° C. or higher at which a gaseous fuel can undergo an oxidation reaction,
The third temperature is a temperature of 250 ° C. or higher at which a gaseous fuel containing droplets can undergo an oxidation reaction, and the third temperature is higher than the first temperature. Exhaust gas purification device for internal combustion engine.
通路中に噴射された燃料が凝縮しない300℃以上の温
度であることを特徴とする請求項1〜3何れかに記載の
内燃機関の排気浄化装置。4. The internal combustion engine according to claim 1, wherein the second temperature, which is the exhaust gas temperature, is a temperature of 300 ° C. or higher at which the fuel injected into the exhaust passage does not condense. Exhaust gas purification device for engines.
高いときには排気ガス中の窒素酸化物を保持し、 前記酸素濃度が低下し、かつ還元剤である燃料が存在す
るときには保持していた窒素酸化物を還元する吸蔵還元
型NOx触媒を担持することを特徴とする請求項1〜4
何れかに記載の内燃機関の排気浄化装置。5. The filter retains nitrogen oxides in the exhaust gas when the oxygen concentration in the exhaust gas is high, and retains the nitrogen oxides in the exhaust gas when the oxygen concentration is low and fuel as a reducing agent is present. An occlusion reduction type NOx catalyst for reducing nitrogen oxides is supported.
An exhaust emission control device for an internal combustion engine according to any one of claims.
ス中の微粒子を捕集するフィルタに、内燃機関の燃焼室
にて行われる動力転化用の主噴射燃料の他に副次的燃料
を噴射して燃料添加する第1の方法と、 排気通路内の排気ガス中に直接燃料を噴射して燃料添加
する第2の方法と、を適宜選択して燃料を添加する排気
浄化方法において、 燃焼室にて副次的燃料噴射可能であり、かつ前記フィル
タ床温が気体状の燃料が酸化反応可能である温度以上な
らば前記未燃焼燃料を添加する第1の方法を採択し、 前記排気通路内の排ガス温度が排気通路中に噴射された
燃料が凝縮しない温度以上であり、かつ前記フィルタ床
温が液滴を含んだ気体状の燃料が酸化反応可能である温
度以上ならば前記直接燃料を添加する第2の方法を採択
する排気浄化方法。6. A filter, which is provided in an exhaust passage of an internal combustion engine, for collecting particulates in exhaust gas, and a secondary fuel in addition to a main injection fuel for power conversion performed in a combustion chamber of the internal combustion engine. In the exhaust purification method of adding fuel by appropriately selecting the first method of injecting and adding fuel and the second method of directly injecting fuel into the exhaust gas in the exhaust passage to add fuel, If the secondary fuel can be injected in the combustion chamber and the filter bed temperature is at a temperature higher than the temperature at which the gaseous fuel can undergo the oxidation reaction, the first method of adding the unburned fuel is adopted, and the exhaust gas If the temperature of the exhaust gas in the passage is equal to or higher than the temperature at which the fuel injected into the exhaust passage does not condense, and the filter bed temperature is equal to or higher than the temperature at which the gaseous fuel containing droplets can undergo the oxidation reaction, the direct fuel is used. Exhaust purification adopting the second method of adding Law.
