JP5152415B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5152415B2
JP5152415B2 JP2011531077A JP2011531077A JP5152415B2 JP 5152415 B2 JP5152415 B2 JP 5152415B2 JP 2011531077 A JP2011531077 A JP 2011531077A JP 2011531077 A JP2011531077 A JP 2011531077A JP 5152415 B2 JP5152415 B2 JP 5152415B2
Authority
JP
Japan
Prior art keywords
exhaust
hydrocarbon
exhaust gas
fuel ratio
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011531077A
Other languages
Japanese (ja)
Other versions
JPWO2012029190A1 (en
Inventor
寿丈 梅本
耕平 吉田
三樹男 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5152415B2 publication Critical patent/JP5152415B2/en
Publication of JPWO2012029190A1 publication Critical patent/JPWO2012029190A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • F01N3/0253Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵したNOを放出するNO吸蔵触媒を配置し、NO吸蔵触媒上流の機関排気通路内に吸着機能を有する酸化触媒を配置し、NO吸蔵触媒からNOを放出すべきときには酸化触媒上流の機関排気通路内に炭化水素を供給してNO吸蔵触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関が公知である(例えば特許文献1を参照)。
この内燃機関ではNO吸蔵触媒からNOを放出すべきときに供給された炭化水素が酸化触媒においてガス状の炭化水素とされ、ガス状の炭化水素がNO吸蔵触媒に送り込まれる。その結果、NO吸蔵触媒から放出されたNOが良好に還元せしめられることになる。
The engine exhaust passage, NO X storage catalyst air-fuel ratio of the inflowing exhaust gas when the lean that releases NO X air-fuel ratio of the exhaust gas which is occluded becomes rich for occluding NO X contained in the exhaust gas inflow was placed, NO X occluding catalyst upstream of the engine oxidation catalyst having an adsorbing function in the exhaust passage disposed, NO X from occluding catalyst when releasing the NO X is feeding hydrocarbons into the engine exhaust passage an oxidation catalyst upstream An internal combustion engine in which the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst is made rich is known (see, for example, Patent Document 1).
In this internal combustion engine, hydrocarbons supplied when NO X is to be released from the NO X storage catalyst are converted into gaseous hydrocarbons in the oxidation catalyst, and the gaseous hydrocarbons are sent to the NO X storage catalyst. As a result, the NO X released from the NO X storing catalyst is made to satisfactorily reduced.

特許第3969450号Patent No. 3969450

しかしながらNO吸蔵触媒は高温になるとNO浄化率が低下するという問題がある。
本発明の目的は、二種類の炭化水素供給方法を選択的に用いつつ排気浄化触媒の温度が高温になっても高いNO浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
However, the NO X storage catalyst has a problem that the NO X purification rate decreases when the temperature becomes high.
An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can obtain a high NO x purification rate even when the temperature of the exhaust purification catalyst becomes high while selectively using two types of hydrocarbon supply methods. It is in.

本発明によれば、炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に炭化水素供給弁から噴射された炭化水素と排気ガス中に含まれるNOとを反応させるための排気浄化触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、炭化水素供給弁から炭化水素を排気ガスの空燃比が予め定められた空燃比まで低下するように予め定められた供給間隔で噴射すると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素の供給間隔をこの予め定められた供給間隔よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に炭化水素供給弁から炭化水素を排気ガスの空燃比が上述の予め定められた空燃比まで低下するように上述の予め定められた供給間隔で噴射して排気ガス中に含まれるNOを浄化する第1の炭化水素供給方法と、炭化水素供給弁からの炭化水素の供給量を低下させると共に排気ガスの空燃比を上述の予め定められた空燃比まで低下させるのに必要な燃料を膨張行程後半又は排気行程中に燃焼室内に供給する第2の炭化水素供給方法とを選択的に用いるようにした内燃機関の排気浄化装置が提供される。According to the present invention, the hydrocarbon supply valve for supplying hydrocarbons is disposed in the engine exhaust passage, and the hydrocarbon and exhaust gas injected from the hydrocarbon supply valve into the engine exhaust passage downstream of the hydrocarbon supply valve An exhaust purification catalyst for reacting with NO X contained therein is arranged, a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst, and a basic exhaust gas flow surface around the noble metal catalyst The exhaust purification catalyst is injected into the exhaust gas when the hydrocarbon is injected from the hydrocarbon supply valve at a predetermined supply interval so that the air-fuel ratio of the exhaust gas decreases to a predetermined air-fuel ratio. which has a property for reducing the NO X contained, your storage amount of the NO X contained in the exhaust gas to be longer than the predetermined supply interval supply interval of hydrocarbons have the property of increasing , NO which the air-fuel ratio of the exhaust gas hydrocarbons from the hydrocarbon feed valve at the time of engine operation includes injection to the exhaust gas at a predetermined feed distance above to decrease until the air-fuel ratio predetermined described above First hydrocarbon supply method for purifying X and fuel necessary for reducing the amount of hydrocarbons supplied from the hydrocarbon supply valve and reducing the air-fuel ratio of the exhaust gas to the aforementioned predetermined air-fuel ratio An exhaust gas purification apparatus for an internal combustion engine is provided that selectively uses the second hydrocarbon supply method for supplying gas into the combustion chamber during the latter half of the expansion stroke or during the exhaust stroke.

第1の炭化水素供給方法と第2の炭化水素供給方法とを選択的に用いつつ排気浄化触媒の温度が高温になっても高いNO浄化率を得ることができる。A high NO x purification rate can be obtained even when the temperature of the exhaust purification catalyst becomes high while selectively using the first hydrocarbon supply method and the second hydrocarbon supply method.

図1は圧縮着火式内燃機関の全体図である。
図2は触媒担体の表面部分を図解的に示す図である。
図3は排気浄化触媒における酸化反応を説明するための図である。
図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図5はNO浄化率を示す図である。
図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。
図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。
図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図9はNO浄化率を示す図である。
図10は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図11は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。
図13は同一のNO浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。
図14は炭化水素濃度の振幅ΔHとNO浄化率との関係を示す図である。
図15は炭化水素濃度の振動周期ΔTとNO浄化率との関係を示す図である。
図16A,16B,16Cは炭化水素供給量Wのマップ等を示す図である。
図17は排気浄化触媒への流入排気ガスの空燃比の変化等を示す図である。
図18は排出NO量NOXAのマップを示す図である。
図19は燃料噴射時期を示す図である。
図20は炭化水素供給量WRのマップを示す図である。
図21A,21Bは第1の炭化水素供給方法と第2の炭化水素供給方法とを説明するための図である。
図22A,22B,22Cは炭化水素の供給量WA等を示す図である。
図23は排気浄化触媒への流入排気ガスの空燃比の変化等を示すタイムチャートである。
図24は排気浄化触媒への流入排気ガスの空燃比の変化等を示すタイムチャートである。
図25A,25Bは昇温制御を示すタイムチャートである。
図26はNO浄化率とNO吸蔵率を示す図である。
図27は最小空燃比を検出するためのフローチャートである。
図28および図29は運転制御を行うためのフローチャートである。
図30は割込みルーチンを示すフローチャートである。
図31は割込みルーチンを示すフローチャートである。
FIG. 1 is an overall view of a compression ignition type internal combustion engine.
FIG. 2 is a view schematically showing the surface portion of the catalyst carrier.
FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
Figure 5 is a diagram illustrating a NO X purification rate.
6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
Figure 9 is a diagram illustrating a NO X purification rate.
FIG. 10 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
FIG. 11 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
FIG. 12 is a diagram showing the relationship between the oxidizing power of the exhaust purification catalyst and the required minimum air-fuel ratio X.
FIG. 13 is a graph showing the relationship between the oxygen concentration in the exhaust gas and the amplitude ΔH of the hydrocarbon concentration, with which the same NO x purification rate can be obtained.
Figure 14 is a diagram showing a relationship between an amplitude ΔH and NO X purification rate of hydrocarbon concentration.
Figure 15 is a diagram showing the relationship between the vibration period ΔT and NO X purification rate of hydrocarbon concentration.
16A, 16B, and 16C are diagrams showing a map of the hydrocarbon feed amount W and the like.
FIG. 17 is a diagram showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
Figure 18 is a diagram illustrating a map of exhaust amount of NO X NOXA.
FIG. 19 shows the fuel injection timing.
FIG. 20 is a diagram showing a map of the hydrocarbon supply amount WR.
21A and 21B are views for explaining the first hydrocarbon supply method and the second hydrocarbon supply method.
22A, 22B, and 22C are views showing the hydrocarbon feed amount WA and the like.
FIG. 23 is a time chart showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
FIG. 24 is a time chart showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
25A and 25B are time charts showing the temperature rise control.
FIG. 26 is a diagram showing the NO X purification rate and the NO X storage rate.
FIG. 27 is a flowchart for detecting the minimum air-fuel ratio.
28 and 29 are flowcharts for performing operation control.
FIG. 30 is a flowchart showing the interrupt routine.
FIG. 31 is a flowchart showing an interrupt routine.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結され、排気浄化触媒13の出口は排気ガス中に含まれる微粒子を捕集するためのパティキュレートフィルタ14に連結される。排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の下流には排気浄化触媒13の温度を検出するための温度センサ23が取付けられており、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後の差圧を検出するための差圧センサ24が取付けられている。また、パティキュレートフィルタ14の下流にはパティキュレートフィルタ14の温度を検出するための温度センサ25が配置されており、更に炭化水素供給弁15下流の排気管12内には空燃比センサ26が配置されている。これら温度センサ23,25、差圧センサ24、空燃比センサ26および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁17および燃料ポンプ21に接続される。
図2は排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOに電子を供与しうる金属から選ばれた少くとも一つを含む塩基性層53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金PtおよびロジウムRhから構成されている。なお、排気浄化触媒13の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Ptと、ロジウムRhおよびパラジウムPdの少なくとも一方とにより構成される。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、炭化水素供給弁15から炭化水素を周期的に供給することによって、即ち排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNO浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNO浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、即ち、炭化水素供給弁15から炭化水素を排気ガスの空燃比が予め定められた空燃比まで低下するように予め定められた供給間隔で噴射すると、図5に示されるように400℃以上の高温領域においても極めて高いNO浄化率が得られることが判明したのである。
更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NO浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに、即ち、炭化水素供給弁15から炭化水素を排気ガスの空燃比が予め定められた空燃比まで低下するように予め定められた供給間隔で噴射したときに生ずると推測される反応が示されている。
図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。従って排気ガス中に含まれるNOは図6Aに示されるように白金51上において酸化されてNOとなり、次いでこのNOは白金51から電子を供与されてNO となる。従って白金51上には多量のNO が生成されることになる。このNO は活性が強く、以上このNO を活性NO と称する。
一方、炭化水素供給弁15から炭化水素が供給されると図3に示されるようにこの炭化水素は排気浄化触媒13内において改質され、ラジカルとなる。その結果、図6Bに示されるように活性NO 周りの炭化水素濃度が高くなる。ところで活性NO が生成された後、活性NO 周りの酸素濃度が高い状態が一定時間以上継続すると活性NO は酸化され、硝酸イオンNO の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NO 周りの炭化水素濃度が高くされると図6Bに示されるように活性NO は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
なお、このとき最初に生成される還元性中間体はニトロ化合物R−NOであると考えられる。このニトロ化合物R−NOは生成されるとニトリル化合物R−CNとなるがこのニトリル化合物R−CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R−NCOとなる。このイソシアネート化合物R−NCOは加水分解するとアミン化合物R−NHとなる。ただしこの場合、加水分解されるのはイソシアネート化合物R−NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R−NCOおよびアミン化合物R−NHであると考えられる。
一方、図6Bに示されるように生成された還元性中間体の周りを炭化水素HCが取り囲んでいると還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下せしめられ、それによって酸素濃度が高くなると還元性中間体周りの炭化水素は酸化せしめられる。その結果、図6Aに示されるように還元性中間体と活性NO とが反応するようになる。このとき活性NO は還元性中間体R−NCOやR−NHと反応してN,CO,HOとなり、斯くしてNOが浄化されることになる。
このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低くして酸素濃度を高くすることにより活性NO が還元性中間体と反応し、NOが浄化される。即ち、排気浄化触媒13によりNOを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NO と反応させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体が活性NO と反応するまで、十分な量の還元性中間体R−NCOやR−NHを塩基性層53上に、即ち塩基性排気ガス流通表面部分24上保持しておかなければならず、そのために塩基性の排気ガス流通表面部分24が設けられている。
一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NO は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
そこで本発明による実施例では、排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R−NCOやR−NHを生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R−NCOやR−NHを排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R−NCOやR−NHの還元作用によりNOが還元され、炭化水素濃度の振動周期、即ち炭化水素供給弁15からの炭化水素の供給周期は還元性中間体R−NCOやR−NHを生成し続けるのに必要な周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R−NCOやR−NHが消滅し、このとき白金Pt53上において生成された活性NO は図7Aに示されるように硝酸イオンNO の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOは硝酸塩の形で塩基性層53内に吸収されることになる。
一方、図7BはこのようにNOが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO となって図7Bに示されるようにNOの形で塩基性層53から放出される。次いで放出されたNOは排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は塩基性層53のNO吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性層53がNOを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOを一時的に吸蔵するためのNO吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOを放出するNO吸蔵触媒として機能している。
図9は、排気浄化触媒13をこのようにNO吸蔵触媒として機能させたときのNO浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNO吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNO浄化率が得られるが触媒温度TCが400℃以上の高温になるとNO浄化率が低下する。
このように触媒温度TCが400℃以上になるとNO浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNOの形で排気浄化触媒13から放出されるからである。即ち、NOを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNO浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNO浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNO浄化率が得られることになる。
そこで本発明では、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に炭化水素供給弁15から噴射された炭化水素と排気ガス中に含まれるNOとを反応させるための排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、炭化水素供給弁15から炭化水素を排気ガスの空燃比が予め定められた空燃比まで低下するように予め定められた供給間隔で噴射すると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素の供給間隔をこの予め定められた供給間隔よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に炭化水素供給弁15から炭化水素を排気ガスの空燃比が上述の予め定められた空燃比まで低下するように上述の予め定められた供給間隔で噴射し、それにより排気ガス中に含まれるNOを排気浄化触媒13において還元するようにしている。
即ち、図4から図6A,6Bに示されるNO浄化方法は、貴金属触媒を担持しかつNOを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOを浄化するようにした新たなNO浄化方法であると言うことができる。実際、この新たなNO浄化方法を用いた場合には排気浄化触媒13をNO吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNO浄化方法を以下、第1のNO浄化方法と称する。
次に図10から図15を参照しつつこの第1のNO浄化方法についてもう少し詳細に説明する。
図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは空燃比(A/F)inの振幅、即ち排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期、即ち炭化水素の供給周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NO が硝酸塩の形で塩基性層53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NO と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。この還元性中間体を生成するのに必要な空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば貴金属51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は貴金属51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、空燃比(A/F)inの振幅ΔT、即ち排気浄化触媒13に流入する炭化水素の濃度変化の振幅ΔTや排気浄化触媒13に流入する炭化水素濃度の振動周期ΔT、即ち炭化水素の供給周期ΔTについて説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴なって還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNO浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNO浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNO浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNO浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNO浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間、活性NO 周りの酸素濃度が高くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NO が硝酸塩の形で塩基性層53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNO浄化率が低下することになる。従って炭化水素濃度の振動周期、即ち炭化水素の供給周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNO浄化率が低下する。そこで本発明では炭化水素濃度の振動周期、即ち炭化水素の供給周期が0.3秒から5秒の間とされている。
さて、第1のNO浄化方法を用いてNOを浄化するためには前述したように排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを要求最小空燃比Xまで低下させる必要がある。本発明による実施例では排気ガスの空燃比(A/F)inを要求最小空燃比まで低下させることのできる炭化水素供給量Wが燃料噴射弁3からの噴射量Qおよび機関回転数Nの関数として図16Aに示すようなマップの形で予めROM32内に記憶されている。
一方、図16Bは排気浄化触媒13の塩基性層53上に生成された還元性中間体を保持しておくことにできる還元性中間体保持時間を示している。この還元性中間体は排気浄化触媒13の温度TCが上昇すると塩基性層53から脱離しやすくなり、従って図16Bに示されるように排気浄化触媒13の温度TCが高くなるにつれて還元性中間体保持時間が短かくなる。ところで還元性中間体保持時間に比べて炭化水素の供給周期ΔTが長くなると還元性中間体が存在しない期間が生じるようになり、NO浄化率が低下してしまう。このような還元性中間体の存在しない期間が生じないようにするには炭化水素の供給周期ΔTを還元性中間体保持時間と等しくするか、或いは還元性中間体保持時間よりも短かくする必要がある。従って本発明による実施例では炭化水素の供給周期ΔTは排気浄化触媒13の温度TCが高くなるほど短かくされる。この炭化水素の供給周期ΔTも同様に噴射量Qおよび機関回転数Nの関数として図16Cに示すようなマップの形で予めROM32内に記憶されている。
次に図17から図20を参照しつつ排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法について具体的に説明する。このように排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法を以下、第2のNO浄化方法と称する。
この第2のNO浄化方法では図17に示されるように塩基性層53に吸蔵された吸蔵NO量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOが塩基性層53から一気に放出されて還元される。それによってNOが浄化される。
吸蔵NO量ΣNOXは例えば機関から排出されるNO量から算出される。本発明による実施例では機関から単位時間当り排出される排出NO量NOXAが噴射量Qおよび機関回転数Nの関数として図18に示すようなマップの形で予めROM32内に記憶されており、この排出NO量NOXAから吸蔵NO量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
この第2のNO浄化方法では図19に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図19の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC60°の少し手前で噴射される。この燃料量WRは噴射量Qおよび機関回転数Nの関数として図20に示すようなマップの形で予めROM32内に記憶されている。無論、この場合炭化水素供給弁15からの炭化水素の供給量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
さて、前述したように第1のNO浄化方法を用いてNOを浄化するためには排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを要求最小空燃比Xまで低下させる必要がある。この場合、これまで述べた実施例では炭化水素供給弁15から供給された炭化水素Wによって排気ガスの空燃比(A/F)inが要求最小空燃比Xまで低下せしめられる。このように排気ガスの空燃比(A/F)inを要求最小空燃比Xまで低下させるのに炭化水素供給弁15のみから炭化水素Wを供給する方法を以下、第1の炭化水素供給方法と称する。この第1の炭化水素供給方法による空燃比(A/F)inの変化が図21Aに図解的に示されている。
一方、燃料噴射弁3から燃焼室2内に向けて圧縮上死点後70°以後の膨張行程後半又は排気行程中に燃料が噴射されると、即ち燃焼用燃料の燃焼完了後に燃料が噴射されるとこの燃料は火炎を生じて燃焼せしめられることはなくクラッキングされる。即ち、燃料が炭素数の小さな炭化水素に改質される。このように燃焼用燃料の燃焼後に行われる噴射はポスト(後)噴射と称されている。
このポスト噴射を用いた炭化水素の供給方法が図21Aに第2の炭化水素供給方法として図解的に示されている。図21Aに示されるようにこの第2の炭化水素供給方法では炭化水素供給弁15からの供給炭化水素WAとポスト噴射による供給燃料WBによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが要求最小空燃比Xとされる。このポスト噴射による供給燃料WBが図19と同様な図21Bに示されている。本発明による実施例ではこのポスト噴射は図21Bにおいて範囲θで示される圧縮上死点後70°から150°の間で行われる。
さて、第1の炭化水素供給方法では炭化水素供給弁15から供給された炭化水素Wのうちの大部分は酸素を消費するために、即ち空燃比(A/F)inを低下するために使用され、炭化水素供給弁15から供給された炭化水素Wのうちのほんの一部が還元性中間体の生成のために使用される。即ち、還元性中間体の生成のために使用される炭化水素の量は極めて少ないことになる。
そこで第2の炭化水素供給方法では還元性中間体の生成に必要な炭化水素量WAだけ炭化水素供給弁15から供給し、ポスト噴射による供給燃料WBによって酸素を消費し、空燃比(A/F)inを低下させるようにしている。なお、ポスト噴射による供給燃料WBも炭化水素ではあるがこの炭化水素は炭素数に小さな炭化水素に改質されるために完全酸化され、消滅してしまう。従ってこの供給燃料WBからは還元性中間体が生成されず、還元性中間体は部分酸化される炭化水素WAによって生成されることになる。
ところで還元性中間体は一つのNOと一つのラジカル状炭化水素から生成されるのでラジカル状炭化水素の量(mol)をNO量(mol)と同じにすれば理論的には全てのNOを還元できることになる。しかしながら全てのNOを還元するには実際にはラジカル状炭化水素はNOの数倍必要となる。そこで本発明による実施例ではこのことを考慮に入れて炭化水素の供給量WAは図22Aに示されるように還元すべきNO量、即ち機関から排出されるNO量NOXAが増大するほど増大せしめられる。
即ち、本発明による実施例では第2の炭化水素供給方法が用いられているときに炭化水素供給弁15から供給される炭化水素の供給量WAは排気浄化触媒13に流入する排気ガス中のNOの量に応じて定められている。
ここで機関から排出されるNO量NOXAは図18に示されるように噴射量Qと機関回転数Nの関数であり、炭化水素の供給量WAも噴射量Qと機関回転数Nの関数となる。従って本発明による実施例ではこの炭化水素の供給量WAは噴射量Qおよび機関回転数Nの関数として図22Bに示されるようなマップの形で予めROM32内に記憶されている。
一方、噴射量Qおよび機関回転数Nが定まるとベース空燃比(A/F)bが定まり、要求最小空燃比Xが定まり、炭化水素の供給量WAが定まる。従って図21Aからわかるようにこのときポスト噴射による供給燃料量WBも定まることになる。従って本発明による実施例ではこのポスト噴射による供給燃料量WBも噴射量Qおよび機関回転数Nの関数として図22Cに示されるようなマップの形で予めROM32内に記憶されている。
図23および図24に夫々具体的な第2の炭化水素供給制御の例を示す。
図23に示す例では炭化水素供給弁15から炭化水素WAが供給される少し手前から炭化水素WAが供給された直後までの連続する数回の膨張行程においてポスト噴射による燃料WBの供給が行われた場合を示している。この場合にはポスト噴射による燃料WBが供給されることによって空燃比(A/F)inが低下せしめられ、炭化水素WAが供給されることによって空燃比(A/F)inが要求最小空燃比Xまで低下せしめられる。
一方、図24に示される例では第2の炭化水素供給制御が開始されると膨張行程毎にポスト噴射による燃料WBの供給が行われる。従ってこの例では第2の炭化水素供給制御が開始されると空燃比(A/F)inが継続的に低下せしめられ、炭化水素WAが供給されたときに空燃比(A/F)inが要求最小空燃比Xまで低下せしめられる。
ところでポスト噴射による供給燃料はクラッキングされるために酸素と反応しやすく、従ってポスト噴射により燃料を供給すると炭化水素供給弁15から炭化水素を供給した場合に比べて酸素を容易に消費することができるという利点がある。一方、ポスト噴射を用いた場合にはポスト噴射と炭化水素WAの供給制御を共に行わなければならないという煩雑さがある。
従って本発明ではこれらのことを考慮して、機関運転時に炭化水素供給弁15から炭化水素Wを排気ガスの空燃比(A/F)inが予め定められた空燃比Xまで低下するように予め定められた供給間隔ΔTで噴射して排気ガス中に含まれるNOを浄化する第1の炭化水素供給方法と、炭化水素供給弁15からの炭化水素の供給量を低下させると共に排気ガスの空燃比(A/F)inと予め定められた空燃比Xまで低下させるのに必要な燃料WBを膨張行程後半又は排気行程中に燃焼室2内に供給する第2の炭化水素供給方法とが選択的に用いられる。
一方、前述したようにポスト噴射による燃料WBの方が炭化水素WAよりも酸化されやすく、従ってポスト噴射による燃料WBを供給した場合の方が炭化水素WAのみを供給した場合に比べて高い酸化反応熱が得られる。従って本発明による実施例では排気浄化触媒13やパティキュレートフィルタ14のような排気処理装置を昇温するときには第2の炭化水素供給方法が用いられる。
図25Aは排気浄化触媒13の昇温制御を示している。例えば機関運転時において機関負荷が低下し、排気温度が低下して排気浄化触媒13の温度TCが予め定められた活性化温度TCよりも低下するとNO浄化率が低下する。従って図25Aに示されるように排気浄化触媒13の温度TCが活性化温度TCよりも高いときには第1の炭化水素供給方法が用いられており、排気浄化触媒13の温度TCが活性化温度TCよりも低下すると排気浄化触媒13を昇温するために第2の炭化水素供給方法が用いられる。
即ち、図25Aに示される実施例では、排気浄化触媒13の温度TCが予め定められた活性化温度TCよりも低下したときには第1の炭化水素供給方法から第2の炭化水素供給方法に切換えられて排気浄化触媒13の昇温作用が行われる。
図25Bはパティキュレートフィルタ14の昇温制御を示している。パティキュレートフィルタ14に堆積したパティキュレートを燃焼させてパティキュレートフィルタ14を再生するためにはパティキュレートフィルタ14の温度TDを600℃以上の再生温度TXまで上昇させなければならない。そこで図25Bに示される実施例ではパティキュレートフィルタ14を再生すべきときには第1の炭化水素供給方法から第2の炭化水素供給方法に切換えられ、それによりパティキュレートフィルタ14の昇温作用が行われる。なお、この実施例ではパティキュレートフィルタ14の温度TDが再生温度TXを越えるとその後パティキュレートフィルタ14の温度TDを再生温度TX以上に維持するために少量のポスト噴射による燃料WBが供給され続ける。
次に本発明による運転制御方法について説明する。
図26は第1のNO浄化方法によりNOの浄化処理が行われているときのNO浄化率と、第2のNO浄化方法が用いられているときの排気浄化触媒13へのNO吸蔵率とを示している。本発明ではNO浄化率がNO吸蔵率よりも高いときには、即ち排気浄化触媒13の温度TCが比較的高いときには第1のNO浄化方法が用いられ、NO吸蔵率がNO浄化率よりも高いとき、即ち排気浄化触媒13の温度TCが低いときには第2のNO浄化方法が用いられる。従って機関始動時には通常第2のNO浄化方法が用いられ、排気浄化触媒13の温度TCが高くなると第2のNO浄化方法から第1のNO浄化方法に切換えられる。
一方、本発明では第1のNO浄化方法のもとで第2の炭化水素供給制御が行われたときには、排気ガスの空燃比(A/F)inが要求最小空燃比Xまで確実に低下するようにポスト噴射による燃料量WBがフィードバック制御される。このフィードバック制御を行うためには第2の炭化水素供給方法が用いられているときの実際の最小空燃比を検出する必要がある。
図27はこの実際の最小空燃比を検出するためのルーチンを示している。このルーチンは図23および図24に示される空燃比検出期間の間だけ一定時間毎の割込みによって実行される。
図27を参照するとまず初めにステップ60において空燃比センサ26により検出された排気ガスの空燃比(A/F)nが読込まれる。次いでステップ61では空燃比検出期間内において最小となった空燃比(A/F)inが検出される。次いでステップ62では空燃比検出期間が経過したか否かが判別され、空燃比検出期間が経過したときにはステップ63に進んで最小となった空燃比(A/F)nが最小空燃比(A/F)tとされる。
図28および図29は機関の運転制御ルーチンを示しており、このルーチンも一定時間毎の割込みで実行される。
図28を参照するとまず初めにステップ70において第1のNO浄化方法を選択すべきであることを示す選択フラグがセットされているか否かが判別される。選択フラグがセットされていないときにはステップ71に進んで第1のNO浄化方法によりNOの浄化処理が行われているときのNO浄化率が第2のNO浄化方法が用いられているときの排気浄化触媒13へのNO吸蔵率よりも高いか否かが判別される。NO浄化率がNO吸蔵率よりも低いときには図29のステップ72に進んで第2のNO浄化方法が実行される。
即ち、ステップ72では図18に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ73ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いでステップ74では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ75に進んで図20に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ76ではΣNOXがクリアされる。
一方、図71のステップ71においてNO浄化率がNO吸蔵率よりも高いと判別されたときにはステップ77に進んで選択フラグがセットされ、次いでステップ78に進む。一旦選択フラグがセットされるとその後はステップ70からステップ78にジャンプする。ステップ78では図25Aに示される排気浄化触媒13の昇温制御を行うべきであることを示す昇温フラグIがセットされているか否かが判別される。昇温フラグIがセットされていないときにはステップ79に進む。
ステップ79では温度センサ23により検出された排気浄化触媒13の温度TCが活性化温度TCよりも低下したか否かが判別される。TC≧TCのときにはステップ80に進んで図25Bに示されるパティキュレートフィルタ14の昇温制御を行うべきであることを示す昇温フラグIIがセットされているか否かが判別される。昇温フラグIIがセットされていないときにはステップ81に進んで差圧センサ24により検出されたパティキュレートフィルタ14の前後差圧ΔPが許容値PXよりも高くなったか否かが判別される。ΔP≦PXのときには図29のステップ82に進んで第1の炭化水素供給方法による炭化水素の供給が行われる。
即ち、ステップ82では図16Aに示されるマップから炭化水素の供給量Wが算出され、次いでステップ83では図16Cに示されるマップから炭化水素の供給周期ΔTが算出される。次いでステップ84では炭化水素供給弁15から供給量Wの炭化水素を供給周期ΔTでもって供給させる炭化水素供給制御が行われる。
一方、図28のステップ79においてTC<TCになったと判断されるとステップ85に進んで昇温フラグIがセットされ、処理サイクルを完了する。一旦昇温フラグIがセットされるとその後はステップ78を経て処理サイクルを完了する。即ち、昇温フラグIがセットされると第1の炭化水素供給方法による炭化水素の供給制御が停止される。このときには図30に示される時間割込みルーチンにおいて排気浄化触媒13の昇温制御が行われる。
また、図28のステップ81においてΔP>PXになったと判断されるとステップ86に進んで昇温フラグIIがセットされ、処理サイクルを完了する。一旦昇温フラグIIがセットされるとその後はステップ80を経て処理サイクルを完了する。即ち、昇温フラグIIがセットされると第1の炭化水素供給方法による炭化水素の供給制御が停止される。このときには図31に示される時間割込みルーチンにおいてパティキュレートフィルタ14の昇温制御が行われる。
図30に示される時間割込みルーチンを参照すると、まず初めにステップ90において昇温フラグIがセットされているか否かが判別され、昇温フラグIがセットされているときにはステップ91に進んで排気浄化触媒13の温度TCが活性化温度TCに一定値αを加えた温度(TC+α)よりも高くなったか否かが判別される。TC≦TC+αのときにはステップ92に進んで図25Aに示される排気浄化触媒13の昇温制御が行われる。
即ち、まず初めにステップ92では図22Bに示されるマップから炭化水素の供給量WAが算出され、次いでステップ93では図22Cに示されるマップからポスト噴射による供給燃料量WBが算出される。次いでステップ94では図27に示されるルーチンによる最小空燃比(A/F)tの検出が完了したか否かが判別される。最小空燃比(A/F)tが検出されたと最初に判断されたときにはステップ95に進み、その後はステップ98にジャンプする。
ステップ95では検出された最小空燃比(A/F)tが要求最小空燃比Xから一定値βを減算した空燃比(X−β)よりも低下したか否かが判別される。(A/F)t≧X−βのとき、即ち検出された最小空燃比(A/F)tが空燃比(X−β)まで低下しなかったときにはステップ97に進んで燃料供給量WBに対する補正値ΔWBに一定値ΔKが加算される。次いでステップ98に進む。これに対し、ステップ95において(A/F)t<X−βであると判別されたときにはステップ96に進んで補正値ΔWBから一定値ΔKが減算され、次いでステップ98に進む。
ステップ98では燃料供給量WBに補正値ΔWBが算出される。次いでステップ99では炭化水素供給弁15から供給量WAの炭化水素が図16Cに示されるマップから算出された供給周期ΔTでもって供給され、図23に示されるようにこの炭化水素の供給作用の少し前からポスト噴射によって燃料量WBの燃料が燃焼室2内に供給される。一方、ステップ91においてTC>TC+αになったと判断されたときにはステップ100に進んで昇温フラグIがリセットされる。
次に図31に示される時間割込みルーチンを参照すると、まず初めにステップ110において昇温フラグIIがセットされているか否かが判別され、昇温フラグIIがセットされているときにはステップ111に進んでパティキュレートフィルタ14の温度TDが再生温度TXよりも高くなったか否かが判別される。TD≦TXのときにはステップ112に進んで図25Bに示されるパティキュレートフィルタ14の昇温制御が行われる。
即ち、まず初めにステップ112では図22Bに示されるマップから炭化水素の供給量WAが算出され、次いでステップ113では図22Cに示されるマップからポスト噴射による供給燃料量WBが算出される。次いでステップ114では図27に示されるルーチンによる最小空燃比(A/F)tの検出が完了したか否かが判別される。最小空燃比(A/F)tが検出されたと最初に判断されたときにはステップ115に進み、その後はステップ118にジャンプする。
ステップ115では検出された最小空燃比(A/F)tが要求最小空燃比Xから一定値βを減算した空燃比(X−β)よりも低下したか否かが判別される。(A/F)t≧X−βのときにはステップ117に進んで燃料供給量WBに対する補正値ΔWBに一定値ΔKが加算される。次いでステップ118に進む。これに対し、ステップ115において(A/F)t<X−βであると判別されたときにはステップ116に進んで補正値ΔWBから一定値ΔKが減算され、次いでステップ118に進む。
ステップ118では燃料供給量WBに補正値ΔWBが算出される。次いでステップ119では炭化水素供給弁15から供給量WAの炭化水素が図16Cに示されるマップから算出された供給周期ΔTでもって供給され、図23に示されるようにこの炭化水素の供給作用の少し前からポスト噴射によって燃料量WBの燃料が燃焼室2内に供給される。
一方、ステップ111においてTD>TXになったと判断されるとステップ120に進んで図25Bに示されるようにポスト噴射をすることによりパティキュレートフィルタ14の温度TDを再生温度TX以上に維持する温度維持制御が行われる。次いでステップ121では再生処理が完了したか否かが判別され、再生処理が完了したと判断されたときにはステップ122に進んで昇温フラグIIがリセットされる。
なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7. The outlet of the exhaust turbine 7b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12, and the outlet of the exhaust purification catalyst 13 is connected to the particulate filter 14 for collecting particulates contained in the exhaust gas. . In the exhaust pipe 12 upstream of the exhaust purification catalyst 13, a hydrocarbon supply valve 15 for supplying hydrocarbons composed of light oil and other fuels used as fuel for the compression ignition internal combustion engine is disposed. In the embodiment shown in FIG. 1, light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15. The present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio. In this case, the hydrocarbon supply valve 15 supplies hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition internal combustion engine.
On the other hand, the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16. A cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed around the EGR passage 16. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 20 via a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 via an electronically controlled fuel pump 21 having a variable discharge amount. The fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (read only memory) 32, a RAM (random access memory) 33, a CPU (microprocessor) 34, an input port 35 and an output port 36. It comprises. A temperature sensor 23 for detecting the temperature of the exhaust purification catalyst 13 is attached downstream of the exhaust purification catalyst 13, and the differential pressure for detecting the differential pressure before and after the particulate filter 14 is attached to the particulate filter 14. A sensor 24 is attached. Further, a temperature sensor 25 for detecting the temperature of the particulate filter 14 is disposed downstream of the particulate filter 14, and an air-fuel ratio sensor 26 is disposed in the exhaust pipe 12 downstream of the hydrocarbon supply valve 15. Has been. The output signals of the temperature sensors 23 and 25, the differential pressure sensor 24, the air-fuel ratio sensor 26, and the intake air amount detector 8 are input to the input port 35 via corresponding AD converters 37, respectively. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, and the fuel pump 21 through corresponding drive circuits 38.
FIG. 2 schematically shows the surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13. In this exhaust purification catalyst 13, as shown in FIG. 2, noble metal catalysts 51 and 52 are supported on a catalyst support 50 made of alumina, for example, and further on this catalyst support 50 potassium K, sodium Na, cesium Cs. selected from an alkali metal, barium Ba, alkaline earth metals such as calcium Ca, rare earth and silver Ag, such as lanthanides, copper Cu, iron Fe, the metal capable of donating an electron to the NO X such as iridium Ir, such as A basic layer 53 containing at least one of them is formed. Since the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
On the other hand, in FIG. 2, the noble metal catalyst 51 is made of platinum Pt, and the noble metal catalyst 52 is made of rhodium Rh. That is, the noble metal catalysts 51 and 52 carried on the catalyst carrier 50 are composed of platinum Pt and rhodium Rh. In addition to platinum Pt and rhodium Rh, palladium Pd can be further supported on the catalyst carrier 50 of the exhaust purification catalyst 13, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 51 and 52 supported on the catalyst carrier 50 are composed of platinum Pt and at least one of rhodium Rh and palladium Pd.
When hydrocarbons are injected into the exhaust gas from the hydrocarbon supply valve 15, the hydrocarbons are reformed in the exhaust purification catalyst 13. In the present invention, so as to purify the NO X in the exhaust purification catalyst 13 using the time reformed hydrocarbons. FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time. As shown in FIG. 3, the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the catalyst 51.
FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
FIG. 5 shows exhaust purification as shown in FIG. 4 by periodically supplying hydrocarbons from the hydrocarbon supply valve 15, that is, by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. shows the NO X purification rate by the exhaust purification catalyst 13 when changing the air-fuel ratio (a / F) in of the exhaust gas flowing into the catalyst 13 for each catalyst temperature TC of the exhaust purification catalyst 13. The inventor has conducted research on NO X purification over a long period of time, and in the course of the research, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is set to an amplitude within a predetermined range and a predetermined range. FIG. 5 shows that when the fuel is vibrated with the internal period, that is, when the hydrocarbon is injected from the hydrocarbon supply valve 15 at a predetermined supply interval so that the air-fuel ratio of the exhaust gas decreases to a predetermined air-fuel ratio. As shown, it has been found that an extremely high NO x purification rate can be obtained even in a high temperature region of 400 ° C. or higher.
Further, at this time, a large amount of the reducing intermediate containing nitrogen and hydrocarbon continues to be held or adsorbed on the surface of the basic layer 53, that is, on the basic exhaust gas flow surface portion 54 of the exhaust purification catalyst 13. it is of has been found that reducing intermediate plays a central role in obtaining a high NO X purification rate. Next, this will be described with reference to FIGS. 6A and 6B. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. When the vibration is vibrated with the amplitude within the range and the period within the predetermined range, that is, the hydrocarbon is removed from the hydrocarbon supply valve 15 in advance so that the air-fuel ratio of the exhaust gas is lowered to the predetermined air-fuel ratio. The reaction presumed to occur when spraying at a defined supply interval is shown.
FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low, and FIG. 6B shows that the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15 is high. It shows when
As can be seen from FIG. 4, since the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is maintained lean except for a moment, the exhaust gas flowing into the exhaust purification catalyst 13 is usually in an oxygen excess state. Therefore, as shown in FIG. 6A, NO contained in the exhaust gas is oxidized on the platinum 51 to become NO 2 , and then this NO 2 is donated with electrons from the platinum 51 to become NO 2 . Accordingly, a large amount of NO 2 is generated on the platinum 51. The NO 2 - is strongly active, or the NO 2 - is referred to as the active NO 2 *.
On the other hand, when hydrocarbons are supplied from the hydrocarbon supply valve 15, as shown in FIG. 3, the hydrocarbons are reformed in the exhaust purification catalyst 13 and become radicals. As a result, as shown in FIG. 6B, the hydrocarbon concentration around the active NO 2 * increases. By the way, after active NO 2 * is generated, when a state in which the oxygen concentration around the active NO 2 * is high continues for a certain period of time, the active NO 2 * is oxidized and enters the basic layer 53 in the form of nitrate ions NO 3 −. Absorbed. However react with radical hydrocarbons HC in the active NO 2 * around the hydrocarbon concentration is high is being when the active NO 2 * platinum 51 as shown in Figure 6B before the lapse of this period of time, whereby A reducing intermediate is produced. This reducing intermediate is attached or adsorbed on the surface of the basic layer 53.
Incidentally, the first produced reducing intermediate this time is considered to be a nitro compound R-NO 2. When this nitro compound R-NO 2 is produced, it becomes a nitrile compound R-CN, but since this nitrile compound R-CN can only survive for a moment in that state, it immediately becomes an isocyanate compound R-NCO. This isocyanate compound R—NCO becomes an amine compound R—NH 2 when hydrolyzed. However, in this case, it is considered that a part of the isocyanate compound R-NCO is hydrolyzed. Therefore, as shown in FIG. 6B, most of the reducing intermediates retained or adsorbed on the surface of the basic layer 53 are considered to be the isocyanate compound R—NCO and the amine compound R—NH 2 .
On the other hand, as shown in FIG. 6B, when hydrocarbon HC surrounds the generated reducing intermediate, the reducing intermediate is blocked by hydrocarbon HC and the reaction does not proceed further. In this case, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is lowered, and as a result, when the oxygen concentration is increased, the hydrocarbons around the reducing intermediate are oxidized. As a result, as shown in FIG. 6A, the reducing intermediate and active NO 2 * react. At this time, the active NO 2 * reacts with the reducing intermediates R—NCO and R—NH 2 to become N 2 , CO 2 , H 2 O, and thus NO X is purified.
In this way, in the exhaust purification catalyst 13, a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is decreased to reduce the oxygen concentration. By increasing the NO, active NO 2 * reacts with the reducing intermediate, and NO X is purified. That is, in order to purify the NO X by the exhaust purification catalyst 13, it is necessary to change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 periodically.
Of course, in this case, the hydrocarbon concentration needs to be increased to a concentration high enough to produce a reducing intermediate, and carbonized to a concentration low enough to react the resulting reducing intermediate with active NO 2 *. It is necessary to reduce the concentration of hydrogen. That is, it is necessary to vibrate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with an amplitude within a predetermined range. In this case, a sufficient amount of the reducing intermediate R-NCO or R-NH 2 is put on the basic layer 53, that is, basic exhaust gas, until the generated reducing intermediate reacts with active NO 2 *. A basic exhaust gas flow surface portion 24 is provided for this purpose, which must be retained on the gas flow surface portion 24.
On the other hand, if the supply cycle of the hydrocarbon is lengthened, the period during which the oxygen concentration becomes high after the hydrocarbon is supplied and before the next hydrocarbon is supplied becomes longer, so that the active NO 2 * is reduced to the reducing intermediate. Without being generated in the basic layer 53 in the form of nitrate. In order to avoid this, it is necessary to oscillate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
Therefore, in the embodiment according to the present invention, NO X contained in the exhaust gas is reacted with the reformed hydrocarbon to produce reducing intermediates R-NCO and R-NH 2 containing nitrogen and hydrocarbons. Further, noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and the generated reducing intermediates R-NCO and R-NH 2 are held in the exhaust purification catalyst 13. Therefore, a basic exhaust gas flow surface portion 54 is formed around the noble metal catalysts 51 and 52, and the reducing intermediates R-NCO and R-NH held on the basic exhaust gas flow surface portion 54 are formed. NO X is reduced by the second reduction action, the vibration period of the hydrocarbon concentration, i.e. to feed period of hydrocarbons from the hydrocarbon feed valve 15 continues to generate the reducing intermediate R-NCO or R-NH 2 The required period. Incidentally, in the example shown in FIG. 4, the injection interval is 3 seconds.
When the oscillation period of the hydrocarbon concentration, that is, the supply period of the hydrocarbon HC is longer than the period within the above-described predetermined range, the reducing intermediates R-NCO and R-NH 2 are formed from the surface of the basic layer 53. At this time, the active NO 2 * produced on the platinum Pt 53 diffuses into the basic layer 53 in the form of nitrate ions NO 3 as shown in FIG. 7A and becomes nitrate. That is, at this time, NO X in the exhaust gas is absorbed into the basic layer 53 in the form of nitrate.
On the other hand, FIG. 7B shows a case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NO X is absorbed in the basic layer 53 in the form of nitrate. Is shown. In this case, since the oxygen concentration in the exhaust gas is lowered, the reaction proceeds in the reverse direction (NO 3 → NO 2 ), and thus the nitrate absorbed in the basic layer 53 is successively converted into nitrate ions NO 3. And released from the basic layer 53 in the form of NO 2 as shown in FIG. 7B. Next, the released NO 2 is reduced by the hydrocarbons HC and CO contained in the exhaust gas.
Figure 8 shows a case where NO X absorbing capacity of the basic layer 53 is to be temporarily rich air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 shortly before saturation Yes. In the example shown in FIG. 8, the time interval of this rich control is 1 minute or more. In this case, NO X absorbed in the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is lean causes the air-fuel ratio (A / F) in of the exhaust gas to be temporarily rich. When released, it is released from the basic layer 53 at once and reduced. Therefore, in this case, the basic layer 53 serves as an absorbent for temporarily absorbing NO X.
Incidentally, at this time, sometimes the basic layer 53 temporarily adsorbs the NO X, thus using term of storage as a term including both absorption and adsorption In this case the basic layer 53 temporarily the NO X It plays the role of NO X storage agent for storage. That is, in this case, if the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the exhaust purification catalyst 13 is referred to as the air-fuel ratio of the exhaust gas, the exhaust purification catalyst. 13, the air-fuel ratio of the exhaust gas is acting as the NO X storage catalyst during lean occludes NO X, the oxygen concentration in the exhaust gas to release NO X occluding the drops.
Figure 9 shows the NO X purification rate when making the exhaust purification catalyst 13 was thus function as the NO X storage catalyst. The horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13. When the exhaust purification catalyst 13 functions as a NO X storage catalyst, as shown in FIG. 9, when the catalyst temperature TC is 300 ° C. to 400 ° C., an extremely high NO X purification rate is obtained, but the catalyst temperature TC is 400 ° C. NO X purification rate decreases when a high temperature of more.
The reason why the the catalyst temperature TC becomes equal to or higher than 400 ° C. NO X purification rate is lowered, nitrate when the catalyst temperature TC becomes equal to or higher than 400 ° C. is released from the exhaust purification catalyst 13 in the form of NO 2 by thermal decomposition Because. That is, so long as storing NO X in the form of nitrates, it is difficult to obtain a high NO X purification rate when the catalyst temperature TC is high. However, in the new NO X purification method shown in FIGS. 4 to 6A and 6B, as can be seen from FIGS. 6A and 6B, nitrate is not generated or is very small even if it is generated, and thus shown in FIG. the catalyst temperature TC is that even high NO X purification rate is obtained when as high as.
Therefore, in the present invention, the hydrocarbon supply valve 15 for supplying hydrocarbons is disposed in the engine exhaust passage, and the hydrocarbons injected from the hydrocarbon supply valve 15 into the engine exhaust passage downstream of the hydrocarbon supply valve 15 and An exhaust purification catalyst 13 for reacting with NO X contained in the exhaust gas is disposed. Precious metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13 and are also precious metal catalysts 51 and 52. A basic exhaust gas flow surface portion 54 is formed around the exhaust gas purification catalyst 13 so that the exhaust gas purification catalyst 13 reduces hydrocarbons from the hydrocarbon supply valve 15 to a predetermined air-fuel ratio. which has a property for reducing the NO X which the ejecting at predetermined supply interval contained in the exhaust gas, the supply interval of a hydrocarbon to be longer than the predetermined supply interval exhaust Stored amount of NO X contained in the vinegar has a property of increasing, so that the air-fuel ratio of the exhaust gas hydrocarbons from the hydrocarbon feed valve 15 during engine operation decreases to an air-fuel ratio to a predetermined above so that injected at a predetermined supply interval described above, thereby reducing the NO X contained in exhaust gas in the exhaust purification catalyst 13 in.
That is, the NO X purification methods shown in FIGS. 4 to 6A and 6B almost form nitrates when an exhaust purification catalyst carrying a noble metal catalyst and forming a basic layer capable of absorbing NO X is used. It can be said that this is a new NO X purification method that purifies NO X without any problems. In fact, when this new NO X purification method is used, the amount of nitrate detected from the basic layer 53 is extremely small compared to the case where the exhaust purification catalyst 13 functions as a NO X storage catalyst. Incidentally, this new NO X purification method hereinafter referred to as a first NO X removal method.
Next, this first NO X removal method will be described in more detail with reference to FIG 15. FIG 10.
FIG. 10 shows an enlarged view of the change in the air-fuel ratio (A / F) in shown in FIG. As described above, the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 indicates the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 at the same time. In FIG. 10, ΔH indicates the amplitude of the air-fuel ratio (A / F) in, that is, the amplitude of the change in the concentration of hydrocarbon HC flowing into the exhaust purification catalyst 13, and ΔT indicates the hydrocarbon flowing into the exhaust purification catalyst 13. The concentration oscillation period, that is, the hydrocarbon supply period is shown.
Further, in FIG. 10, (A / F) b represents the base air-fuel ratio indicating the air-fuel ratio of the combustion gas for generating the engine output. In other words, the base air-fuel ratio (A / F) b represents the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when the supply of hydrocarbons is stopped. On the other hand, in FIG. 10, X is the air-fuel ratio (A / F) used for the production of the reducing intermediate without the generated active NO 2 * being occluded in the basic layer 53 in the form of nitrate. The upper limit of in is expressed, and in order to react active NO 2 * and the reformed hydrocarbon to generate a reducing intermediate, the air-fuel ratio (A / F) in is set to be higher than the upper limit X of the air-fuel ratio. It needs to be lowered. Hereinafter, the upper limit X of the air-fuel ratio necessary for generating the reducing intermediate is referred to as a required minimum air-fuel ratio.
In the example shown in FIG. 10, the required minimum air-fuel ratio X is rich. Therefore, in this case, the air-fuel ratio (A / F) in is instantaneously required to generate the reducing intermediate. The following is made rich: On the other hand, in the example shown in FIG. 11, the required minimum air-fuel ratio X is lean. In this case, the reducing intermediate is generated by periodically reducing the air-fuel ratio (A / F) in while maintaining the air-fuel ratio (A / F) in lean.
In this case, whether the required minimum air-fuel ratio X becomes rich or lean depends on the oxidizing power of the exhaust purification catalyst 13. In this case, for example, if the amount of the precious metal 51 supported is increased, the exhaust purification catalyst 13 becomes stronger in oxidizing power, and if it becomes more acidic, the oxidizing power becomes stronger. Accordingly, the oxidizing power of the exhaust purification catalyst 13 varies depending on the amount of the precious metal 51 supported and the acidity.
When the exhaust purification catalyst 13 having a strong oxidizing power is used, the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG. When the air-fuel ratio (A / F) in is lowered, the hydrocarbon is completely oxidized, and as a result, a reducing intermediate cannot be generated. On the other hand, when the exhaust purification catalyst 13 having a strong oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, the air-fuel ratio (A / F) in is rich. The hydrocarbons are partially oxidized without being completely oxidized, i.e., the hydrocarbons are reformed, thus producing a reducing intermediate. Therefore, when the exhaust purification catalyst 13 having a strong oxidizing power is used, the required minimum air-fuel ratio X needs to be made rich.
On the other hand, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG. In this case, the hydrocarbon is not completely oxidized but partially oxidized, that is, the hydrocarbon is reformed, and thus a reducing intermediate is produced. On the other hand, when the exhaust purification catalyst 13 having a weak oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, a large amount of hydrocarbons are not oxidized. The exhaust gas is simply exhausted from the exhaust purification catalyst 13, and the amount of hydrocarbons that are wasted is increased. Therefore, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the required minimum air-fuel ratio X needs to be made lean.
That is, it can be seen that the required minimum air-fuel ratio X needs to be lowered as the oxidizing power of the exhaust purification catalyst 13 becomes stronger, as shown in FIG. In this way, the required minimum air-fuel ratio X becomes lean or rich due to the oxidizing power of the exhaust purification catalyst 13, but in the case where the required minimum air-fuel ratio X is rich below, the air-fuel ratio (A / F) The amplitude ΔT of in, that is, the amplitude change ΔT of the hydrocarbon concentration flowing into the exhaust purification catalyst 13 and the oscillation period ΔT of the hydrocarbon concentration flowing into the exhaust purification catalyst 13, that is, the hydrocarbon supply cycle ΔT will be described.
When the base air-fuel ratio (A / F) b increases, that is, when the oxygen concentration in the exhaust gas before the hydrocarbons are supplied increases, the air-fuel ratio (A / F) in is made equal to or less than the required minimum air-fuel ratio X. As a result, the amount of hydrocarbons necessary for the increase increases, and the amount of excess hydrocarbons that did not contribute to the production of the reducing intermediate also increases. In this case, in order to satisfactorily purify NO X must oxidize the excess hydrocarbons as described above, therefore in order to satisfactorily purify NO X amounts of higher hydrocarbons the amount of the surplus is large Oxygen is needed.
In this case, the amount of oxygen can be increased by increasing the oxygen concentration in the exhaust gas. To satisfactorily purify NO X, therefore, it is necessary to increase the oxygen concentration in the exhaust gas after the hydrocarbon feed when the oxygen concentration in the exhaust gas before the hydrocarbons are fed is high. That is, it is necessary to increase the amplitude of the hydrocarbon concentration as the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is higher.
FIG. 13 shows the relationship between the oxygen concentration in the exhaust gas before the hydrocarbon is supplied and the amplitude ΔH of the hydrocarbon concentration when the same NO X purification rate is obtained. From FIG. 13, it can be seen that in order to obtain the same NO x purification rate, the higher the oxygen concentration in the exhaust gas before the hydrocarbons are supplied, the more the amplitude ΔH of the hydrocarbon concentration needs to be increased. That is, it is necessary to increase the amplitude ΔT of the hydrocarbon concentration as the base air-fuel ratio (A / F) b is increased to obtain the same of the NO X purification rate. In other words, in order to satisfactorily purify NO X can be reduced the amplitude ΔT of the hydrocarbon concentration as the base air-fuel ratio (A / F) b becomes lower.
By the way, the base air-fuel ratio (A / F) b becomes the lowest during acceleration operation. At this time, if the amplitude ΔH of the hydrocarbon concentration is about 200 ppm, NO X can be purified well. The base air-fuel ratio (A / F) b is usually larger than that during acceleration operation. Therefore, as shown in FIG. 14, if the hydrocarbon concentration amplitude ΔH is 200 ppm or more, a good NO x purification rate can be obtained. become.
On the other hand, when the base air-fuel ratio (A / F) b is the highest is found that good NO X purification rate when the amplitude ΔH of the hydrocarbon concentration of about 10000ppm is obtained. Therefore, in the present invention, the predetermined range of the amplitude of the hydrocarbon concentration is set to 200 ppm to 10,000 ppm.
Further, when the vibration period ΔT of the hydrocarbon concentration becomes longer, the oxygen concentration around the active NO 2 * becomes higher while the hydrocarbon is supplied after the hydrocarbon is supplied. In this case, when the vibration period ΔT of the hydrocarbon concentration becomes longer than about 5 seconds, the active NO 2 * begins to be absorbed in the basic layer 53 in the form of nitrate, and therefore the vibration of the hydrocarbon concentration as shown in FIG. When the period ΔT becomes longer than about 5 seconds NO X purification rate falls. Therefore, the oscillation period of the hydrocarbon concentration, that is, the hydrocarbon supply period ΔT needs to be 5 seconds or less.
On the other hand, when the vibration period ΔT of the hydrocarbon concentration becomes approximately 0.3 seconds or less, the supplied hydrocarbon starts to accumulate on the exhaust gas flow surface of the exhaust purification catalyst 13, and therefore, as shown in FIG. NO X purification rate decreases the vibration period ΔT approximately 0.3 seconds becomes below. Therefore, in the present invention, the oscillation cycle of the hydrocarbon concentration, that is, the hydrocarbon supply cycle is set to be between 0.3 seconds and 5 seconds.
Now, lowering the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as described above until the required minimum air-fuel ratio X in order to purify the NO X using the first NO X removal method It is necessary to let In the embodiment according to the present invention, the hydrocarbon supply amount W that can reduce the air-fuel ratio (A / F) in of the exhaust gas to the required minimum air-fuel ratio is a function of the injection amount Q from the fuel injection valve 3 and the engine speed N. Is stored in advance in the ROM 32 in the form of a map as shown in FIG.
On the other hand, FIG. 16B shows the reducing intermediate holding time during which the reducing intermediate generated on the basic layer 53 of the exhaust purification catalyst 13 can be held. When the temperature TC of the exhaust purification catalyst 13 rises, this reducing intermediate is easily detached from the basic layer 53. Therefore, as shown in FIG. 16B, the reducing intermediate is retained as the temperature TC of the exhaust purification catalyst 13 increases. Time will be shorter. By the way, when the hydrocarbon supply period ΔT becomes longer than the reducing intermediate retention time, a period in which the reducing intermediate does not exist occurs, and the NO x purification rate decreases. In order to prevent such a period in which the reducing intermediate does not exist, it is necessary to make the hydrocarbon feed period ΔT equal to the reducing intermediate holding time or shorter than the reducing intermediate holding time. There is. Therefore, in the embodiment according to the present invention, the hydrocarbon supply period ΔT is shortened as the temperature TC of the exhaust purification catalyst 13 increases. This hydrocarbon supply cycle ΔT is also stored in advance in the ROM 32 in the form of a map as shown in FIG. 16C as a function of the injection amount Q and the engine speed N.
Next will be specifically described NO X purification method when the exhaust purification catalyst 13 with reference made to function as the NO X storing catalyst to FIGS. 17 to 20. Hereinafter, the NO X purification method in the case where the exhaust purification catalyst 13 functions as the NO X storage catalyst is referred to as a second NO X purification method.
In this second NO X purification method, as shown in FIG. 17, the exhaust flowing into the exhaust purification catalyst 13 when the stored NO X amount ΣNOX stored in the basic layer 53 exceeds a predetermined allowable amount MAX. The air-fuel ratio (A / F) in of the gas is temporarily made rich. When the air-fuel ratio (A / F) in of the exhaust gas is made rich, NO X occluded in the basic layer 53 from the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is lean. It is released at once and reduced. Thereby, NO X is purified.
Occluded amount of NO X ΣNOX is calculated from the amount of NO X discharged from the engine, for example. In the embodiment according to the present invention is stored in advance in the ROM32 in the form of a map as shown in FIG. 18 as a function of the discharge amount of NO X NOXA the injection quantity Q and the engine speed N which is discharged from the engine per unit time, The stored NO X amount ΣNOX is calculated from this exhausted NO X amount NOXA. In this case, as described above, the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
In this second NO X purification method, as shown in FIG. 19, the exhaust gas flowing into the exhaust purification catalyst 13 by injecting the additional fuel WR into the combustion chamber 2 from the fuel injection valve 3 in addition to the combustion fuel Q. The air / fuel ratio (A / F) in of the gas is made rich. The horizontal axis in FIG. 19 indicates the crank angle. This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 60 ° after compression top dead center. This fuel amount WR is stored in advance in the ROM 32 as a function of the injection amount Q and the engine speed N in the form of a map as shown in FIG. Of course, the air-fuel ratio (A / F) in of the exhaust gas can be made rich by increasing the amount of hydrocarbons supplied from the hydrocarbon supply valve 15 in this case.
Now, lowering the air-fuel ratio (A / F) in of the exhaust gas to purify the NO X using the first NO X removal method is to flow into the exhaust purification catalyst 13 to the required minimum air-fuel ratio X as described above It is necessary to let In this case, in the embodiment described so far, the air-fuel ratio (A / F) in of the exhaust gas is lowered to the required minimum air-fuel ratio X by the hydrocarbon W supplied from the hydrocarbon supply valve 15. A method of supplying hydrocarbon W from only the hydrocarbon supply valve 15 to reduce the air-fuel ratio (A / F) in of the exhaust gas to the required minimum air-fuel ratio X is hereinafter referred to as a first hydrocarbon supply method. Called. The change in the air-fuel ratio (A / F) in by this first hydrocarbon supply method is schematically shown in FIG. 21A.
On the other hand, when the fuel is injected from the fuel injection valve 3 into the combustion chamber 2 during the latter half of the expansion stroke or the exhaust stroke after 70 ° after compression top dead center, that is, after the combustion of the combustion fuel is completed, the fuel is injected. This fuel is then cracked without creating a flame and burning it. That is, the fuel is reformed to a hydrocarbon having a small carbon number. The injection performed after the combustion of the combustion fuel is referred to as post (rear) injection.
A hydrocarbon supply method using this post-injection is schematically shown as a second hydrocarbon supply method in FIG. 21A. As shown in FIG. 21A, in the second hydrocarbon supply method, the air-fuel ratio (A / F) of the exhaust gas flowing into the exhaust purification catalyst 13 by the supply hydrocarbon WA from the hydrocarbon supply valve 15 and the supply fuel WB by post-injection. F) in is the required minimum air-fuel ratio X. The supplied fuel WB by the post injection is shown in FIG. 21B similar to FIG. In the embodiment according to the present invention, this post injection is performed between 70 ° and 150 ° after the compression top dead center indicated by the range θ in FIG. 21B.
In the first hydrocarbon supply method, most of the hydrocarbon W supplied from the hydrocarbon supply valve 15 is used to consume oxygen, that is, to reduce the air-fuel ratio (A / F) in. And only a part of the hydrocarbon W fed from the hydrocarbon feed valve 15 is used for the production of the reducing intermediate. That is, the amount of hydrocarbon used for the production of the reducing intermediate is extremely small.
Therefore, in the second hydrocarbon supply method, only the hydrocarbon amount WA required for the production of the reducing intermediate is supplied from the hydrocarbon supply valve 15, oxygen is consumed by the supplied fuel WB by post injection, and the air-fuel ratio (A / F ) In is lowered. Although the fuel WB supplied by post injection is also a hydrocarbon, this hydrocarbon is completely oxidized and disappears because it is reformed into a hydrocarbon having a small carbon number. Therefore, no reducing intermediate is produced from the supplied fuel WB, and the reducing intermediate is produced by the hydrocarbon WA that is partially oxidized.
By the way, since the reducing intermediate is produced from one NO X and one radical hydrocarbon, theoretically, if the amount (mol) of radical hydrocarbon is the same as the amount of NO X (mol), all NO NO X can be reduced. However, in order to reduce all NO X , radical hydrocarbons are actually required several times as much as NO X. Therefore the supply amount WA of hydrocarbons into account that this is in the embodiment according to the present invention increases as the amount of NO X to be reduced as shown in FIG. 22A, that is, the amount of NO X NOXA exhausted from the engine increases To be harassed.
That is, in the embodiment according to the present invention, when the second hydrocarbon supply method is used, the hydrocarbon supply amount WA supplied from the hydrocarbon supply valve 15 is the NO in the exhaust gas flowing into the exhaust purification catalyst 13. It is determined according to the amount of X.
Here, the NO X amount NOXA discharged from the engine is a function of the injection amount Q and the engine speed N as shown in FIG. 18, and the hydrocarbon supply amount WA is also a function of the injection amount Q and the engine speed N. Become. Therefore, in the embodiment according to the present invention, this hydrocarbon supply amount WA is stored in advance in the ROM 32 in the form of a map as shown in FIG. 22B as a function of the injection amount Q and the engine speed N.
On the other hand, when the injection amount Q and the engine speed N are determined, the base air-fuel ratio (A / F) b is determined, the required minimum air-fuel ratio X is determined, and the hydrocarbon supply amount WA is determined. Accordingly, as can be seen from FIG. 21A, the fuel supply amount WB by post injection is also determined at this time. Accordingly, in the embodiment according to the present invention, the supplied fuel amount WB by the post injection is also stored in advance in the ROM 32 in the form of a map as shown in FIG. 22C as a function of the injection amount Q and the engine speed N.
FIG. 23 and FIG. 24 show specific examples of the second hydrocarbon supply control.
In the example shown in FIG. 23, the fuel WB is supplied by post injection in several consecutive expansion strokes from just before the hydrocarbon WA is supplied from the hydrocarbon supply valve 15 to immediately after the hydrocarbon WA is supplied. Shows the case. In this case, the air-fuel ratio (A / F) in is lowered by supplying the fuel WB by post injection, and the air-fuel ratio (A / F) in is reduced to the required minimum air-fuel ratio by supplying the hydrocarbons WA. It is lowered to X.
On the other hand, in the example shown in FIG. 24, when the second hydrocarbon supply control is started, fuel WB is supplied by post-injection every expansion stroke. Therefore, in this example, when the second hydrocarbon supply control is started, the air-fuel ratio (A / F) in is continuously decreased, and when the hydrocarbon WA is supplied, the air-fuel ratio (A / F) in is decreased. The required minimum air-fuel ratio X is lowered.
By the way, since the fuel supplied by post injection is cracked, it easily reacts with oxygen. Therefore, when fuel is supplied by post injection, oxygen can be consumed more easily than when hydrocarbon is supplied from the hydrocarbon supply valve 15. There is an advantage. On the other hand, when post injection is used, both post injection and hydrocarbon WA supply control must be performed.
Accordingly, in the present invention, in consideration of these matters, the hydrocarbon W from the hydrocarbon feed valve 15 is reduced in advance so that the air-fuel ratio (A / F) in of the exhaust gas decreases to a predetermined air-fuel ratio X during engine operation. A first hydrocarbon supply method for purifying NO x contained in the exhaust gas by injecting at a predetermined supply interval ΔT, and reducing the supply amount of hydrocarbons from the hydrocarbon supply valve 15 and exhausting the exhaust gas; Selection is made between the fuel ratio (A / F) in and the second hydrocarbon supply method for supplying the fuel WB necessary for lowering to a predetermined air-fuel ratio X into the combustion chamber 2 during the latter half of the expansion stroke or during the exhaust stroke. Used.
On the other hand, as described above, the post-injection fuel WB is more likely to be oxidized than the hydrocarbon WA, and therefore, when the post-injection fuel WB is supplied, the oxidation reaction is higher than when only the hydrocarbon WA is supplied. Heat is obtained. Therefore, in the embodiment according to the present invention, the second hydrocarbon supply method is used when the temperature of the exhaust treatment device such as the exhaust purification catalyst 13 or the particulate filter 14 is raised.
FIG. 25A shows the temperature rise control of the exhaust purification catalyst 13. For example reduces the engine load at the time of engine operation, the temperature TC is lower than the activation temperature TC 0 predetermined when NO X purification rate of the exhaust purification catalyst 13 an exhaust temperature is reduced is reduced. Therefore, as shown in FIG. 25A, when the temperature TC of the exhaust purification catalyst 13 is higher than the activation temperature TC 0 , the first hydrocarbon supply method is used, and the temperature TC of the exhaust purification catalyst 13 becomes the activation temperature TC. When the temperature falls below 0 , the second hydrocarbon supply method is used to raise the temperature of the exhaust purification catalyst 13.
That is, in the embodiment shown in FIG. 25A, when the temperature TC of the exhaust purification catalyst 13 falls below a predetermined activation temperature TC 0 , the first hydrocarbon supply method is switched to the second hydrocarbon supply method. Thus, the temperature raising action of the exhaust purification catalyst 13 is performed.
FIG. 25B shows the temperature rise control of the particulate filter 14. In order to regenerate the particulate filter 14 by burning the particulates deposited on the particulate filter 14, the temperature TD of the particulate filter 14 must be raised to a regeneration temperature TX of 600 ° C. or higher. Therefore, in the embodiment shown in FIG. 25B, when the particulate filter 14 is to be regenerated, the first hydrocarbon supply method is switched to the second hydrocarbon supply method, whereby the temperature raising action of the particulate filter 14 is performed. . In this embodiment, when the temperature TD of the particulate filter 14 exceeds the regeneration temperature TX, a small amount of post-injection fuel WB continues to be supplied to maintain the temperature TD of the particulate filter 14 at or above the regeneration temperature TX.
Next, the operation control method according to the present invention will be described.
Figure 26 is NO in the exhaust purification catalyst 13 when the NO X purification rate when the purification process of the NO X is being performed, the second NO X removal method has been used by the first NO X removal method X storage rate is shown. In the present invention, when the NO X purification rate is higher than the NO X storage rate, that is, when the temperature TC of the exhaust purification catalyst 13 is relatively high, the first NO X purification method is used, and the NO X storage rate is the NO X purification rate. Is higher, that is, when the temperature TC of the exhaust purification catalyst 13 is low, the second NO X purification method is used. At the time of engine startup therefore usually used are second NO X removal method, it is switched when the temperature TC of the exhaust purification catalyst 13 becomes higher from the second NO X removal method to the first NO X removal method.
On the other hand, in the present invention, when the second hydrocarbon supply control is performed under the first NO X purification method, the air-fuel ratio (A / F) in of the exhaust gas is reliably reduced to the required minimum air-fuel ratio X. Thus, the fuel amount WB by post injection is feedback controlled. In order to perform this feedback control, it is necessary to detect the actual minimum air-fuel ratio when the second hydrocarbon supply method is used.
FIG. 27 shows a routine for detecting this actual minimum air-fuel ratio. This routine is executed by interruption at regular intervals only during the air-fuel ratio detection period shown in FIGS.
Referring to FIG. 27, first, the air-fuel ratio (A / F) n of the exhaust gas detected by the air-fuel ratio sensor 26 in step 60 is read. Next, at step 61, the air-fuel ratio (A / F) in that has become minimum within the air-fuel ratio detection period is detected. Next, at step 62, it is judged if the air-fuel ratio detection period has elapsed. When the air-fuel ratio detection period has elapsed, the routine proceeds to step 63 where the minimum air-fuel ratio (A / F) n is reduced to the minimum air-fuel ratio (A / F). F) t.
FIG. 28 and FIG. 29 show an engine operation control routine, which is also executed by interruption every predetermined time.
Referring to FIG. 28, first, at step 70, it is judged if a selection flag indicating that the first NO X purification method should be selected is set. And NO X purification rate is second NO X removal method used when the purification process of the NO X is performed by the first NO X removal method proceeds to step 71 when the selection flag is not set It is determined whether or not the NO X storage rate in the exhaust purification catalyst 13 at that time is higher. When the NO X purification rate is lower than the NO X storage rate, the routine proceeds to step 72 in FIG. 29, where the second NO X purification method is executed.
That is, the discharge amount of NO X NOXA per unit time is calculated from the map shown in step 72 in FIG. 18. Then occluded amount of NO X ΣNOX is calculated by adding the discharge amount of NO X NOXA to ΣNOX step 73. Next, at step 74 occluded amount of NO X ΣNOX whether exceeds the allowable value MAX or not. When ΣNOX> MAX, the routine proceeds to step 75 where the additional fuel amount WR is calculated from the map shown in FIG. 20 and the additional fuel injection action is performed. Next, at step 76, ΣNOX is cleared.
On the other hand, when it is determined in step 71 of FIG. 71 that the NO X purification rate is higher than the NO X storage rate, the routine proceeds to step 77, where the selection flag is set, and then the routine proceeds to step 78. Once the selection flag is set, the routine jumps from step 70 to step 78. In step 78, it is determined whether or not a temperature increase flag I indicating that the temperature increase control of the exhaust purification catalyst 13 shown in FIG. 25A should be performed is set. When the temperature raising flag I is not set, the routine proceeds to step 79.
Temperature TC of the exhaust purification catalyst 13 detected by the temperature sensor 23 in step 79 it is determined whether or not the drops below the activation temperature TC 0. When TC ≧ TC 0, the routine proceeds to step 80, where it is judged if the temperature raising flag II indicating that the temperature raising control of the particulate filter 14 shown in FIG. 25B should be performed is set. When the temperature increase flag II is not set, the routine proceeds to step 81 where it is judged if the differential pressure ΔP across the particulate filter 14 detected by the differential pressure sensor 24 has become higher than the allowable value PX. When ΔP ≦ PX, the routine proceeds to step 82 in FIG. 29, where hydrocarbons are supplied by the first hydrocarbon supply method.
That is, in step 82, the hydrocarbon supply amount W is calculated from the map shown in FIG. 16A, and then in step 83, the hydrocarbon supply period ΔT is calculated from the map shown in FIG. 16C. Next, at step 84, hydrocarbon supply control is performed in which the supply amount W of hydrocarbons is supplied from the hydrocarbon supply valve 15 with the supply period ΔT.
On the other hand, if it is determined in step 79 of FIG. 28 that TC <TC 0 , the routine proceeds to step 85 where the temperature raising flag I is set and the processing cycle is completed. Once the temperature raising flag I is set, the processing cycle is completed through step 78 thereafter. That is, when the temperature raising flag I is set, the hydrocarbon supply control by the first hydrocarbon supply method is stopped. At this time, the temperature raising control of the exhaust purification catalyst 13 is performed in the time interruption routine shown in FIG.
If it is determined in step 81 in FIG. 28 that ΔP> PX, the routine proceeds to step 86 where the temperature raising flag II is set and the processing cycle is completed. Once the temperature raising flag II is set, the processing cycle is completed through step 80 thereafter. That is, when the temperature raising flag II is set, hydrocarbon supply control by the first hydrocarbon supply method is stopped. At this time, the temperature raising control of the particulate filter 14 is performed in the time interruption routine shown in FIG.
Referring to the time interruption routine shown in FIG. 30, first, at step 90, it is judged if the temperature raising flag I is set. When the temperature raising flag I is set, the routine proceeds to step 91, where exhaust purification is performed. It is determined whether or not the temperature TC of the catalyst 13 is higher than a temperature (TC 0 + α) obtained by adding a constant value α to the activation temperature TC 0 . When TC ≦ TC 0 + α, the routine proceeds to step 92 where the temperature raising control of the exhaust purification catalyst 13 shown in FIG. 25A is performed.
That is, first, at step 92, the hydrocarbon supply amount WA is calculated from the map shown in FIG. 22B, and then at step 93, the supply fuel amount WB by post injection is calculated from the map shown in FIG. 22C. Next, at step 94, it is judged if the detection of the minimum air-fuel ratio (A / F) t by the routine shown in FIG. 27 is completed. When it is first determined that the minimum air-fuel ratio (A / F) t has been detected, the routine proceeds to step 95 and then jumps to step 98.
In step 95, it is determined whether or not the detected minimum air-fuel ratio (A / F) t is lower than an air-fuel ratio (X-β) obtained by subtracting a fixed value β from the required minimum air-fuel ratio X. When (A / F) t ≧ X−β, that is, when the detected minimum air-fuel ratio (A / F) t has not decreased to the air-fuel ratio (X-β), the routine proceeds to step 97 where the fuel supply amount WB is increased. A fixed value ΔK is added to the correction value ΔWB. Next, the routine proceeds to step 98. On the other hand, when it is determined at step 95 that (A / F) t <X−β, the routine proceeds to step 96 where the constant value ΔK is subtracted from the correction value ΔWB, and then the routine proceeds to step 98.
In step 98, a correction value ΔWB is calculated for the fuel supply amount WB. Next, at step 99, the hydrocarbon of the supply amount WA is supplied from the hydrocarbon supply valve 15 with the supply cycle ΔT calculated from the map shown in FIG. 16C, and as shown in FIG. From the front, fuel of the fuel amount WB is supplied into the combustion chamber 2 by post injection. On the other hand, when it is determined at step 91 that TC> TC 0 + α, the routine proceeds to step 100 where the temperature raising flag I is reset.
Next, referring to the time interruption routine shown in FIG. 31, first, at step 110, it is judged if the temperature raising flag II is set. When the temperature raising flag II is set, the routine proceeds to step 111. It is determined whether or not the temperature TD of the particulate filter 14 has become higher than the regeneration temperature TX. When TD ≦ TX, the routine proceeds to step 112 where the temperature rise control of the particulate filter 14 shown in FIG. 25B is performed.
That is, first, at step 112, the hydrocarbon supply amount WA is calculated from the map shown in FIG. 22B, and then at step 113, the supply fuel amount WB by post injection is calculated from the map shown in FIG. 22C. Next, at step 114, it is judged if the detection of the minimum air-fuel ratio (A / F) t by the routine shown in FIG. 27 is completed. When it is first determined that the minimum air-fuel ratio (A / F) t has been detected, the routine proceeds to step 115 and then jumps to step 118.
In step 115, it is determined whether or not the detected minimum air-fuel ratio (A / F) t is lower than an air-fuel ratio (X-β) obtained by subtracting a fixed value β from the required minimum air-fuel ratio X. When (A / F) t ≧ X−β, the routine proceeds to step 117, where the constant value ΔK is added to the correction value ΔWB for the fuel supply amount WB. Next, the routine proceeds to step 118. On the other hand, when it is determined at step 115 that (A / F) t <X−β, the routine proceeds to step 116 where the constant value ΔK is subtracted from the correction value ΔWB, and then the routine proceeds to step 118.
In step 118, a correction value ΔWB is calculated for the fuel supply amount WB. Next, at step 119, the hydrocarbon of the supply amount WA is supplied from the hydrocarbon supply valve 15 with the supply cycle ΔT calculated from the map shown in FIG. 16C, and as shown in FIG. From the front, fuel of the fuel amount WB is supplied into the combustion chamber 2 by post injection.
On the other hand, if it is determined in step 111 that TD> TX, the routine proceeds to step 120 where post-injection is performed as shown in FIG. 25B to maintain the temperature TD of the particulate filter 14 at or above the regeneration temperature TX. Control is performed. Next, at step 121, it is determined whether or not the regeneration process has been completed. When it is determined that the regeneration process has been completed, the routine proceeds to step 122, where the temperature raising flag II is reset.
As another embodiment, an oxidation catalyst for reforming hydrocarbons may be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.

4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
12…排気管
13…排気浄化触媒
14…パティキュレートフィルタ
15…炭化水素供給弁
4 ... Intake manifold 5 ... Exhaust manifold 7 ... Exhaust turbocharger 12 ... Exhaust pipe 13 ... Exhaust purification catalyst 14 ... Particulate filter 15 ... Hydrocarbon supply valve

Claims (9)

炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に炭化水素供給弁から噴射された炭化水素と排気ガス中に含まれるNOとを反応させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、炭化水素供給弁から炭化水素を排気ガスの空燃比が予め定められた空燃比まで低下するように予め定められた供給間隔で噴射すると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素の供給間隔を該予め定められた供給間隔よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に炭化水素供給弁から炭化水素を排気ガスの空燃比が上記予め定められた空燃比まで低下するように上記予め定められた供給間隔で噴射して排気ガス中に含まれるNOを浄化する第1の炭化水素供給方法と、炭化水素供給弁からの炭化水素の供給量を低下させると共に排気ガスの空燃比を上記予め定められた空燃比まで低下させるのに必要な燃料を膨張行程後半又は排気行程中に燃焼室内に供給する第2の炭化水素供給方法とを選択的に用いるようにした内燃機関の排気浄化装置。A hydrocarbon supply valve for supplying hydrocarbons is disposed in the engine exhaust passage, and the hydrocarbons injected from the hydrocarbon supply valve into the engine exhaust passage downstream of the hydrocarbon supply valve and NO X contained in the exhaust gas An exhaust purification catalyst is made to react with the noble metal catalyst, a noble metal catalyst is supported on the exhaust gas circulation surface of the exhaust purification catalyst, and a basic exhaust gas circulation surface portion is formed around the noble metal catalyst. The exhaust purification catalyst is configured to be configured so that NO is contained in the exhaust gas when the hydrocarbon is injected from the hydrocarbon supply valve at a predetermined supply interval so that the air-fuel ratio of the exhaust gas decreases to a predetermined air-fuel ratio. which has a property for reducing the X, the feed interval of the hydrocarbons have the property of absorbing the amount of NO X contained in the exhaust gas to be longer than the supply interval defined the advance is increased, the engine operating The air-fuel ratio of the exhaust gas hydrocarbons from the hydrocarbon feed valve to purify NO X contained injected to the exhaust gas at the predetermined supply interval to drop to the air-fuel ratio of said predetermined on No. 1 hydrocarbon supply method and the fuel required to reduce the amount of hydrocarbons supplied from the hydrocarbon supply valve and reduce the air-fuel ratio of the exhaust gas to the predetermined air-fuel ratio in the latter half of the expansion stroke or exhaust An exhaust gas purification apparatus for an internal combustion engine, which selectively uses a second hydrocarbon supply method for supplying into a combustion chamber during a stroke. 上記第2の炭化水素供給方法は排気処理装置を昇温するときに用いられる請求項1に記載の内燃機関の排気浄化装置。  The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the second hydrocarbon supply method is used when the temperature of the exhaust treatment apparatus is raised. 該排気処理装置が上記排気浄化触媒からなり、該排気浄化触媒の温度が予め定められた活性化温度よりも低下したときには第1の炭化水素供給方法から第2の炭化水素供給方法に切換えられて該排気浄化触媒の昇温作用が行われる請求項2に記載の内燃機関の排気浄化装置。  When the exhaust treatment device comprises the exhaust purification catalyst, and the temperature of the exhaust purification catalyst falls below a predetermined activation temperature, the first hydrocarbon supply method is switched to the second hydrocarbon supply method. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the temperature raising action of the exhaust gas purification catalyst is performed. 該排気浄化装置が機関排気通路内に配置されたパティキュレートフィルタからなり、パティキュレートフィルタを再生すべきときには第1の炭化水素供給方法から第2の炭化水素供給方法に切換えられてパティキュレートフィルタの昇温作用が行われる請求項2に記載の内燃機関の排気浄化装置。  The exhaust gas purification device comprises a particulate filter disposed in the engine exhaust passage, and when the particulate filter is to be regenerated, the first hydrocarbon supply method is switched to the second hydrocarbon supply method, and the particulate filter The exhaust emission control device for an internal combustion engine according to claim 2, wherein the temperature raising action is performed. 上記排気浄化触媒内において排気ガス中に含まれるNOと改質された炭化水素とが反応して窒素および炭化水素を含む還元性中間体が生成され、上記炭化水素の予め定められた供給周期は還元性中間体を生成し続けるのに必要な供給周期である請求項1に記載の内燃機関の排気浄化装置。In the exhaust purification catalyst, NO X contained in the exhaust gas reacts with the reformed hydrocarbon to produce a reducing intermediate containing nitrogen and hydrocarbon, and a predetermined supply cycle of the hydrocarbon The exhaust purification device for an internal combustion engine according to claim 1, wherein is a supply cycle necessary for continuing to generate the reducing intermediate. 上記炭化水素の供給周期が0.3秒から5秒の間である請求項5に記載の内燃機関の排気浄化装置。  6. The exhaust gas purification apparatus for an internal combustion engine according to claim 5, wherein the hydrocarbon supply cycle is between 0.3 seconds and 5 seconds. 上記貴金属触媒は白金Ptと、ロジウムRhおよびパラジウムPdの少くとも一方とにより構成される請求項1に記載の内燃機関の排気浄化装置。  The exhaust purification device for an internal combustion engine according to claim 1, wherein the noble metal catalyst is composed of platinum Pt and at least one of rhodium Rh and palladium Pd. 上記排気浄化触媒の排気ガス流通表面上にアルカリ金属又はアルカリ土類金属又は希土類又はNOに電子を供与しうる金属を含む塩基性層が形成されており、該塩基性層の表面が上記塩基性の排気ガス流通表面部分を形成している請求項1に記載の内燃機関の排気浄化装置。The basic layer comprising a metal which can donate electrons to the alkali metal or alkaline earth metal or rare earth or NO X in the exhaust gas flow on the surface of the exhaust purification catalyst is formed, the surface of the base layer is the base The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas circulation surface portion is formed. 上記第2の炭化水素供給方法が用いられているときに炭化水素供給弁から供給される炭化水素の供給量は排気浄化触媒に流入する排気ガス中のNOの量に応じて定められる請求項1に記載の内燃機関の排気浄化装置。The amount of hydrocarbons supplied from the hydrocarbon supply valve when the second hydrocarbon supply method is used is determined according to the amount of NO x in the exhaust gas flowing into the exhaust purification catalyst. 2. An exhaust emission control device for an internal combustion engine according to 1.
JP2011531077A 2010-09-02 2010-09-02 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5152415B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/065450 WO2012029190A1 (en) 2010-09-02 2010-09-02 Exhaust gas purification device of internal combustion engine

Publications (2)

Publication Number Publication Date
JP5152415B2 true JP5152415B2 (en) 2013-02-27
JPWO2012029190A1 JPWO2012029190A1 (en) 2013-10-28

Family

ID=45772321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011531077A Expired - Fee Related JP5152415B2 (en) 2010-09-02 2010-09-02 Exhaust gas purification device for internal combustion engine

Country Status (6)

Country Link
US (1) US8833056B2 (en)
EP (1) EP2460998B1 (en)
JP (1) JP5152415B2 (en)
CN (1) CN102713189B (en)
ES (1) ES2727223T3 (en)
WO (1) WO2012029190A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9970341B2 (en) 2013-04-09 2018-05-15 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP5880781B2 (en) 2013-04-09 2016-03-09 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN105143631B (en) * 2013-04-30 2017-08-29 丰田自动车株式会社 The emission-control equipment of internal combustion engine
JP6090051B2 (en) * 2013-08-08 2017-03-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP3036412B1 (en) 2013-08-21 2016-12-21 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JP6003847B2 (en) 2013-08-26 2016-10-05 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US10337374B2 (en) * 2017-03-15 2019-07-02 Ford Global Technologies, Llc Methods and systems for an aftertreatment catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148132A (en) * 2001-11-07 2003-05-21 Toyota Motor Corp Exhaust emission control device and method for internal combustion engine
JP2004301109A (en) * 2003-04-01 2004-10-28 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007514090A (en) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
JP2008115838A (en) * 2006-11-08 2008-05-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008232003A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008267217A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008286186A (en) * 2007-03-19 2008-11-27 Toyota Motor Corp Exhaust cleaner for internal combustion engine

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10023439A1 (en) * 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
US6866610B2 (en) * 2001-03-30 2005-03-15 Toyota Jidosha Kabushiki Kaisha Control apparatus and method for vehicle having internal combustion engine and continuously variable transmission, and control apparatus and method for internal combustion engine
AU2003262001B2 (en) * 2002-09-10 2007-10-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarifying device for internal combustion engine
US7332135B2 (en) * 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
JP2005061340A (en) 2003-08-15 2005-03-10 Mitsubishi Fuso Truck & Bus Corp Exhaust-emission control system of internal combustion engine
JP4020054B2 (en) * 2003-09-24 2007-12-12 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
WO2005054637A1 (en) 2003-12-01 2005-06-16 Toyota Jidosha Kabushiki Kaisha Exhaust emission purification apparatus of compression ignition internal combustion engine
JP4044908B2 (en) * 2004-03-11 2008-02-06 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7412823B2 (en) * 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
JP2007187149A (en) * 2005-12-13 2007-07-26 Nissan Motor Co Ltd Fuel injection control method and fuel injection controller for engine
WO2007136141A1 (en) * 2006-05-24 2007-11-29 Toyota Jidosha Kabushiki Kaisha Exhaust emission purifier of internal combustion engine
JP4605174B2 (en) * 2007-04-05 2011-01-05 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7788910B2 (en) * 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
US8479501B2 (en) * 2009-07-20 2013-07-09 International Engine Intellectual Property Company, Llc Exhaust cooling module for SCR catalysts
JP5598154B2 (en) 2009-08-27 2014-10-01 株式会社リコー Image forming apparatus and density correction method thereof
EP2460990B8 (en) * 2010-08-30 2016-12-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003148132A (en) * 2001-11-07 2003-05-21 Toyota Motor Corp Exhaust emission control device and method for internal combustion engine
JP2004301109A (en) * 2003-04-01 2004-10-28 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2007514090A (en) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
JP2008115838A (en) * 2006-11-08 2008-05-22 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2008286186A (en) * 2007-03-19 2008-11-27 Toyota Motor Corp Exhaust cleaner for internal combustion engine
JP2008232003A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008267217A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
ES2727223T3 (en) 2019-10-14
CN102713189B (en) 2014-10-15
CN102713189A (en) 2012-10-03
EP2460998A1 (en) 2012-06-06
JPWO2012029190A1 (en) 2013-10-28
WO2012029190A1 (en) 2012-03-08
EP2460998A4 (en) 2014-07-09
US8833056B2 (en) 2014-09-16
US20130149198A1 (en) 2013-06-13
EP2460998B1 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
JP5168412B2 (en) Exhaust gas purification device for internal combustion engine
JP4868097B1 (en) Exhaust gas purification device for internal combustion engine
JP5196027B2 (en) Exhaust gas purification device for internal combustion engine
JP5182429B2 (en) Exhaust gas purification device for internal combustion engine
JP5131392B2 (en) Exhaust gas purification device for internal combustion engine
JP5067511B2 (en) Exhaust gas purification device for internal combustion engine
JP5152416B2 (en) Exhaust gas purification device for internal combustion engine
WO2012140784A1 (en) Exhaust cleaner for internal combustion engine
JP5182428B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2013008342A1 (en) Exhaust gas purification device for internal combustion engine
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP5131393B2 (en) Exhaust gas purification device for internal combustion engine
JP5880776B2 (en) Exhaust gas purification device for internal combustion engine
JP5177302B2 (en) Exhaust gas purification device for internal combustion engine
JP5131389B2 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
JP5152417B2 (en) Exhaust gas purification device for internal combustion engine
WO2013118254A1 (en) Exhaust purification device for internal combustion engine
JP5168410B2 (en) Exhaust gas purification device for internal combustion engine
WO2014167650A1 (en) Exhaust purification device for internal combustion engines
JP2013015117A (en) Exhaust emission control device of internal-combustion engine
JP2016145543A (en) Exhaust emission control device for internal combustion engine
JP2015209803A (en) Exhaust emission control device for internal combustion engine
JP2015034502A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5152415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees