JP2005061340A - Exhaust-emission control system of internal combustion engine - Google Patents

Exhaust-emission control system of internal combustion engine Download PDF

Info

Publication number
JP2005061340A
JP2005061340A JP2003293789A JP2003293789A JP2005061340A JP 2005061340 A JP2005061340 A JP 2005061340A JP 2003293789 A JP2003293789 A JP 2003293789A JP 2003293789 A JP2003293789 A JP 2003293789A JP 2005061340 A JP2005061340 A JP 2005061340A
Authority
JP
Japan
Prior art keywords
nox
catalyst
reducing agent
amount
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003293789A
Other languages
Japanese (ja)
Inventor
嘉則 ▲高▼橋
Yoshinori Takahashi
Yoshihisa Takeda
好央 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2003293789A priority Critical patent/JP2005061340A/en
Publication of JP2005061340A publication Critical patent/JP2005061340A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust-emission control system of an internal combustion engine in which NOx-purification function of a storage-type NOx-catalyst can be effectively improved by optimizing HC-supply amount in purging the NOx. <P>SOLUTION: A reducing-agent-supply means supplies intermittently dividedly in a plurality of times a reducing agent, i.e. a fuel (light oil, HC) in the range of total supply amount of the reducing agent, when NOx-storage amount has reached a prescribed value (B12). As temperature of the storage-type NOx-catalyst detected by a catalyst-temperature detection means (18) is lower, so the supply amount of the reducing agent at one time is restrained by increasing the number of divided supplies, and further as the temperature is higher, so the supply amount of the reducing agent at one time is increased by reducing the number of divided supplies of the agent (B10). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の排気浄化装置に係り、詳しくは、吸蔵型NOx触媒のNOx浄化技術に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to a NOx purification technology for a storage type NOx catalyst.

近年、内燃機関(エンジン)の排気通路にNOx浄化用のNOx触媒を配した車両が実用化されており、最近では、酸素過剰雰囲気においてもNOxを浄化可能な吸蔵型NOx触媒が開発されている。特に、ディーゼルエンジンでは、燃焼がリーン空燃比の下で実施されるため、排気中の酸素量が多く、ガソリンエンジンで実用化されている三元触媒は機能せず、排気通路に吸蔵型NOx触媒を設けることは有効である。   In recent years, vehicles in which an NOx purification NOx catalyst is disposed in an exhaust passage of an internal combustion engine (engine) have been put into practical use, and recently, a storage type NOx catalyst capable of purifying NOx even in an oxygen-excess atmosphere has been developed. . In particular, in a diesel engine, combustion is performed under a lean air-fuel ratio, so the amount of oxygen in the exhaust gas is large, and the three-way catalyst that has been put to practical use in a gasoline engine does not function, and an occluded NOx catalyst in the exhaust passage It is effective to provide

この吸蔵型NOx触媒は、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩X−NO3として吸蔵し、該吸蔵したNOxをCO(一酸化炭素)過剰状態(還元雰囲気)で放出しN2(窒素)に還元させる特性(同時に炭酸塩X−CO3が生成される)を有した触媒として構成されている。例えば、ガソリンエンジンの排気通路に当該吸蔵型NOx触媒を設けた場合には、リッチ空燃比運転に定期的に切換えてCOの多い還元雰囲気を生成し、これにより吸蔵したNOxを浄化還元(NOxパージ)して吸蔵型NOx触媒の再生を図るようにしている。 This NOx storage catalyst stores NOx in the exhaust as nitrate X—NO 3 in an oxygen excess state (oxidation atmosphere), and releases the stored NOx in a CO (carbon monoxide) excess state (reduction atmosphere). It is configured as a catalyst having the property of being reduced to 2 (nitrogen) (at the same time, carbonate X-CO 3 is produced). For example, when the storage type NOx catalyst is provided in the exhaust passage of a gasoline engine, it is periodically switched to a rich air-fuel ratio operation to generate a reducing atmosphere with a large amount of CO, thereby purifying and reducing the stored NOx (NOx purge). Thus, the storage type NOx catalyst is regenerated.

一方、ディーゼルエンジンでは、上述したように燃焼がリーン空燃比の下で実施されるため、リッチ空燃比運転を実施することは困難であり、膨張行程以降で燃料(軽油)の再供給を行うポスト噴射を行ったり、排気中に燃料(軽油)を添加したりすることで、排気中にHC(炭化水素)を供給して還元雰囲気を生成し、排気通路内や触媒内でHCをCOに変質させ、NOxパージするようにしている。   On the other hand, in a diesel engine, since combustion is performed under a lean air-fuel ratio as described above, it is difficult to perform a rich air-fuel ratio operation, and a post that resupplys fuel (light oil) after the expansion stroke. By performing injection or adding fuel (light oil) into the exhaust, HC (hydrocarbon) is supplied into the exhaust to create a reducing atmosphere, and the HC is transformed into CO in the exhaust passage and in the catalyst. And NOx purge is performed.

しかしながら、燃料の供給方法等によっては、燃料が供給過多となり、燃料が還元剤としての機能を果たさずにHCの状態のまま吸蔵型NOx触媒をすり抜けて触媒下流側にスリップしてしまう場合があり、このような場合には排気エミッションが悪化するという問題がある。
そこで、例えば、燃料を分割して供給することにより過剰な燃料供給を抑え、吸蔵型NOx触媒における燃料のスリップを防止することが考えられている(特許文献1等参照)。
特開2002−106332号公報(段落0058等)
However, depending on the fuel supply method, etc., the fuel may be excessively supplied, and the fuel may not function as a reducing agent and slip through the storage NOx catalyst in the HC state and slip to the downstream side of the catalyst. In such a case, there is a problem that exhaust emission deteriorates.
In view of this, for example, it has been considered to suppress the excessive fuel supply by dividing and supplying the fuel to prevent the fuel slip in the storage-type NOx catalyst (see Patent Document 1).
JP 2002-106332 A (paragraph 0058 etc.)

ところで、HCの酸化反応には、CO2まで酸化する完全酸化反応と、COで反応が停止する不完全酸化反応とがあり、NOxパージを行うためには、主に不完全酸化反応を生起させて、吸蔵型NOx触媒においてCOを多く存在させる必要がある。
しかしながら、上記各反応は排気温度や吸蔵型NOx触媒の温度、即ち触媒温度と供給燃料量とに依存していることが確認されており、触媒温度が高く供給燃料量が少ないと完全酸化反応が進行してCO2に対しCOが不足し易く、一方、触媒温度が低く供給燃料量が多いと酸化反応自体が進行せずHCのスリップが発生し易いという問題がある。つまり、触媒温度と供給燃料量とによってCOの量が増減変動し、これに応じてNOx浄化性能が変化する。
By the way, the oxidation reaction of HC includes a complete oxidation reaction that oxidizes to CO 2 and an incomplete oxidation reaction that stops the reaction at CO. In order to perform NOx purge, an incomplete oxidation reaction is mainly caused. Therefore, a large amount of CO needs to be present in the storage type NOx catalyst.
However, it has been confirmed that each of the above reactions depends on the exhaust gas temperature or the temperature of the NOx storage catalyst, that is, the catalyst temperature and the amount of supplied fuel. easily insufficient CO to CO 2 in progress, while the slip of HC does not proceed oxidation reaction itself and often supplied fuel quantity low catalyst temperature is liable to occur. That is, the amount of CO varies depending on the catalyst temperature and the amount of supplied fuel, and the NOx purification performance changes accordingly.

この問題は、上記の如く燃料を分割して供給した場合であっても一回の分割供給毎に同様に生じるものであり、特許文献1に開示の技術は、吸蔵型NOx触媒におけるHCのスリップは防止可能であっても、生成されるCOの量までも考慮したものではなく、NOx浄化性能の向上という点では効果的なものではない。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、NOxパージ時のHC供給量の最適化を図り、吸蔵型NOx触媒のNOx浄化性能を効果的に向上可能な内燃機関の排気浄化装置を提供することにある。
This problem occurs in the same manner for each divided supply even when the fuel is divided and supplied as described above. The technique disclosed in Patent Document 1 is a slip of HC in the storage type NOx catalyst. Can be prevented, but the amount of CO produced is not taken into consideration, and is not effective in terms of improving the NOx purification performance.
The present invention has been made to solve such problems. The object of the present invention is to optimize the amount of HC supplied during the NOx purge and effectively improve the NOx purification performance of the storage type NOx catalyst. An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can be improved.

上記した目的を達成するために、請求項1の内燃機関の排気浄化装置では、内燃機関の排気通路に設けられ、酸化雰囲気中で排気中のNOxを吸蔵させ、還元雰囲気中で前記吸蔵させたNOxを放出し還元する機能を有するとともに、酸化雰囲気中で酸素を捕捉する酸素捕捉機能を有した吸蔵型NOx触媒と、該吸蔵型NOx触媒の排気上流側に設けられ、該吸蔵型NOx触媒にHCを還元剤として供給する還元剤供給手段と、前記吸蔵型NOx触媒の温度を検出する触媒温度検出手段と、前記吸蔵型NOx触媒のNOx吸蔵量を検出するNOx吸蔵量検出手段と、該NOx吸蔵量検出手段により検出されるNOx吸蔵量に応じて還元剤供給量を設定する還元剤供給量設定手段とを備え、前記還元剤供給手段は、前記NOx吸蔵量検出手段により検出されるNOx吸蔵量が所定量に達したとき、前記還元剤供給量設定手段により設定される還元剤供給量の範囲内で前記還元剤を複数回に分割して間欠的に供給するものであって、前記触媒温度検出手段により検出される前記吸蔵型NOx触媒の温度が低温であるほど該分割の回数を多くして一回の還元剤供給量を抑制する一方、該温度が高温であるほど該分割の回数を少なくして一回の還元剤供給量を増大することを特徴としている。   In order to achieve the above-described object, in the exhaust gas purification apparatus for an internal combustion engine according to claim 1, provided in the exhaust passage of the internal combustion engine, NOx in the exhaust gas is occluded in an oxidizing atmosphere, and the occluded gas is stored in a reducing atmosphere. A NOx storage catalyst having a function of releasing and reducing NOx and an oxygen scavenging function of capturing oxygen in an oxidizing atmosphere, and an upstream side of the storage NOx catalyst are provided on the exhaust side of the NOx catalyst. Reducing agent supplying means for supplying HC as a reducing agent, catalyst temperature detecting means for detecting the temperature of the storage type NOx catalyst, NOx storage amount detecting means for detecting the NOx storage amount of the storage type NOx catalyst, and the NOx Reducing agent supply amount setting means for setting a reducing agent supply amount in accordance with the NOx storage amount detected by the storage amount detection means, wherein the reducing agent supply means is N detected by the NOx storage amount detection means. When the occlusion amount reaches a predetermined amount, the reducing agent is intermittently supplied by being divided into a plurality of times within the range of the reducing agent supply amount set by the reducing agent supply amount setting means, The lower the temperature of the occlusion-type NOx catalyst detected by the catalyst temperature detection means, the more the number of times of the division is reduced to suppress the reducing agent supply amount once, while the higher the temperature is, the higher the division is. The number of times is reduced to increase the supply amount of the reducing agent at one time.

故に、吸蔵型NOx触媒が酸素捕捉機能を有していることにより、還元剤供給手段により還元剤を複数回に分割して間欠的に供給することで、吸蔵型NOx触媒に酸素を適宜補充しながら当該捕捉された酸素を有効に還元剤の酸化、即ちCOの発生に利用し、効率よくNOxパージを行うことが可能である。
また、請求項2の内燃機関の排気浄化装置では、さらに、前記吸蔵型NOx触媒の排気下流側に設けられ、該吸蔵型NOx触媒の排気下流側の排気空燃比を検出する排気空燃比検出手段を備え、前記還元剤供給手段は、該排気空燃比検出手段により検出される排気空燃比が所定値よりもリッチ空燃比寄りとならないように前記一回の還元剤供給量を決定して前記還元剤の分割供給を行うことを特徴としている。
Therefore, since the storage-type NOx catalyst has an oxygen scavenging function, the storage-type NOx catalyst is appropriately supplemented with oxygen by intermittently supplying the reducing agent in a plurality of times by the reducing agent supply means. However, the trapped oxygen can be effectively used for the oxidation of the reducing agent, that is, the generation of CO, and the NOx purge can be efficiently performed.
The exhaust gas purification apparatus for an internal combustion engine according to claim 2 is further provided on the exhaust downstream side of the storage type NOx catalyst, and detects exhaust air / fuel ratio detection means on the exhaust downstream side of the storage type NOx catalyst. And the reducing agent supply means determines the reducing agent supply amount at one time so that the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means does not become closer to the rich air-fuel ratio than a predetermined value. It is characterized in that the agent is dividedly supplied.

このように、一回の還元剤供給量が、排気空燃比検出手段により検出される排気空燃比が所定値よりもリッチ空燃比寄りとならないように調整されて還元剤が分割供給されることにより、吸蔵型NOx触媒の排気下流側のリッチ空燃比化、即ち吸蔵型NOx触媒における還元剤(HC)のスリップを確実に防止しながら、一回の還元剤供給量の最適化が図られ、NOx浄化性能がより一層効果的に向上する。   In this way, the reducing agent supply amount is adjusted so that the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means does not become closer to the rich air-fuel ratio than the predetermined value, and the reducing agent is supplied in a divided manner. , While reducing the rich air-fuel ratio on the exhaust downstream side of the NOx storage catalyst, that is, preventing the slip of the reducing agent (HC) in the NOx storage catalyst, the reducing agent supply amount can be optimized once. The purification performance is more effectively improved.

本発明の請求項1の内燃機関の排気浄化装置によれば、還元剤の分割供給により、吸蔵型NOx触媒に酸素を適宜補充しながら捕捉された酸素を有効に還元剤の酸化、即ちCOの発生に利用して効率よくNOxパージを行うことができるし、また、NOx吸蔵量が所定量に達し、吸蔵型NOx触媒のNOxパージを行うべきときには、NOx吸蔵量に応じて設定される還元剤供給量の範囲内で、例えば同一の機関状態(機関回転速度等)の下、触媒温度検出手段により検出される吸蔵型NOx触媒の温度が低温であるほど分割の回数を多くして一回の還元剤供給量を抑制する一方、該温度が高温であるほど該分割の回数を少なくして一回の還元剤供給量を増大するよう還元剤を分割供給するようにしたので、分割した一回の還元剤供給量の最適化を図り、生成されるCOの量を適正なものにでき、触媒温度に拘わらずNOx浄化性能を効果的に向上させることができる。   According to the exhaust gas purification apparatus for an internal combustion engine according to claim 1 of the present invention, the trapped oxygen is effectively oxidized while the replenishment agent is divided and the trapped oxygen is replenished appropriately, that is, the oxidation of the reducing agent, that is, the amount of CO. When the NOx storage amount reaches a predetermined amount and the NOx purge of the storage type NOx catalyst is to be performed, the reducing agent is set according to the NOx storage amount. Within the range of supply amount, for example, under the same engine condition (engine speed, etc.), the lower the temperature of the storage-type NOx catalyst detected by the catalyst temperature detection means, the more the number of divisions is increased. While reducing the supply amount of the reducing agent, the higher the temperature, the smaller the number of divisions, and the reduced agent supply amount is increased so that the reducing agent supply amount is increased. Optimization of the reductant supply amount The amount of CO produced can be made appropriate, and the NOx purification performance can be effectively improved regardless of the catalyst temperature.

また、請求項2の内燃機関の排気浄化装置によれば、排気空燃比検出手段により検出される排気空燃比が所定値よりもリッチ空燃比寄りとならないように一回の還元剤供給量を調整し、還元剤を分割供給するようにしたので、吸蔵型NOx触媒の排気下流側のリッチ空燃比化、即ち吸蔵型NOx触媒における還元剤(HC)のスリップを確実に防止しながら、一回の還元剤供給量の最適化を図り、NOx浄化性能をより一層効果的に向上させることができる。   According to the exhaust gas purification apparatus for an internal combustion engine according to claim 2, the reducing agent supply amount is adjusted once so that the exhaust air-fuel ratio detected by the exhaust air-fuel ratio detection means does not become closer to the rich air-fuel ratio than a predetermined value. Since the reducing agent is dividedly supplied, the rich air-fuel ratio on the exhaust downstream side of the storage-type NOx catalyst, that is, the slip of the reducing agent (HC) in the storage-type NOx catalyst is surely prevented, and one time By optimizing the reducing agent supply amount, the NOx purification performance can be more effectively improved.

図1を参照すると、本発明に係る内燃機関の排気浄化装置が概略的に示されている。
エンジン1は例えばディーゼルエンジンからなり、当該エンジン1の吸気通路2には吸入空気量Qaを検出するエアフローセンサ4が設けられている。
一方、エンジン1の排気通路6には、主として排気中のNOxを浄化可能な吸蔵型NOx触媒10が介装されている。
Referring to FIG. 1, an exhaust gas purification apparatus for an internal combustion engine according to the present invention is schematically shown.
The engine 1 is composed of, for example, a diesel engine, and an air flow sensor 4 for detecting an intake air amount Qa is provided in the intake passage 2 of the engine 1.
On the other hand, an occlusion-type NOx catalyst 10 that mainly purifies NOx in the exhaust is interposed in the exhaust passage 6 of the engine 1.

吸蔵型NOx触媒10は、上述したように、酸素過剰状態(酸化雰囲気)において排気中のNOxを硝酸塩X−NO3として吸蔵し、該吸蔵したNOxをCO過剰状態(還元雰囲気)で放出しN2に還元する特性を有している。また、当該吸蔵型NOx触媒10は、セリア(Ce)を含有しており、酸素過剰状態(酸化雰囲気)において酸素(O2)を捕捉する機能(O2ストレージ機能)をも併せ有している。 As described above, the storage-type NOx catalyst 10 stores NOx in the exhaust as nitrate X—NO 3 in an oxygen excess state (oxidation atmosphere), and releases the stored NOx in a CO excess state (reduction atmosphere). It has the property of reducing to 2 . The occlusion-type NOx catalyst 10 contains ceria (Ce) and has a function of capturing oxygen (O 2 ) in an oxygen-excess state (oxidizing atmosphere) (O 2 storage function). .

そして、吸蔵型NOx触媒10の排気上流側には、還元剤として軽油、即ち燃料(HC)を排気通路6に供給する噴射弁(還元剤供給手段)12が設けられている。当該噴射弁12は管路12aを介して軽油タンク13に接続されている。
これより、噴射弁12から軽油(HC)が排気通路6に供給されると、排気通路6内でHCが排気中のO2及び吸蔵型NOx触媒10に捕捉されたO2によって酸化されてCOに変質し、吸蔵型NOx触媒10において還元雰囲気が生成され、吸蔵型NOx触媒10に吸蔵されたNOxが当該COによって良好に放出され、還元(NOxパージ)される。
An injection valve (reducing agent supply means) 12 that supplies light oil, that is, fuel (HC) as a reducing agent to the exhaust passage 6 is provided on the exhaust upstream side of the storage NOx catalyst 10. The injection valve 12 is connected to a light oil tank 13 through a pipe line 12a.
Than this, the gas oil (HC) from the injection valve 12 is supplied to the exhaust passage 6, it is oxidized HC in the exhaust passage within 6 by O 2 trapped in O 2 and occlusion-type NOx catalyst 10 in the exhaust CO The NOx occluded in the occlusion-type NOx catalyst 10 is favorably released by the CO and reduced (NOx purge).

噴射弁12よりも排気上流側には、エンジン1の燃焼室から排出される排気中のNOx濃度を検出するNOxセンサ14が設けられており、吸蔵型NOx触媒10の排気下流側には、吸蔵型NOx触媒10を経て排出される排気中の酸素濃度、ひいては排気空燃比を検出するO2センサ(排気空燃比検出手段)16が設けられている。
さらに、吸蔵型NOx触媒10には、当該吸蔵型NOx触媒10の温度、即ち触媒温度Tcを検出する温度センサ(触媒温度検出手段)18が設けられている。
A NOx sensor 14 for detecting the NOx concentration in the exhaust discharged from the combustion chamber of the engine 1 is provided on the exhaust upstream side of the injection valve 12, and the storage downstream of the storage NOx catalyst 10 stores the NOx. There is provided an O 2 sensor (exhaust air / fuel ratio detecting means) 16 for detecting the oxygen concentration in the exhaust gas exhausted through the type NOx catalyst 10 and thus the exhaust air / fuel ratio.
Further, the storage type NOx catalyst 10 is provided with a temperature sensor (catalyst temperature detection means) 18 for detecting the temperature of the storage type NOx catalyst 10, that is, the catalyst temperature Tc.

ECU20は、エンジン1を含めた本発明に係る内燃機関の排気浄化装置の総合的な制御を行うための制御装置であり、CPU、メモリ、タイマカウンタ等から構成されている。
ECU20の入力側には、上記エアフローセンサ4、NOxセンサ14、O2センサ16、温度センサ18等の各種センサ類が接続されており、出力側には、上記噴射弁12等の各種デバイス類が接続されている。
The ECU 20 is a control device for performing comprehensive control of the exhaust gas purification apparatus for an internal combustion engine according to the present invention including the engine 1, and includes a CPU, a memory, a timer counter, and the like.
Various sensors such as the air flow sensor 4, NOx sensor 14, O 2 sensor 16 and temperature sensor 18 are connected to the input side of the ECU 20, and various devices such as the injection valve 12 are connected to the output side. It is connected.

以下、このように構成された排気浄化装置の本発明に係るNOxパージ制御について説明する。詳しくは、本発明では軽油を噴射弁12から分割して間欠的(パルス状)に排気通路6に噴射するようにしており、当該分割噴射によるNOxパージ制御について説明する。
軽油の分割噴射を行うのは、軽油中のHCからCOを発生するためにはO2の存在が不可欠であり、排気中は勿論、適正且つ効果的にCOを発生させるには上記吸蔵型NOx触媒10に捕捉されるO2を有効に使用することが必要であるところ、吸蔵型NOx触媒10へのO2の捕捉量には限度があり、捕捉O2が無くなるとCOの生成が急減し、軽油の添加を中断することで排気中のO2を吸蔵型NOx触媒10に補充することが要求されるためである。
Hereinafter, the NOx purge control according to the present invention of the exhaust purification apparatus configured as described above will be described. Specifically, in the present invention, the light oil is divided from the injection valve 12 and injected intermittently (pulsed) into the exhaust passage 6, and the NOx purge control by the divided injection will be described.
In order to generate CO from HC in light oil, O 2 is indispensable for split injection of light oil, and in order to generate CO appropriately and effectively, as well as in exhaust, the above-mentioned storage type NOx Where it is necessary to effectively use O 2 trapped by the catalyst 10, there is a limit to the amount of O 2 trapped by the storage-type NOx catalyst 10, and when the trapped O 2 disappears, the production of CO rapidly decreases. This is because it is required to supplement the storage NOx catalyst 10 with O 2 in the exhaust gas by interrupting the addition of light oil.

つまり、軽油を噴射弁12から分割して間欠的(パルス状)に吸蔵型NOx触媒10に添加することにより、噴射インターバルの間に排気中のO2が吸蔵型NOx触媒10に良好に補充され、これにより、軽油を連続的に添加する場合に比べて効率よくCOを発生させるようにでき、軽油の無駄な供給を防止しながらNOx浄化効率の向上を図ることができる。 That is, by dividing light oil from the injection valve 12 and intermittently (pulsingly) adding it to the occlusion type NOx catalyst 10, O 2 in the exhaust gas is well supplemented to the occlusion type NOx catalyst 10 during the injection interval. As a result, CO can be generated more efficiently than when diesel oil is continuously added, and NOx purification efficiency can be improved while preventing wasteful supply of diesel oil.

図2を参照すると、本発明に係るNOxパージ制御の制御ルーチンがフローチャートで示されており、図3には当該NOxパージ制御の制御ブロック図が示されており、以下、制御ブロック図を参照しながら当該フローチャートに沿い本発明に係るNOxパージ制御について詳しく説明する(還元剤供給手段)。
先ず、ステップS10では、吸蔵型NOx触媒10に吸蔵されたNOxの量、即ち吸蔵NOx量Qnoxを算出する(NOx吸蔵量検出手段)。ここでは、例えば、排気流量に基づいてNOx質量流量を算出し、当該NOx質量流量を吸蔵NOx量Qnoxとみなす。具体的には、排気流量は略吸入空気量Qaに等しいと考えられることから、ここではエアフローセンサ4からの吸入空気量情報Qaを使用し、NOxセンサ14によって検出される触媒上流側のNOx濃度情報と当該吸入空気量情報QaとからNOx質量流量、ひいては吸蔵NOx量Qnoxを求める。
Referring to FIG. 2, the control routine of the NOx purge control according to the present invention is shown in a flowchart, and FIG. 3 is a control block diagram of the NOx purge control. Hereinafter, referring to the control block diagram, FIG. However, the NOx purge control according to the present invention will be described in detail along the flowchart (reducing agent supply means).
First, in step S10, the amount of NOx occluded in the occlusion-type NOx catalyst 10, that is, the occlusion NOx amount Qnox is calculated (NOx occlusion amount detection means). Here, for example, the NOx mass flow rate is calculated based on the exhaust flow rate, and the NOx mass flow rate is regarded as the occluded NOx amount Qnox. Specifically, since the exhaust flow rate is considered to be substantially equal to the intake air amount Qa, the NOx concentration on the upstream side of the catalyst detected by the NOx sensor 14 using the intake air amount information Qa from the airflow sensor 4 is used here. The NOx mass flow rate and thus the stored NOx amount Qnox are obtained from the information and the intake air amount information Qa.

なお、排気通路6に排気流量センサを設け、排気流量を直接検出するようにして吸蔵NOx量Qnoxを求めてもよい。
また、ここでは触媒上流側のNOxセンサ14のみからのNOx濃度情報に基づいて吸蔵NOx量Qnoxを求めるようにしたが、触媒下流側に同様のNOxセンサを設け、NOxセンサ14と当該触媒下流側のNOxセンサとの出力差に基づいて吸蔵NOx量Qnoxを求めるようにしてよく、これにより吸蔵NOx量Qnoxの精度が向上する。
An occlusion NOx amount Qnox may be obtained by providing an exhaust flow rate sensor in the exhaust passage 6 so as to directly detect the exhaust flow rate.
Here, the stored NOx amount Qnox is obtained based on the NOx concentration information only from the NOx sensor 14 on the upstream side of the catalyst. However, a similar NOx sensor is provided on the downstream side of the catalyst, and the NOx sensor 14 and the downstream side of the catalyst are provided. The stored NOx amount Qnox may be obtained based on the output difference from the NOx sensor, thereby improving the accuracy of the stored NOx amount Qnox.

また、NOxセンサ14のNOx濃度情報と吸蔵NOx量Qnoxとの関係を予めマップとして設定しておき、当該マップから吸蔵NOx量Qnoxを求めるようにしてもよい。この場合、触媒上流側のNOx濃度についてはエンジン1の運転状態から間接的に求めるようにしてもよい。例えば、エンジン回転速度NeとエンジントルクとからNOx流量を求め、当該NOx流量と排気流量(吸入空気量Qa)とから触媒上流側のNOx濃度を求めるようにしてもよい。
ステップS12では、上記吸蔵NOx量Qnoxが所定量X1以上であるか否かを判別する。ここに、所定量X1は、吸蔵型NOx触媒10に吸蔵されるNOxの飽和量よりも若干少ない値に設定されている。判別結果が偽(No)で吸蔵NOx量Qnoxが所定量X1未満と判定された場合には、そのまま当該ルーチンを抜ける。一方、判別結果が真(Yes)で吸蔵NOx量Qnoxが所定量X1以上と判定された場合には、NOxパージが必要な状況と判断し、ステップS14に進む。
Alternatively, the relationship between the NOx concentration information of the NOx sensor 14 and the stored NOx amount Qnox may be set in advance as a map, and the stored NOx amount Qnox may be obtained from the map. In this case, the NOx concentration on the upstream side of the catalyst may be obtained indirectly from the operating state of the engine 1. For example, the NOx flow rate may be obtained from the engine rotational speed Ne and the engine torque, and the NOx concentration upstream of the catalyst may be obtained from the NOx flow rate and the exhaust flow rate (intake air amount Qa).
In step S12, it is determined whether or not the stored NOx amount Qnox is equal to or greater than a predetermined amount X1. Here, the predetermined amount X1 is set to a value slightly smaller than the saturation amount of NOx stored in the storage-type NOx catalyst 10. If the determination result is false (No) and it is determined that the occluded NOx amount Qnox is less than the predetermined amount X1, the routine is directly exited. On the other hand, when the determination result is true (Yes) and it is determined that the stored NOx amount Qnox is equal to or greater than the predetermined amount X1, it is determined that the NOx purge is necessary, and the process proceeds to step S14.

ステップS14では、吸蔵NOx量Qnoxに基づいて、噴射弁12から噴射する軽油の供給量、即ち全軽油添加量Qfttlを設定する(還元剤供給量設定手段)。詳しくは、後述するように、触媒温度Tcに応じて一回の目標軽油添加量Qfが設定され、この目標軽油添加量Qfより一回の噴射により発生可能なCO量が決まることから、全軽油添加量Qfttlは、触媒温度Tcに応じ、吸蔵されたNOxを全て還元可能なだけのCOが得られるような目標軽油添加量Qfの総和に設定される。   In step S14, the supply amount of light oil injected from the injection valve 12, that is, the total light oil addition amount Qfttl, is set based on the stored NOx amount Qnox (reducing agent supply amount setting means). Specifically, as will be described later, a single target light oil addition amount Qf is set according to the catalyst temperature Tc, and the CO amount that can be generated by one injection is determined from this target light oil addition amount Qf. The addition amount Qfttl is set to the sum of the target light oil addition amount Qf according to the catalyst temperature Tc so as to obtain CO that can reduce all of the stored NOx.

ステップS16では、温度センサ18からの情報に基づき、吸蔵型NOx触媒10の温度を検出する。
そして、ステップS18では、当該触媒温度Tcに応じ、分割噴射、即ちパルス噴射を行う際の一回の目標軽油添加量Qfを設定する(ブロックB10)。
実験によれば、NOxパージを行うべく吸蔵型NOx触媒10に還元剤、即ち燃料(軽油、HC)を供給する際、完全酸化反応(CO2発生)と不完全酸化反応(CO発生)とは、図4に示すように、吸蔵型NOx触媒10の温度、即ち触媒温度Tcと供給燃料量(軽油添加量)とに依存し、触媒温度Tcが高く供給燃料量が少ないと完全酸化反応が進行してCO2に対してCOが不足し易く、一方、触媒温度Tcが低く供給燃料量が多いと酸化反応自体が進行せず還元剤(HC)のスリップが発生し易く、触媒温度Tcに対して供給燃料量が適正であると良好にCOが発生することが確認された(図4中の斜線範囲)。
In step S16, based on the information from the temperature sensor 18, the temperature of the storage type NOx catalyst 10 is detected.
In step S18, the target light oil addition amount Qf for one time when performing divided injection, that is, pulse injection, is set according to the catalyst temperature Tc (block B10).
According to experiments, when supplying a reducing agent, that is, fuel (light oil, HC) to the storage-type NOx catalyst 10 to perform NOx purge, the complete oxidation reaction (CO 2 generation) and the incomplete oxidation reaction (CO generation) As shown in FIG. 4, depending on the temperature of the storage-type NOx catalyst 10, that is, the catalyst temperature Tc and the amount of fuel supplied (light oil addition amount), the complete oxidation reaction proceeds when the catalyst temperature Tc is high and the amount of fuel supplied is small. As a result, CO tends to be insufficient with respect to CO 2. On the other hand, if the catalyst temperature Tc is low and the amount of supplied fuel is large, the oxidation reaction itself does not proceed and slip of the reducing agent (HC) is likely to occur. As a result, it was confirmed that CO was generated satisfactorily when the amount of supplied fuel was appropriate (the shaded area in FIG. 4).

従って、吸蔵NOx量Qnoxが所定量X1に達し、NOxパージを行うべきときには、吸蔵NOx量Qnoxに応じて設定される還元剤供給量の範囲内で、例えば同一の機関状態(エンジン回転速度Ne等)の下、温度センサ18により検出される吸蔵型NOx触媒10の温度、即ち触媒温度Tcが低温(例えば、図4中温度A側)であるほど分割の回数を多くして一回の還元剤供給量(軽油添加量)を抑制(例えば、図4中添加量C)する一方、該触媒温度Tcが高温(例えば、図4中温度B側)であるほど該分割の回数を少なくして一回の還元剤供給量を増大(例えば、図4中添加量D)するよう還元剤を供給する。   Therefore, when the stored NOx amount Qnox reaches the predetermined amount X1 and the NOx purge should be performed, for example, within the range of the reducing agent supply amount set according to the stored NOx amount Qnox, for example, the same engine state (engine speed Ne, etc. ), The temperature of the storage-type NOx catalyst 10 detected by the temperature sensor 18, that is, the catalyst temperature Tc is lower (for example, the temperature A side in FIG. 4), and the number of divisions is increased and the reducing agent is performed once. While suppressing the supply amount (light oil addition amount) (for example, addition amount C in FIG. 4), the higher the catalyst temperature Tc (for example, the temperature B side in FIG. 4), the smaller the number of divisions. The reducing agent is supplied so as to increase the amount of reducing agent supplied in one cycle (for example, the addition amount D in FIG. 4).

故に、ここでは、上記図4をマップとし、同マップより、不完全酸化反応が効果的に進展しCOが良好に発生するように目標軽油添加量Qfを設定する。詳しくは、触媒温度Tcに応じ、不完全酸化反応領域(斜線で示す)に入るように目標軽油添加量Qfを設定する。ここでは、最も適正且つ効果的にCOが発生しNOxを還元するよう、例えば、触媒温度Tcが常用低温側の温度Aのときには目標軽油添加量Qfを添加量Cとし、常用高温側の温度Bのときには目標軽油添加量Qfを添加量Dとする。これにより、目標軽油添加量Qfの最適化が図られ、余分な軽油の添加が好適に防止される。
ステップS20では、このように設定された目標軽油添加量Qfに基づき噴射弁12から軽油をパルス状に噴射する(ブロックB12)。具体的には、ここでは、噴射圧一定の下、目標軽油添加量Qfが得られるように噴射時間を可変制御する。つまり、触媒温度Tcが温度Aのときには噴射時間を短くし、触媒温度Tcが温度Bのときには噴射時間を長くする。
Therefore, here, FIG. 4 is used as a map, and from the map, the target light oil addition amount Qf is set so that the incomplete oxidation reaction effectively proceeds and CO is generated satisfactorily. Specifically, the target light oil addition amount Qf is set so as to enter the incomplete oxidation reaction region (shown by diagonal lines) according to the catalyst temperature Tc. Here, in order to reduce COx most appropriately and effectively, for example, when the catalyst temperature Tc is the temperature A on the normal low temperature side, the target light oil addition amount Qf is the addition amount C, and the temperature B on the normal high temperature side In this case, the target light oil addition amount Qf is set as the addition amount D. Thereby, the target light oil addition amount Qf is optimized, and the addition of excess light oil is suitably prevented.
In step S20, light oil is injected in pulses from the injection valve 12 based on the target light oil addition amount Qf set in this way (block B12). Specifically, here, the injection time is variably controlled so that the target light oil addition amount Qf is obtained while the injection pressure is constant. That is, when the catalyst temperature Tc is the temperature A, the injection time is shortened, and when the catalyst temperature Tc is the temperature B, the injection time is lengthened.

ステップS22では、目標軽油添加量Qfに基づく一回の噴射が終了したか否かを判別する。判別結果が真(Yes)で目標軽油添加量Qfだけ噴射が終了したと判定された場合には、ステップS24に進み、軽油の噴射を中断する。
つまり、目標軽油添加量Qfに基づく一回の噴射が終了したと判定された場合には、上述したように吸蔵型NOx触媒10に捕捉されたO2がCOの発生に使用されて減少しているため、噴射インターバルを設け、この間に排気中のO2を吸蔵型NOx触媒10に補充する。
In step S22, it is determined whether or not one injection based on the target light oil addition amount Qf has been completed. If the determination result is true (Yes) and it is determined that the injection has been completed by the target light oil addition amount Qf, the process proceeds to step S24, and the light oil injection is interrupted.
That is, when it is determined that one injection based on the target light oil addition amount Qf has been completed, as described above, O 2 trapped by the storage-type NOx catalyst 10 is used to generate CO and decreases. Therefore, an injection interval is provided, and O 2 in the exhaust gas is replenished to the storage-type NOx catalyst 10 during this interval.

ところで、ステップS22の判別結果が偽(No)で未だ軽油噴射中であると判定された場合には、ステップS26に進む。
ステップS26では、O2センサ16からの空燃比情報に基づき、吸蔵型NOx触媒10の下流側の排気空燃比、即ち触媒下流側の空気過剰率λが所定値λ1以下であるか否かを判別する(ブロックB20)。ここに、所定値λ1は、理論空燃比(λ=1.0)よりも若干大きなリーン空燃比寄りの値に設定される。判別結果が偽(No)で空気過剰率λが所定値λ1より大であると判定された場合には、ステップS20に戻り、軽油の噴射を継続する。一方、判別結果が真(Yes)で空気過剰率λが所定値λ1以下と判定された場合には、ステップS24に進み、目標軽油添加量Qfに基づく一回の噴射が終了していなくても軽油の噴射を中断する。
By the way, when the determination result of step S22 is false (No) and it is determined that the light oil is still being injected, the process proceeds to step S26.
In step S26, based on the air-fuel ratio information from the O 2 sensor 16, it is determined whether or not the exhaust air-fuel ratio on the downstream side of the NOx storage catalyst 10, that is, the excess air ratio λ on the downstream side of the catalyst is equal to or less than a predetermined value λ1. (Block B20). Here, the predetermined value λ1 is set to a value slightly closer to the lean air-fuel ratio than the theoretical air-fuel ratio (λ = 1.0). If the determination result is false (No) and it is determined that the excess air ratio λ is greater than the predetermined value λ1, the process returns to step S20 and the light oil injection is continued. On the other hand, when the determination result is true (Yes) and it is determined that the excess air ratio λ is equal to or less than the predetermined value λ1, the process proceeds to step S24, even if one injection based on the target light oil addition amount Qf is not completed. Discontinue light oil injection.

即ち、空気過剰率λが所定値λ1以下と判定されたということは、何らかの要因により目標軽油添加量Qfが過剰となり、添加した軽油中のHCが吸蔵型NOx触媒10をすり抜けて触媒下流側にスリップしているものと判断できる。従って、このようにHCがスリップしていると判断される場合には、一回の噴射が終了していなくても軽油の噴射を中断する。これにより、HCの触媒下流側へのスリップが確実に防止される。   That is, when the excess air ratio λ is determined to be equal to or less than the predetermined value λ1, the target light oil addition amount Qf becomes excessive for some reason, and the HC in the added light oil passes through the storage-type NOx catalyst 10 to the downstream side of the catalyst. It can be judged that it is slipping. Therefore, when it is determined that the HC is slipping in this way, the injection of light oil is interrupted even if one injection is not completed. This reliably prevents HC from slipping to the downstream side of the catalyst.

ステップS28では、目標軽油添加量Qfに基づき噴射した軽油の総量ΣQfn(nは噴射回数)が上記全軽油添加量Qfttlに達したか否か、即ちNOxパージが完了したか否かを判別する(ブロックB14)。一回目の分割噴射では未だ全軽油添加量Qfttlに達していないため、判別結果は偽(No)となり、ステップS30に進む。
ステップS30では、空気過剰率λの時間変化、即ち空気過剰率λの変化率dλ/dtが正(≧0)であるか否かを判別する(ブロックB20)。つまり、軽油の噴射を中断すると、排気中にはHCが少なくなり排気空燃比はリーン空燃比側、即ち空気過剰率λは大側に移行することになるのであるが、ここでは、O2センサ16からの空燃比情報に基づき、当該空気過剰率λが大側に移行し始めたか否かを判別する。
In step S28, it is determined whether or not the total amount ΣQfn (n is the number of injections) of light oil injected based on the target light oil addition amount Qf has reached the total light oil addition amount Qfttl, that is, whether or not the NOx purge has been completed (step S28). Block B14). Since the total light oil addition amount Qfttl has not yet been reached in the first divided injection, the determination result is false (No), and the process proceeds to step S30.
In step S30, it is determined whether or not the time change of the excess air ratio λ, that is, the change rate dλ / dt of the excess air ratio λ is positive (≧ 0) (block B20). That is, when interrupting the injection of diesel fuel, exhaust air-fuel ratio becomes, the exhaust less HC is the lean air-fuel ratio side, that is, the excess air factor λ is become to migrate to the larger side, here, O 2 sensor Based on the air-fuel ratio information from 16, it is determined whether or not the excess air ratio λ has started to shift to the larger side.

即ち、上述したように軽油の噴射を中断している噴射インターバルの間には、吸蔵型NOx触媒10に排気中のO2が捕捉され、この間、空気過剰率λは変化せず、変化率dλ/dtは略一定に保持されるのであるが、当該ステップS30では、吸蔵型NOx触媒10へのO2の捕捉が十分に実施され、余剰のO2が吸蔵型NOx触媒10の下流側に流出し始めたか否かを判別する。 That is, as described above, during the injection interval in which the light oil injection is interrupted, O 2 in the exhaust gas is captured by the storage-type NOx catalyst 10, and during this time, the excess air ratio λ does not change and the change rate dλ. / Dt is held substantially constant, but in step S30, O 2 is sufficiently captured by the storage-type NOx catalyst 10, and excess O 2 flows out downstream of the storage-type NOx catalyst 10. It is determined whether or not it has started.

ステップS30の判別結果が偽(No)で変化率dλ/dtが未だ正とならず、空気過剰率λが大側に移行し始めていないと判定された場合には、吸蔵型NOx触媒10へのO2の捕捉が未だ十分ではないと判定でき、この場合にはステップS24に戻り軽油の噴射を中断し続ける。一方、判別結果が真(Yes)で変化率dλ/dtが正と判定された場合には、吸蔵型NOx触媒10へのO2の捕捉が十分と判定でき、この場合には上記ステップS20に進み、目標軽油添加量Qfに基づく軽油の分割噴射を再開する。 If the determination result of step S30 is false (No), the rate of change dλ / dt is not yet positive, and it is determined that the excess air ratio λ has not started to shift to the large side, then the storage type NOx catalyst 10 is applied. It can be determined that the capture of O 2 is not yet sufficient, and in this case, the process returns to step S24 and the injection of light oil continues to be interrupted. On the other hand, if the determination result is true (Yes) and the rate of change dλ / dt is determined to be positive, it can be determined that the O 2 capture to the storage NOx catalyst 10 is sufficient, and in this case, the above step S20 is performed. The process proceeds and restarts split injection of light oil based on the target light oil addition amount Qf.

以降、同様にして、ステップS28の判別結果が真(Yes)となり、軽油の総量ΣQfnが全軽油添加量Qfttlに達するまで軽油の分割が繰り返し実施される。そして、ステップS30の判別結果が真(Yes)となり、軽油の総量ΣQfnが全軽油添加量Qfttlに達すると、ステップS32において軽油の添加が終了させられ、これによりNOxパージが完了する(ブロックB16)。   Thereafter, similarly, the determination result of step S28 becomes true (Yes), and the light oil division is repeatedly performed until the total light oil amount ΣQfn reaches the total light oil addition amount Qfttl. When the determination result of step S30 becomes true (Yes) and the total amount of light oil ΣQfn reaches the total light oil addition amount Qfttl, the addition of light oil is terminated in step S32, thereby completing the NOx purge (block B16). .

ところで、このように目標軽油添加量Qfが設定され、当該目標軽油添加量Qfの総和が全軽油添加量Qfttlとなるまで軽油の分割噴射が実施されると、上述したように全軽油添加量Qfttlは元来目標軽油添加量Qfの総和に設定されていることから、全軽油添加量Qfttlを当該一回の目標軽油添加量Qfで除することで、必然的に噴射の分割回数が決定されることになる。   By the way, when the target light oil addition amount Qf is set in this way and split injection of light oil is performed until the sum of the target light oil addition amount Qf reaches the total light oil addition amount Qfttl, as described above, the total light oil addition amount Qfttl Is originally set to the sum of the target light oil addition amount Qf, and by dividing the total light oil addition amount Qfttl by the one target light oil addition amount Qf, the number of injection divisions is inevitably determined. It will be.

実際には、分割回数は吸蔵型NOx触媒10のNOx吸蔵能力等に応じて個々に異なってくるが、本実施形態では、当該分割回数は、例えば、吸蔵型NOx触媒10が図4中温度A近傍では5回となり、温度B近傍では3回となり、温度A、Bの中間近傍では4回となる。
ここで、図5を参照すると、当該吸蔵型NOx触媒10における軽油噴射回数とNOx浄化率との関係が実験結果としてそれぞれ吸蔵型NOx触媒10が低温(例えば、図4中温度A)である場合(破線)と高温(例えば、図4中温度B)である場合(実線)とに分けて示されているが、同図に示すように、吸蔵型NOx触媒10が低温である場合には、軽油噴射回数が5回で最もNOx浄化率が高く良好であり、高温である場合には、軽油噴射回数が3回で最もNOx浄化率が高く良好であることが分かる。
Actually, the number of divisions varies depending on the NOx storage capacity of the storage-type NOx catalyst 10 and the like, but in this embodiment, the number of divisions is, for example, that the storage-type NOx catalyst 10 has a temperature A in FIG. 5 times in the vicinity, 3 times in the vicinity of the temperature B, and 4 times in the vicinity of the middle of the temperatures A and B.
Here, referring to FIG. 5, the relationship between the number of light oil injections in the storage-type NOx catalyst 10 and the NOx purification rate is an experimental result when the storage-type NOx catalyst 10 is at a low temperature (for example, temperature A in FIG. 4). (Broken line) and high temperature (for example, temperature B in FIG. 4) are shown separately (solid line), but as shown in the figure, when the storage-type NOx catalyst 10 is at low temperature, When the number of light oil injections is five, the NOx purification rate is the highest and good, and when the temperature is high, the number of light oil injections is three and the NOx purification rate is the highest and good.

なお、現実には、全軽油添加量Qfttlを一回の目標軽油添加量Qfで除し切れず端数が出る場合が多いが、この場合には、上述したようにステップS26においてλ判別が実行されるため、当該端数分については噴射が終了していなくても良好に中断され、ステップS28、ステップS32が実行されてNOxパージは良好に完了する。
このように、本発明に係る吸蔵型NOx触媒10によれば、還元剤である軽油を分割供給することで効率よくNOxパージが実施されるが、さらに、触媒温度Tcに応じて分割した一回の目標軽油添加量Qfの最適化が図られ、これによりCOが適正に発生しNOxが常に良好に還元除去されることになり、触媒温度Tcに拘わらず余分な軽油の添加なくNOx浄化性能が効果的に向上することとなる。
In reality, there are many cases where the total light oil addition amount Qfttl is not completely divided by one target light oil addition amount Qf, and a fraction is often obtained. In this case, λ discrimination is executed in step S26 as described above. Therefore, even if the injection is not completed for the fraction, the interruption is satisfactorily performed, and step S28 and step S32 are executed, and the NOx purge is completed satisfactorily.
As described above, according to the storage type NOx catalyst 10 according to the present invention, the NOx purge is efficiently performed by dividing and supplying the light oil as the reducing agent, but the divided NOx catalyst is further divided once according to the catalyst temperature Tc. The target gas oil addition amount Qf is optimized, so that CO is properly generated and NOx is always reduced and removed satisfactorily, and NOx purification performance can be achieved without adding extra light oil regardless of the catalyst temperature Tc. It will improve effectively.

つまり、図6を参照すると、上記本発明に係るNOxパージ制御を実施した場合の軽油噴射量(軽油噴射圧×噴射時間)(a)とこれに応じた実軽油添加量Qfr(b)の時間変化が実験結果として吸蔵型NOx触媒10が低温(例えば、図4中温度A)である場合(破線)と高温(例えば、図4中温度B)である場合(実線)とにそれぞれ分けて示されているが、触媒温度Tcに応じて一回の目標軽油添加量Qfを設定しパージ制御を行うことにより、同図(b)に示すように、吸蔵型NOx触媒10が低温である場合(破線)、高温である場合(実線)共に、実軽油添加量QfrがCOを発生する不完全燃焼領域内の値(例えば、図4中添加量C、D)となる。即ち、実軽油添加量Qfrの最大値が、HCスリップ領域(図4参照)に入ることなく制御され、HCの触媒下流へのスリップが良好に防止され、また、CO2を発生する完全燃焼領域(図4参照)を十分に超えるように制御され、COの生成量が不足なく適正な量とされる。 That is, referring to FIG. 6, the time of the light oil injection amount (light oil injection pressure × injection time) (a) and the actual light oil addition amount Qfr (b) corresponding to this when the NOx purge control according to the present invention is performed. The change is shown as an experimental result separately when the storage NOx catalyst 10 is at a low temperature (for example, temperature A in FIG. 4) (broken line) and at a high temperature (for example, temperature B in FIG. 4) (solid line). However, when the target light oil addition amount Qf is set according to the catalyst temperature Tc and purge control is performed, as shown in FIG. 5B, the occlusion-type NOx catalyst 10 is at a low temperature ( In both cases (dashed line) and high temperature (solid line), the actual light oil addition amount Qfr is a value within the incomplete combustion region where CO is generated (for example, addition amounts C and D in FIG. 4). That is, the maximum value of the actual light oil addition amount Qfr is controlled without entering the HC slip region (see FIG. 4), the HC is prevented from slipping downstream of the catalyst, and the complete combustion region where CO 2 is generated. (Refer to FIG. 4) is controlled to sufficiently exceed, and the amount of CO generated is an appropriate amount without shortage.

また、触媒下流の排気の空気過剰率λが所定値λ1以下となったときには(ステップS26)、途中であってもHCがスリップしていると判断して軽油の噴射を中断するので(ステップS24)、HCの触媒下流へのスリップを確実に防止でき、HCの大気中への拡散を良好に抑止することができる。
以上で実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではない。
Further, when the excess air ratio λ of the exhaust downstream of the catalyst becomes equal to or less than the predetermined value λ1 (step S26), it is determined that HC is slipping even in the middle, and the injection of light oil is interrupted (step S24). ), The slip of HC downstream of the catalyst can be reliably prevented, and the diffusion of HC into the atmosphere can be satisfactorily suppressed.
The description of the embodiment is finished as above, but the present invention is not limited to the above embodiment.

例えば、上記実施形態では、ステップS20において、噴射圧一定の下、目標軽油添加量Qfが得られるように噴射時間を可変制御するようにしたが、例えば、他の実施例として、図7に示すように、噴射圧を可変制御するようにしてもよい。即ち、触媒温度Tcが高温(例えば、図4中温度B)のときには噴射圧を高く(a)、触媒温度Tcが低温(例えば、図4中温度A)のときには噴射圧を低く(b)するようにしてもよい。   For example, in the above embodiment, in step S20, the injection time is variably controlled so that the target light oil addition amount Qf is obtained under a constant injection pressure. For example, FIG. 7 shows another example. As described above, the injection pressure may be variably controlled. That is, when the catalyst temperature Tc is high (for example, temperature B in FIG. 4), the injection pressure is increased (a), and when the catalyst temperature Tc is low (for example, temperature A in FIG. 4), the injection pressure is decreased (b). You may do it.

また、上記実施形態では、エンジン1としてディーゼルエンジンを採用したが、エンジン1はディーゼルエンジンに限定されるものではなく、リーンバーンエンジン等のガソリンエンジンであってもよい。   Moreover, in the said embodiment, although the diesel engine was employ | adopted as the engine 1, the engine 1 is not limited to a diesel engine, A gasoline engine, such as a lean burn engine, may be sufficient.

本発明に係る内燃機関の排気浄化装置の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification apparatus for an internal combustion engine according to the present invention. 本発明に係るNOxパージ制御の制御ルーチンを示すフローチャートである。3 is a flowchart showing a control routine of NOx purge control according to the present invention. 本発明に係るNOxパージ制御の制御ブロック図である。It is a control block diagram of NOx purge control according to the present invention. 触媒温度Tcと目標軽油添加量Qfに応じた完全酸化反応(CO2発生)と不完全酸化反応(CO発生)の関係を示す図である。Is a diagram showing the relationship between full oxidation reaction according to the catalyst temperature Tc and the target light oil addition amount Qf (CO 2 evolution) and the incomplete oxidation reaction (CO evolution). 吸蔵型NOx触媒における軽油噴射回数とNOx浄化率との関係を示す図である。It is a figure which shows the relationship between the frequency | count of light oil injection in a storage type NOx catalyst, and a NOx purification rate. 本発明に係るNOxパージ制御を実施した場合の軽油噴射量(軽油噴射圧×噴射時間)(a)とこれに応じた実軽油添加量Qfr(b)の時間変化を示す図である。It is a figure which shows the time change of the light oil injection quantity (light oil injection pressure x injection time) (a) at the time of implementing NOx purge control concerning this invention, and the actual light oil addition amount Qfr (b) according to this. 還元剤供給手段における他の実施例を示す図である。It is a figure which shows the other Example in a reducing agent supply means.

符号の説明Explanation of symbols

1 エンジン(ディーゼルエンジン)
4 エアフローセンサ
10 吸蔵型NOx触媒
12 噴射弁(還元剤供給手段)
14 NOxセンサ
16 O2センサ
18 温度センサ(触媒温度検出手段)
20 ECU(電子コントロールユニット)
1 engine (diesel engine)
4 Airflow sensor 10 Occlusion type NOx catalyst 12 Injection valve (reducing agent supply means)
14 NOx sensor 16 O 2 sensor 18 Temperature sensor (catalyst temperature detection means)
20 ECU (Electronic Control Unit)

Claims (2)

内燃機関の排気通路に設けられ、酸化雰囲気中で排気中のNOxを吸蔵させ、還元雰囲気中で前記吸蔵させたNOxを放出し還元する機能を有するとともに、酸化雰囲気中で酸素を捕捉する酸素捕捉機能を有した吸蔵型NOx触媒と、
該吸蔵型NOx触媒の排気上流側に設けられ、該吸蔵型NOx触媒にHCを還元剤として供給する還元剤供給手段と、
前記吸蔵型NOx触媒の温度を検出する触媒温度検出手段と、
前記吸蔵型NOx触媒のNOx吸蔵量を検出するNOx吸蔵量検出手段と、
該NOx吸蔵量検出手段により検出されるNOx吸蔵量に応じて還元剤供給量を設定する還元剤供給量設定手段とを備え、
前記還元剤供給手段は、前記NOx吸蔵量検出手段により検出されるNOx吸蔵量が所定量に達したとき、前記還元剤供給量設定手段により設定される還元剤供給量の範囲内で前記還元剤を複数回に分割して間欠的に供給するものであって、前記触媒温度検出手段により検出される前記吸蔵型NOx触媒の温度が低温であるほど該分割の回数を多くして一回の還元剤供給量を抑制する一方、該温度が高温であるほど該分割の回数を少なくして一回の還元剤供給量を増大することを特徴とする内燃機関の排気浄化装置。
An oxygen trap that is provided in the exhaust passage of an internal combustion engine and has a function of storing NOx in exhaust in an oxidizing atmosphere and releasing and reducing the stored NOx in a reducing atmosphere, and traps oxygen in the oxidizing atmosphere. A storage-type NOx catalyst having a function;
A reducing agent supply means provided on the exhaust upstream side of the storage-type NOx catalyst, and supplying HC as a reducing agent to the storage-type NOx catalyst;
Catalyst temperature detecting means for detecting the temperature of the storage-type NOx catalyst;
NOx occlusion amount detection means for detecting the NOx occlusion amount of the occlusion type NOx catalyst;
Reducing agent supply amount setting means for setting a reducing agent supply amount according to the NOx storage amount detected by the NOx storage amount detection means,
When the NOx occlusion amount detected by the NOx occlusion amount detection means reaches a predetermined amount, the reducing agent supply means is within the range of the reducing agent supply amount set by the reducing agent supply amount setting means. Is divided into a plurality of times and supplied intermittently, and the lower the temperature of the occlusion-type NOx catalyst detected by the catalyst temperature detecting means, the more the number of times of the division is reduced. An exhaust emission control device for an internal combustion engine, wherein the supply amount of reducing agent is increased by decreasing the number of divisions as the temperature is higher while suppressing the supply amount of the agent.
さらに、前記吸蔵型NOx触媒の排気下流側に設けられ、該吸蔵型NOx触媒の排気下流側の排気空燃比を検出する排気空燃比検出手段を備え、
前記還元剤供給手段は、該排気空燃比検出手段により検出される排気空燃比が所定値よりもリッチ空燃比寄りとならないように前記一回の還元剤供給量を決定して前記還元剤の分割供給を行うことを特徴とする、請求項1記載の内燃機関の排気浄化装置。
Furthermore, provided with an exhaust air-fuel ratio detecting means provided on the exhaust downstream side of the storage-type NOx catalyst and detecting the exhaust air-fuel ratio on the exhaust downstream side of the storage-type NOx catalyst,
The reducing agent supply means determines the one-time reducing agent supply amount so that the exhaust air / fuel ratio detected by the exhaust air / fuel ratio detecting means does not become closer to the rich air / fuel ratio than a predetermined value, and divides the reducing agent 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein supply is performed.
JP2003293789A 2003-08-15 2003-08-15 Exhaust-emission control system of internal combustion engine Pending JP2005061340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003293789A JP2005061340A (en) 2003-08-15 2003-08-15 Exhaust-emission control system of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003293789A JP2005061340A (en) 2003-08-15 2003-08-15 Exhaust-emission control system of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005061340A true JP2005061340A (en) 2005-03-10

Family

ID=34370580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003293789A Pending JP2005061340A (en) 2003-08-15 2003-08-15 Exhaust-emission control system of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005061340A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142368A1 (en) * 2006-06-09 2007-12-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2010031675A (en) * 2008-07-25 2010-02-12 Aisan Ind Co Ltd Fuel addition device
WO2011155586A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 Exhaust pipe injection control device
EP2460998A1 (en) * 2010-09-02 2012-06-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
WO2012086093A1 (en) * 2010-12-20 2012-06-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
JPWO2011125098A1 (en) * 2010-04-02 2013-07-08 トヨタ自動車株式会社 Exhaust device for internal combustion engine
EP2617959A1 (en) * 2010-10-18 2013-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
EP2623738A1 (en) * 2011-11-30 2013-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2014001683A (en) * 2012-06-19 2014-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2015094342A (en) * 2013-11-14 2015-05-18 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142368A1 (en) * 2006-06-09 2007-12-13 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for an internal combustion engine
JP2010031675A (en) * 2008-07-25 2010-02-12 Aisan Ind Co Ltd Fuel addition device
US9623375B2 (en) 2010-03-15 2017-04-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
JPWO2011125098A1 (en) * 2010-04-02 2013-07-08 トヨタ自動車株式会社 Exhaust device for internal combustion engine
CN102939446A (en) * 2010-06-11 2013-02-20 五十铃自动车株式会社 Exhaust pipe injection control device
JP2011256844A (en) * 2010-06-11 2011-12-22 Isuzu Motors Ltd Device for control of exhaust pipe injection
WO2011155586A1 (en) * 2010-06-11 2011-12-15 いすゞ自動車株式会社 Exhaust pipe injection control device
US8875492B2 (en) 2010-06-11 2014-11-04 Isuzu Motors Limited Exhaust pipe injection control device
EP2460998A1 (en) * 2010-09-02 2012-06-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device of internal combustion engine
EP2460998A4 (en) * 2010-09-02 2014-07-09 Toyota Motor Co Ltd Exhaust gas purification device of internal combustion engine
US8833056B2 (en) 2010-09-02 2014-09-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
EP2617959A1 (en) * 2010-10-18 2013-07-24 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for internal combustion engine
EP2617959A4 (en) * 2010-10-18 2014-07-23 Toyota Motor Co Ltd Exhaust gas purification device for internal combustion engine
WO2012086093A1 (en) * 2010-12-20 2012-06-28 トヨタ自動車株式会社 Exhaust purification device for internal combustion engine
CN103492684A (en) * 2010-12-20 2014-01-01 丰田自动车株式会社 Exhaust purification device for internal combustion engine
JP5182428B2 (en) * 2010-12-20 2013-04-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
EP2623738A4 (en) * 2011-11-30 2014-07-16 Toyota Motor Co Ltd Exhaust purification device for internal combustion engine
EP2623738A1 (en) * 2011-11-30 2013-08-07 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
JP2014001683A (en) * 2012-06-19 2014-01-09 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2015094342A (en) * 2013-11-14 2015-05-18 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine

Similar Documents

Publication Publication Date Title
EP2458168B1 (en) Exhaust gas purification system for internal combustion engine
JP3852461B2 (en) Exhaust gas purification method and exhaust gas purification system
JP6350444B2 (en) Exhaust gas purification device for internal combustion engine
JP4635860B2 (en) Exhaust gas purification device for internal combustion engine
JP2009046992A (en) Abnormality diagnostic system of nox sensor
JP2006242124A (en) Exhaust emission control device for internal combustion engine
JP2005061340A (en) Exhaust-emission control system of internal combustion engine
JP2010127251A (en) Exhaust gas purifier for internal combustion engine
JP2018105156A (en) Exhaust emission control device for internal combustion engine
JP2009257243A (en) Exhaust emission control device for internal combustion engine
JP2019157666A (en) Exhaust emission control device, vehicle and exhaust purification control device
JP6988648B2 (en) Exhaust purification device for internal combustion engine
JP4682829B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP2010127182A (en) Exhaust emission control device for internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP2009024521A (en) Exhaust emission control device of internal combustion engine
JP2007255209A (en) Exhaust emission control device of internal combustion engine
JP5310353B2 (en) Exhaust gas purification device for internal combustion engine
JP2018044453A (en) Exhaust emission control system of internal combustion engine
JP5708787B2 (en) Catalyst deterioration judgment system
JP2010242674A (en) Catalyst deterioration determination device
JP4382581B2 (en) Exhaust gas purification device for internal combustion engine
JP2007285156A (en) Exhaust emission control device of internal combustion engine
JP2004316604A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060606

A131 Notification of reasons for refusal

Effective date: 20090225

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20090226

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090708