つ前記フィルタ床温が気体状の燃料が酸化反応可能な温
度及び液滴を含んだ気体状の燃料が酸化反応可能な温度
各々より高く、更に前記排気通路内の排ガス温度が排気
通路中に噴射された燃料が凝縮しない温度以上ならば前
記未燃焼燃料を添加する第1の方法と前記直接燃料を添
加する第2の方法との何れか一方、若しくは双方を採用
する請求項6に記載の排気浄化方法。7. A temperature at which a secondary fuel can be injected in a combustion chamber, and the filter bed temperature is a temperature at which a gaseous fuel can undergo an oxidation reaction and a gaseous fuel containing liquid droplets can undergo an oxidation reaction. If the exhaust gas temperature in the exhaust passage is higher than each temperature and is higher than the temperature at which the fuel injected into the exhaust passage does not condense, the first method of adding the unburned fuel and the second method of adding the direct fuel 7. The exhaust gas purification method according to claim 6, wherein one or both of the above are adopted.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001342134A JP3770148B2 (en) | 2001-11-07 | 2001-11-07 | Apparatus and method for exhaust gas purification of internal combustion engine |
DE10251686A DE10251686B4 (en) | 2001-11-07 | 2002-11-06 | Emission control system and method for an internal combustion engine |
FR0213948A FR2831923B1 (en) | 2001-11-07 | 2002-11-07 | SYSTEM AND METHOD FOR PURIFYING EXHAUST GAS FOR AN INTERNAL COMBUSTION ENGINE |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001342134A JP3770148B2 (en) | 2001-11-07 | 2001-11-07 | Apparatus and method for exhaust gas purification of internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003148132A true JP2003148132A (en) | 2003-05-21 |
JP3770148B2 JP3770148B2 (en) | 2006-04-26 |
Family
ID=19156044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001342134A Expired - Lifetime JP3770148B2 (en) | 2001-11-07 | 2001-11-07 | Apparatus and method for exhaust gas purification of internal combustion engine |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP3770148B2 (en) |
DE (1) | DE10251686B4 (en) |
FR (1) | FR2831923B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2007026809A1 (en) * | 2005-09-01 | 2009-03-12 | 日野自動車株式会社 | Particulate filter regeneration method |
WO2009063866A1 (en) * | 2007-11-13 | 2009-05-22 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
JP2010150941A (en) * | 2008-12-24 | 2010-07-08 | Ud Trucks Corp | Exhaust emission control device |
US8056325B2 (en) | 2005-01-14 | 2011-11-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus regeneration system of internal combustion engine |
WO2012029190A1 (en) * | 2010-09-02 | 2012-03-08 | トヨタ自動車株式会社 | Exhaust gas purification device of internal combustion engine |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10344216A1 (en) * | 2003-09-22 | 2005-05-04 | Eberspaecher J Gmbh & Co | Exhaust system with particle filter and associated heating device and associated regeneration method |
FR2862098B1 (en) | 2003-11-07 | 2006-02-17 | Peugeot Citroen Automobiles Sa | SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE |
FR2862099B1 (en) | 2003-11-07 | 2006-04-14 | Peugeot Citroen Automobiles Sa | SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE |
FR2862097B1 (en) | 2003-11-07 | 2006-02-17 | Peugeot Citroen Automobiles Sa | SYSTEM FOR AIDING THE REGENERATION OF INTEGRATED EMISSION MEANS IN AN EXHAUST LINE OF A VEHICLE DIESEL ENGINE |
GB2408470B (en) * | 2003-11-25 | 2007-06-13 | Arvin Internat | An internal combustion engine exhaust system |
DE10361220B4 (en) * | 2003-12-24 | 2015-01-08 | Volkswagen Ag | Method of regenerating a particulate filter |
DE102004016538A1 (en) * | 2004-03-31 | 2005-11-03 | J. Eberspächer GmbH & Co. KG | Regeneration process for a particle filter and exhaust system with particle filter |
FR2897641B1 (en) * | 2006-02-20 | 2011-03-04 | Renault Sas | METHOD AND DEVICE FOR REGENERATING THE PARTICLE FILTER OF AN INTERNAL COMBUSTION ENGINE OF THE DIESEL TYPE DURING IDLING PHASES |
DE102006009099A1 (en) | 2006-02-28 | 2007-08-30 | Daimlerchrysler Ag | Fuel injection system for use in e.g. diesel internal combustion engine, has pressure regulating valve that is arranged between check valve and dosing valve and is connected with system by outlet |
US9074503B2 (en) | 2012-04-26 | 2015-07-07 | Ccts Technology Group, Inc. | Clean exhaust system and method for diesel engines of marine vessels |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0070619A3 (en) * | 1981-07-16 | 1984-01-04 | Johnson Matthey, Inc., | Regenerating diesel emissions control devices |
US4592899A (en) * | 1984-12-26 | 1986-06-03 | Texaco Inc. | Smoke filter with frangible supported filter bed |
JPH0441914A (en) * | 1990-06-01 | 1992-02-12 | Nissan Motor Co Ltd | Exhaust gas processor for internal combustion engine |
JPH07106290A (en) | 1993-09-30 | 1995-04-21 | Matsushita Electric Ind Co Ltd | Foreign matter eliminating equipment for electronic component |
DE60110860T2 (en) * | 2000-03-27 | 2006-01-19 | Toyota Jidosha K.K., Toyota | Method and device for cleaning exhaust gases of an internal combustion engine |
JP3835241B2 (en) * | 2001-10-15 | 2006-10-18 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
-
2001
- 2001-11-07 JP JP2001342134A patent/JP3770148B2/en not_active Expired - Lifetime
-
2002
- 2002-11-06 DE DE10251686A patent/DE10251686B4/en not_active Expired - Fee Related
- 2002-11-07 FR FR0213948A patent/FR2831923B1/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8056325B2 (en) | 2005-01-14 | 2011-11-15 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification apparatus regeneration system of internal combustion engine |
JPWO2007026809A1 (en) * | 2005-09-01 | 2009-03-12 | 日野自動車株式会社 | Particulate filter regeneration method |
JP4709220B2 (en) * | 2005-09-01 | 2011-06-22 | 日野自動車株式会社 | Particulate filter regeneration method |
WO2009063866A1 (en) * | 2007-11-13 | 2009-05-22 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system for internal combustion engine |
JP2009138731A (en) * | 2007-11-13 | 2009-06-25 | Toyota Motor Corp | Exhaust emission control system for internal combustion engine |
US8336296B2 (en) | 2007-11-13 | 2012-12-25 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification system for internal combustion engine |
JP2010150941A (en) * | 2008-12-24 | 2010-07-08 | Ud Trucks Corp | Exhaust emission control device |
WO2012029190A1 (en) * | 2010-09-02 | 2012-03-08 | トヨタ自動車株式会社 | Exhaust gas purification device of internal combustion engine |
CN102713189A (en) * | 2010-09-02 | 2012-10-03 | 丰田自动车株式会社 | Exhaust gas purification device of internal combustion engine |
JP5152415B2 (en) * | 2010-09-02 | 2013-02-27 | トヨタ自動車株式会社 | Exhaust gas purification device for internal combustion engine |
US8833056B2 (en) | 2010-09-02 | 2014-09-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
FR2831923B1 (en) | 2007-06-29 |
JP3770148B2 (en) | 2006-04-26 |
DE10251686A1 (en) | 2003-10-23 |
DE10251686B4 (en) | 2011-08-11 |
FR2831923A1 (en) | 2003-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7533523B2 (en) | Optimized desulfation trigger control for an adsorber | |
US7707826B2 (en) | System for controlling triggering of adsorber regeneration | |
JP4720054B2 (en) | Exhaust gas purification device for internal combustion engine | |
KR100950877B1 (en) | Exhaust purifier of internal combustion engine and method of exhaust purification | |
JP3201237B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3770148B2 (en) | Apparatus and method for exhaust gas purification of internal combustion engine | |
US7654076B2 (en) | System for controlling absorber regeneration | |
JP3800016B2 (en) | Exhaust gas purification device for internal combustion engine | |
US20080282680A1 (en) | Device for Treating Nitrogen Oxides of Motor Vehicle Exhaust Gases | |
JP2003120392A (en) | Exhaust emission control device of internal combustion engine | |
JP2003120390A (en) | Exhaust emission control device of internal combustion engine | |
JP2003148211A (en) | Exhaust emission control device for internal combustion engine | |
JP2003120279A (en) | Exhaust emission control device of internal combustion engine | |
JP2003020930A (en) | Exhaust emission control device for internal combustion engine | |
EP1512848B1 (en) | Exhaust purifying apparatus and method for purifying exhaust gas | |
JP2002285823A (en) | Exhaust emission control device for internal combustion engine | |
JP2003269155A (en) | Exhaust emission control device for internal combustion engine | |
JP2003293747A (en) | Exhaust emission control device for internal combustion engine and method of managing catalyst function | |
JP2003314257A (en) | Exhaust emission control device for internal combustion engine and controlling method thereof | |
JP3888115B2 (en) | Control device for internal combustion engine | |
JP2010185369A (en) | Fuel supply device of engine | |
JP4357241B2 (en) | Exhaust purification equipment | |
JP4106913B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004176636A (en) | Exhaust emission control device for internal combustion engine | |
JP4474775B2 (en) | Exhaust gas purification device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040826 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060105 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060130 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3770148 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100217 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110217 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120217 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130217 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140217 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |